Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans?

Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic...

Full description

Saved in:
Bibliographic Details
Published inComparative biochemistry and physiology. Toxicology & pharmacology Vol. 212; pp. 34 - 46
Main Authors de Souza Anselmo, Carina, Sardela, Vinicius Figueiredo, de Sousa, Valeria Pereira, Pereira, Henrique Marcelo Gualberto
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2018
Subjects
Online AccessGet full text
ISSN1532-0456
1878-1659
DOI10.1016/j.cbpc.2018.06.005

Cover

Loading…
Abstract Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.
AbstractList Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.
Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.
Author de Sousa, Valeria Pereira
Sardela, Vinicius Figueiredo
de Souza Anselmo, Carina
Pereira, Henrique Marcelo Gualberto
Author_xml – sequence: 1
  givenname: Carina
  surname: de Souza Anselmo
  fullname: de Souza Anselmo, Carina
  email: carinaanselmo@iq.ufrj.br
  organization: Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil
– sequence: 2
  givenname: Vinicius Figueiredo
  surname: Sardela
  fullname: Sardela, Vinicius Figueiredo
  organization: Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil
– sequence: 3
  givenname: Valeria Pereira
  surname: de Sousa
  fullname: de Sousa, Valeria Pereira
  organization: Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy, LabCQ, Av Carlos Chagas Filho, 373, 21941-902, Bss36, Cidade Universitária, Rio de Janeiro, RJ, Brazil
– sequence: 4
  givenname: Henrique Marcelo Gualberto
  surname: Pereira
  fullname: Pereira, Henrique Marcelo Gualberto
  organization: Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29969680$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURi1URB_wB1ggL8si4dpxPAlCqqrylCqxgQ0b48cN41FiD7ZTwb_Ho2k3LLq6vtI5V_L3nZOTEAMS8pJBy4DJN7vWmr1tObChBdkC9E_IGRs2Q8NkP57Ud9_xBkQvT8l5zjuohGDyGTnl4yhHOcAZ-fkDTdKTz1t6-V4HH2nC5OPrt_Sa3ul51WZGWmKc6RQT3Sd03hYfftGyRbpg0SbOPi80TvQPhmh8LN5m6gPdrosO-eo5eTrpOeOL-3lBvn_88O3mc3P79dOXm-vbxgrOSzOCRavd1I0jm3ByYND0TmyGQXPTbRhgXQRjgwTbd6LjxjrB-o1AcG60trsgl8e7-xR_r5iLWny2OM86YFyz4iAFF_XjUNFX9-hqFnRqn_yi01_1kEoFhiNgU8w54aSsL7r4GErSflYM1KEAtVOHAtShAAVS1Xiryv9TH64_Kr07SlgDuvOYVLYeg61hJ7RFuegf0_8Bmoqe5g
CitedBy_id crossref_primary_10_1007_s00580_021_03302_4
crossref_primary_10_1007_s11419_019_00493_y
crossref_primary_10_17816_ecogen17269_81
crossref_primary_10_1080_03067319_2022_2053847
crossref_primary_10_1016_j_ecoenv_2019_110037
crossref_primary_10_1038_s41598_023_34593_y
crossref_primary_10_3390_ani13233685
crossref_primary_10_3390_molecules27092647
crossref_primary_10_1002_dta_3488
crossref_primary_10_1007_s10661_019_7600_3
crossref_primary_10_1016_j_tox_2021_152786
crossref_primary_10_3390_ph14111117
crossref_primary_10_31857_S0026898424030032
crossref_primary_10_1080_15287394_2020_1828209
crossref_primary_10_1016_j_aquatox_2022_106322
crossref_primary_10_1016_j_scitotenv_2023_165684
crossref_primary_10_1016_j_cbpc_2022_109439
crossref_primary_10_1590_1678_4324_2024220968
crossref_primary_10_1002_wfs2_1454
crossref_primary_10_1007_s11356_020_08276_4
crossref_primary_10_2174_1574886317666220514153858
crossref_primary_10_1016_j_envpol_2020_115783
crossref_primary_10_1007_s00216_023_04781_w
crossref_primary_10_1080_10934529_2022_2060026
crossref_primary_10_1016_j_envres_2024_120504
crossref_primary_10_1007_s12011_021_02830_y
crossref_primary_10_1016_j_cbpc_2020_108838
crossref_primary_10_1016_j_jchromb_2021_122826
crossref_primary_10_1007_s11356_019_06726_2
crossref_primary_10_3389_fimmu_2021_624293
crossref_primary_10_1089_zeb_2019_1791
crossref_primary_10_1016_j_chemosphere_2020_128872
crossref_primary_10_1177_0192623320964748
crossref_primary_10_1016_j_jhazmat_2020_122724
crossref_primary_10_1016_j_jep_2022_115580
crossref_primary_10_1080_17460441_2020_1671351
crossref_primary_10_1016_j_trac_2024_117547
crossref_primary_10_1016_j_chnaes_2021_01_011
crossref_primary_10_1007_s12010_023_04791_5
crossref_primary_10_1080_03601234_2022_2064675
crossref_primary_10_1080_10408398_2021_1895060
crossref_primary_10_3390_ph17010082
crossref_primary_10_3390_ijms24032288
crossref_primary_10_1021_acs_est_9b00789
crossref_primary_10_1016_j_ecoenv_2022_113334
crossref_primary_10_1016_j_jpba_2023_115710
crossref_primary_10_1038_s41598_022_09659_y
crossref_primary_10_1021_acs_est_4c11264
crossref_primary_10_1016_j_chemosphere_2021_131210
crossref_primary_10_1016_j_jpba_2024_116187
crossref_primary_10_3390_ijms222413417
crossref_primary_10_1016_j_chemosphere_2024_142097
crossref_primary_10_1007_s13596_024_00788_5
crossref_primary_10_1016_j_neuro_2023_01_003
crossref_primary_10_1016_j_jchromb_2019_121726
crossref_primary_10_1039_D1RA01111A
crossref_primary_10_1002_jat_3938
crossref_primary_10_1177_00258024221074568
crossref_primary_10_1016_j_ecoenv_2021_113140
crossref_primary_10_1007_s11356_023_26735_6
crossref_primary_10_3389_fcell_2020_00583
crossref_primary_10_1016_j_ecoenv_2024_116023
crossref_primary_10_4103_ijmr_IJMR_2047_17
crossref_primary_10_1289_EHP7169
crossref_primary_10_1016_j_aquatox_2021_105881
crossref_primary_10_1093_toxsci_kfac082
crossref_primary_10_3389_frwa_2024_1401712
crossref_primary_10_1016_j_envint_2024_108747
crossref_primary_10_1016_j_aquatox_2023_106770
crossref_primary_10_1093_toxsci_kfab072
crossref_primary_10_1007_s00414_023_03151_6
crossref_primary_10_1021_acs_chemrestox_9b00335
crossref_primary_10_3390_molecules25194474
crossref_primary_10_1007_s11419_020_00543_w
crossref_primary_10_1016_j_ecoenv_2024_117396
crossref_primary_10_1016_j_toxicon_2022_06_009
Cites_doi 10.1016/j.taap.2003.07.012
10.1016/j.cbpc.2010.06.004
10.1016/j.foodchem.2015.02.098
10.3109/00498254.2012.684410
10.1016/j.chroma.2017.07.076
10.1002/dta.2318
10.1016/j.scitotenv.2017.03.038
10.1016/j.aquatox.2014.10.013
10.2131/jts.41.1
10.2174/138920010791636158
10.1038/291293a0
10.1006/eesa.2001.2073
10.1053/j.gastro.2015.08.034
10.1016/j.chemosphere.2014.05.050
10.3109/00498254.2010.493960
10.1002/bies.10326
10.1089/zeb.2013.0893
10.1016/j.jchromb.2012.12.031
