Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans?
Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic...
Saved in:
Published in | Comparative biochemistry and physiology. Toxicology & pharmacology Vol. 212; pp. 34 - 46 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1532-0456 1878-1659 |
DOI | 10.1016/j.cbpc.2018.06.005 |
Cover
Loading…
Abstract | Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism. |
---|---|
AbstractList | Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism. Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism. |
Author | de Sousa, Valeria Pereira Sardela, Vinicius Figueiredo de Souza Anselmo, Carina Pereira, Henrique Marcelo Gualberto |
Author_xml | – sequence: 1 givenname: Carina surname: de Souza Anselmo fullname: de Souza Anselmo, Carina email: carinaanselmo@iq.ufrj.br organization: Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil – sequence: 2 givenname: Vinicius Figueiredo surname: Sardela fullname: Sardela, Vinicius Figueiredo organization: Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil – sequence: 3 givenname: Valeria Pereira surname: de Sousa fullname: de Sousa, Valeria Pereira organization: Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy, LabCQ, Av Carlos Chagas Filho, 373, 21941-902, Bss36, Cidade Universitária, Rio de Janeiro, RJ, Brazil – sequence: 4 givenname: Henrique Marcelo Gualberto surname: Pereira fullname: Pereira, Henrique Marcelo Gualberto organization: Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29969680$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAURi1URB_wB1ggL8si4dpxPAlCqqrylCqxgQ0b48cN41FiD7ZTwb_Ho2k3LLq6vtI5V_L3nZOTEAMS8pJBy4DJN7vWmr1tObChBdkC9E_IGRs2Q8NkP57Ud9_xBkQvT8l5zjuohGDyGTnl4yhHOcAZ-fkDTdKTz1t6-V4HH2nC5OPrt_Sa3ul51WZGWmKc6RQT3Sd03hYfftGyRbpg0SbOPi80TvQPhmh8LN5m6gPdrosO-eo5eTrpOeOL-3lBvn_88O3mc3P79dOXm-vbxgrOSzOCRavd1I0jm3ByYND0TmyGQXPTbRhgXQRjgwTbd6LjxjrB-o1AcG60trsgl8e7-xR_r5iLWny2OM86YFyz4iAFF_XjUNFX9-hqFnRqn_yi01_1kEoFhiNgU8w54aSsL7r4GErSflYM1KEAtVOHAtShAAVS1Xiryv9TH64_Kr07SlgDuvOYVLYeg61hJ7RFuegf0_8Bmoqe5g |
CitedBy_id | crossref_primary_10_1007_s00580_021_03302_4 crossref_primary_10_1007_s11419_019_00493_y crossref_primary_10_17816_ecogen17269_81 crossref_primary_10_1080_03067319_2022_2053847 crossref_primary_10_1016_j_ecoenv_2019_110037 crossref_primary_10_1038_s41598_023_34593_y crossref_primary_10_3390_ani13233685 crossref_primary_10_3390_molecules27092647 crossref_primary_10_1002_dta_3488 crossref_primary_10_1007_s10661_019_7600_3 crossref_primary_10_1016_j_tox_2021_152786 crossref_primary_10_3390_ph14111117 crossref_primary_10_31857_S0026898424030032 crossref_primary_10_1080_15287394_2020_1828209 crossref_primary_10_1016_j_aquatox_2022_106322 crossref_primary_10_1016_j_scitotenv_2023_165684 crossref_primary_10_1016_j_cbpc_2022_109439 crossref_primary_10_1590_1678_4324_2024220968 crossref_primary_10_1002_wfs2_1454 crossref_primary_10_1007_s11356_020_08276_4 crossref_primary_10_2174_1574886317666220514153858 crossref_primary_10_1016_j_envpol_2020_115783 crossref_primary_10_1007_s00216_023_04781_w crossref_primary_10_1080_10934529_2022_2060026 crossref_primary_10_1016_j_envres_2024_120504 crossref_primary_10_1007_s12011_021_02830_y crossref_primary_10_1016_j_cbpc_2020_108838 crossref_primary_10_1016_j_jchromb_2021_122826 crossref_primary_10_1007_s11356_019_06726_2 crossref_primary_10_3389_fimmu_2021_624293 crossref_primary_10_1089_zeb_2019_1791 crossref_primary_10_1016_j_chemosphere_2020_128872 crossref_primary_10_1177_0192623320964748 crossref_primary_10_1016_j_jhazmat_2020_122724 crossref_primary_10_1016_j_jep_2022_115580 crossref_primary_10_1080_17460441_2020_1671351 crossref_primary_10_1016_j_trac_2024_117547 crossref_primary_10_1016_j_chnaes_2021_01_011 crossref_primary_10_1007_s12010_023_04791_5 crossref_primary_10_1080_03601234_2022_2064675 crossref_primary_10_1080_10408398_2021_1895060 crossref_primary_10_3390_ph17010082 crossref_primary_10_3390_ijms24032288 crossref_primary_10_1021_acs_est_9b00789 crossref_primary_10_1016_j_ecoenv_2022_113334 crossref_primary_10_1016_j_jpba_2023_115710 crossref_primary_10_1038_s41598_022_09659_y crossref_primary_10_1021_acs_est_4c11264 crossref_primary_10_1016_j_chemosphere_2021_131210 crossref_primary_10_1016_j_jpba_2024_116187 crossref_primary_10_3390_ijms222413417 crossref_primary_10_1016_j_chemosphere_2024_142097 crossref_primary_10_1007_s13596_024_00788_5 crossref_primary_10_1016_j_neuro_2023_01_003 crossref_primary_10_1016_j_jchromb_2019_121726 crossref_primary_10_1039_D1RA01111A crossref_primary_10_1002_jat_3938 crossref_primary_10_1177_00258024221074568 crossref_primary_10_1016_j_ecoenv_2021_113140 crossref_primary_10_1007_s11356_023_26735_6 crossref_primary_10_3389_fcell_2020_00583 crossref_primary_10_1016_j_ecoenv_2024_116023 crossref_primary_10_4103_ijmr_IJMR_2047_17 crossref_primary_10_1289_EHP7169 crossref_primary_10_1016_j_aquatox_2021_105881 crossref_primary_10_1093_toxsci_kfac082 crossref_primary_10_3389_frwa_2024_1401712 crossref_primary_10_1016_j_envint_2024_108747 crossref_primary_10_1016_j_aquatox_2023_106770 crossref_primary_10_1093_toxsci_kfab072 crossref_primary_10_1007_s00414_023_03151_6 crossref_primary_10_1021_acs_chemrestox_9b00335 crossref_primary_10_3390_molecules25194474 crossref_primary_10_1007_s11419_020_00543_w crossref_primary_10_1016_j_ecoenv_2024_117396 crossref_primary_10_1016_j_toxicon_2022_06_009 |
Cites_doi | 10.1016/j.taap.2003.07.012 10.1016/j.cbpc.2010.06.004 10.1016/j.foodchem.2015.02.098 10.3109/00498254.2012.684410 10.1016/j.chroma.2017.07.076 10.1002/dta.2318 10.1016/j.scitotenv.2017.03.038 10.1016/j.aquatox.2014.10.013 10.2131/jts.41.1 10.2174/138920010791636158 10.1038/291293a0 10.1006/eesa.2001.2073 10.1053/j.gastro.2015.08.034 10.1016/j.chemosphere.2014.05.050 10.3109/00498254.2010.493960 10.1002/bies.10326 10.1089/zeb.2013.0893 10.1016/j.jchromb.2012.12.031 10.1016/j.abb.2010.06.018 10.1242/jeb.147058 10.1016/j.ydbio.2011.09.010 10.1373/clinchem.2008.119396 10.1021/nn700048y 10.1016/j.cbpb.2014.03.005 10.1196/annals.1315.015 10.1002/bmc.1566 10.1177/1087057112447305 10.1016/j.coph.2017.08.007 10.1007/BF02977789 10.1016/S0076-6879(03)64023-1 10.1016/j.tiv.2017.05.009 10.1016/j.chemosphere.2012.03.018 10.1016/j.vascn.2009.04.103 10.1016/j.envpol.2016.08.026 10.1016/j.phrs.2015.11.024 10.1007/s10646-011-0720-3 10.1016/0045-6535(90)90133-E 10.3109/00498258709167413 10.1016/j.jgr.2015.12.010 10.1177/2211068211432197 10.1038/nrd4627 10.1093/toxsci/kfx116 10.1074/jbc.R110.200055 10.1016/j.jacbts.2017.01.004 10.1002/aja.1002030302 10.1007/BF01699408 10.1016/j.pharmthera.2016.03.009 10.1016/j.aquatox.2010.12.016 10.1016/j.ddmod.2012.02.005 10.1177/1087057105279952 10.1007/s00204-015-1566-x 10.1016/j.tox.2011.01.004 10.1016/j.chemosphere.2010.01.058 10.1016/0045-6535(93)90134-Q 10.1089/zeb.2009.0630 10.1016/j.aquatox.2012.10.008 10.1021/tx700079z 10.1038/nature05883 10.1016/0048-9697(91)90196-L 10.1016/j.envpol.2017.04.083 10.3109/00498254.2011.617015 10.1016/S1673-8527(08)60121-6 10.1016/j.taap.2004.10.019 10.1016/j.taap.2013.04.010 10.1038/nature12111 10.1006/taap.1996.8058 10.1016/j.cbpc.2016.02.007 10.1016/j.cld.2016.08.001 10.1016/j.aquatox.2012.01.008 10.1097/FTD.0b013e3181f33411 10.1002/bdrc.20214 10.1016/j.aquatox.2012.01.015 10.1016/j.ddmod.2012.02.006 10.1042/BSR20150168 10.1177/0192623311409597 10.1016/j.aquatox.2014.02.019 10.1016/j.dci.2016.02.020 10.1016/j.aquaculture.2007.04.077 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.cbpc.2018.06.005 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1878-1659 |
