Local and dynamic regulation of neuronal glycolysis in vivo

Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to exam...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 121; no. 3; p. e2314699121
Main Authors Wolfe, Aaron D, Koberstein, John N, Smith, Chadwick B, Stewart, Melissa L, Gonzalez, Ian J, Hammarlund, Marc, Hyman, Anthony A, Stork, Philip J S, Goodman, Richard H, Colón-Ramos, Daniel A
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.
AbstractList Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.
Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in Caenorhabditis elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in Caenorhabditis elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.
Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in Caenorhabditis elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.
While it is generally accepted that energy metabolism underpins neuronal function, how it is distributed and dynamically regulated in different tissues of the brain to meet varying energy demands is not well understood. Here, we utilized a fluorescent biosensor, HYlight, to observe glycolytic metabolism at cellular and subcellular scales in vivo. By leveraging both the stereotyped identities of individual neurons in Caenorhabditis elegans and genetic tools for manipulating glycolytic metabolism, we determined that neurons perform and dynamically regulate glycolysis to match changing cellular demands for energy. Our findings support a model whereby glycolytic states should be considered distinct and related to individual neuron identities in vivo and introduce additional questions about the interconnected nature of metabolism and neuronal function. Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in Caenorhabditis elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.
Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in Caenorhabditis elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.
Author Koberstein, John N
Colón-Ramos, Daniel A
Stork, Philip J S
Hyman, Anthony A
Gonzalez, Ian J
Goodman, Richard H
Wolfe, Aaron D
Stewart, Melissa L
Smith, Chadwick B
Hammarlund, Marc
Author_xml – sequence: 1
  givenname: Aaron D
  orcidid: 0000-0002-4926-5064
  surname: Wolfe
  fullname: Wolfe, Aaron D
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536
– sequence: 2
  givenname: John N
  surname: Koberstein
  fullname: Koberstein, John N
  organization: Vollum Institute, Oregon Health & Science University, Portland, OR 97239
– sequence: 3
  givenname: Chadwick B
  surname: Smith
  fullname: Smith, Chadwick B
  organization: Vollum Institute, Oregon Health & Science University, Portland, OR 97239
– sequence: 4
  givenname: Melissa L
  surname: Stewart
  fullname: Stewart, Melissa L
  organization: Vollum Institute, Oregon Health & Science University, Portland, OR 97239
– sequence: 5
  givenname: Ian J
  surname: Gonzalez
  fullname: Gonzalez, Ian J
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536
– sequence: 6
  givenname: Marc
  surname: Hammarlund
  fullname: Hammarlund, Marc
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536
– sequence: 7
  givenname: Anthony A
  surname: Hyman
  fullname: Hyman, Anthony A
  organization: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
– sequence: 8
  givenname: Philip J S
  surname: Stork
  fullname: Stork, Philip J S
  organization: Vollum Institute, Oregon Health & Science University, Portland, OR 97239
– sequence: 9
  givenname: Richard H
  surname: Goodman
  fullname: Goodman, Richard H
  organization: Vollum Institute, Oregon Health & Science University, Portland, OR 97239
– sequence: 10
  givenname: Daniel A
  surname: Colón-Ramos
  fullname: Colón-Ramos, Daniel A
  organization: Wu Tsai Institute, Yale University, New Haven, CT 06510
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38198527$$D View this record in MEDLINE/PubMed