10.1016/j.abb.2010.06.018
10.1242/jeb.147058
10.1016/j.ydbio.2011.09.010
10.1373/clinchem.2008.119396
10.1021/nn700048y
10.1016/j.cbpb.2014.03.005
10.1196/annals.1315.015
10.1002/bmc.1566
10.1177/1087057112447305
10.1016/j.coph.2017.08.007
10.1007/BF02977789
10.1016/S0076-6879(03)64023-1
10.1016/j.tiv.2017.05.009
10.1016/j.chemosphere.2012.03.018
10.1016/j.vascn.2009.04.103
10.1016/j.envpol.2016.08.026
10.1016/j.phrs.2015.11.024
10.1007/s10646-011-0720-3
10.1016/0045-6535(90)90133-E
10.3109/00498258709167413
10.1016/j.jgr.2015.12.010
10.1177/2211068211432197
10.1038/nrd4627
10.1093/toxsci/kfx116
10.1074/jbc.R110.200055
10.1016/j.jacbts.2017.01.004
10.1002/aja.1002030302
10.1007/BF01699408
10.1016/j.pharmthera.2016.03.009
10.1016/j.aquatox.2010.12.016
10.1016/j.ddmod.2012.02.005
10.1177/1087057105279952
10.1007/s00204-015-1566-x
10.1016/j.tox.2011.01.004
10.1016/j.chemosphere.2010.01.058
10.1016/0045-6535(93)90134-Q
10.1089/zeb.2009.0630
10.1016/j.aquatox.2012.10.008
10.1021/tx700079z
10.1038/nature05883
10.1016/0048-9697(91)90196-L
10.1016/j.envpol.2017.04.083
10.3109/00498254.2011.617015
10.1016/S1673-8527(08)60121-6
10.1016/j.taap.2004.10.019
10.1016/j.taap.2013.04.010
10.1038/nature12111
10.1006/taap.1996.8058
10.1016/j.cbpc.2016.02.007
10.1016/j.cld.2016.08.001
10.1016/j.aquatox.2012.01.008
10.1097/FTD.0b013e3181f33411
10.1002/bdrc.20214
10.1016/j.aquatox.2012.01.015
10.1016/j.ddmod.2012.02.006
10.1042/BSR20150168
10.1177/0192623311409597
10.1016/j.aquatox.2014.02.019
10.1016/j.dci.2016.02.020
10.1016/j.aquaculture.2007.04.077
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cbpc.2018.06.005
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1878-1659
EndPage 46
ExternalDocumentID 29969680
10_1016_j_cbpc_2018_06_005
S1532045618300905
Genre Journal Article
Review
GroupedDBID --K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABFNM
ABFYP
ABGSF
ABLST
ABMAC
ABPPZ
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPT
SSJ
SSP
SSU
SSZ
T5K
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c422t-90cecadf3991fefd0beb5d4788a2b3710ed47411860c53432bcd41574e0dd9cc3
IEDL.DBID .~1
ISSN 1532-0456
IngestDate Tue Aug 05 10:25:08 EDT 2025
Wed Feb 19 02:43:53 EST 2025
Tue Jul 01 03:41:18 EDT 2025
Thu Apr 24 23:00:30 EDT 2025
Fri Feb 23 02:33:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-human model
Xenobiotic metabolism
Toxicology
Zebrafish (Danio rerio)
Drug discovery
Cytochrome P450
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-90cecadf3991fefd0beb5d4788a2b3710ed47411860c53432bcd41574e0dd9cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 29969680
PQID 2064242990
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2064242990
pubmed_primary_29969680
crossref_citationtrail_10_1016_j_cbpc_2018_06_005
crossref_primary_10_1016_j_cbpc_2018_06_005
elsevier_sciencedirect_doi_10_1016_j_cbpc_2018_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
2018-Oct
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Comparative biochemistry and physiology. Toxicology & pharmacology
PublicationTitleAlternate Comp Biochem Physiol C Toxicol Pharmacol
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Couchman, Morgan (bb0075) 2011; 25
Fleming, Alderton (bb0105) 2013; 10
Smith, Chu, Paterson, Metcalfe, Wilson (bb0360) 2010; 79
Wen, Liu, Zhu, Zheng, Su, Zhang, Yu, Giesy, Lam (bb0420) 2015; 120
Lootens, Meuleman, Pozo, Van Eenoo, Leroux-Roels, Delbeke (bb0250) 2009; 55
Vallverdú-Queralt, Boix, Piqué, Gómez-Catalan, Medina-Remon, Sasot, Mercader-Martí, Llobet, Lamuela-Raventos (bb0400) 2015; 181
Brugman (bb0035) 2016; 64
Otte, Schultz, Fruth, Fabian, Van, Hidding, Salinas (bb0300) 2017; 159
Ree, Myklebust, Thiel, Foyn, Fladmark, Arnesen (bb0325) 2015; 35
Saad, Cavanaugh, Verbueken, Pype, Casteleyn, Van Ginneken, Van Cruchten (bb0330) 2016; 41
Sneddon, Halsey, Bury (bb0365) 2017; 220
Jones, Trollope, Hutchinson, Panter, Chipman (bb0180) 2012; 42
Langheinrich (bb0215) 2003; 25
Streisinger, Walker, Dower, Knauber, Singer (bb0375) 1981; 291
Pinho, Reis, Guedes-Dias, Leitão-Rocha, Quintas, Valentão, Andrade, Santos, Oliveira (bb0320) 2016; 103
Shen, Wei, Tang, Jia, Chen (bb0350) 2017; 41
Lindholst, Wynne, Marriott, Pedersen, Bjerregaard (bb0240) 2003; 135
Goldstone, G, Kubota, Zanette, Parente, Jönsson, Nelson, Stegeman (bb0130) 2010; 11
Howe, Clark, Torroja, Torrance, Berthelot, Muffato, Collins, Humphray, McLaren, Matthews, McLaren, Sealy, Caccamo, Churcher, Scott, Barrett, Koch, Rauch, White, Chow, Kilian, Quintais, Guerra-Assunção, Zhou, Gu, Yen, Vogel, Eyre, Redmond, Banerjee, Chi, Fu, Langley, Maguire, Laird, Lloyd, Kenyon, Donaldson, Sehra, Almeida-King, Loveland, Trevanion, Jones, Quail, Willey, Hunt, Burton, Sims, McLay, Plumb, Davis, Clee, Oliver, Clark, Riddle, Eliott, Threadgold, Harden, Ware, Mortimer, Kerry, Heath, Phillimore, Tracey, Corby, Dunn, Johnson, Wood, Clark, Pelan, Griffiths, Smith, Glithero, Howden, Barker, Stevens, Harley, Holt, Panagiotidis, Lovell, Beasley, Henderson, Gordon, Auger, Wright, Collins, Raisen, Dyer, Leung, Robertson, Ambridge, Leongamornlert, McGuire, Gilderthorp, Griffiths, Manthravadi, Nichol, Barker, Whitehead, Kay, Brown, Murnane, Gray, Humphries, Sycamore, Barker, Saunders, Wallis, Babbage, Hammond, Mashreghi-Mohammadi, Barr, Martin, Wray, Ellington, Matthews, Ellwood, Woodmansey, Clark, Cooper, Tromans, Grafham, Skuce, Pandian, Andrews, Harrison, Kimberley, Garnett, Fosker, Hall, Garner, Kelly, Bird, Palmer, Gehring, Berger, Dooley, Ersan-Ürün, Eser, Geiger, Geisler, Karotki, Kirn, Konantz, Konantz, Oberländer, Rudolph-Geiger, Teucke, Osoegawa, Zhu, Rapp, Widaa, Langford, Yang, Carter, Harrow, Ning, Herrero, Searle, Enright, Geisler, Plasterk, Lee, Westerfield, De Jong, Zon, Postlethwait, Nüsslein-Volhard, Hubbard, Crollius, Rogers, Stemple (bb0160) 2013; 496
Peters, Martinez-Ramirez (bb0315) 2010; 32
Kasokat, Nagel, Urich (bb0195) 1989; 42
Zhu, Zhang, Humphreys (bb0440) 2011; 286
Alderton, Berghmans, Butler, Chassaing, Fleming, Golder, Richards, Gardner (bb0010) 2010; 40
Kamel, Ninov (bb0185) 2017; 37