EndPage | 46 |
ExternalDocumentID | 29969680 10_1016_j_cbpc_2018_06_005 S1532045618300905 |
Genre | Journal Article Review |
GroupedDBID | --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO ABFNM ABFYP ABGSF ABLST ABMAC ABPPZ ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 MVM N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 PC. Q38 R2- RIG RPZ SBG SDF SDG SDP SES SEW SPT SSJ SSP SSU SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c422t-90cecadf3991fefd0beb5d4788a2b3710ed47411860c53432bcd41574e0dd9cc3 |
IEDL.DBID | .~1 |
ISSN | 1532-0456 |
IngestDate | Tue Aug 05 10:25:08 EDT 2025 Wed Feb 19 02:43:53 EST 2025 Tue Jul 01 03:41:18 EDT 2025 Thu Apr 24 23:00:30 EDT 2025 Fri Feb 23 02:33:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-human model Xenobiotic metabolism Toxicology Zebrafish (Danio rerio) Drug discovery Cytochrome P450 |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-90cecadf3991fefd0beb5d4788a2b3710ed47411860c53432bcd41574e0dd9cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 29969680 |
PQID | 2064242990 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2064242990 pubmed_primary_29969680 crossref_citationtrail_10_1016_j_cbpc_2018_06_005 crossref_primary_10_1016_j_cbpc_2018_06_005 elsevier_sciencedirect_doi_10_1016_j_cbpc_2018_06_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 2018-Oct 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Comparative biochemistry and physiology. Toxicology & pharmacology |
PublicationTitleAlternate | Comp Biochem Physiol C Toxicol Pharmacol |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Couchman, Morgan (bb0075) 2011; 25 Fleming, Alderton (bb0105) 2013; 10 Smith, Chu, Paterson, Metcalfe, Wilson (bb0360) 2010; 79 Wen, Liu, Zhu, Zheng, Su, Zhang, Yu, Giesy, Lam (bb0420) 2015; 120 Lootens, Meuleman, Pozo, Van Eenoo, Leroux-Roels, Delbeke (bb0250) 2009; 55 Vallverdú-Queralt, Boix, Piqué, Gómez-Catalan, Medina-Remon, Sasot, Mercader-Martí, Llobet, Lamuela-Raventos (bb0400) 2015; 181 Brugman (bb0035) 2016; 64 Otte, Schultz, Fruth, Fabian, Van, Hidding, Salinas (bb0300) 2017; 159 Ree, Myklebust, Thiel, Foyn, Fladmark, Arnesen (bb0325) 2015; 35 Saad, Cavanaugh, Verbueken, Pype, Casteleyn, Van Ginneken, Van Cruchten (bb0330) 2016; 41 Sneddon, Halsey, Bury (bb0365) 2017; 220 Jones, Trollope, Hutchinson, Panter, Chipman (bb0180) 2012; 42 Langheinrich (bb0215) 2003; 25 Streisinger, Walker, Dower, Knauber, Singer (bb0375) 1981; 291 Pinho, Reis, Guedes-Dias, Leitão-Rocha, Quintas, Valentão, Andrade, Santos, Oliveira (bb0320) 2016; 103 Shen, Wei, Tang, Jia, Chen (bb0350) 2017; 41 Lindholst, Wynne, Marriott, Pedersen, Bjerregaard (bb0240) 2003; 135 Goldstone, G, Kubota, Zanette, Parente, Jönsson, Nelson, Stegeman (bb0130) 2010; 11 Howe, Clark, Torroja, Torrance, Berthelot, Muffato, Collins, Humphray, McLaren, Matthews, McLaren, Sealy, Caccamo, Churcher, Scott, Barrett, Koch, Rauch, White, Chow, Kilian, Quintais, Guerra-Assunção, Zhou, Gu, Yen, Vogel, Eyre, Redmond, Banerjee, Chi, Fu, Langley, Maguire, Laird, Lloyd, Kenyon, Donaldson, Sehra, Almeida-King, Loveland, Trevanion, Jones, Quail, Willey, Hunt, Burton, Sims, McLay, Plumb, Davis, Clee, Oliver, Clark, Riddle, Eliott, Threadgold, Harden, Ware, Mortimer, Kerry, Heath, Phillimore, Tracey, Corby, Dunn, Johnson, Wood, Clark, Pelan, Griffiths, Smith, Glithero, Howden, Barker, Stevens, Harley, Holt, Panagiotidis, Lovell, Beasley, Henderson, Gordon, Auger, Wright, Collins, Raisen, Dyer, Leung, Robertson, Ambridge, Leongamornlert, McGuire, Gilderthorp, Griffiths, Manthravadi, Nichol, Barker, Whitehead, Kay, Brown, Murnane, Gray, Humphries, Sycamore, Barker, Saunders, Wallis, Babbage, Hammond, Mashreghi-Mohammadi, Barr, Martin, Wray, Ellington, Matthews, Ellwood, Woodmansey, Clark, Cooper, Tromans, Grafham, Skuce, Pandian, Andrews, Harrison, Kimberley, Garnett, Fosker, Hall, Garner, Kelly, Bird, Palmer, Gehring, Berger, Dooley, Ersan-Ürün, Eser, Geiger, Geisler, Karotki, Kirn, Konantz, Konantz, Oberländer, Rudolph-Geiger, Teucke, Osoegawa, Zhu, Rapp, Widaa, Langford, Yang, Carter, Harrow, Ning, Herrero, Searle, Enright, Geisler, Plasterk, Lee, Westerfield, De Jong, Zon, Postlethwait, Nüsslein-Volhard, Hubbard, Crollius, Rogers, Stemple (bb0160) 2013; 496 Peters, Martinez-Ramirez (bb0315) 2010; 32 Kasokat, Nagel, Urich (bb0195) 1989; 42 Zhu, Zhang, Humphreys (bb0440) 2011; 286 Alderton, Berghmans, Butler, Chassaing, Fleming, Golder, Richards, Gardner (bb0010) 2010; 40 Kamel, Ninov (bb0185) 2017; 37 Weigt, Huebler, Strecker, Braunbeck, Broschard (bb0415) 2011; 281 Tao, Peng (bb0380) 2009; 36 Carten, Bradford, Farber (bb0050) 2011; 360 Lawrence (bb0225) 2007; 269 Mohammed, Kurogi, Al Shaban, Xu, Liu, Williams, Sakakibara, Suiko, Bhuiyan, Liu (bb0280) 2012; 112–113 Chang, Chung, Su, Tseng, Tzou, Hu (bb0055) 2013; 270 Garcia, Noyes, Tanguay (bb0115) 2016; 161 Chen, Yu, Yang, Zhou (bb0060) 2012; 110–111 Scornaienchi, Thornton, Willett, Wilson (bb0340) 2010; 502 Wang, Chen, Du, Li, Wang, Gao (bb0405) 2017; 590–591 Spitsbergen, Kent (bb0370) 2003; 31 Fenn (bb0100) 2002; 13 Mandrell, Truong, Jephson, Sarker, Moore, Lang, Simonich, Tanguay (bb0265) 2012; 17 Sipes, Padilla, Knudsen (bb0355) 2011; 93 OECD (bb2500) 2013 Liu, Bhuiyan, Liu, Sugahara, Sakakibara, Suiko, Yasuda, Kakuta, Kimura, Williams, Liu (bb0245) 2010; 11 Pardal, Caro, Tueros, Barranco, Navarro (bb0310) 2014; 11 Guengerich (bb0140) 2008; 21 Hertl, Nagel (bb0150) 1993; 27 Núñez, Gallart-Ayala, Martins, Lucci, Busquets (bb0290) 2013; 927 Wang, Yin, Wei, Shi, Liu, Liu, Xin (bb0410) 2017; 1515 David, Jones, Panter, Winter, Hutchinson, Kevin Chipman (bb0080) 2012; 88 Troxel, Reddy, O'Neal, Hendricks, Bailey (bb0390) 1997; 78 Alazizi, Liu, Williams, Kurogi, Sakakibara, Suiko, Liu (bb0005) 2011; 102 Shams, Rihel, Ortiz, Gerlai (bb0345) 2017 Capiotti, Antonioli, Kist, Bogo, Bonan, Da Silva (bb0040) 2014; 171 Thompson, Burwinkel, Chava, Notch, Mayer (bb0385) 2010; 152 Ho, Pack, Farber (bb0155) 2003; 364 Modick, Weiss, Dierkes, Koslitz, Käfferlein, Brüning, Koch (bb0275) 2016; 90 Almazroo, Miah, Venkataramanan (bb0020) 2017; 21 Anselmo, Sardela, Matias, de Carvalho, de Sousa, Pereira, de Aquino Neto (bb0025) 2017; 9 Dawid (bb0085) 2004; 1038 Saad, Matheeussen, Bijttebier, Verbueken, Pype, Casteleyn, Van Ginneken, Apers, Maes, Cos, Van Cruchten (bb0335) 2017; 42 European Commission (bb0095) 2016 Zhang, Ji, Yan, Lu, Lu, Zhao (bb0435) 2016; 218 Gorge, Nagel (bb0135) 1990; 21 Li, Lin, McGrath (bb0235) 2009; 60 Xu, Li, Kong (bb0430) 2005; 28 MacRae, Peterson (bb0255) 2015; 14 Goessling, Sadler (bb0125) 2015; 149 Jones, Panter, Hutchinson, Chipman (bb0175) 2010; 7 Kimmel, Ballard, Kimmel, Ullmann, Schilling (bb0200) 1995; 203 Kühnert, Vogs, Aulhorn, Altenburger, Küster, Busch, Kühnert, Vogs, Altenburger, Hollert, Seiwert (bb0210) 2017; 