BookMark eNpdkctLAzEQxoMo9qFnb7Lgxcu2mSS72eBBpPiCghc9hzSbrSnbpCbdwv73bm2tj9MwzG--eXwDdOy8MwhdAB4B5nS8ciqOCAWWCwEEjlAfsIA0ZwIfoz7GhKcFI6yHBjEuMMYiK_Ap6tECRJER3kc3U69VnShXJmXr1NLqJJh5U6u19S7xVeJME7zrkHndal-30cbEumRjN_4MnVSqjuZ8H4fo7eH-dfKUTl8enyd301QzQtapoKybl2WZErNuA1NWgGeqIoblhOFMME1zxShnSgM3psu4oEApF8B1SWd0iG53uqtmtjSlNm4dVC1XwS5VaKVXVv6tOPsu534jARcYBLBO4XqvEPxHY-JaLm3Upq6VM76JkgigjAnajR2iq3_owjehe8AXlXMsSLalxjtKBx9jMNVhG8By64zcOiN_nOk6Ln8fceC_raCfwFCKwA
CitedBy_id crossref_primary_10_1038_s42255_024_01055_2
crossref_primary_10_1038_s42255_024_01049_0
crossref_primary_10_1126_sciadv_adm8815
Cites_doi 10.7554/eLife.52443
10.1016/j.cell.2021.06.023
10.1073/pnas.1604977113
10.1016/j.tibs.2020.05.010
10.1074/jbc.M404370200
10.1126/science.aay5947
10.1113/JP274944
10.1073/pnas.2204407119
10.1073/pnas.91.22.10625
10.1016/j.celrep.2023.112335
10.1016/j.tins.2004.05.005
10.1016/j.neuron.2016.12.020
10.1126/science.3260686
10.1016/j.cmet.2017.06.021
10.1113/JP274945
10.1016/j.devcel.2022.02.019
10.1038/ncomms7807
10.1126/science.1143762
10.1038/s41598-019-45517-0
10.1073/pnas.89.12.5675
10.1534/genetics.115.182162
10.1002/ana.410060502
10.1159/000111349
10.1016/j.bpj.2020.08.002
10.1073/pnas.0806933105
10.1016/j.cub.2014.02.025
10.1093/genetics/77.1.71
10.1038/jcbfm.2013.222
10.1016/j.neuron.2016.03.011
10.1038/s41586-021-03497-0
10.7554/eLife.81645
10.1101/2023.07.12.548706
10.1111/j.1471-4159.2009.05943.x
10.1016/j.neuron.2015.03.035
10.1038/ncb1881
10.1038/35084005
10.1016/j.copbio.2022.102711
10.1073/pnas.0913110107
10.1242/jcs.258469
10.1093/nar/gky354
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jan 16, 2024
Copyright © 2024 the Author(s). Published by PNAS. 2024
Copyright_xml – notice: Copyright National Academy of Sciences Jan 16, 2024
– notice: Copyright © 2024 the Author(s). Published by PNAS. 2024
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2314699121
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 10_1073_pnas_2314699121
38198527
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: P40 OD010440
– fundername: NINDS NIH HHS
  grantid: DP1 NS111778
– fundername: ;
  grantid: RGP0023/2019
– fundername: ;
  grantid: DP1 NS111778
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c422t-934381555a9b009edf10baf2e46240594c36a4374ac17eec367931337917cd3b3
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 17 21:29:55 EDT 2024
Thu Oct 24 01:52:54 EDT 2024
Thu Oct 10 17:07:54 EDT 2024
Fri Aug 23 03:32:49 EDT 2024
Sat Nov 02 12:30:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords C. elegans
biosensor
neurons
energy metabolism
glycolysis
Language English
License This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-934381555a9b009edf10baf2e46240594c36a4374ac17eec367931337917cd3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Richard H. Goodman; received August 25, 2023; accepted December 1, 2023; reviewed by Thomas R. Clandinin and Matthew Merrins
ORCID 0000-0002-4926-5064
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801914/
PMID 38198527
PQID 2916709251
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10801914
proquest_miscellaneous_2913449331
proquest_journals_2916709251
crossref_primary_10_1073_pnas_2314699121
pubmed_primary_38198527
PublicationCentury 2000
PublicationDate 2024-01-16
PublicationDateYYYYMMDD 2024-01-16
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 37662365 - bioRxiv. 2023 Aug 26
e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
White J. G. (e_1_3_4_19_2) 1997; 314
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_5_2
  doi: 10.7554/eLife.52443
– ident: e_1_3_4_22_2
  doi: 10.1016/j.cell.2021.06.023
– ident: e_1_3_4_9_2
  doi: 10.1073/pnas.1604977113
– ident: e_1_3_4_29_2
  doi: 10.1016/j.tibs.2020.05.010
– ident: e_1_3_4_24_2
  doi: 10.1074/jbc.M404370200
– volume: 314
  start-page: 1
  year: 1997
  ident: e_1_3_4_19_2
  article-title: The structure of the nervous system of the nematode Caenorhabditis elegans
  publication-title: Philos. Trans. R. Soc. Lond. B, Biol. Sci.
  contributor:
    fullname: White J. G.