Weigt, Huebler, Strecker, Braunbeck, Broschard (bb0415) 2011; 281
Tao, Peng (bb0380) 2009; 36
Carten, Bradford, Farber (bb0050) 2011; 360
Lawrence (bb0225) 2007; 269
Mohammed, Kurogi, Al Shaban, Xu, Liu, Williams, Sakakibara, Suiko, Bhuiyan, Liu (bb0280) 2012; 112–113
Chang, Chung, Su, Tseng, Tzou, Hu (bb0055) 2013; 270
Garcia, Noyes, Tanguay (bb0115) 2016; 161
Chen, Yu, Yang, Zhou (bb0060) 2012; 110–111
Scornaienchi, Thornton, Willett, Wilson (bb0340) 2010; 502
Wang, Chen, Du, Li, Wang, Gao (bb0405) 2017; 590–591
Spitsbergen, Kent (bb0370) 2003; 31
Fenn (bb0100) 2002; 13
Mandrell, Truong, Jephson, Sarker, Moore, Lang, Simonich, Tanguay (bb0265) 2012; 17
Sipes, Padilla, Knudsen (bb0355) 2011; 93
OECD (bb2500) 2013
Liu, Bhuiyan, Liu, Sugahara, Sakakibara, Suiko, Yasuda, Kakuta, Kimura, Williams, Liu (bb0245) 2010; 11
Pardal, Caro, Tueros, Barranco, Navarro (bb0310) 2014; 11
Guengerich (bb0140) 2008; 21
Hertl, Nagel (bb0150) 1993; 27
Núñez, Gallart-Ayala, Martins, Lucci, Busquets (bb0290) 2013; 927
Wang, Yin, Wei, Shi, Liu, Liu, Xin (bb0410) 2017; 1515
David, Jones, Panter, Winter, Hutchinson, Kevin Chipman (bb0080) 2012; 88
Troxel, Reddy, O'Neal, Hendricks, Bailey (bb0390) 1997; 78
Alazizi, Liu, Williams, Kurogi, Sakakibara, Suiko, Liu (bb0005) 2011; 102
Shams, Rihel, Ortiz, Gerlai (bb0345) 2017
Capiotti, Antonioli, Kist, Bogo, Bonan, Da Silva (bb0040) 2014; 171
Thompson, Burwinkel, Chava, Notch, Mayer (bb0385) 2010; 152
Ho, Pack, Farber (bb0155) 2003; 364
Modick, Weiss, Dierkes, Koslitz, Käfferlein, Brüning, Koch (bb0275) 2016; 90
Almazroo, Miah, Venkataramanan (bb0020) 2017; 21
Anselmo, Sardela, Matias, de Carvalho, de Sousa, Pereira, de Aquino Neto (bb0025) 2017; 9
Dawid (bb0085) 2004; 1038
Saad, Matheeussen, Bijttebier, Verbueken, Pype, Casteleyn, Van Ginneken, Apers, Maes, Cos, Van Cruchten (bb0335) 2017; 42
European Commission (bb0095) 2016
Zhang, Ji, Yan, Lu, Lu, Zhao (bb0435) 2016; 218
Gorge, Nagel (bb0135) 1990; 21
Li, Lin, McGrath (bb0235) 2009; 60
Xu, Li, Kong (bb0430) 2005; 28
MacRae, Peterson (bb0255) 2015; 14
Goessling, Sadler (bb0125) 2015; 149
Jones, Panter, Hutchinson, Chipman (bb0175) 2010; 7
Kimmel, Ballard, Kimmel, Ullmann, Schilling (bb0200) 1995; 203
Kühnert, Vogs, Aulhorn, Altenburger, Küster, Busch, Kühnert, Vogs, Altenburger, Hollert, Seiwert (bb0210) 2017; 230
Chng, Ho, Yap, Lam, Chan (bb0065) 2012; 17
Christen, Fent (bb0070) 2014; 150
He, Yang, Wang, Liu, Liao, Xu, Bai, Chen, Lin, Huang, Dong (bb2600) 2011; 20
Hu, Siu, Li, Chu, Kwan, Chan, Leung, Yan, Lee (bb0165) 2012; 42
Langheinrich, Vacun, Wagner (bb0220) 2003; 193
Tseng, Hseu, Buhler, Der Wang, Hu (bb0395) 2005; 205
Brox, Seiwert, Haase, Küster, Reemtsma (bb0030) 2016; 185–186
Huang, Wu (bb0170) 2010; 5
Zok, Görge, Kalsch, Nagel (bb0445) 1991; 109
Carlsson, Patring, Kreuger, Norrgren, Oskarsson (bb0045) 2013; 126
Lee, Nallathamby, Browning, Osgood, Xu (bb0230) 2007; 1
OECD (bb0295) 1992
Fleming, Sato, Goldsmith (bb0110) 2005; 10
North, Goessling, Walkley, Lengerke, Kopani, Lord, Weber, Bowman, Jang, Grosser, Fitzgerald, Daley, Orkin, Zon (bb0285) 2007; 447
Menke, Spitsbergen, Wolterbeek, Woutersen (bb0270) 2011; 39
Glisic, Mihaljevic, Popovic, Zaja, Loncar, Fent, Kovacevic, Smital (bb0120) 2015; 158
Diekmann, Hill (bb0090) 2013; 10
Wiegand, Krause, Steinberg, Pflugmacher (bb0425) 2001; 49
Kasokat, Nagel, Urich (bb0190) 1987; 17
Kithcart, MacRae (bb0205) 2017; 2
Modick (10.1016/j.cbpc.2018.06.005_bb0275) 2016; 90
Smith (10.1016/j.cbpc.2018.06.005_bb0360) 2010; 79
European Commission (10.1016/j.cbpc.2018.06.005_bb0095) 2016
Weigt (10.1016/j.cbpc.2018.06.005_bb0415) 2011; 281
Zhang (10.1016/j.cbpc.2018.06.005_bb0435) 2016; 218
Guengerich (10.1016/j.cbpc.2018.06.005_bb0140) 2008; 21
Christen (10.1016/j.cbpc.2018.06.005_bb0070) 2014; 150
Alazizi (10.1016/j.cbpc.2018.06.005_bb0005) 2011; 102
Goessling (10.1016/j.cbpc.2018.06.005_bb0125) 2015; 149
Liu (10.1016/j.cbpc.2018.06.005_bb0245) 2010; 11
Wen (10.1016/j.cbpc.2018.06.005_bb0420) 2015; 120
Shams (10.1016/j.cbpc.2018.06.005_bb0345) 2017
Sipes (10.1016/j.cbpc.2018.06.005_bb0355) 2011; 93
MacRae (10.1016/j.cbpc.2018.06.005_bb0255) 2015; 14
Hu (10.1016/j.cbpc.2018.06.005_bb0165) 2012; 42
Mandrell (10.1016/j.cbpc.2018.06.005_bb0265) 2012; 17
Shen (10.1016/j.cbpc.2018.06.005_bb0350) 2017; 41
Huang (10.1016/j.cbpc.2018.06.005_bb0170) 2010; 5
Ree (10.1016/j.cbpc.2018.06.005_bb0325) 2015; 35
Thompson (10.1016/j.cbpc.2018.06.005_bb0385) 2010; 152
Couchman (10.1016/j.cbpc.2018.06.005_bb0075) 2011; 25
Carten (10.1016/j.cbpc.2018.06.005_bb0050) 2011; 360
Pinho (10.1016/j.cbpc.2018.06.005_bb0320) 2016; 103
Howe (10.1016/j.cbpc.2018.06.005_bb0160) 2013; 496
Li (10.1016/j.cbpc.2018.06.005_bb0235) 2009; 60
Mohammed (10.1016/j.cbpc.2018.06.005_bb0280) 2012; 112–113
Chen (10.1016/j.cbpc.2018.06.005_bb0060) 2012; 110–111
Diekmann (10.1016/j.cbpc.2018.06.005_bb0090) 2013; 10
Fenn (10.1016/j.cbpc.2018.06.005_bb0100) 2002; 13
Peters (10.1016/j.cbpc.2018.06.005_bb0315) 2010; 32
Wiegand (10.1016/j.cbpc.2018.06.005_bb0425) 2001; 49
Fleming (10.1016/j.cbpc.2018.06.005_bb0110) 2005; 10
Chang (10.1016/j.cbpc.2018.06.005_bb0055) 2013; 270
Kithcart (10.1016/j.cbpc.2018.06.005_bb0205) 2017; 2
OECD (10.1016/j.cbpc.2018.06.005_bb0295)
Wang (10.1016/j.cbpc.2018.06.005_bb0405) 2017; 590–591
Tseng (10.1016/j.cbpc.2018.06.005_bb0395) 2005; 205
Anselmo (10.1016/j.cbpc.2018.06.005_bb0025) 2017; 9
Lee (10.1016/j.cbpc.2018.06.005_bb0230) 2007; 1
Saad (10.1016/j.cbpc.2018.06.005_bb0335) 2017; 42
Vallverdú-Queralt (10.1016/j.cbpc.2018.06.005_bb0400) 2015; 181
North (10.1016/j.cbpc.2018.06.005_bb0285) 2007; 447
Streisinger (10.1016/j.cbpc.2018.06.005_bb0375) 1981; 291
Spitsbergen (10.1016/j.cbpc.2018.06.005_bb0370) 2003; 31
Capiotti (10.1016/j.cbpc.2018.06.005_bb0040) 2014; 171
Núñez (10.1016/j.cbpc.2018.06.005_bb0290) 2013; 927
Kasokat (10.1016/j.cbpc.2018.06.005_bb0195) 1989; 42
Garcia (10.1016/j.cbpc.2018.06.005_bb0115) 2016; 161
Tao (10.1016/j.cbpc.2018.06.005_bb0380) 2009; 36
Ho (10.1016/j.cbpc.2018.06.005_bb0155) 2003; 364
Lootens (10.1016/j.cbpc.2018.06.005_bb0250) 2009; 55
Carlsson (10.1016/j.cbpc.2018.06.005_bb0045) 2013; 126
Fleming (10.1016/j.cbpc.2018.06.005_bb0105) 2013; 10
Almazroo (10.1016/j.cbpc.2018.06.005_bb0020) 2017; 21
Kasokat (10.1016/j.cbpc.2018.06.005_bb0190) 1987; 17
David (10.1016/j.cbpc.2018.06.005_bb0080) 2012; 88
Troxel (10.1016/j.cbpc.2018.06.005_bb0390) 1997; 78
Xu (10.1016/j.cbpc.2018.06.005_bb0430) 2005; 28
Pardal (10.1016/j.cbpc.2018.06.005_bb0310) 2014; 11
Goldstone (10.1016/j.cbpc.2018.06.005_bb0130) 2010; 11
OECD (10.1016/j.cbpc.2018.06.005_bb2500) 2013
Wang (10.1016/j.cbpc.2018.06.005_bb0410) 2017; 1515
He (10.1016/j.cbpc.2018.06.005_bb2600) 2011; 20
Langheinrich (10.1016/j.cbpc.2018.06.005_bb0215) 2003; 25
Gorge (10.1016/j.cbpc.2018.06.005_bb0135) 1990; 21
Jones (10.1016/j.cbpc.2018.06.005_bb0175) 2010; 7
Zhu (10.1016/j.cbpc.2018.06.005_bb0440) 2011; 286
Menke (10.1016/j.cbpc.2018.06.005_bb0270) 2011; 39
Lawrence (10.1016/j.cbpc.2018.06.005_bb0225) 2007; 269
Kühnert (10.1016/j.cbpc.2018.06.005_bb0210) 2017; 230
Zok (10.1016/j.cbpc.2018.06.005_bb0445) 1991; 109
Alderton (10.1016/j.cbpc.2018.06.005_bb0010) 2010; 40
Hertl (10.1016/j.cbpc.2018.06.005_bb0150) 1993; 27
Sneddon (10.1016/j.cbpc.2018.06.005_bb0365) 2017; 220
Kamel (10.1016/j.cbpc.2018.06.005_bb0185) 2017; 37
Lindholst (10.1016/j.cbpc.2018.06.005_bb0240) 2003; 135
Scornaienchi (10.1016/j.cbpc.2018.06.005_bb0340) 2010; 502
Jones (10.1016/j.cbpc.2018.06.005_bb0180) 2012; 42
Otte (10.1016/j.cbpc.2018.06.005_bb0300) 2017; 159
Glisic (10.1016/j.cbpc.2018.06.005_bb0120) 2015; 158
Kimmel (10.1016/j.cbpc.2018.06.005_bb0200) 1995; 203
Chng (10.1016/j.cbpc.2018.06.005_bb0065) 2012; 17
Saad (10.1016/j.cbpc.2018.06.005_bb0330) 2016; 41
Brugman (10.1016/j.cbpc.2018.06.005_bb0035) 2016; 64
Langheinrich (10.1016/j.cbpc.2018.06.005_bb0220) 2003; 193
Dawid (10.1016/j.cbpc.2018.06.005_bb0085) 2004; 1038
Brox (10.1016/j.cbpc.2018.06.005_bb0030) 2016; 185–186
References_xml – volume: 42
  start-page: 294
  year: 2012
  end-page: 303
  ident: bb0165
  article-title: Metabolism of calycosin, an isoflavone from Astragali Radix, in zebrafish larvae
  publication-title: Xenobiotica
– volume: 203
  start-page: 253
  year: 1995
  end-page: 310
  ident: bb0200
  article-title: Stages of embryonic development of the zebrafish
  publication-title: Dev. Dyn.
– volume: 149
  start-page: 1361
  year: 2015
  end-page: 1377
  ident: bb0125
  article-title: Zebrafish: an important tool for liver disease research
  publication-title: Gastroenterology
– volume: 112–113
  start-page: 11
  year: 2012
  end-page: 18
  ident: bb0280
  article-title: Identification and characterization of zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5
  publication-title: Aquat. Toxicol.
– volume: 10
  start-page: 823
  year: 2005
  end-page: 831
  ident: bb0110
  article-title: High-throughput in vivo screening for bone anabolic compounds with zebrafish
  publication-title: J. Biomol. Screen.
– volume: 103
  start-page: 328
  year: 2016
  end-page: 339
  ident: bb0320
  article-title: Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: therapeutic implications for Parkinson's disease
  publication-title: Pharmacol. Res.
– year: 2013
  ident: bb2500
  article-title: Test No. 236: Fish Embryo Acute Toxicity (FET) Test 1-22
– volume: 32
  start-page: 532
  year: 2010
  end-page: 539
  ident: bb0315
  article-title: Analytical toxicology of emerging drugs of abuse
  publication-title: Ther. Drug Monit.
– volume: 93
  start-page: 256
  year: 2011
  end-page: 267
  ident: bb0355
  article-title: Zebrafish-as an integrative model for twenty-first century toxicity testing
  publication-title: Birth Defects Res. C Embryo Today Rev.
– volume: 1038
  start-page: 88
  year: 2004
  end-page: 93
  ident: bb0085
  article-title: Developmental biology of zebrafish
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 17
  start-page: 66
  year: 2012
  end-page: 74
  ident: bb0265
  article-title: Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens
  publication-title: J Lab Autom.
– volume: 502
  start-page: 17
  year: 2010
  end-page: 22
  ident: bb0340
  article-title: Functional differences in the cytochrome P450 1 family enzymes from Zebrafish (
  publication-title: Arch. Biochem. Biophys.
– volume: 55
  start-page: 1783
  year: 2009
  end-page: 1793
  ident: bb0250
  article-title: uPA+/+-SCID mouse with humanized liver as a model for in vivo metabolism of exogenous steroids: methandienone as a case study
  publication-title: Clin. Chem.
– volume: 291
  start-page: 293
  year: 1981
  end-page: 296
  ident: bb0375
  article-title: Production of clones of homozygous diploid zebra fish (
  publication-title: Nature
– volume: 102
  start-page: 18
  year: 2011
  end-page: 23
  ident: bb0005
  article-title: Identification, characterization, and ontogenic study of a catechol O-methyltransferase from zebrafish
  publication-title: Aquat. Toxicol.
– volume: 25
  start-page: 904
  year: 2003
  end-page: 912
  ident: bb0215
  article-title: Zebrafish: a new model on the pharmaceutical catwalk
  publication-title: BioEssays
– volume: 159
  start-page: 86
  year: 2017
  end-page: 93
  ident: bb0300
  article-title: Intrinsic xenobiotic metabolizing enzyme activities in early life stages of zebrafish (
  publication-title: Toxicol. Sci.
– volume: 17
  start-page: 974
  year: 2012
  end-page: 986
  ident: bb0065
  article-title: An investigation of the bioactivation potential and metabolism profile of zebrafish versus human
  publication-title: J. Biomol. Screen.
– volume: 21
  start-page: 1125
  year: 1990
  end-page: 1137
  ident: bb0135
  article-title: Kinetics and metabolism of 14C-lindane and 14C-atrazine in early life stage of zebrafish (
  publication-title: Chemosphere
– volume: 360
  start-page: 276
  year: 2011
  end-page: 285
  ident: bb0050
  article-title: Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish
  publication-title: Dev. Biol.
– volume: 41
  start-page: 1
  year: 2016
  end-page: 11
  ident: bb0330
  article-title: Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3
  publication-title: J. Toxicol. Sci.
– volume: 10
  start-page: e43
  year: 2013
  end-page: e50
  ident: bb0105
  article-title: Zebrafish in pharmaceutical industry research: finding the best fit
  publication-title: Drug Discov. Today Dis. Model.
– volume: 9
  start-page: 1685
  year: 2017
  end-page: 1694
  ident: bb0025
  article-title: Is zebrafish (
  publication-title: Drug Test. Anal.
– volume: 193
  start-page: 370
  year: 2003
  end-page: 382
  ident: bb0220
  article-title: Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 27
  start-page: 2225
  year: 1993
  end-page: 2234
  ident: bb0150
  article-title: Bioconcentration and metabolism of 3,4-dichloroaniline in different life stages of guppy and zebrafish
  publication-title: Chemosphere
– volume: 42
  start-page: 1069
  year: 2012
  end-page: 1075
  ident: bb0180
  article-title: Metabolism of ibuprofen in zebrafish larvae
  publication-title: Xenobiotica
– volume: 41
  start-page: 78
  year: 2017
  end-page: 84
  ident: bb0350
  article-title: Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupoleetime-of-flight MS
  publication-title: J. Ginseng Res.
– volume: 60
  start-page: 233
  year: 2009
  ident: bb0235
  article-title: Whole zebrafish cytochrome P450 microplate assays for assessing drug metabolism and drug safety
  publication-title: J. Pharmacol. Toxicol. Methods
– volume: 152
  start-page: 371
  year: 2010
  end-page: 378
  ident: bb0385
  article-title: Activity of Phase I and Phase II enzymes of the benzo[a]pyrene transformation pathway in zebrafish (
  publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol.
– volume: 1515
  start-page: 100
  year: 2017
  end-page: 108
  ident: bb0410
  article-title: Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system
  publication-title: J. Chromatogr. A
– volume: 181
  start-page: 146
  year: 2015
  end-page: 151
  ident: bb0400
  article-title: Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS
  publication-title: Food Chem.
– volume: 120
  start-page: 31
  year: 2015
  end-page: 36
  ident: bb0420
  article-title: Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (
  publication-title: Chemosphere
– volume: 496
  start-page: 498
  year: 2013
  end-page: 503
  ident: bb0160
  article-title: The zebrafish reference genome sequence and its relationship to the human genome
  publication-title: Nature
– volume: 35
  start-page: 1
  year: 2015
  end-page: 10
  ident: bb0325
  article-title: The N-terminal acetyltransferase Naa10 is essential for zebrafish development
  publication-title: Biosci. Rep.
– volume: 49
  start-page: 199
  year: 2001
  end-page: 205
  ident: bb0425
  article-title: Toxicokinetics of atrazine in embryos of the zebrafish (
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 21
  start-page: 1
  year: 2017
  end-page: 20
  ident: bb0020
  article-title: Drug metabolism in the liver
  publication-title: Clin. Liver Dis.
– volume: 205
  start-page: 247
  year: 2005
  end-page: 258
  ident: bb0395
  article-title: Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 185–186
  start-page: 20
  year: 2016
  end-page: 28
  ident: bb0030
  article-title: Metabolism of clofibric acid in zebrafish embryos (
  publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol.
– volume: 364
  start-page: 408
  year: 2003
  end-page: 426
  ident: bb0155
  article-title: Analysis of small molecule metabolism in zebrafish
  publication-title: Methods Enzymol.
– year: 1992
  ident: bb0295
  article-title: Fish, Acute Toxicity test. OECD Guidel. Test. Chem
– volume: 590–591
  start-page: 50
  year: 2017
  end-page: 59
  ident: bb0405
  article-title: In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish
  publication-title: Sci. Total Environ.
– year: 2016
  ident: bb0095
  article-title: Legislation for the Protection of Animals Used for Scientific Purposes - Environment - European Commission 1–2
– volume: 5
  year: 2010
  ident: bb0170
  article-title: Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity
  publication-title: PLoS One
– volume: 31
  start-page: 62
  year: 2003
  end-page: 87
  ident: bb0370
  article-title: The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations
  publication-title: Toxicol. Pathol.
– volume: 40
  start-page: 547
  year: 2010
  end-page: 557
  ident: bb0010
  article-title: Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae
  publication-title: Xenobiotica
– volume: 220
  start-page: 3007
  year: 2017
  end-page: 3016
  ident: bb0365
  article-title: Considering aspects of the 3Rs principles within experimental animal biology
  publication-title: J. Exp. Biol.
– volume: 286
  start-page: 25419
  year: 2011
  end-page: 25425
  ident: bb0440
  article-title: Drug metabolite profiling and identification by high-resolution mass spectrometry
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 70
  year: 2008
  end-page: 83
  ident: bb0140
  article-title: Cytochrome P450 and chemical toxicology cytochrome P450 and chemical toxicology
  publication-title: Chem. Res. Toxicol.
– start-page: 0
  year: 2017
  end-page: 1
  ident: bb0345
  article-title: The zebrafish as a promising tool for modeling human brain disorders: a review based upon an IBNS Symposium
  publication-title: Neurosci. Biobehav. Rev.
– volume: 17
  start-page: 1215
  year: 1987
  end-page: 1221
  ident: bb0190
  article-title: The metabolism of phenol and substituted phenols in zebra fish
  publication-title: Xenobiotica
– volume: 7
  start-page: 23
  year: 2010
  end-page: 30
  ident: bb0175
  article-title: Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo
  publication-title: Zebrafish
– volume: 218
  start-page: 8
  year: 2016
  end-page: 15
  ident: bb0435
  article-title: The identification of the metabolites of chlorothalonil in zebrafish (
  publication-title: Environ. Pollut.
– volume: 10
  start-page: e31
  year: 2013
  end-page: e35
  ident: bb0090
  article-title: ADMETox in zebrafish
  publication-title: Drug Discov. Today Dis. Model.
– volume: 78
  start-page: 213
  year: 1997
  end-page: 220
  ident: bb0390
  article-title: In vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish (
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 109
  start-page: 411
  year: 1991
  end-page: 421
  ident: bb0445
  article-title: Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (
  publication-title: Sci. Total Environ.
– volume: 64
  start-page: 82
  year: 2016
  end-page: 92
  ident: bb0035
  article-title: The zebrafish as a model to study intestinal inflammation
  publication-title: Dev. Comp. Immunol.
– volume: 13
  start-page: 101
  year: 2002
  end-page: 118
  ident: bb0100
  article-title: Electrospray ionization mass spectrometry: how it all began
  publication-title: J. Biomol. Tech.
– volume: 927
  start-page: 3
  year: 2013
  end-page: 21
  ident: bb0290
  article-title: State-of-the-art in fast liquid chromatography-mass spectrometry for bio-analytical applications
  publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci.
– volume: 37
  start-page: 41
  year: 2017
  end-page: 50
  ident: bb0185
  article-title: Catching new targets in metabolic disease with a zebrafish
  publication-title: Curr. Opin. Pharmacol.
– volume: 39
  start-page: 759
  year: 2011
  end-page: 775
  ident: bb0270
  article-title: Normal anatomy and histology of the adult zebrafish
  publication-title: Toxicol. Pathol.
– volume: 230
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0210
  article-title: Biotransformation in the zebrafish embryo –temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene
  publication-title: Environ. Pollut.
– volume: 1
  start-page: 133
  year: 2007
  end-page: 143
  ident: bb0230
  article-title: In Vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos
  publication-title: ACS Nano
– volume: 79
  start-page: 26
  year: 2010
  end-page: 32
  ident: bb0360
  article-title: Cross-species comparison of fluoxetine metabolism with fish liver microsomes
  publication-title: Chemosphere
– volume: 270
  start-page: 174
  year: 2013
  end-page: 184
  ident: bb0055
  article-title: Regulation of zebrafish CYP3A65 transcription by AHR2
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 269
  start-page: 1
  year: 2007
  end-page: 20
  ident: bb0225
  article-title: The husbandry of zebrafish (
  publication-title: Aquaculture
– volume: 42
  start-page: 254
  year: 1989
  end-page: 261
  ident: bb0195
  article-title: Metabolism of chlorobenzene and hexachlorobenzene by the zebra fish,
  publication-title: Bull. Environ. Contam. Toxicol.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 12
  ident: bb0205
  article-title: Using zebrafish for high-throughput screening of novel cardiovascular drugs
  publication-title: JACC Basic Transl. Sci.
– volume: 42
  start-page: 329
  year: 2017
  end-page: 336
  ident: bb0335
  article-title: In vitro CYP-mediated drug metabolism in the zebrafish (embryo) using human reference compounds
  publication-title: Toxicol. in Vitro
– volume: 281
  start-page: 25
  year: 2011
  end-page: 36
  ident: bb0415
  article-title: Zebrafish (
  publication-title: Toxicology
– volume: 158
  start-page: 50
  year: 2015
  end-page: 62
  ident: bb0120
  article-title: Characterization of glutathione-S-transferases in zebrafish (
  publication-title: Aquat. Toxicol.
– volume: 14
  start-page: 721
  year: 2015
  end-page: 731
  ident: bb0255
  article-title: Zebrafish as tools for drug discovery
  publication-title: Nat. Rev. Drug Discov.
– volume: 88
  start-page: 912
  year: 2012
  end-page: 917
  ident: bb0080
  article-title: Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (
  publication-title: Chemosphere
– volume: 11
  start-page: 538
  year: 2010
  end-page: 546
  ident: bb0245
  article-title: Zebrafish as a model for the study of the phase II cytosolic sulfotransferases
  publication-title: Curr. Drug Metab.
– volume: 36
  start-page: 325
  year: 2009
  end-page: 334
  ident: bb0380
  article-title: Liver development in zebrafish (
  publication-title: J. Genet. Genom.
– volume: 20
  start-page: 1813
  year: 2011
  end-page: 1822
  ident: bb2600
  article-title: Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring
  publication-title: Ecotoxicology
– volume: 171
  start-page: 58
  year: 2014
  end-page: 65
  ident: bb0040
  article-title: Persistent impaired glucose metabolism in a zebrafish hyperglycemia model
  publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol.
– volume: 25
  start-page: 100
  year: 2011
  end-page: 123
  ident: bb0075
  article-title: LC-MS in analytical toxicology: some practical considerations
  publication-title: Biomed. Chromatogr.
– volume: 161
  start-page: 11
  year: 2016
  end-page: 21
  ident: bb0115
  article-title: Advancements in zebrafish applications for 21st century toxicology
  publication-title: Pharmacol. Ther.
– volume: 11
  start-page: 643
  year: 2010
  ident: bb0130
  article-title: Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish
– volume: 150
  start-page: 93
  year: 2014
  end-page: 102
  ident: bb0070
  article-title: Tissue-, sex- and development-specific transcription profiles of eight UDP-glucuronosyltransferase genes in zebrafish (
  publication-title: Aquat. Toxicol.
– volume: 126
  start-page: 30
  year: 2013
  end-page: 41
  ident: bb0045
  article-title: Toxicity of 15 veterinary pharmaceuticals in zebrafish (
  publication-title: Aquat. Toxicol.
– volume: 447
  start-page: 1007
  year: 2007
  end-page: 1011
  ident: bb0285
  article-title: Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
  publication-title: Nature
– volume: 90
  start-page: 1325
  year: 2016
  end-page: 1333
  ident: bb0275
  article-title: Human metabolism and excretion kinetics of aniline after a single oral dose
  publication-title: Arch. Toxicol.
– volume: 110–111
  start-page: 141
  year: 2012
  end-page: 148
  ident: bb0060
  article-title: Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae
  publication-title: Aquat. Toxicol.
– volume: 135
  start-page: 169
  year: 2003
  end-page: 177
  ident: bb0240
  article-title: Metabolism of bisphenol A in zebrafish (
  publication-title: Comp. Biochem. Physiol. C
– volume: 28
  start-page: 249
  year: 2005
  end-page: 268
  ident: bb0430
  article-title: Induction of phase I, II and III drug metabolism/transport by xenobiotics
  publication-title: Arch. Pharm. Res.
– volume: 11
  start-page: 32
  year: 2014
  end-page: 40
  ident: bb0310
  article-title: Resveratrol and piceid metabolites and their fat-reduction effects in zebrafish larvae
  publication-title: Zebrafish
– volume: 193
  start-page: 370
  year: 2003
  ident: 10.1016/j.cbpc.2018.06.005_bb0220
  article-title: Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2003.07.012
– volume: 152
  start-page: 371
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0385
  article-title: Activity of Phase I and Phase II enzymes of the benzo[a]pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite
  publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol.
  doi: 10.1016/j.cbpc.2010.06.004
– volume: 181
  start-page: 146
  year: 2015
  ident: 10.1016/j.cbpc.2018.06.005_bb0400
  article-title: Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.02.098
– volume: 42
  start-page: 1069
  year: 2012
  ident: 10.1016/j.cbpc.2018.06.005_bb0180
  article-title: Metabolism of ibuprofen in zebrafish larvae
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2012.684410
– volume: 1515
  start-page: 100
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0410
  article-title: Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2017.07.076
– volume: 9
  start-page: 1685
  issue: 11-12
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0025
  article-title: Is zebrafish (Danio rerio) a tool for human-like metabolism study?
  publication-title: Drug Test. Anal.
  doi: 10.1002/dta.2318
– volume: 5
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0170
  article-title: Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity
  publication-title: PLoS One
– volume: 590–591
  start-page: 50
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0405
  article-title: In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.038
– volume: 158
  start-page: 50
  year: 2015
  ident: 10.1016/j.cbpc.2018.06.005_bb0120
  article-title: Characterization of glutathione-S-transferases in zebrafish (Danio rerio)
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2014.10.013
– volume: 41
  start-page: 1
  year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0330
  article-title: Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3
  publication-title: J. Toxicol. Sci.
  doi: 10.2131/jts.41.1
– volume: 11
  start-page: 538
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0245
  article-title: Zebrafish as a model for the study of the phase II cytosolic sulfotransferases
  publication-title: Curr. Drug Metab.
  doi: 10.2174/138920010791636158
– volume: 291
  start-page: 293
  year: 1981
  ident: 10.1016/j.cbpc.2018.06.005_bb0375
  article-title: Production of clones of homozygous diploid zebra fish (Brachydanio rerio)
  publication-title: Nature
  doi: 10.1038/291293a0
– volume: 49
  start-page: 199
  year: 2001
  ident: 10.1016/j.cbpc.2018.06.005_bb0425
  article-title: Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio)
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1006/eesa.2001.2073
– volume: 149
  start-page: 1361
  year: 2015
  ident: 10.1016/j.cbpc.2018.06.005_bb0125
  article-title: Zebrafish: an important tool for liver disease research
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.08.034
– volume: 120
  start-page: 31
  year: 2015
  ident: 10.1016/j.cbpc.2018.06.005_bb0420
  article-title: Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.05.050
– volume: 40
  start-page: 547
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0010
  article-title: Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2010.493960
– year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0095
– volume: 25
  start-page: 904
  year: 2003
  ident: 10.1016/j.cbpc.2018.06.005_bb0215
  article-title: Zebrafish: a new model on the pharmaceutical catwalk
  publication-title: BioEssays
  doi: 10.1002/bies.10326
– volume: 11
  start-page: 32
  year: 2014
  ident: 10.1016/j.cbpc.2018.06.005_bb0310
  article-title: Resveratrol and piceid metabolites and their fat-reduction effects in zebrafish larvae
  publication-title: Zebrafish
  doi: 10.1089/zeb.2013.0893
– volume: 927
  start-page: 3
  year: 2013
  ident: 10.1016/j.cbpc.2018.06.005_bb0290
  article-title: State-of-the-art in fast liquid chromatography-mass spectrometry for bio-analytical applications
  publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2012.12.031
– volume: 502
  start-page: 17
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0340
  article-title: Functional differences in the cytochrome P450 1 family enzymes from Zebrafish (Danio rerio) using heterologously expressed proteins
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2010.06.018
– volume: 220
  start-page: 3007
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0365
  article-title: Considering aspects of the 3Rs principles within experimental animal biology
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.147058
– volume: 360
  start-page: 276
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb0050
  article-title: Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.09.010
– volume: 55
  start-page: 1783
  year: 2009
  ident: 10.1016/j.cbpc.2018.06.005_bb0250
  article-title: uPA+/+-SCID mouse with humanized liver as a model for in vivo metabolism of exogenous steroids: methandienone as a case study
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2008.119396
– volume: 135
  start-page: 169
  year: 2003
  ident: 10.1016/j.cbpc.2018.06.005_bb0240
  article-title: Metabolism of bisphenol A in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) in relation to estrogenic response
  publication-title: Comp. Biochem. Physiol. C
– volume: 1
  start-page: 133
  issue: 2
  year: 2007
  ident: 10.1016/j.cbpc.2018.06.005_bb0230
  article-title: In Vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos
  publication-title: ACS Nano
  doi: 10.1021/nn700048y
– volume: 171
  start-page: 58
  year: 2014
  ident: 10.1016/j.cbpc.2018.06.005_bb0040
  article-title: Persistent impaired glucose metabolism in a zebrafish hyperglycemia model
  publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol.
  doi: 10.1016/j.cbpb.2014.03.005
– volume: 1038
  start-page: 88
  year: 2004
  ident: 10.1016/j.cbpc.2018.06.005_bb0085
  article-title: Developmental biology of zebrafish
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1315.015
– volume: 25
  start-page: 100
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb0075
  article-title: LC-MS in analytical toxicology: some practical considerations
  publication-title: Biomed. Chromatogr.
  doi: 10.1002/bmc.1566
– volume: 17
  start-page: 974
  year: 2012
  ident: 10.1016/j.cbpc.2018.06.005_bb0065
  article-title: An investigation of the bioactivation potential and metabolism profile of zebrafish versus human
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057112447305
– volume: 37
  start-page: 41
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0185
  article-title: Catching new targets in metabolic disease with a zebrafish
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2017.08.007
– volume: 28
  start-page: 249
  year: 2005
  ident: 10.1016/j.cbpc.2018.06.005_bb0430
  article-title: Induction of phase I, II and III drug metabolism/transport by xenobiotics
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/BF02977789
– volume: 364
  start-page: 408
  year: 2003
  ident: 10.1016/j.cbpc.2018.06.005_bb0155
  article-title: Analysis of small molecule metabolism in zebrafish
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(03)64023-1
– volume: 42
  start-page: 329
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0335
  article-title: In vitro CYP-mediated drug metabolism in the zebrafish (embryo) using human reference compounds
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2017.05.009
– volume: 88
  start-page: 912
  year: 2012
  ident: 10.1016/j.cbpc.2018.06.005_bb0080
  article-title: Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.03.018
– volume: 60
  start-page: 233
  year: 2009
  ident: 10.1016/j.cbpc.2018.06.005_bb0235
  article-title: Whole zebrafish cytochrome P450 microplate assays for assessing drug metabolism and drug safety
  publication-title: J. Pharmacol. Toxicol. Methods
  doi: 10.1016/j.vascn.2009.04.103
– volume: 218
  start-page: 8
  year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0435
  article-title: The identification of the metabolites of chlorothalonil in zebrafish (Danio rerio) and their embryo toxicity and endocrine effects at environmentally relevant levels
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.08.026
– volume: 31
  start-page: 62
  year: 2003
  ident: 10.1016/j.cbpc.2018.06.005_bb0370
  article-title: The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations
  publication-title: Toxicol. Pathol.
– volume: 103
  start-page: 328
  year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0320
  article-title: Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: therapeutic implications for Parkinson's disease
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.11.024
– volume: 20
  start-page: 1813
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb2600
  article-title: Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-011-0720-3
– volume: 21
  start-page: 1125
  year: 1990
  ident: 10.1016/j.cbpc.2018.06.005_bb0135
  article-title: Kinetics and metabolism of 14C-lindane and 14C-atrazine in early life stage of zebrafish (Danio rerio)
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(90)90133-E
– volume: 17
  start-page: 1215
  year: 1987
  ident: 10.1016/j.cbpc.2018.06.005_bb0190
  article-title: The metabolism of phenol and substituted phenols in zebra fish
  publication-title: Xenobiotica
  doi: 10.3109/00498258709167413
– volume: 41
  start-page: 78
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0350
  article-title: Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupoleetime-of-flight MS
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2015.12.010
– volume: 17
  start-page: 66
  year: 2012
  ident: 10.1016/j.cbpc.2018.06.005_bb0265
  article-title: Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens
  publication-title: J Lab Autom.
  doi: 10.1177/2211068211432197
– year: 2013
  ident: 10.1016/j.cbpc.2018.06.005_bb2500
– volume: 14
  start-page: 721
  year: 2015
  ident: 10.1016/j.cbpc.2018.06.005_bb0255
  article-title: Zebrafish as tools for drug discovery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4627
– volume: 159
  start-page: 86
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0300
  article-title: Intrinsic xenobiotic metabolizing enzyme activities in early life stages of zebrafish (Danio rerio)
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfx116
– volume: 286
  start-page: 25419
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb0440
  article-title: Drug metabolite profiling and identification by high-resolution mass spectrometry
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R110.200055
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0205
  article-title: Using zebrafish for high-throughput screening of novel cardiovascular drugs
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2017.01.004
– volume: 203
  start-page: 253
  year: 1995
  ident: 10.1016/j.cbpc.2018.06.005_bb0200
  article-title: Stages of embryonic development of the zebrafish
  publication-title: Dev. Dyn.
  doi: 10.1002/aja.1002030302
– volume: 42
  start-page: 254
  year: 1989
  ident: 10.1016/j.cbpc.2018.06.005_bb0195
  article-title: Metabolism of chlorobenzene and hexachlorobenzene by the zebra fish, Brachydanio rerio
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/BF01699408
– start-page: 0
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0345
  article-title: The zebrafish as a promising tool for modeling human brain disorders: a review based upon an IBNS Symposium
  publication-title: Neurosci. Biobehav. Rev.
– volume: 161
  start-page: 11
  year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0115
  article-title: Advancements in zebrafish applications for 21st century toxicology
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2016.03.009
– volume: 102
  start-page: 18
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb0005
  article-title: Identification, characterization, and ontogenic study of a catechol O-methyltransferase from zebrafish
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2010.12.016
– volume: 10
  start-page: e31
  year: 2013
  ident: 10.1016/j.cbpc.2018.06.005_bb0090
  article-title: ADMETox in zebrafish
  publication-title: Drug Discov. Today Dis. Model.
  doi: 10.1016/j.ddmod.2012.02.005
– volume: 10
  start-page: 823
  year: 2005
  ident: 10.1016/j.cbpc.2018.06.005_bb0110
  article-title: High-throughput in vivo screening for bone anabolic compounds with zebrafish
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057105279952
– volume: 90
  start-page: 1325
  year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0275
  article-title: Human metabolism and excretion kinetics of aniline after a single oral dose
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-015-1566-x
– volume: 281
  start-page: 25
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb0415
  article-title: Zebrafish (Danio rerio) embryos as a model for testing proteratogens
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.01.004
– volume: 79
  start-page: 26
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0360
  article-title: Cross-species comparison of fluoxetine metabolism with fish liver microsomes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.01.058
– volume: 27
  start-page: 2225
  year: 1993
  ident: 10.1016/j.cbpc.2018.06.005_bb0150
  article-title: Bioconcentration and metabolism of 3,4-dichloroaniline in different life stages of guppy and zebrafish
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(93)90134-Q
– volume: 7
  start-page: 23
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0175
  article-title: Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo
  publication-title: Zebrafish
  doi: 10.1089/zeb.2009.0630
– volume: 126
  start-page: 30
  year: 2013
  ident: 10.1016/j.cbpc.2018.06.005_bb0045
  article-title: Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2012.10.008
– volume: 21
  start-page: 70
  year: 2008
  ident: 10.1016/j.cbpc.2018.06.005_bb0140
  article-title: Cytochrome P450 and chemical toxicology cytochrome P450 and chemical toxicology
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx700079z
– volume: 447
  start-page: 1007
  issue: 7147
  year: 2007
  ident: 10.1016/j.cbpc.2018.06.005_bb0285
  article-title: Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
  publication-title: Nature
  doi: 10.1038/nature05883
– volume: 109
  start-page: 411
  year: 1991
  ident: 10.1016/j.cbpc.2018.06.005_bb0445
  article-title: Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (Brachydanio rerio)
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(91)90196-L
– volume: 230
  start-page: 1
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0210
  article-title: Biotransformation in the zebrafish embryo –temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.04.083
– volume: 42
  start-page: 294
  year: 2012
  ident: 10.1016/j.cbpc.2018.06.005_bb0165
  article-title: Metabolism of calycosin, an isoflavone from Astragali Radix, in zebrafish larvae
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2011.617015
– volume: 36
  start-page: 325
  year: 2009
  ident: 10.1016/j.cbpc.2018.06.005_bb0380
  article-title: Liver development in zebrafish (Danio rerio)
  publication-title: J. Genet. Genom.
  doi: 10.1016/S1673-8527(08)60121-6
– volume: 205
  start-page: 247
  year: 2005
  ident: 10.1016/j.cbpc.2018.06.005_bb0395
  article-title: Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2004.10.019
– volume: 270
  start-page: 174
  year: 2013
  ident: 10.1016/j.cbpc.2018.06.005_bb0055
  article-title: Regulation of zebrafish CYP3A65 transcription by AHR2
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2013.04.010
– volume: 496
  start-page: 498
  year: 2013
  ident: 10.1016/j.cbpc.2018.06.005_bb0160
  article-title: The zebrafish reference genome sequence and its relationship to the human genome
  publication-title: Nature
  doi: 10.1038/nature12111
– volume: 78
  start-page: 213
  year: 1997
  ident: 10.1016/j.cbpc.2018.06.005_bb0390
  article-title: In vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish (Danio rerio)
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1006/taap.1996.8058
– volume: 185–186
  start-page: 20
  year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0030
  article-title: Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry
  publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol.
  doi: 10.1016/j.cbpc.2016.02.007
– volume: 21
  start-page: 1
  year: 2017
  ident: 10.1016/j.cbpc.2018.06.005_bb0020
  article-title: Drug metabolism in the liver
  publication-title: Clin. Liver Dis.
  doi: 10.1016/j.cld.2016.08.001
– volume: 110–111
  start-page: 141
  year: 2012
  ident: 10.1016/j.cbpc.2018.06.005_bb0060
  article-title: Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2012.01.008
– volume: 32
  start-page: 532
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0315
  article-title: Analytical toxicology of emerging drugs of abuse
  publication-title: Ther. Drug Monit.
  doi: 10.1097/FTD.0b013e3181f33411
– volume: 93
  start-page: 256
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb0355
  article-title: Zebrafish-as an integrative model for twenty-first century toxicity testing
  publication-title: Birth Defects Res. C Embryo Today Rev.
  doi: 10.1002/bdrc.20214
– volume: 112–113
  start-page: 11
  year: 2012
  ident: 10.1016/j.cbpc.2018.06.005_bb0280
  article-title: Identification and characterization of zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2012.01.015
– volume: 10
  start-page: e43
  year: 2013
  ident: 10.1016/j.cbpc.2018.06.005_bb0105
  article-title: Zebrafish in pharmaceutical industry research: finding the best fit
  publication-title: Drug Discov. Today Dis. Model.
  doi: 10.1016/j.ddmod.2012.02.006
– volume: 35
  start-page: 1
  year: 2015
  ident: 10.1016/j.cbpc.2018.06.005_bb0325
  article-title: The N-terminal acetyltransferase Naa10 is essential for zebrafish development
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20150168
– volume: 39
  start-page: 759
  year: 2011
  ident: 10.1016/j.cbpc.2018.06.005_bb0270
  article-title: Normal anatomy and histology of the adult zebrafish
  publication-title: Toxicol. Pathol.
  doi: 10.1177/0192623311409597
– volume: 11
  start-page: 643
  year: 2010
  ident: 10.1016/j.cbpc.2018.06.005_bb0130
  article-title: Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish
– ident: 10.1016/j.cbpc.2018.06.005_bb0295
– volume: 150
  start-page: 93
  year: 2014
  ident: 10.1016/j.cbpc.2018.06.005_bb0070
  article-title: Tissue-, sex- and development-specific transcription profiles of eight UDP-glucuronosyltransferase genes in zebrafish (Danio rerio) and their regulation by activator of aryl hydrocarbon receptor
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2014.02.019
– volume: 64
  start-page: 82
  year: 2016
  ident: 10.1016/j.cbpc.2018.06.005_bb0035
  article-title: The zebrafish as a model to study intestinal inflammation
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2016.02.020
– volume: 13
  start-page: 101
  year: 2002
  ident: 10.1016/j.cbpc.2018.06.005_bb0100
  article-title: Electrospray ionization mass spectrometry: how it all began
  publication-title: J. Biomol. Tech.
– volume: 269
  start-page: 1
  year: 2007
  ident: 10.1016/j.cbpc.2018.06.005_bb0225
  article-title: The husbandry of zebrafish (Danio rerio): a review
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2007.04.077
SSID ssj0005416
Score 2.5014951
SecondaryResourceType review_article
Snippet Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34
SubjectTerms Cytochrome P450
Drug discovery
Non-human model
Toxicology
Xenobiotic metabolism
Zebrafish (Danio rerio)
Title Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans?
URI https://dx.doi.org/10.1016/j.cbpc.2018.06.005
https://www.ncbi.nlm.nih.gov/pubmed/29969680
https://www.proquest.com/docview/2064242990
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QFeEOv4KB_TIaEJxEKT1k47XlBVMRUQExKbNPESYvssgtqkajKJvvC3c2cnBSTYA4-xzrLlO_l-F9_9ToinJidMrZ2N3ETZSA7RRrkPXC26xOnchELaD2fp_EK-u1SXO2LW1cJwWmV794c73d_W7cigPc3BqigGnxLuacD-fzIioOB5TKUcs5W__PFbmof07U9ZOGLptnAm5HgZvWIawyRweHILu787p3-BT--ETm-LWy16hGnY4L7YwbInDqYlRc7LDRyBz-f0P8p74sas6-XWE0cfA0P15hjOfxVc1cd-ypa7enMgvnzmh2RX1F_hGVefV7AmE62ev4IpeF5wvUBoqmoBBHZhteZnHk6cBsKRsMSGTGpR1EuoHHzHkimeeB0oSvDNAOvXd8TF6Zvz2TxqmzBERg6HTXQSGzS5dQRkEofOxhq1sky6nw_1iPAJ0oekMCWNjeIqVW0sgYKxxNjaE2NGd8VuWZV4X4DCOEWbKBynVrp0nJuJlaiQNOhZavoi6U4_My1DOTfKWGRdKtq3jDWWscYyn4-n-uLFds4q8HNcK606pWZ_WFlGDuTaeU86C8hIc_ymkpdYXdUkRAGc9-l9cS-YxnYfNMrUQ_GD_1z1objJXyF18JHYbdZX-JggUKMPvY0fir3p2_fzs58VcwW1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5K-tC9jDXdj2xdq8EoG6uJnVhOupcSwkq6tmGwFMpePEs6UY_EDrELy3-_O9lOKWx92KNlHTK6Q_eddfcdwHudEKZW1nh2KI0X9tB4iQtcDdrAqkRXhbRX02hyHX69kTdbMG5qYTitsj77qzPdndb1SLfeze4yTbvfA-5pwP5_2CegwDym28xOJVuwPTq_mEzvMz1C1wGV53ssUNfOVGleWi2ZyTCoaDy5i93f_dO_8KfzQ2fP4GkNIMWo-sZd2MKsDXujjILnxVocCZfS6f6Vt2Fn3LRza8PRt4qken0sZvc1V8WxE9nQV6_34OcPvku2aXErPnABei5WZKX5x89iJBw1uJqjKPN8LgjviuWKb3o4d1oQlBQLLMmq5mmxELkVvzFjlideR6SZcP0Ai9PncH32ZTaeeHUfBk-HvV7pnfgadWIsYZnAojW-QiUN8-4nPdUniIL0EFKkEvlacqGq0oZwwSBE35gTrfsvoJXlGb4CIdGP0AQSB5EJbTRI9NCEKJGU6IhqOhA0ux_rmqSce2XM4yYb7VfMGotZY7FLyZMd-LSRWVYUHY_Olo1S4weGFpMPeVTuXWMBMWmOr1WSDPO7giZRDOfcegdeVqax-Q4aZfYh__V_rnoIO5PZ1WV8eT69eANP-E2VSbgPrXJ1h28JEZXqoLb4PwgOCGY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zebrafish+%28Danio+rerio%29%3A+A+valuable+tool+for+predicting+the+metabolism+of+xenobiotics+in+humans%3F&rft.jtitle=Comparative+biochemistry+and+physiology.+Toxicology+%26+pharmacology&rft.au=de+Souza+Anselmo%2C+Carina&rft.au=Sardela%2C+Vinicius+Figueiredo&rft.au=de+Sousa%2C+Valeria+Pereira&rft.au=Pereira%2C+Henrique+Marcelo+Gualberto&rft.date=2018-10-01&rft.issn=1532-0456&rft.volume=212&rft.spage=34&rft_id=info:doi/10.1016%2Fj.cbpc.2018.06.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0456&client=summon