230 Chng, Ho, Yap, Lam, Chan (bb0065) 2012; 17 Christen, Fent (bb0070) 2014; 150 He, Yang, Wang, Liu, Liao, Xu, Bai, Chen, Lin, Huang, Dong (bb2600) 2011; 20 Hu, Siu, Li, Chu, Kwan, Chan, Leung, Yan, Lee (bb0165) 2012; 42 Langheinrich, Vacun, Wagner (bb0220) 2003; 193 Tseng, Hseu, Buhler, Der Wang, Hu (bb0395) 2005; 205 Brox, Seiwert, Haase, Küster, Reemtsma (bb0030) 2016; 185–186 Huang, Wu (bb0170) 2010; 5 Zok, Görge, Kalsch, Nagel (bb0445) 1991; 109 Carlsson, Patring, Kreuger, Norrgren, Oskarsson (bb0045) 2013; 126 Lee, Nallathamby, Browning, Osgood, Xu (bb0230) 2007; 1 OECD (bb0295) 1992 Fleming, Sato, Goldsmith (bb0110) 2005; 10 North, Goessling, Walkley, Lengerke, Kopani, Lord, Weber, Bowman, Jang, Grosser, Fitzgerald, Daley, Orkin, Zon (bb0285) 2007; 447 Menke, Spitsbergen, Wolterbeek, Woutersen (bb0270) 2011; 39 Glisic, Mihaljevic, Popovic, Zaja, Loncar, Fent, Kovacevic, Smital (bb0120) 2015; 158 Diekmann, Hill (bb0090) 2013; 10 Wiegand, Krause, Steinberg, Pflugmacher (bb0425) 2001; 49 Kasokat, Nagel, Urich (bb0190) 1987; 17 Kithcart, MacRae (bb0205) 2017; 2 Modick (10.1016/j.cbpc.2018.06.005_bb0275) 2016; 90 Smith (10.1016/j.cbpc.2018.06.005_bb0360) 2010; 79 European Commission (10.1016/j.cbpc.2018.06.005_bb0095) 2016 Weigt (10.1016/j.cbpc.2018.06.005_bb0415) 2011; 281 Zhang (10.1016/j.cbpc.2018.06.005_bb0435) 2016; 218 Guengerich (10.1016/j.cbpc.2018.06.005_bb0140) 2008; 21 Christen (10.1016/j.cbpc.2018.06.005_bb0070) 2014; 150 Alazizi (10.1016/j.cbpc.2018.06.005_bb0005) 2011; 102 Goessling (10.1016/j.cbpc.2018.06.005_bb0125) 2015; 149 Liu (10.1016/j.cbpc.2018.06.005_bb0245) 2010; 11 Wen (10.1016/j.cbpc.2018.06.005_bb0420) 2015; 120 Shams (10.1016/j.cbpc.2018.06.005_bb0345) 2017 Sipes (10.1016/j.cbpc.2018.06.005_bb0355) 2011; 93 MacRae (10.1016/j.cbpc.2018.06.005_bb0255) 2015; 14 Hu (10.1016/j.cbpc.2018.06.005_bb0165) 2012; 42 Mandrell (10.1016/j.cbpc.2018.06.005_bb0265) 2012; 17 Shen (10.1016/j.cbpc.2018.06.005_bb0350) 2017; 41 Huang (10.1016/j.cbpc.2018.06.005_bb0170) 2010; 5 Ree (10.1016/j.cbpc.2018.06.005_bb0325) 2015; 35 Thompson (10.1016/j.cbpc.2018.06.005_bb0385) 2010; 152 Couchman (10.1016/j.cbpc.2018.06.005_bb0075) 2011; 25 Carten (10.1016/j.cbpc.2018.06.005_bb0050) 2011; 360 Pinho (10.1016/j.cbpc.2018.06.005_bb0320) 2016; 103 Howe (10.1016/j.cbpc.2018.06.005_bb0160) 2013; 496 Li (10.1016/j.cbpc.2018.06.005_bb0235) 2009; 60 Mohammed (10.1016/j.cbpc.2018.06.005_bb0280) 2012; 112–113 Chen (10.1016/j.cbpc.2018.06.005_bb0060) 2012; 110–111 Diekmann (10.1016/j.cbpc.2018.06.005_bb0090) 2013; 10 Fenn (10.1016/j.cbpc.2018.06.005_bb0100) 2002; 13 Peters (10.1016/j.cbpc.2018.06.005_bb0315) 2010; 32 Wiegand (10.1016/j.cbpc.2018.06.005_bb0425) 2001; 49 Fleming (10.1016/j.cbpc.2018.06.005_bb0110) 2005; 10 Chang (10.1016/j.cbpc.2018.06.005_bb0055) 2013; 270 Kithcart (10.1016/j.cbpc.2018.06.005_bb0205) 2017; 2 OECD (10.1016/j.cbpc.2018.06.005_bb0295) Wang (10.1016/j.cbpc.2018.06.005_bb0405) 2017; 590–591 Tseng (10.1016/j.cbpc.2018.06.005_bb0395) 2005; 205 Anselmo (10.1016/j.cbpc.2018.06.005_bb0025) 2017; 9 Lee (10.1016/j.cbpc.2018.06.005_bb0230) 2007; 1 Saad (10.1016/j.cbpc.2018.06.005_bb0335) 2017; 42 Vallverdú-Queralt (10.1016/j.cbpc.2018.06.005_bb0400) 2015; 181 North (10.1016/j.cbpc.2018.06.005_bb0285) 2007; 447 Streisinger (10.1016/j.cbpc.2018.06.005_bb0375) 1981; 291 Spitsbergen (10.1016/j.cbpc.2018.06.005_bb0370) 2003; 31 Capiotti (10.1016/j.cbpc.2018.06.005_bb0040) 2014; 171 Núñez (10.1016/j.cbpc.2018.06.005_bb0290) 2013; 927 Kasokat (10.1016/j.cbpc.2018.06.005_bb0195) 1989; 42 Garcia (10.1016/j.cbpc.2018.06.005_bb0115) 2016; 161 Tao (10.1016/j.cbpc.2018.06.005_bb0380) 2009; 36 Ho (10.1016/j.cbpc.2018.06.005_bb0155) 2003; 364 Lootens (10.1016/j.cbpc.2018.06.005_bb0250) 2009; 55 Carlsson (10.1016/j.cbpc.2018.06.005_bb0045) 2013; 126 Fleming (10.1016/j.cbpc.2018.06.005_bb0105) 2013; 10 Almazroo (10.1016/j.cbpc.2018.06.005_bb0020) 2017; 21 Kasokat (10.1016/j.cbpc.2018.06.005_bb0190) 1987; 17 David (10.1016/j.cbpc.2018.06.005_bb0080) 2012; 88 Troxel (10.1016/j.cbpc.2018.06.005_bb0390) 1997; 78 Xu (10.1016/j.cbpc.2018.06.005_bb0430) 2005; 28 Pardal (10.1016/j.cbpc.2018.06.005_bb0310) 2014; 11 Goldstone (10.1016/j.cbpc.2018.06.005_bb0130) 2010; 11 OECD (10.1016/j.cbpc.2018.06.005_bb2500) 2013 Wang (10.1016/j.cbpc.2018.06.005_bb0410) 2017; 1515 He (10.1016/j.cbpc.2018.06.005_bb2600) 2011; 20 Langheinrich (10.1016/j.cbpc.2018.06.005_bb0215) 2003; 25 Gorge (10.1016/j.cbpc.2018.06.005_bb0135) 1990; 21 Jones (10.1016/j.cbpc.2018.06.005_bb0175) 2010; 7 Zhu (10.1016/j.cbpc.2018.06.005_bb0440) 2011; 286 Menke (10.1016/j.cbpc.2018.06.005_bb0270) 2011; 39 Lawrence (10.1016/j.cbpc.2018.06.005_bb0225) 2007; 269 Kühnert (10.1016/j.cbpc.2018.06.005_bb0210) 2017; 230 Zok (10.1016/j.cbpc.2018.06.005_bb0445) 1991; 109 Alderton (10.1016/j.cbpc.2018.06.005_bb0010) 2010; 40 Hertl (10.1016/j.cbpc.2018.06.005_bb0150) 1993; 27 Sneddon (10.1016/j.cbpc.2018.06.005_bb0365) 2017; 220 Kamel (10.1016/j.cbpc.2018.06.005_bb0185) 2017; 37 Lindholst (10.1016/j.cbpc.2018.06.005_bb0240) 2003; 135 Scornaienchi (10.1016/j.cbpc.2018.06.005_bb0340) 2010; 502 Jones (10.1016/j.cbpc.2018.06.005_bb0180) 2012; 42 Otte (10.1016/j.cbpc.2018.06.005_bb0300) 2017; 159 Glisic (10.1016/j.cbpc.2018.06.005_bb0120) 2015; 158 Kimmel (10.1016/j.cbpc.2018.06.005_bb0200) 1995; 203 Chng (10.1016/j.cbpc.2018.06.005_bb0065) 2012; 17 Saad (10.1016/j.cbpc.2018.06.005_bb0330) 2016; 41 Brugman (10.1016/j.cbpc.2018.06.005_bb0035) 2016; 64 Langheinrich (10.1016/j.cbpc.2018.06.005_bb0220) 2003; 193 Dawid (10.1016/j.cbpc.2018.06.005_bb0085) 2004; 1038 Brox (10.1016/j.cbpc.2018.06.005_bb0030) 2016; 185–186 |
References_xml | – volume: 42 start-page: 294 year: 2012 end-page: 303 ident: bb0165 article-title: Metabolism of calycosin, an isoflavone from Astragali Radix, in zebrafish larvae publication-title: Xenobiotica – volume: 203 start-page: 253 year: 1995 end-page: 310 ident: bb0200 article-title: Stages of embryonic development of the zebrafish publication-title: Dev. Dyn. – volume: 149 start-page: 1361 year: 2015 end-page: 1377 ident: bb0125 article-title: Zebrafish: an important tool for liver disease research publication-title: Gastroenterology – volume: 112–113 start-page: 11 year: 2012 end-page: 18 ident: bb0280 article-title: Identification and characterization of zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5 publication-title: Aquat. Toxicol. – volume: 10 start-page: 823 year: 2005 end-page: 831 ident: bb0110 article-title: High-throughput in vivo screening for bone anabolic compounds with zebrafish publication-title: J. Biomol. Screen. – volume: 103 start-page: 328 year: 2016 end-page: 339 ident: bb0320 article-title: Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: therapeutic implications for Parkinson's disease publication-title: Pharmacol. Res. – year: 2013 ident: bb2500 article-title: Test No. 236: Fish Embryo Acute Toxicity (FET) Test 1-22 – volume: 32 start-page: 532 year: 2010 end-page: 539 ident: bb0315 article-title: Analytical toxicology of emerging drugs of abuse publication-title: Ther. Drug Monit. – volume: 93 start-page: 256 year: 2011 end-page: 267 ident: bb0355 article-title: Zebrafish-as an