– ident: e_1_3_4_35_2
  doi: 10.1126/science.aay5947
– ident: e_1_3_4_12_2
  doi: 10.1113/JP274944
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.2204407119
– ident: e_1_3_4_11_2
  doi: 10.1073/pnas.91.22.10625
– ident: e_1_3_4_42_2
– ident: e_1_3_4_16_2
  doi: 10.1016/j.celrep.2023.112335
– ident: e_1_3_4_23_2
  doi: 10.1016/j.tins.2004.05.005
– ident: e_1_3_4_13_2
  doi: 10.1016/j.neuron.2016.12.020
– ident: e_1_3_4_1_2
  doi: 10.1126/science.3260686
– ident: e_1_3_4_14_2
  doi: 10.1016/j.cmet.2017.06.021
– ident: e_1_3_4_17_2
  doi: 10.1113/JP274945
– ident: e_1_3_4_37_2
  doi: 10.1016/j.devcel.2022.02.019
– ident: e_1_3_4_8_2
  doi: 10.1038/ncomms7807
– ident: e_1_3_4_26_2
  doi: 10.1126/science.1143762
– ident: e_1_3_4_39_2
  doi: 10.1038/s41598-019-45517-0
– ident: e_1_3_4_2_2
  doi: 10.1073/pnas.89.12.5675
– ident: e_1_3_4_40_2
  doi: 10.1534/genetics.115.182162
– ident: e_1_3_4_3_2
  doi: 10.1002/ana.410060502
– ident: e_1_3_4_10_2
  doi: 10.1159/000111349
– ident: e_1_3_4_21_2
  doi: 10.1016/j.bpj.2020.08.002
– ident: e_1_3_4_25_2
  doi: 10.1073/pnas.0806933105
– ident: e_1_3_4_27_2
  doi: 10.1016/j.cub.2014.02.025
– ident: e_1_3_4_38_2
  doi: 10.1093/genetics/77.1.71
– ident: e_1_3_4_18_2
  doi: 10.1038/jcbfm.2013.222
– ident: e_1_3_4_36_2
  doi: 10.1016/j.neuron.2016.03.011
– ident: e_1_3_4_32_2
  doi: 10.1038/s41586-021-03497-0
– ident: e_1_3_4_15_2
  doi: 10.7554/eLife.81645
– ident: e_1_3_4_28_2
  doi: 10.1101/2023.07.12.548706
– ident: e_1_3_4_33_2
  doi: 10.1111/j.1471-4159.2009.05943.x
– ident: e_1_3_4_6_2
  doi: 10.1016/j.neuron.2015.03.035
– ident: e_1_3_4_34_2
  doi: 10.1038/ncb1881
– ident: e_1_3_4_4_2
  doi: 10.1038/35084005
– ident: e_1_3_4_31_2
  doi: 10.1016/j.copbio.2022.102711
– ident: e_1_3_4_7_2
  doi: 10.1073/pnas.0913110107
– ident: e_1_3_4_30_2
  doi: 10.1242/jcs.258469
– ident: e_1_3_4_41_2
  doi: 10.1093/nar/gky354
SSID ssj0009580
Score 2.5093648
Snippet Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is...
While it is generally accepted that energy metabolism underpins neuronal function, how it is distributed and dynamically regulated in different tissues of the...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e2314699121
SubjectTerms Animals
Biological Sciences
Biosensors
Caenorhabditis elegans
Energy
Energy Metabolism
Genetic analysis
Glycolysis
In vivo methods and tests
Localization
Metabolism
Neural plasticity
Neuronal Plasticity
Neurons
Title Local and dynamic regulation of neuronal glycolysis in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/38198527
https://www.proquest.com/docview/2916709251