integrative model for twenty-first century toxicity testing publication-title: Birth Defects Res. C Embryo Today Rev. – volume: 1038 start-page: 88 year: 2004 end-page: 93 ident: bb0085 article-title: Developmental biology of zebrafish publication-title: Ann. N. Y. Acad. Sci. – volume: 17 start-page: 66 year: 2012 end-page: 74 ident: bb0265 article-title: Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens publication-title: J Lab Autom. – volume: 502 start-page: 17 year: 2010 end-page: 22 ident: bb0340 article-title: Functional differences in the cytochrome P450 1 family enzymes from Zebrafish ( publication-title: Arch. Biochem. Biophys. – volume: 55 start-page: 1783 year: 2009 end-page: 1793 ident: bb0250 article-title: uPA+/+-SCID mouse with humanized liver as a model for in vivo metabolism of exogenous steroids: methandienone as a case study publication-title: Clin. Chem. – volume: 291 start-page: 293 year: 1981 end-page: 296 ident: bb0375 article-title: Production of clones of homozygous diploid zebra fish ( publication-title: Nature – volume: 102 start-page: 18 year: 2011 end-page: 23 ident: bb0005 article-title: Identification, characterization, and ontogenic study of a catechol O-methyltransferase from zebrafish publication-title: Aquat. Toxicol. – volume: 25 start-page: 904 year: 2003 end-page: 912 ident: bb0215 article-title: Zebrafish: a new model on the pharmaceutical catwalk publication-title: BioEssays – volume: 159 start-page: 86 year: 2017 end-page: 93 ident: bb0300 article-title: Intrinsic xenobiotic metabolizing enzyme activities in early life stages of zebrafish ( publication-title: Toxicol. Sci. – volume: 17 start-page: 974 year: 2012 end-page: 986 ident: bb0065 article-title: An investigation of the bioactivation potential and metabolism profile of zebrafish versus human publication-title: J. Biomol. Screen. – volume: 21 start-page: 1125 year: 1990 end-page: 1137 ident: bb0135 article-title: Kinetics and metabolism of 14C-lindane and 14C-atrazine in early life stage of zebrafish ( publication-title: Chemosphere – volume: 360 start-page: 276 year: 2011 end-page: 285 ident: bb0050 article-title: Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish publication-title: Dev. Biol. – volume: 41 start-page: 1 year: 2016 end-page: 11 ident: bb0330 article-title: Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3 publication-title: J. Toxicol. Sci. – volume: 10 start-page: e43 year: 2013 end-page: e50 ident: bb0105 article-title: Zebrafish in pharmaceutical industry research: finding the best fit publication-title: Drug Discov. Today Dis. Model. – volume: 9 start-page: 1685 year: 2017 end-page: 1694 ident: bb0025 article-title: Is zebrafish ( publication-title: Drug Test. Anal. – volume: 193 start-page: 370 year: 2003 end-page: 382 ident: bb0220 article-title: Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia publication-title: Toxicol. Appl. Pharmacol. – volume: 27 start-page: 2225 year: 1993 end-page: 2234 ident: bb0150 article-title: Bioconcentration and metabolism of 3,4-dichloroaniline in different life stages of guppy and zebrafish publication-title: Chemosphere – volume: 42 start-page: 1069 year: 2012 end-page: 1075 ident: bb0180 article-title: Metabolism of ibuprofen in zebrafish larvae publication-title: Xenobiotica – volume: 41 start-page: 78 year: 2017 end-page: 84 ident: bb0350 article-title: Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupoleetime-of-flight MS publication-title: J. Ginseng Res. – volume: 60 start-page: 233 year: 2009 ident: bb0235 article-title: Whole zebrafish cytochrome P450 microplate assays for assessing drug metabolism and drug safety publication-title: J. Pharmacol. Toxicol. Methods – volume: 152 start-page: 371 year: 2010 end-page: 378 ident: bb0385 article-title: Activity of Phase I and Phase II enzymes of the benzo[a]pyrene transformation pathway in zebrafish ( publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. – volume: 1515 start-page: 100 year: 2017 end-page: 108 ident: bb0410 article-title: Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system publication-title: J. Chromatogr. A – volume: 181 start-page: 146 year: 2015 end-page: 151 ident: bb0400 article-title: Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS publication-title: Food Chem. – volume: 120 start-page: 31 year: 2015 end-page: 36 ident: bb0420 article-title: Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish ( publication-title: Chemosphere – volume: 496 start-page: 498 year: 2013 end-page: 503 ident: bb0160 article-title: The zebrafish reference genome sequence and its relationship to the human genome publication-title: Nature – volume: 35 start-page: 1 year: 2015 end-page: 10 ident: bb0325 article-title: The N-terminal acetyltransferase Naa10 is essential for zebrafish development publication-title: Biosci. Rep. – volume: 49 start-page: 199 year: 2001 end-page: 205 ident: bb0425 article-title: Toxicokinetics of atrazine in embryos of the zebrafish ( publication-title: Ecotoxicol. Environ. Saf. – volume: 21 start-page: 1 year: 2017 end-page: 20 ident: bb0020 article-title: Drug metabolism in the liver publication-title: Clin. Liver Dis. – volume: 205 start-page: 247 year: 2005 end-page: 258 ident: bb0395 article-title: Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva publication-title: Toxicol. Appl. Pharmacol. – volume: 185–186 start-page: 20 year: 2016 end-page: 28 ident: bb0030 article-title: Metabolism of clofibric acid in zebrafish embryos ( publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. – volume: 364 start-page: 408 year: 2003 end-page: 426 ident: bb0155 article-title: Analysis of small molecule metabolism in zebrafish publication-title: Methods Enzymol. – year: 1992 ident: bb0295 article-title: Fish, Acute Toxicity test. OECD Guidel. Test. Chem – volume: 590–591 start-page: 50 year: 2017 end-page: 59 ident: bb0405 article-title: In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish publication-title: Sci. Total Environ. – year: 2016 ident: bb0095 article-title: Legislation for the Protection of Animals Used for Scientific Purposes - Environment - European Commission 1–2 – volume: 5 year: 2010 ident: bb0170 article-title: Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity publication-title: PLoS One – volume: 31 start-page: 62 year: 2003 end-page: 87 ident: bb0370 article-title: The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations publication-title: Toxicol. Pathol. – volume: 40 start-page: 547 year: 2010 end-page: 557 ident: bb0010 article-title: Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae publication-title: Xenobiotica – volume: 220 start-page: 3007 year: 2017 end-page: 3016 ident: bb0365 article-title: Considering aspects of the 3Rs principles within experimental animal biology publication-title: J. Exp. Biol. – volume: 286 start-page: 25419 year: 2011 end-page: 25425 ident: bb0440 article-title: Drug metabolite profiling and identification by high-resolution mass spectrometry publication-title: J. Biol. Chem. – volume: 21 start-page: 70 year: 2008 end-page: 83 ident: bb0140 article-title: Cytochrome P450 and chemical toxicology cytochrome P450 and chemical toxicology publication-title: Chem. Res. Toxicol. – start-page: 0 year: 2017 end-page: 1 ident: bb0345 article-title: The zebrafish as a promising tool for modeling human brain disorders: a review based upon an IBNS Symposium publication-title: Neurosci. Biobehav. Rev. – volume: 17 start-page: 1215 year: 1987 end-page: 1221 ident: bb0190 article-title: The metabolism of phenol and substituted phenols in zebra fish publication-title: Xenobiotica – volume: 7 start-page: 23 year: 2010 end-page: 30 ident: bb0175 article-title: Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo publication-title: Zebrafish – volume: 218 start-page: 8 year: 2016 end-page: 15 ident: bb0435 article-title: The identification of the metabolites of chlorothalonil in zebrafish ( publication-title: Environ. Pollut. – volume: 10 start-page: e31 year: 2013 end-page: e35 ident: bb0090 article-title: ADMETox in zebrafish publication-title: Drug Discov. Today Dis. Model. – volume: 78 start-page: 213 year: 1997 end-page: 220 ident: bb0390 article-title: In vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish ( publication-title: Toxicol. Appl. Pharmacol. – volume: 109 start-page: 411 year: 1991 end-page: 421 ident: bb0445 article-title: Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish ( publication-title: Sci. Total Environ. – volume: 64 start-page: 82 year: 2016 end-page: 92 ident: bb0035 article-title: The zebrafish as a model to study intestinal inflammation publication-title: Dev. Comp. Immunol. – volume: 13 start-page: 101 year: 2002 end-page: 118 ident: bb0100 article-title: Electrospray ionization mass spectrometry: how it all began publication-title: J. Biomol. Tech. – volume: 927 start-page: 3 year: 2013 end-page: 21 ident: bb0290 article-title: State-of-the-art in fast liquid chromatography-mass spectrometry for bio-analytical applications publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci. – volume: 37 start-page: 41 year: 2017 end-page: 50 ident: bb0185 article-title: Catching new targets in metabolic disease with a zebrafish publication-title: Curr. Opin. Pharmacol. – volume: 39 start-page: 759 year: 2011 end-page: 775 ident: bb0270 article-title: Normal anatomy and histology of the adult zebrafish publication-title: Toxicol. Pathol. – volume: 230 start-page: 1 year: 2017 end-page: 11 ident: bb0210 article-title: Biotransformation in the zebrafish embryo –temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene publication-title: Environ. Pollut. – volume: 1 start-page: 133 year: 2007 end-page: 143 ident: bb0230 article-title: In Vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos publication-title: ACS Nano – volume: 79 start-page: 26 year: 2010 end-page: 32 ident: bb0360 article-title: Cross-species comparison of fluoxetine metabolism with fish liver microsomes publication-title: Chemosphere – volume: 270 start-page: 174 year: 2013 end-page: 184 ident: bb0055 article-title: Regulation of zebrafish CYP3A65 transcription by AHR2 publication-title: Toxicol. Appl. Pharmacol. – volume: 269 start-page: 1 year: 2007 end-page: 20 ident: bb0225 article-title: The husbandry of zebrafish ( publication-title: Aquaculture – volume: 42 start-page: 254 year: 1989 end-page: 261 ident: bb0195 article-title: Metabolism of chlorobenzene and hexachlorobenzene by the zebra fish, publication-title: Bull. Environ. Contam. Toxicol. – volume: 2 start-page: 1 year: 2017 end-page: 12 ident: bb0205 article-title: Using zebrafish for high-throughput screening of novel cardiovascular drugs publication-title: JACC Basic Transl. Sci. – volume: 42 start-page: 329 year: 2017 end-page: 336 ident: bb0335 article-title: In vitro CYP-mediated drug metabolism in the zebrafish (embryo) using human reference compounds publication-title: Toxicol. in Vitro – volume: 281 start-page: 25 year: 2011 end-page: 36 ident: bb0415 article-title: Zebrafish ( publication-title: Toxicology – volume: 158 start-page: 50 year: 2015 end-page: 62 ident: bb0120 article-title: Characterization of glutathione-S-transferases in zebrafish ( publication-title: Aquat. Toxicol. – volume: 14 start-page: 721 year: 2015 end-page: 731 ident: bb0255 article-title: Zebrafish as tools for drug discovery publication-title: Nat. Rev. Drug Discov. – volume: 88 start-page: 912 year: 2012 end-page: 917 ident: bb0080 article-title: Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish ( publication-title: Chemosphere – volume: 11 start-page: 538 year: 2010 end-page: 546 ident: bb0245 article-title: Zebrafish as a model for the study of the phase II cytosolic sulfotransferases publication-title: Curr. Drug Metab. – volume: 36 start-page: 325 year: 2009 end-page: 334 ident: bb0380 article-title: Liver development in zebrafish ( publication-title: J. Genet. Genom. – volume: 20 start-page: 1813 year: 2011 end-page: 1822 ident: bb2600 article-title: Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring publication-title: Ecotoxicology – volume: 171 start-page: 58 year: 2014 end-page: 65 ident: bb0040 article-title: Persistent impaired glucose metabolism in a zebrafish hyperglycemia model publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. – volume: 25 start-page: 100 year: 2011 end-page: 123 ident: bb0075 article-title: LC-MS in analytical toxicology: some practical considerations publication-title: Biomed. Chromatogr. – volume: 161 start-page: 11 year: 2016 end-page: 21 ident: bb0115 article-title: Advancements in zebrafish applications for 21st century toxicology publication-title: Pharmacol. Ther. – volume: 11 start-page: 643 year: 2010 ident: bb0130 article-title: Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish – volume: 150 start-page: 93 year: 2014 end-page: 102 ident: bb0070 article-title: Tissue-, sex- and development-specific transcription profiles of eight UDP-glucuronosyltransferase genes in zebrafish ( publication-title: Aquat. Toxicol. – volume: 126 start-page: 30 year: 2013 end-page: 41 ident: bb0045 article-title: Toxicity of 15 veterinary pharmaceuticals in zebrafish ( publication-title: Aquat. Toxicol. – volume: 447 start-page: 1007 year: 2007 end-page: 1011 ident: bb0285 article-title: Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis publication-title: Nature – volume: 90 start-page: 1325 year: 2016 end-page: 1333 ident: bb0275 article-title: Human metabolism and excretion kinetics of aniline after a single oral dose publication-title: Arch. Toxicol. – volume: 110–111 start-page: 141 year: 2012 end-page: 148 ident: bb0060 article-title: Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae publication-title: Aquat. Toxicol. – volume: 135 start-page: 169 year: 2003 end-page: 177 ident: bb0240 article-title: Metabolism of bisphenol A in zebrafish ( publication-title: Comp. Biochem. Physiol. C – volume: 28 start-page: 249 year: 2005 end-page: 268 ident: bb0430 article-title: Induction of phase I, II and III drug metabolism/transport by xenobiotics publication-title: Arch. Pharm. Res. – volume: 11 start-page: 32 year: 2014 end-page: 40 ident: bb0310 article-title: Resveratrol and piceid metabolites and their fat-reduction effects in zebrafish larvae publication-title: Zebrafish – volume: 193 start-page: 370 year: 2003 ident: 10.1016/j.cbpc.2018.06.005_bb0220 article-title: Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2003.07.012 – volume: 152 start-page: 371 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0385 article-title: Activity of Phase I and Phase II enzymes of the benzo[a]pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. doi: 10.1016/j.cbpc.2010.06.004 – volume: 181 start-page: 146 year: 2015 ident: 10.1016/j.cbpc.2018.06.005_bb0400 article-title: Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.02.098 – volume: 42 start-page: 1069 year: 2012 ident: 10.1016/j.cbpc.2018.06.005_bb0180 article-title: Metabolism of ibuprofen in zebrafish larvae publication-title: Xenobiotica doi: 10.3109/00498254.2012.684410 – volume: 1515 start-page: 100 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0410 article-title: Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2017.07.076 – volume: 9 start-page: 1685 issue: 11-12 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0025 article-title: Is zebrafish (Danio rerio) a tool for human-like metabolism study? publication-title: Drug Test. Anal. doi: 10.1002/dta.2318 – volume: 5 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0170 article-title: Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity publication-title: PLoS One – volume: 590–591 start-page: 50 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0405 article-title: In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.038 – volume: 158 start-page: 50 year: 2015 ident: 10.1016/j.cbpc.2018.06.005_bb0120 article-title: Characterization of glutathione-S-transferases in zebrafish (Danio rerio) publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2014.10.013 – volume: 41 start-page: 1 year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0330 article-title: Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3 publication-title: J. Toxicol. Sci. doi: 10.2131/jts.41.1 – volume: 11 start-page: 538 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0245 article-title: Zebrafish as a model for the study of the phase II cytosolic sulfotransferases publication-title: Curr. Drug Metab. doi: 10.2174/138920010791636158 – volume: 291 start-page: 293 year: 1981 ident: 10.1016/j.cbpc.2018.06.005_bb0375 article-title: Production of clones of homozygous diploid zebra fish (Brachydanio rerio) publication-title: Nature doi: 10.1038/291293a0 – volume: 49 start-page: 199 year: 2001 ident: 10.1016/j.cbpc.2018.06.005_bb0425 article-title: Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio) publication-title: Ecotoxicol. Environ. Saf. doi: 10.1006/eesa.2001.2073 – volume: 149 start-page: 1361 year: 2015 ident: 10.1016/j.cbpc.2018.06.005_bb0125 article-title: Zebrafish: an important tool for liver disease research publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.08.034 – volume: 120 start-page: 31 year: 2015 ident: 10.1016/j.cbpc.2018.06.005_bb0420 article-title: Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.05.050 – volume: 40 start-page: 547 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0010 article-title: Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae publication-title: Xenobiotica doi: 10.3109/00498254.2010.493960 – year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0095 – volume: 25 start-page: 904 year: 2003 ident: 10.1016/j.cbpc.2018.06.005_bb0215 article-title: Zebrafish: a new model on the pharmaceutical catwalk publication-title: BioEssays doi: 10.1002/bies.10326 – volume: 11 start-page: 32 year: 2014 ident: 10.1016/j.cbpc.2018.06.005_bb0310 article-title: Resveratrol and piceid metabolites and their fat-reduction effects in zebrafish larvae publication-title: Zebrafish doi: 10.1089/zeb.2013.0893 – volume: 927 start-page: 3 year: 2013 ident: 10.1016/j.cbpc.2018.06.005_bb0290 article-title: State-of-the-art in fast liquid chromatography-mass spectrometry for bio-analytical applications publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2012.12.031 – volume: 502 start-page: 17 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0340 article-title: Functional differences in the cytochrome P450 1 family enzymes from Zebrafish (Danio rerio) using heterologously expressed proteins publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2010.06.018 – volume: 220 start-page: 3007 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0365 article-title: Considering aspects of the 3Rs principles within experimental animal biology publication-title: J. Exp. Biol. doi: 10.1242/jeb.147058 – volume: 360 start-page: 276 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb0050 article-title: Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.09.010 – volume: 55 start-page: 1783 year: 2009 ident: 10.1016/j.cbpc.2018.06.005_bb0250 article-title: uPA+/+-SCID mouse with humanized liver as a model for in vivo metabolism of exogenous steroids: methandienone as a case study publication-title: Clin. Chem. doi: 10.1373/clinchem.2008.119396 – volume: 135 start-page: 169 year: 2003 ident: 10.1016/j.cbpc.2018.06.005_bb0240 article-title: Metabolism of bisphenol A in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) in relation to estrogenic response publication-title: Comp. Biochem. Physiol. C – volume: 1 start-page: 133 issue: 2 year: 2007 ident: 10.1016/j.cbpc.2018.06.005_bb0230 article-title: In Vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos publication-title: ACS Nano doi: 10.1021/nn700048y – volume: 171 start-page: 58 year: 2014 ident: 10.1016/j.cbpc.2018.06.005_bb0040 article-title: Persistent impaired glucose metabolism in a zebrafish hyperglycemia model publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. doi: 10.1016/j.cbpb.2014.03.005 – volume: 1038 start-page: 88 year: 2004 ident: 10.1016/j.cbpc.2018.06.005_bb0085 article-title: Developmental biology of zebrafish publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1315.015 – volume: 25 start-page: 100 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb0075 article-title: LC-MS in analytical toxicology: some practical considerations publication-title: Biomed. Chromatogr. doi: 10.1002/bmc.1566 – volume: 17 start-page: 974 year: 2012 ident: 10.1016/j.cbpc.2018.06.005_bb0065 article-title: An investigation of the bioactivation potential and metabolism profile of zebrafish versus human publication-title: J. Biomol. Screen. doi: 10.1177/1087057112447305 – volume: 37 start-page: 41 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0185 article-title: Catching new targets in metabolic disease with a zebrafish publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2017.08.007 – volume: 28 start-page: 249 year: 2005 ident: 10.1016/j.cbpc.2018.06.005_bb0430 article-title: Induction of phase I, II and III drug metabolism/transport by xenobiotics publication-title: Arch. Pharm. Res. doi: 10.1007/BF02977789 – volume: 364 start-page: 408 year: 2003 ident: 10.1016/j.cbpc.2018.06.005_bb0155 article-title: Analysis of small molecule metabolism in zebrafish publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(03)64023-1 – volume: 42 start-page: 329 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0335 article-title: In vitro CYP-mediated drug metabolism in the zebrafish (embryo) using human reference compounds publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2017.05.009 – volume: 88 start-page: 912 year: 2012 ident: 10.1016/j.cbpc.2018.06.005_bb0080 article-title: Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.03.018 – volume: 60 start-page: 233 year: 2009 ident: 10.1016/j.cbpc.2018.06.005_bb0235 article-title: Whole zebrafish cytochrome P450 microplate assays for assessing drug metabolism and drug safety publication-title: J. Pharmacol. Toxicol. Methods doi: 10.1016/j.vascn.2009.04.103 – volume: 218 start-page: 8 year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0435 article-title: The identification of the metabolites of chlorothalonil in zebrafish (Danio rerio) and their embryo toxicity and endocrine effects at environmentally relevant levels publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.08.026 – volume: 31 start-page: 62 year: 2003 ident: 10.1016/j.cbpc.2018.06.005_bb0370 article-title: The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations publication-title: Toxicol. Pathol. – volume: 103 start-page: 328 year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0320 article-title: Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: therapeutic implications for Parkinson's disease publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.11.024 – volume: 20 start-page: 1813 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb2600 article-title: Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring publication-title: Ecotoxicology doi: 10.1007/s10646-011-0720-3 – volume: 21 start-page: 1125 year: 1990 ident: 10.1016/j.cbpc.2018.06.005_bb0135 article-title: Kinetics and metabolism of 14C-lindane and 14C-atrazine in early life stage of zebrafish (Danio rerio) publication-title: Chemosphere doi: 10.1016/0045-6535(90)90133-E – volume: 17 start-page: 1215 year: 1987 ident: 10.1016/j.cbpc.2018.06.005_bb0190 article-title: The metabolism of phenol and substituted phenols in zebra fish publication-title: Xenobiotica doi: 10.3109/00498258709167413 – volume: 41 start-page: 78 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0350 article-title: Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupoleetime-of-flight MS publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2015.12.010 – volume: 17 start-page: 66 year: 2012 ident: 10.1016/j.cbpc.2018.06.005_bb0265 article-title: Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens publication-title: J Lab Autom. doi: 10.1177/2211068211432197 – year: 2013 ident: 10.1016/j.cbpc.2018.06.005_bb2500 – volume: 14 start-page: 721 year: 2015 ident: 10.1016/j.cbpc.2018.06.005_bb0255 article-title: Zebrafish as tools for drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4627 – volume: 159 start-page: 86 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0300 article-title: Intrinsic xenobiotic metabolizing enzyme activities in early life stages of zebrafish (Danio rerio) publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfx116 – volume: 286 start-page: 25419 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb0440 article-title: Drug metabolite profiling and identification by high-resolution mass spectrometry publication-title: J. Biol. Chem. doi: 10.1074/jbc.R110.200055 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0205 article-title: Using zebrafish for high-throughput screening of novel cardiovascular drugs publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2017.01.004 – volume: 203 start-page: 253 year: 1995 ident: 10.1016/j.cbpc.2018.06.005_bb0200 article-title: Stages of embryonic development of the zebrafish publication-title: Dev. Dyn. doi: 10.1002/aja.1002030302 – volume: 42 start-page: 254 year: 1989 ident: 10.1016/j.cbpc.2018.06.005_bb0195 article-title: Metabolism of chlorobenzene and hexachlorobenzene by the zebra fish, Brachydanio rerio publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/BF01699408 – start-page: 0 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0345 article-title: The zebrafish as a promising tool for modeling human brain disorders: a review based upon an IBNS Symposium publication-title: Neurosci. Biobehav. Rev. – volume: 161 start-page: 11 year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0115 article-title: Advancements in zebrafish applications for 21st century toxicology publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2016.03.009 – volume: 102 start-page: 18 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb0005 article-title: Identification, characterization, and ontogenic study of a catechol O-methyltransferase from zebrafish publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2010.12.016 – volume: 10 start-page: e31 year: 2013 ident: 10.1016/j.cbpc.2018.06.005_bb0090 article-title: ADMETox in zebrafish publication-title: Drug Discov. Today Dis. Model. doi: 10.1016/j.ddmod.2012.02.005 – volume: 10 start-page: 823 year: 2005 ident: 10.1016/j.cbpc.2018.06.005_bb0110 article-title: High-throughput in vivo screening for bone anabolic compounds with zebrafish publication-title: J. Biomol. Screen. doi: 10.1177/1087057105279952 – volume: 90 start-page: 1325 year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0275 article-title: Human metabolism and excretion kinetics of aniline after a single oral dose publication-title: Arch. Toxicol. doi: 10.1007/s00204-015-1566-x – volume: 281 start-page: 25 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb0415 article-title: Zebrafish (Danio rerio) embryos as a model for testing proteratogens publication-title: Toxicology doi: 10.1016/j.tox.2011.01.004 – volume: 79 start-page: 26 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0360 article-title: Cross-species comparison of fluoxetine metabolism with fish liver microsomes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.01.058 – volume: 27 start-page: 2225 year: 1993 ident: 10.1016/j.cbpc.2018.06.005_bb0150 article-title: Bioconcentration and metabolism of 3,4-dichloroaniline in different life stages of guppy and zebrafish publication-title: Chemosphere doi: 10.1016/0045-6535(93)90134-Q – volume: 7 start-page: 23 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0175 article-title: Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo publication-title: Zebrafish doi: 10.1089/zeb.2009.0630 – volume: 126 start-page: 30 year: 2013 ident: 10.1016/j.cbpc.2018.06.005_bb0045 article-title: Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2012.10.008 – volume: 21 start-page: 70 year: 2008 ident: 10.1016/j.cbpc.2018.06.005_bb0140 article-title: Cytochrome P450 and chemical toxicology cytochrome P450 and chemical toxicology publication-title: Chem. Res. Toxicol. doi: 10.1021/tx700079z – volume: 447 start-page: 1007 issue: 7147 year: 2007 ident: 10.1016/j.cbpc.2018.06.005_bb0285 article-title: Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis publication-title: Nature doi: 10.1038/nature05883 – volume: 109 start-page: 411 year: 1991 ident: 10.1016/j.cbpc.2018.06.005_bb0445 article-title: Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (Brachydanio rerio) publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(91)90196-L – volume: 230 start-page: 1 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0210 article-title: Biotransformation in the zebrafish embryo –temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.083 – volume: 42 start-page: 294 year: 2012 ident: 10.1016/j.cbpc.2018.06.005_bb0165 article-title: Metabolism of calycosin, an isoflavone from Astragali Radix, in zebrafish larvae publication-title: Xenobiotica doi: 10.3109/00498254.2011.617015 – volume: 36 start-page: 325 year: 2009 ident: 10.1016/j.cbpc.2018.06.005_bb0380 article-title: Liver development in zebrafish (Danio rerio) publication-title: J. Genet. Genom. doi: 10.1016/S1673-8527(08)60121-6 – volume: 205 start-page: 247 year: 2005 ident: 10.1016/j.cbpc.2018.06.005_bb0395 article-title: Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2004.10.019 – volume: 270 start-page: 174 year: 2013 ident: 10.1016/j.cbpc.2018.06.005_bb0055 article-title: Regulation of zebrafish CYP3A65 transcription by AHR2 publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2013.04.010 – volume: 496 start-page: 498 year: 2013 ident: 10.1016/j.cbpc.2018.06.005_bb0160 article-title: The zebrafish reference genome sequence and its relationship to the human genome publication-title: Nature doi: 10.1038/nature12111 – volume: 78 start-page: 213 year: 1997 ident: 10.1016/j.cbpc.2018.06.005_bb0390 article-title: In vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish (Danio rerio) publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.1996.8058 – volume: 185–186 start-page: 20 year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0030 article-title: Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. doi: 10.1016/j.cbpc.2016.02.007 – volume: 21 start-page: 1 year: 2017 ident: 10.1016/j.cbpc.2018.06.005_bb0020 article-title: Drug metabolism in the liver publication-title: Clin. Liver Dis. doi: 10.1016/j.cld.2016.08.001 – volume: 110–111 start-page: 141 year: 2012 ident: 10.1016/j.cbpc.2018.06.005_bb0060 article-title: Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2012.01.008 – volume: 32 start-page: 532 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0315 article-title: Analytical toxicology of emerging drugs of abuse publication-title: Ther. Drug Monit. doi: 10.1097/FTD.0b013e3181f33411 – volume: 93 start-page: 256 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb0355 article-title: Zebrafish-as an integrative model for twenty-first century toxicity testing publication-title: Birth Defects Res. C Embryo Today Rev. doi: 10.1002/bdrc.20214 – volume: 112–113 start-page: 11 year: 2012 ident: 10.1016/j.cbpc.2018.06.005_bb0280 article-title: Identification and characterization of zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5 publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2012.01.015 – volume: 10 start-page: e43 year: 2013 ident: 10.1016/j.cbpc.2018.06.005_bb0105 article-title: Zebrafish in pharmaceutical industry research: finding the best fit publication-title: Drug Discov. Today Dis. Model. doi: 10.1016/j.ddmod.2012.02.006 – volume: 35 start-page: 1 year: 2015 ident: 10.1016/j.cbpc.2018.06.005_bb0325 article-title: The N-terminal acetyltransferase Naa10 is essential for zebrafish development publication-title: Biosci. Rep. doi: 10.1042/BSR20150168 – volume: 39 start-page: 759 year: 2011 ident: 10.1016/j.cbpc.2018.06.005_bb0270 article-title: Normal anatomy and histology of the adult zebrafish publication-title: Toxicol. Pathol. doi: 10.1177/0192623311409597 – volume: 11 start-page: 643 year: 2010 ident: 10.1016/j.cbpc.2018.06.005_bb0130 article-title: Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish – ident: 10.1016/j.cbpc.2018.06.005_bb0295 – volume: 150 start-page: 93 year: 2014 ident: 10.1016/j.cbpc.2018.06.005_bb0070 article-title: Tissue-, sex- and development-specific transcription profiles of eight UDP-glucuronosyltransferase genes in zebrafish (Danio rerio) and their regulation by activator of aryl hydrocarbon receptor publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2014.02.019 – volume: 64 start-page: 82 year: 2016 ident: 10.1016/j.cbpc.2018.06.005_bb0035 article-title: The zebrafish as a model to study intestinal inflammation publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2016.02.020 – volume: 13 start-page: 101 year: 2002 ident: 10.1016/j.cbpc.2018.06.005_bb0100 article-title: Electrospray ionization mass spectrometry: how it all began publication-title: J. Biomol. Tech. – volume: 269 start-page: 1 year: 2007 ident: 10.1016/j.cbpc.2018.06.005_bb0225 article-title: The husbandry of zebrafish (Danio rerio): a review publication-title: Aquaculture doi: 10.1016/j.aquaculture.2007.04.077 |
SSID | ssj0005416 |
Score | 2.5014951 |
SecondaryResourceType | review_article |
Snippet | Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34 |
SubjectTerms | Cytochrome P450 Drug discovery Non-human model Toxicology Xenobiotic metabolism Zebrafish (Danio rerio) |
Title | Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans? |
URI | https://dx.doi.org/10.1016/j.cbpc.2018.06.005 https://www.ncbi.nlm.nih.gov/pubmed/29969680 https://www.proquest.com/docview/2064242990 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QFeEOv4KB_TIaEJxEKT1k47XlBVMRUQExKbNPESYvssgtqkajKJvvC3c2cnBSTYA4-xzrLlO_l-F9_9ToinJidMrZ2N3ETZSA7RRrkPXC26xOnchELaD2fp_EK-u1SXO2LW1cJwWmV794c73d_W7cigPc3BqigGnxLuacD-fzIioOB5TKUcs5W__PFbmof07U9ZOGLptnAm5HgZvWIawyRweHILu787p3-BT--ETm-LWy16hGnY4L7YwbInDqYlRc7LDRyBz-f0P8p74sas6-XWE0cfA0P15hjOfxVc1cd-ypa7enMgvnzmh2RX1F_hGVefV7AmE62ev4IpeF5wvUBoqmoBBHZhteZnHk6cBsKRsMSGTGpR1EuoHHzHkimeeB0oSvDNAOvXd8TF6Zvz2TxqmzBERg6HTXQSGzS5dQRkEofOxhq1sky6nw_1iPAJ0oekMCWNjeIqVW0sgYKxxNjaE2NGd8VuWZV4X4DCOEWbKBynVrp0nJuJlaiQNOhZavoi6U4_My1DOTfKWGRdKtq3jDWWscYyn4-n-uLFds4q8HNcK606pWZ_WFlGDuTaeU86C8hIc_ymkpdYXdUkRAGc9-l9cS-YxnYfNMrUQ_GD_1z1objJXyF18JHYbdZX-JggUKMPvY0fir3p2_fzs58VcwW1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5K-tC9jDXdj2xdq8EoG6uJnVhOupcSwkq6tmGwFMpePEs6UY_EDrELy3-_O9lOKWx92KNlHTK6Q_eddfcdwHudEKZW1nh2KI0X9tB4iQtcDdrAqkRXhbRX02hyHX69kTdbMG5qYTitsj77qzPdndb1SLfeze4yTbvfA-5pwP5_2CegwDym28xOJVuwPTq_mEzvMz1C1wGV53ssUNfOVGleWi2ZyTCoaDy5i93f_dO_8KfzQ2fP4GkNIMWo-sZd2MKsDXujjILnxVocCZfS6f6Vt2Fn3LRza8PRt4qken0sZvc1V8WxE9nQV6_34OcPvku2aXErPnABei5WZKX5x89iJBw1uJqjKPN8LgjviuWKb3o4d1oQlBQLLMmq5mmxELkVvzFjlideR6SZcP0Ai9PncH32ZTaeeHUfBk-HvV7pnfgadWIsYZnAojW-QiUN8-4nPdUniIL0EFKkEvlacqGq0oZwwSBE35gTrfsvoJXlGb4CIdGP0AQSB5EJbTRI9NCEKJGU6IhqOhA0ux_rmqSce2XM4yYb7VfMGotZY7FLyZMd-LSRWVYUHY_Olo1S4weGFpMPeVTuXWMBMWmOr1WSDPO7giZRDOfcegdeVqax-Q4aZfYh__V_rnoIO5PZ1WV8eT69eANP-E2VSbgPrXJ1h28JEZXqoLb4PwgOCGY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zebrafish+%28Danio+rerio%29%3A+A+valuable+tool+for+predicting+the+metabolism+of+xenobiotics+in+humans%3F&rft.jtitle=Comparative+biochemistry+and+physiology.+Toxicology+%26+pharmacology&rft.au=de+Souza+Anselmo%2C+Carina&rft.au=Sardela%2C+Vinicius+Figueiredo&rft.au=de+Sousa%2C+Valeria+Pereira&rft.au=Pereira%2C+Henrique+Marcelo+Gualberto&rft.date=2018-10-01&rft.issn=1532-0456&rft.volume=212&rft.spage=34&rft_id=info:doi/10.1016%2Fj.cbpc.2018.06.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0456&client=summon |