https://www.proquest.com/docview/2913449331
https://pubmed.ncbi.nlm.nih.gov/PMC10801914
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4BJy5oy7O8ZKQ9wCFt4_Ej1p4QAgG7rDiAxC1yYpetBG4FLRL_fsd5lNeNYzSOE41nMt_E428AflplBNcakxSVS4TMisQa8itERQFJSjQinka--qvOb8XlnbxbANWehamK9sti1AsPj70w-lfVVk4ey35bJ9a_vjqJdXGRl6y_CItkoW2OPqfazeqDJ5y-v4KLltBHY38S7HOPEA3lhCblsUtMTFgyGXvKvA9LX7Dm55LJdzHo7AesNOCRHdcv2YEFH1ah07jnMztsOKSP1uDXnxijmA2OubrnPHuqu87TOrDxkFU8lnGy-4dXsoXIS8JGgb2MXsbrcHt2enNynjR9EpJScD5NDEaeLimljQSHxrthOijskHuhKF5LI0pUVqAWtky193RFTkm5qaZUrXRY4AYshXHwW8CMQ0OzKK1TK_gATTYYKkch3aNzWLouHLZqyic1HUZebWNrzKNy8zfldmG3VWPe-AWJCY3qgSFQ1YWDuZgsOm5T2ODHs2oMCmEQacxmrfX5s9rl6kL2YT3mAyJb9kcJGVHFmt0azfb3b92BZU6YJv6BSdUuLE2fZn6PMMm02Cc0fvF7vzLE_8Qo3lw
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoBLoTy3FDASh3JINvH4EYsTqqgW2K04tKK3yIm9ZUWbXbW7leDXM07ipS0nOEbjvPR5Mt_E428A3lplBNcakxyVS4QsqsQa8itERQFJSjQi7EaeHKrRsfh8Ik82QMW9MG3Rfl3N0ubsPG1m39vaysV5PYx1YsOvk_1QFxd0yYZ34C45bCZilr4W2y26rSecvsCCiyjpo3G4aOxlSpyGskKT89AnJqQshQxdZa4Hpr_Y5u2iyWtR6OABfIvP3xWf_EhXyyqtf92Sdvz3F3wIWz0xZR86-zZs-OYRbPeuf8n2en3qd4_h_TjEP2Ybx1zXz55ddB3tCWM2n7JWIzNc7PTsJ82zoHnCZg27ml3Nn8Dxwcej_VHS92BIasH5MjEYNMCklDaIJxrvpnlW2Sn3QhEXkEbUqKxALWyda-_piBye8l5NaWDtsMKnsNnMG_8cmHFo6CpK69wKnqEpsqlyRBc8Ooe1G8BeBKBcdFIbZbtErrEMsJV_YBvAbgSo7H2OzMR0dWaIsA3gzdpM3hKWQGzj56t2DAphEGnMsw7P9b3iRBhAcQPp9YCgxH3TQvi1itwRr53_P_U13BsdTcbl-NPhlxdwnxN3Cn96crULm8uLlX9J3GdZvWon-m8qR_-C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXaHmUhRaMxKEc8vI4dixOVcuqQFv1QKVKHCIndmBF6111dyvBr2ecx9KWW4-RHUfW5_F8E4-_AXhvpBZcKYwylDYSeVFFRpNdIUpySHmOWoTbyEfH8uBUfDnLz_qsynmfVunrahL784vYT362uZWzizoZ8sSSk6O9kBcXdMmSmW2S-_CAjDaVQ6S-EtwtuusnnHZhwcUg66MwmXkzj4nXUGSoMx5qxYSwpchDZZnrzuk_xnk7cfKaJxo_ge_DHLoElF_xclHF9Z9b8o53m-Q6PO4JKtvt-mzAPeefwka_BczZTq9T_eEZfDwMfpAZb5nt6tqzy66yPWHNpg1rtTLDYD_Of9N6C9onbOLZ1eRq-hxOx5--7R1EfS2GqBacLyKNQQssz3MTRBS1s02WVqbhTkjiBLkWNUojUAlTZ8o5eiLDp_hXUThYW6zwBaz5qXcvgWmLmkaRSmVG8BR1kTbSEm1waC3WdgQ7AwjlrJPcKNujcoVlgK78B90ItgaQyt72qJkYr0o1EbcRvFs1k9WEoxDj3XTZ9kEhNCL12ewwXX1rWAwjKG6gveoQFLlvthCGrTL3gNmru7_6Fh6e7I_Lw8_HX1_DI04UKvzwyeQWrC0ul26bKNCietOu9b9LXAIR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+and+dynamic+regulation+of+neuronal+glycolysis+in+vivo&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wolfe%2C+Aaron+D&rft.au=Koberstein%2C+John+N&rft.au=Smith%2C+Chadwick+B&rft.au=Stewart%2C+Melissa+L&rft.date=2024-01-16&rft.eissn=1091-6490&rft.volume=121&rft.issue=3&rft.spage=e2314699121&rft_id=info:doi/10.1073%2Fpnas.2314699121&rft_id=info%3Apmid%2F38198527&rft.externalDocID=38198527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon