Efficiently learning the preferences of people

This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations d...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 90; no. 1; pp. 1 - 28
Main Authors Birlutiu, Adriana, Groot, Perry, Heskes, Tom
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.01.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
DOI10.1007/s10994-012-5297-4

Cover

Abstract This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations data is available from multiple subjects. We use the multi-task formalism to enhance the individual training data by making use of the preference information learned from other subjects. Furthermore, since obtaining labels is expensive, we optimally choose which data to ask a subject for labelling to obtain the most of information about her/his preferences. This paradigm—called active learning—has hardly been studied in a multi-task formalism. We propose an alternative for the standard criteria in active learning which actively chooses queries by making use of the available preference data from other subjects. The advantage of this alternative is the reduced computation costs and reduced time subjects are involved. We validate empirically our approach on three real-world data sets involving the preferences of people.
AbstractList This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations data is available from multiple subjects. We use the multi-task formalism to enhance the individual training data by making use of the preference information learned from other subjects. Furthermore, since obtaining labels is expensive, we optimally choose which data to ask a subject for labelling to obtain the most of information about her/his preferences. This paradigm—called active learning—has hardly been studied in a multi-task formalism. We propose an alternative for the standard criteria in active learning which actively chooses queries by making use of the available preference data from other subjects. The advantage of this alternative is the reduced computation costs and reduced time subjects are involved. We validate empirically our approach on three real-world data sets involving the preferences of people.
This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations data is available from multiple subjects. We use the multi-task formalism to enhance the individual training data by making use of the preference information learned from other subjects. Furthermore, since obtaining labels is expensive, we optimally choose which data to ask a subject for labelling to obtain the most of information about her/his preferences. This paradigm--called active learning--has hardly been studied in a multi-task formalism. We propose an alternative for the standard criteria in active learning which actively chooses queries by making use of the available preference data from other subjects. The advantage of this alternative is the reduced computation costs and reduced time subjects are involved. We validate empirically our approach on three real-world data sets involving the preferences of people.[PUBLICATION ABSTRACT]
Author Birlutiu, Adriana
Heskes, Tom
Groot, Perry
Author_xml – sequence: 1
  givenname: Adriana
  surname: Birlutiu
  fullname: Birlutiu, Adriana
  email: A.Birlutiu@science.ru.nl
  organization: Institute for Computing and Information Sciences, Radboud University Nijmegen, Romanian Institute of Science and Technology
– sequence: 2
  givenname: Perry
  surname: Groot
  fullname: Groot, Perry
  organization: Institute for Computing and Information Sciences, Radboud University Nijmegen, Dept. of Electrical Engineering, Control Systems, Technical University Eindhoven
– sequence: 3
  givenname: Tom
  surname: Heskes
  fullname: Heskes, Tom
  organization: Institute for Computing and Information Sciences, Radboud University Nijmegen
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27566787$$DView record in Pascal Francis
BookMark eNp9kMtKAzEUQIMoWB8f4G5ABDdTczN5zCxFfEHBja5DmrmpKdPMmEwX_XtTWkQKurqbc5J7zxk5Dn1AQq6AToFSdZeANg0vKbBSsEaV_IhMQKiqpEKKYzKhdS1KCUyckrOUlpRSJms5IdNH57z1GMZuU3RoYvBhUYyfWAwRHUYMFlPRu2LAfujwgpw40yW83M9z8vH0-P7wUs7enl8f7mel5YyNZd1yFJWUbs6aFlrJ5oIqJipWC1DWMqPqxnBurLJ8jm1DQXEqwKFobQNuXp2T2927Q-y_1phGvfLJYteZgP06aZAKuFD56IxeH6DLfh1D3k4Dk1JWvALI1M2eMsmazkUTrE96iH5l4kYzJaRUtcoc7Dgb-5Rygh8EqN6W1rvSOpfW29KaZ0cdONaPZvR9GKPx3b8m25kp_xIWGH_t_qf0DcaWka8
CitedBy_id crossref_primary_10_1145_2542182_2542195
crossref_primary_10_3389_fbuil_2021_643630
crossref_primary_10_4018_ijkss_2013100103
crossref_primary_10_1109_TITS_2016_2565643
crossref_primary_10_1016_j_inffus_2023_101970
crossref_primary_10_1007_s10994_018_5705_5
crossref_primary_10_1109_ACCESS_2023_3260771
crossref_primary_10_1145_3503489
crossref_primary_10_17706_jsw_11_2_133_147
crossref_primary_10_3389_fphy_2018_00051
Cites_doi 10.1111/j.0824-7935.2004.00233.x
10.1145/1390334.1390352
10.1023/A:1007379606734
10.1162/neco.2008.08-07-594
10.1093/biomet/67.2.381
10.1162/neco.1992.4.1.1
10.1509/jmkr.39.2.214.19080
10.1007/s10994-007-5019-5
10.1121/1.2754061
10.1287/mnsc.28.10.1137
10.1016/j.jspi.2003.09.022
10.1145/1055709.1055714
10.1162/neco.1992.4.4.590
10.1145/1390156.1390183
10.1023/A:1007330508534
10.1007/978-3-642-15939-8_32
10.3102/10769986019001043
10.1214/ss/1177009939
10.3115/1613715.1613855
10.1145/1040830.1040857
10.1198/016214507000001346
10.1007/s10791-009-9123-y
10.2307/2234772
10.1145/1143844.1143980
10.1613/jair.295
10.1017/CBO9780511804441
10.1201/9780429258480
ContentType Journal Article
Copyright The Author(s) 2012
2014 INIST-CNRS
The Author(s) 2013
Copyright_xml – notice: The Author(s) 2012
– notice: 2014 INIST-CNRS
– notice: The Author(s) 2013
DBID C6C
AAYXX
CITATION
IQODW
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-012-5297-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1573-0565
EndPage 28
ExternalDocumentID 2858312641
27566787
10_1007_s10994_012_5297_4
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
IQODW
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c422t-8d4e5366fb29d1d62b50725328517cc2a789a44ac7c4bed90174051fe5dc91fb3
IEDL.DBID AGYKE
ISSN 0885-6125
IngestDate Fri Sep 05 10:48:25 EDT 2025
Sun Jul 13 05:38:37 EDT 2025
Wed Apr 02 07:26:15 EDT 2025
Tue Jul 01 00:46:04 EDT 2025
Thu Apr 24 23:13:32 EDT 2025
Fri Feb 21 02:28:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Learning preferences
Active learning
Experimental design
Multi-task learning
Hierarchical modeling
Hierarchical classification
Labelling
Inductive learning
Optimization
Knowledge transfer
Hierarchic relation
Multithread
Active system
Supervised learning
Preference
Learning algorithm
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-8d4e5366fb29d1d62b50725328517cc2a789a44ac7c4bed90174051fe5dc91fb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10994-012-5297-4
PQID 1266634311
PQPubID 54194
PageCount 28
ParticipantIDs proquest_miscellaneous_1671457109
proquest_journals_1266634311
pascalfrancis_primary_27566787
crossref_primary_10_1007_s10994_012_5297_4
crossref_citationtrail_10_1007_s10994_012_5297_4
springer_journals_10_1007_s10994_012_5297_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130100
2013-1-00
2013
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 1
  year: 2013
  text: 20130100
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Heidelberg
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2013
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Arehart, Kates, Anderson, Harvey (CR3) 2007; 122
Clyde, Muller, Parmigiani (CR26) 1993
Geman, Bienenstock, Doursat (CR38) 1992; 4
Melville, Mooney (CR53) 2004
McCallum, Nigam (CR52) 1998
Glickman, Jensen (CR40) 2005; 127
Ford, Silvey (CR34) 1980; 67
Anand (CR2) 1993; 103
Evgeniou, Micchelli, Pontil (CR32) 2005; 6
Bishop (CR10) 2006
Christensen (CR23) 1997
Blythe (CR12) 2002
Groot, Birlutiu, Heskes (CR41) 2010
Xu, Kersting, Joachims (CR64) 2010
Brochu, de Freitas, Ghosh, Platt, Koller, Singer, Roweis (CR19) 2008
Berger (CR7) 1994; 19
Blei, Ng, Jordan (CR11) 2003; 3
MacKay (CR50) 1992; 4
Arens (CR4) 2008
CR5
Boutilier, Zemel, Marlin (CR15) 2003
Lewis, Gale (CR49) 1994
Yu, Bi, Tresp (CR67) 2006
Harpale, Yang (CR43) 2008
Settles, Craven (CR60) 2008
Chaloner, Verdinelli (CR22) 1995; 10
Schein, Ungar (CR58) 2007; 68
Seeger (CR59) 2008; 9
Seung, Opper, Sompolinsky (CR61) 1992
Guo, Sanner (CR42) 2010
Thrun (CR62) 1995
Lewi, Butera, Paninski (CR48) 2009; 21
Bakker, Heskes (CR6) 2003; 4
Fedorov (CR33) 1972
Dasgupta, Hsu (CR29) 2008
Chu, Ghahramani (CR25) 2005
Qin, Liu, Xu, Li (CR56) 2010; 13
Birlutiu, Groot, Heskes (CR9) 2009; 73
Jin, Si (CR46) 2004
Yu, Tresp, Schwaighofer (CR66) 2005
Kanninen (CR47) 2002; 39
Heskes, de Vries (CR44) 2005
Boyd, Vandenberghe (CR16) 2004
Hollander, Wolfe (CR45) 1973
Yu, Schwaighofer, Tresp, Ma, Zhang (CR65) 2003
Tversky (CR63) 1998
CR54
Bradley, Terry (CR17) 1952; 39
Caruana (CR20) 1997; 28
Birlutiu, Heskes (CR8) 2007
Chajewska, Koller, Parr (CR21) 2000
Dagan, Engelson (CR28) 1995
Boutilier (CR14) 2002
Doyle (CR30) 2004; 20
Dror, Steinberg (CR31) 2008; 103
MacKay (CR51) 2002
Fürnkranz, Hüllermeier (CR36) 2010
Freund, Shamir, Tishby (CR35) 1997; 28
Gelman, Carlin, Stern, Rubin (CR37) 2003
Gervasio, Moffitt, Pollack (CR39) 2005
Chu, Ghahramani (CR24) 2005
Pahikkala, Waegeman, Tsivtsivadze, De Baets, Salakoski (CR55) 2009
Sanborn, Griffiths (CR57) 2008
Cohn, Ghahramani, Jordan (CR27) 1996; 4
Brinker (CR18) 2004
Bordley (CR13) 1982; 28
Adomavicius, Sankaranarayanan, Sen, Tuzhilin (CR1) 2005; 23
S. Guo (5297_CR42) 2010
A. N. Sanborn (5297_CR57) 2008
H. A. Dror (5297_CR31) 2008; 103
D. J. C. MacKay (5297_CR50) 1992; 4
M. P. F. Berger (5297_CR7) 1994; 19
E. Brochu (5297_CR19) 2008
M. Glickman (5297_CR40) 2005; 127
K. Chaloner (5297_CR22) 1995; 10
T. Heskes (5297_CR44) 2005
J. Lewi (5297_CR48) 2009; 21
5297_CR54
K. Yu (5297_CR65) 2003
B. Kanninen (5297_CR47) 2002; 39
C. Boutilier (5297_CR15) 2003
A. Tversky (5297_CR63) 1998
T. Pahikkala (5297_CR55) 2009
W. Chu (5297_CR25) 2005
S. Harpale (5297_CR43) 2008
K. H. Arehart (5297_CR3) 2007; 122
S. Thrun (5297_CR62) 1995
V. V. Fedorov (5297_CR33) 1972
A. McCallum (5297_CR52) 1998
P. Melville (5297_CR53) 2004
Y. Freund (5297_CR35) 1997; 28
J. Fürnkranz (5297_CR36) 2010
R. A. Bradley (5297_CR17) 1952; 39
D. M. Blei (5297_CR11) 2003; 3
J. Blythe (5297_CR12) 2002
C. M. Bishop (5297_CR10) 2006
T. Qin (5297_CR56) 2010; 13
R. Christensen (5297_CR23) 1997
R. Arens (5297_CR4) 2008
H. S. Seung (5297_CR61) 1992
C. Boutilier (5297_CR14) 2002
R. F. Bordley (5297_CR13) 1982; 28
T. Evgeniou (5297_CR32) 2005; 6
P. Anand (5297_CR2) 1993; 103
P. C. Groot (5297_CR41) 2010
K. Brinker (5297_CR18) 2004
B. Bakker (5297_CR6) 2003; 4
A. Adomavicius (5297_CR1) 2005; 23
M. Clyde (5297_CR26) 1993
A. Schein (5297_CR58) 2007; 68
I. Dagan (5297_CR28) 1995
M. W. Seeger (5297_CR59) 2008; 9
I. Ford (5297_CR34) 1980; 67
D. J. C. MacKay (5297_CR51) 2002
B. Settles (5297_CR60) 2008
S. Boyd (5297_CR16) 2004
R. Caruana (5297_CR20) 1997; 28
J. Doyle (5297_CR30) 2004; 20
U. Chajewska (5297_CR21) 2000
K. Yu (5297_CR67) 2006
K. Yu (5297_CR66) 2005
R. Jin (5297_CR46) 2004
D. A. Cohn (5297_CR27) 1996; 4
M. Hollander (5297_CR45) 1973
D. Lewis (5297_CR49) 1994
A. Gelman (5297_CR37) 2003
W. Chu (5297_CR24) 2005
5297_CR5
A. Birlutiu (5297_CR9) 2009; 73
S. Dasgupta (5297_CR29) 2008
S. Geman (5297_CR38) 1992; 4
A. Birlutiu (5297_CR8) 2007
M. T. Gervasio (5297_CR39) 2005
Z. Xu (5297_CR64) 2010
References_xml – volume: 20
  start-page: 111
  issue: 2
  year: 2004
  end-page: 136
  ident: CR30
  article-title: Prospects for preferences
  publication-title: Computational Intelligence
  doi: 10.1111/j.0824-7935.2004.00233.x
– start-page: 84
  year: 2009
  end-page: 100
  ident: CR55
  article-title: From ranking to intransitive preference learning: rock-paper-scissors and beyond
  publication-title: Proceedings of the ECML/PKDD workshop on preference learning
– volume: 9
  start-page: 759
  year: 2008
  end-page: 813
  ident: CR59
  article-title: Bayesian inference and optimal design for the sparse linear model
  publication-title: Journal of Machine Learning Research
– start-page: 91
  year: 2008
  end-page: 98
  ident: CR43
  article-title: Personalized active learning for collaborative filtering
  publication-title: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval
  doi: 10.1145/1390334.1390352
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  end-page: 75
  ident: CR20
  article-title: Multitask learning
  publication-title: Machine Learning
  doi: 10.1023/A:1007379606734
– volume: 21
  start-page: 619
  issue: 3
  year: 2009
  end-page: 687
  ident: CR48
  article-title: Sequential optimal design of neurophysiology experiments
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.08-07-594
– volume: 67
  start-page: 381
  year: 1980
  end-page: 388
  ident: CR34
  article-title: A sequentially constructed design for estimating a nonlinear parametric function
  publication-title: Biometrika
  doi: 10.1093/biomet/67.2.381
– year: 2002
  ident: CR51
  publication-title: Information theory, inference & learning algorithms
– volume: 4
  start-page: 1
  issue: 1
  year: 1992
  end-page: 58
  ident: CR38
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.1.1
– volume: 73
  start-page: 1177
  issue: 7–9
  year: 2009
  end-page: 1185
  ident: CR9
  article-title: Multi-task preference learning with an application to hearing aid personalization
  publication-title: Neurocomputing
– volume: 39
  start-page: 307
  year: 2002
  end-page: 317
  ident: CR47
  article-title: Optimal design for multinomial choice experiments
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmkr.39.2.214.19080
– ident: CR54
– volume: 68
  start-page: 235
  issue: 3
  year: 2007
  end-page: 265
  ident: CR58
  article-title: Active learning for logistic regression: an evaluation
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5019-5
– volume: 122
  start-page: 1150
  issue: 2
  year: 2007
  end-page: 1164
  ident: CR3
  article-title: Effects of noise and distortion on speech quality judgments in normal-hearing and hearing-impaired listeners
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.2754061
– year: 2004
  ident: CR18
  article-title: Active learning of label ranking functions
  publication-title: Proceedings of the 27th international conference on machine learning
– volume: 4
  start-page: 129
  issue: 1
  year: 1996
  end-page: 145
  ident: CR27
  article-title: Active learning with statistical models
  publication-title: Journal of Artificial Intelligence Research
– volume: 39
  start-page: 324
  year: 1952
  end-page: 345
  ident: CR17
  article-title: Rank analysis of incomplete block designs, I: the method of paired comparisons
  publication-title: Biometrika
– year: 1998
  ident: CR63
  publication-title: Preference, belief, and similarity
– start-page: 289
  year: 2010
  end-page: 296
  ident: CR42
  article-title: Real-time multiattribute Bayesian preference elicitation with pairwise comparison queries
  publication-title: Proceedings of the 13th international conference on artificial intelligence and statistics
– volume: 28
  start-page: 1137
  issue: 10
  year: 1982
  end-page: 1148
  ident: CR13
  article-title: A multiplicative formula for aggregating probability assessments
  publication-title: Management Science
  doi: 10.1287/mnsc.28.10.1137
– year: 2004
  ident: CR16
  publication-title: Convex optimization
– year: 2006
  ident: CR10
  publication-title: Pattern recognition and machine learning
– year: 2005
  ident: CR24
  article-title: Extensions of Gaussian processes for ranking: semi-supervised and active learning
  publication-title: NIPS workshop on learning to rank
– volume: 127
  start-page: 279
  year: 2005
  end-page: 293
  ident: CR40
  article-title: Adaptive paired comparison design
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2003.09.022
– start-page: 287
  year: 1992
  end-page: 294
  ident: CR61
  article-title: Query by Committee
  publication-title: Proceedings of the 5th annual workshop on computational learning theory
– ident: CR5
– volume: 23
  start-page: 103
  issue: 1
  year: 2005
  end-page: 145
  ident: CR1
  article-title: Incorporating contextual information in recommender systems using a multidimensional approach
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/1055709.1055714
– start-page: 278
  year: 2004
  end-page: 285
  ident: CR46
  article-title: A Bayesian approach toward active learning for collaborative filtering
  publication-title: Proceedings of the 20th conference on uncertainty in artificial intelligence
– start-page: 350
  year: 1998
  end-page: 358
  ident: CR52
  article-title: Employing EM and pool-based active learning for text classification
  publication-title: Proceedings of the 15th international conference on machine learning
– volume: 4
  start-page: 590
  year: 1992
  end-page: 604
  ident: CR50
  article-title: Information-based objective functions for active data selection
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.4.590
– year: 1972
  ident: CR33
  publication-title: Theory of optimal experiments
– start-page: 249
  year: 2010
  end-page: 254
  ident: CR41
  article-title: Bayesian Monte Carlo for the global optimization of expensive functions
  publication-title: Proceedings of the 19th European conference on artificial intelligence
– start-page: 150
  year: 1995
  end-page: 157
  ident: CR28
  article-title: Committee-based sampling for training probabilistic classifiers
  publication-title: Proceedings of the 12th international conference on machine learning
– start-page: 208
  year: 2008
  end-page: 215
  ident: CR29
  article-title: Hierarchical sampling for active learning
  publication-title: Proceedings of the 25th international conference on machine learning
  doi: 10.1145/1390156.1390183
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: CR11
  article-title: Latent Dirichlet allocation
  publication-title: Journal of Machine Learning Research
– start-page: 363
  year: 2008
  end-page: 383
  ident: CR4
  article-title: Learning SVM ranking function from user feedback using document metadata and active learning in the biomedical domain
  publication-title: Proceedings of the ECML/PKDD workshop on preference learning
– volume: 28
  start-page: 133
  issue: 2–3
  year: 1997
  end-page: 168
  ident: CR35
  article-title: Selective sampling using the query by committee algorithm
  publication-title: Machine Learning
  doi: 10.1023/A:1007330508534
– start-page: 127
  year: 2005
  end-page: 134
  ident: CR44
  article-title: Incremental utility elicitation for adaptive personalization
  publication-title: Proceedings of the 17th Belgium-Netherlands conference on artificial intelligence
– year: 2010
  ident: CR36
  publication-title: Preference learning
– start-page: 374
  year: 2007
  end-page: 381
  ident: CR8
  article-title: Expectation propagation for rating players in sports competitions
  publication-title: Proceedings of the 11th European conference on principles and practice of knowledge discovery in databases
– start-page: 499
  year: 2010
  end-page: 514
  ident: CR64
  article-title: Fast active exploration for link-based preference learning using Gaussian processes
  publication-title: Proceedings of the 2010 European conference on machine learning and knowledge discovery in databases: part III
  doi: 10.1007/978-3-642-15939-8_32
– start-page: 409
  year: 2008
  end-page: 416
  ident: CR19
  article-title: Active preference learning with discrete choice data
  publication-title: Advances in neural information processing systems
– volume: 19
  start-page: 43
  year: 1994
  end-page: 56
  ident: CR7
  article-title: D-optimal sequential sampling designs for item response theory models
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/10769986019001043
– volume: 10
  start-page: 273
  year: 1995
  end-page: 304
  ident: CR22
  article-title: Bayesian experimental design: a review
  publication-title: Statistical Science
  doi: 10.1214/ss/1177009939
– volume: 4
  start-page: 83
  year: 2003
  end-page: 99
  ident: CR6
  article-title: Task clustering and gating for Bayesian multitask learning
  publication-title: Journal of Machine Learning Research
– year: 2005
  ident: CR66
  article-title: Learning Gaussian processes from multiple tasks
  publication-title: Proceedings of the 22nd international conference on machine learning
– start-page: 1070
  year: 2008
  end-page: 1079
  ident: CR60
  article-title: An analysis of active learning strategies for sequence labeling tasks
  publication-title: Proceedings of the conference on empirical methods in natural language processing
  doi: 10.3115/1613715.1613855
– start-page: 90
  year: 2005
  end-page: 97
  ident: CR39
  article-title: Active preference learning for personalized calender scheduling assistance
  publication-title: Proceedings of the 10th international conference on intelligent user interfaces
  doi: 10.1145/1040830.1040857
– start-page: 616
  year: 2003
  end-page: 623
  ident: CR65
  article-title: Collaborative ensemble learning: combining collaborative and content-based information filtering
  publication-title: Proceedings of the 19th conference on uncertainty in artificial intelligence
– start-page: 239
  year: 2002
  end-page: 246
  ident: CR14
  article-title: A POMDP formulation of preference elicitation problems
  publication-title: Proceedings of the 18th national conference on artificial intelligence
– start-page: 278
  year: 1993
  end-page: 292
  ident: CR26
  article-title: Optimal design for heart defibrillators
  publication-title: Case studies in Bayesian statistics
– year: 2003
  ident: CR37
  publication-title: Bayesian data analysis
– start-page: 98
  year: 2003
  end-page: 106
  ident: CR15
  article-title: Active collaborative filtering
  publication-title: Proceedings of the 19th annual conference on uncertainty in artificial intelligence
– volume: 6
  start-page: 615
  year: 2005
  end-page: 637
  ident: CR32
  article-title: Learning multiple tasks with kernel methods
  publication-title: Journal of Machine Learning Research
– start-page: 363
  year: 2000
  end-page: 369
  ident: CR21
  article-title: Making rational decisions using adaptive utility elicitation
  publication-title: Proceedings of the 17th national conference on artificial intelligence
– volume: 103
  start-page: 288
  issue: 481
  year: 2008
  end-page: 298
  ident: CR31
  article-title: Sequential experimental designs for generalized linear models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000001346
– volume: 13
  start-page: 346
  issue: 4
  year: 2010
  end-page: 374
  ident: CR56
  article-title: LETOR: a benchmark collection for research on learning to rank for information retrieval
  publication-title: Information Retrieval
  doi: 10.1007/s10791-009-9123-y
– year: 2005
  ident: CR25
  article-title: Preference learning with Gaussian processes
  publication-title: Proceedings of the 22nd international conference on machine learning
– start-page: 584
  year: 2004
  end-page: 591
  ident: CR53
  article-title: Diverse ensembles for active learning
  publication-title: Proceedings of the 21st international conference on machine learning
– start-page: 3
  year: 1994
  end-page: 12
  ident: CR49
  article-title: A sequential algorithm for training text classifiers
  publication-title: Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval
– start-page: 640
  year: 1995
  end-page: 646
  ident: CR62
  article-title: Is learning the th thing any easier than learning the first?
  publication-title: Advances in neural information processing systems
– start-page: 526
  year: 2002
  end-page: 532
  ident: CR12
  article-title: Visual exploration and incremental utility elicitation
  publication-title: Proceedings of the 18th national conference on artificial intelligence
– year: 1973
  ident: CR45
  publication-title: Nonparametric statistical methods
– year: 1997
  ident: CR23
  publication-title: Log-linear models and logistic regression
– year: 2008
  ident: CR57
  article-title: Markov chain Monte Carlo with people
  publication-title: Advances in neural information processing systems
– volume: 103
  start-page: 337
  issue: 417
  year: 1993
  end-page: 346
  ident: CR2
  article-title: The philosophy of intransitive preferences
  publication-title: The Economic Journal
  doi: 10.2307/2234772
– start-page: 1081
  year: 2006
  end-page: 1088
  ident: CR67
  article-title: Active learning via transductive experimental design
  publication-title: Proceedings of the 23rd international conference on machine learning
– start-page: 278
  volume-title: Proceedings of the 20th conference on uncertainty in artificial intelligence
  year: 2004
  ident: 5297_CR46
– volume: 20
  start-page: 111
  issue: 2
  year: 2004
  ident: 5297_CR30
  publication-title: Computational Intelligence
  doi: 10.1111/j.0824-7935.2004.00233.x
– volume-title: Theory of optimal experiments
  year: 1972
  ident: 5297_CR33
– start-page: 289
  volume-title: Proceedings of the 13th international conference on artificial intelligence and statistics
  year: 2010
  ident: 5297_CR42
– start-page: 640
  volume-title: Advances in neural information processing systems
  year: 1995
  ident: 5297_CR62
– start-page: 499
  volume-title: Proceedings of the 2010 European conference on machine learning and knowledge discovery in databases: part III
  year: 2010
  ident: 5297_CR64
  doi: 10.1007/978-3-642-15939-8_32
– volume: 4
  start-page: 1
  issue: 1
  year: 1992
  ident: 5297_CR38
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.1.1
– volume: 103
  start-page: 288
  issue: 481
  year: 2008
  ident: 5297_CR31
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000001346
– volume-title: Proceedings of the 22nd international conference on machine learning
  year: 2005
  ident: 5297_CR25
– volume: 73
  start-page: 1177
  issue: 7–9
  year: 2009
  ident: 5297_CR9
  publication-title: Neurocomputing
– start-page: 127
  volume-title: Proceedings of the 17th Belgium-Netherlands conference on artificial intelligence
  year: 2005
  ident: 5297_CR44
– volume: 21
  start-page: 619
  issue: 3
  year: 2009
  ident: 5297_CR48
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.08-07-594
– volume-title: Preference, belief, and similarity
  year: 1998
  ident: 5297_CR63
– volume: 3
  start-page: 993
  year: 2003
  ident: 5297_CR11
  publication-title: Journal of Machine Learning Research
– volume: 28
  start-page: 1137
  issue: 10
  year: 1982
  ident: 5297_CR13
  publication-title: Management Science
  doi: 10.1287/mnsc.28.10.1137
– start-page: 409
  volume-title: Advances in neural information processing systems
  year: 2008
  ident: 5297_CR19
– volume: 4
  start-page: 83
  year: 2003
  ident: 5297_CR6
  publication-title: Journal of Machine Learning Research
– volume-title: Advances in neural information processing systems
  year: 2008
  ident: 5297_CR57
– start-page: 584
  volume-title: Proceedings of the 21st international conference on machine learning
  year: 2004
  ident: 5297_CR53
– start-page: 363
  volume-title: Proceedings of the ECML/PKDD workshop on preference learning
  year: 2008
  ident: 5297_CR4
– volume: 122
  start-page: 1150
  issue: 2
  year: 2007
  ident: 5297_CR3
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.2754061
– start-page: 278
  volume-title: Case studies in Bayesian statistics
  year: 1993
  ident: 5297_CR26
– start-page: 1081
  volume-title: Proceedings of the 23rd international conference on machine learning
  year: 2006
  ident: 5297_CR67
  doi: 10.1145/1143844.1143980
– volume: 67
  start-page: 381
  year: 1980
  ident: 5297_CR34
  publication-title: Biometrika
  doi: 10.1093/biomet/67.2.381
– start-page: 98
  volume-title: Proceedings of the 19th annual conference on uncertainty in artificial intelligence
  year: 2003
  ident: 5297_CR15
– volume: 4
  start-page: 590
  year: 1992
  ident: 5297_CR50
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.4.590
– start-page: 1070
  volume-title: Proceedings of the conference on empirical methods in natural language processing
  year: 2008
  ident: 5297_CR60
  doi: 10.3115/1613715.1613855
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 5297_CR20
  publication-title: Machine Learning
  doi: 10.1023/A:1007379606734
– volume: 19
  start-page: 43
  year: 1994
  ident: 5297_CR7
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/10769986019001043
– volume-title: Information theory, inference & learning algorithms
  year: 2002
  ident: 5297_CR51
– volume-title: NIPS workshop on learning to rank
  year: 2005
  ident: 5297_CR24
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 5297_CR10
– start-page: 249
  volume-title: Proceedings of the 19th European conference on artificial intelligence
  year: 2010
  ident: 5297_CR41
– start-page: 616
  volume-title: Proceedings of the 19th conference on uncertainty in artificial intelligence
  year: 2003
  ident: 5297_CR65
– start-page: 90
  volume-title: Proceedings of the 10th international conference on intelligent user interfaces
  year: 2005
  ident: 5297_CR39
  doi: 10.1145/1040830.1040857
– start-page: 208
  volume-title: Proceedings of the 25th international conference on machine learning
  year: 2008
  ident: 5297_CR29
  doi: 10.1145/1390156.1390183
– start-page: 374
  volume-title: Proceedings of the 11th European conference on principles and practice of knowledge discovery in databases
  year: 2007
  ident: 5297_CR8
– start-page: 350
  volume-title: Proceedings of the 15th international conference on machine learning
  year: 1998
  ident: 5297_CR52
– start-page: 150
  volume-title: Proceedings of the 12th international conference on machine learning
  year: 1995
  ident: 5297_CR28
– start-page: 3
  volume-title: Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval
  year: 1994
  ident: 5297_CR49
– volume-title: Log-linear models and logistic regression
  year: 1997
  ident: 5297_CR23
– volume: 6
  start-page: 615
  year: 2005
  ident: 5297_CR32
  publication-title: Journal of Machine Learning Research
– start-page: 84
  volume-title: Proceedings of the ECML/PKDD workshop on preference learning
  year: 2009
  ident: 5297_CR55
– volume: 4
  start-page: 129
  issue: 1
  year: 1996
  ident: 5297_CR27
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.295
– start-page: 287
  volume-title: Proceedings of the 5th annual workshop on computational learning theory
  year: 1992
  ident: 5297_CR61
– volume: 68
  start-page: 235
  issue: 3
  year: 2007
  ident: 5297_CR58
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5019-5
– volume: 28
  start-page: 133
  issue: 2–3
  year: 1997
  ident: 5297_CR35
  publication-title: Machine Learning
  doi: 10.1023/A:1007330508534
– ident: 5297_CR54
– start-page: 526
  volume-title: Proceedings of the 18th national conference on artificial intelligence
  year: 2002
  ident: 5297_CR12
– volume-title: Proceedings of the 22nd international conference on machine learning
  year: 2005
  ident: 5297_CR66
– start-page: 363
  volume-title: Proceedings of the 17th national conference on artificial intelligence
  year: 2000
  ident: 5297_CR21
– volume-title: Convex optimization
  year: 2004
  ident: 5297_CR16
  doi: 10.1017/CBO9780511804441
– ident: 5297_CR5
– volume: 127
  start-page: 279
  year: 2005
  ident: 5297_CR40
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2003.09.022
– volume: 103
  start-page: 337
  issue: 417
  year: 1993
  ident: 5297_CR2
  publication-title: The Economic Journal
  doi: 10.2307/2234772
– start-page: 239
  volume-title: Proceedings of the 18th national conference on artificial intelligence
  year: 2002
  ident: 5297_CR14
– volume: 23
  start-page: 103
  issue: 1
  year: 2005
  ident: 5297_CR1
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/1055709.1055714
– volume: 39
  start-page: 324
  year: 1952
  ident: 5297_CR17
  publication-title: Biometrika
– volume: 13
  start-page: 346
  issue: 4
  year: 2010
  ident: 5297_CR56
  publication-title: Information Retrieval
  doi: 10.1007/s10791-009-9123-y
– volume-title: Preference learning
  year: 2010
  ident: 5297_CR36
– volume-title: Bayesian data analysis
  year: 2003
  ident: 5297_CR37
  doi: 10.1201/9780429258480
– volume-title: Proceedings of the 27th international conference on machine learning
  year: 2004
  ident: 5297_CR18
– volume: 9
  start-page: 759
  year: 2008
  ident: 5297_CR59
  publication-title: Journal of Machine Learning Research
– volume-title: Nonparametric statistical methods
  year: 1973
  ident: 5297_CR45
– volume: 39
  start-page: 307
  year: 2002
  ident: 5297_CR47
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmkr.39.2.214.19080
– volume: 10
  start-page: 273
  year: 1995
  ident: 5297_CR22
  publication-title: Statistical Science
  doi: 10.1214/ss/1177009939
– start-page: 91
  volume-title: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval
  year: 2008
  ident: 5297_CR43
  doi: 10.1145/1390334.1390352
SSID ssj0002686
Score 2.1336124
Snippet This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Applied sciences
Artificial Intelligence
Computer Science
Computer science; control theory; systems
Control
Data processing. List processing. Character string processing
Exact sciences and technology
Formalism
Labelling
Learning
Learning and adaptive systems
Mechatronics
Memory organisation. Data processing
Natural Language Processing (NLP)
Optimization
Queries
Robotics
Simulation and Modeling
Software
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odhHE32J1jgqelKhNk_44icrGEBwiDnYrTdJ4Ge1028H_3pc27ZzgjqVNWl7y8n19L3kfwCWj2hzIzAgXAn9QlPBJHLCYILONONOS-2VJoZdhMBix5zEf24DbzG6rrNfEcqFWhTQx8lsPkSTwEe68--knMapRJrtqJTQ2oY1LcITzvP3YG76-NWsxDUqtR3QlTgyW13nN6vBcWRbXaAHQOCRsBZm2p-kMjaQrdYsV-vknY1oCUX8PdiyDdB-qId-HjSw_gN1ancG1znoIN72yOgSCyuTbteIQHy7yPXfaaIvM3EK71SbyIxj1e-9PA2LVEYhklM5JpFjG_SDQgsbKUwEVSO0o9ylyqFBKmoZRnDKWylAykSnE_RDJmaczrmTsaeEfQysv8uwEXLyOTGjBtMXxkZGOUq2w7ztPhIIpB-5qyyTSlg43ChaTZFn02BgzQWMmxpgJc-CqaTKt6mase7i7Yu6mhalNj2gaOtCp7Z9YH5slyxnhwEVzG73DpDzSPCsW-EwQeoyb_aYOXNfj9quL_77odP0Lz2CLlrIYJhTTgdb8a5GdIzmZi66dgT_Pdd19
  priority: 102
  providerName: ProQuest
Title Efficiently learning the preferences of people
URI https://link.springer.com/article/10.1007/s10994-012-5297-4
https://www.proquest.com/docview/1266634311
https://www.proquest.com/docview/1671457109
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vgjit1g_RgWflA6bJmn6uI1tojhENphPpUkbHxzbcNuD_vVe-uU2VNhLS8kH6V3S-zV3-R3ANSXaHMhMHCYl_qDE0nMCTgMHka1gVCvmpZRCT11-36cPAzbIz3FPi2j3wiWZfqkXDrulNLaGu58EvkM3YYu5IhAV2Kp3Xh9b5QeY8DTBI64f5hgDXjgzf-tkyRztTKIpSkZnKS2WMOeKmzS1Pu096BXjzoJO3mvzmayprxVKxzVfbB92czRq17PpcwAbyegQ9opMD3a-8I-g1kqZJtBADT_tPNHEm43Y0Z6UeUqm9ljbWUD6MfTbrV7z3skzLTiKEjJzREwT5nGuJQliN-ZEIkwkzCOIx3ylSOSLIKI0Ur6iMokRQ_gI9FydsFgFrpbeCVRG41FyCjY-C7NNYdqirpXQItIx9n3nSl_S2IK7QuChymnITTaMYfhDoGzkEaI8QiOPkFpwUzaZZBwc_1WuLmmxbGF47tEy-xZcFGoN8_U6DV3EKdxDMOVacFUW40oz7pNolIznWIf7LmUmdtWC20KTC138NaKztWqfwzZJM26YXZ4LqMw-5skl4p6ZrMKmaHeqONvbjUa3ms96vDda3ecXLG3yJl77pP4Nn6b7ZA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQJAX0gQhcwUntpZSCOnccBIVTYLs8TSNzS-MUF7S7sIrR_it_YmbzoIpUbxyi2E43HM59n7PkAvknh6UKm40pr3KBYHfEslhlHZJsq6Y2KypJCF5dx71qe3qibGXhu7sLQscrGJpaG2g4Mxch3Q_QkcYTuLjwY3nNijaLsakOhUanFmZs84ZZttH9yhPP7XYju8dWvHq9ZBbiRQox5aqVTURx7LTIb2lhohERCRYJY6o0RRZJmhZSFSYzUzqK_TBDUhN4pa7LQ6wjHnYV5GUUZUUWk3d-t5RdxySyJC1dxQg5NFrW6qlcW4SXmAZElXE75wcVhMcIp8RWXxhTYfZWfLd1edwWWarzKDisF-wgzrv8JlhsuCFabhs-wc1zWokAXdjdhNRXFLUN0yYYtk8mIDTyrjqx_get3kdoqzPUHfbcGDJ9TCmRQX9QGk_q08BbH3gt1oqUNYK-RTG7qQuXEl3GXv5RYJmHmKMychJnLAH60XYZVlY63Gm9OibvtQZXw0XcnAXQa-ef1ih7lL_oXwHb7GtciJViKvhs8Yps4CaWi060B_Gzm7Z8h_vdH629_cAs-9K4uzvPzk8uzr7AgSkIOCgJ1YG788Og2EBaN9Wapiwz-vLfy_wUGkBhs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaoqVUAfqCmUulJ7aWUgju0kh6oqsCso7QpVReIW4hcXtLt0FyH-Gr-OmbxgK5UbxzzsROOxv8_2eD6Aj1IEOpDpuTIGJyjOJDzXMufIbDMlg1VJlVLo11DvH8sfJ-pkAW7aszAUVtmOidVA7caW1si3YkQSnSDcxVuhCYs42ht8m1xwUpCindZWTqN2kUN_fYXTt-nXgz1s609CDPp_dvd5ozDArRRixjMnvUq0DkbkLnZaGKRHQiWCFOutFWWa5aWUpU2tNN4hdqZIcOLglbN5HEyC9T6BRbypZQ8Wd_rDo98dDghd6UxiN1aceES7p1of3KtS8pIOgchTLudQ8fmknGIDhVpZY476_rNbW4HgYAWWGvbKvtfu9gIW_OglLLfKEKwZKF7BZr_KTIGAdn7NGmGKM4Zck006XZMpGwdWB7C_huNHsdsq9EbjkX8DDK8zWtagsugbNgtZGRzWvR2b1EgXwXZrmcI2actJPeO8uEu4TMYs0JgFGbOQEXzuikzqnB0PvbwxZ-6uBOXFRyRPI1hv7V80_Xta3HljBB-6x9gzabulHPnxJb6j01gqinWN4Evbbveq-N8fvX34g-_hKTp-8fNgeLgGz0SlzkErQuvQm_299O-QI83MRuOMDE4f2_9vASRKHgc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiently+learning+the+preferences+of+people&rft.jtitle=Machine+learning&rft.au=BIRLUTIU%2C+Adriana&rft.au=GROOT%2C+Perry&rft.au=HESKES%2C+Tom&rft.date=2013&rft.pub=Springer&rft.issn=0885-6125&rft.volume=90&rft.issue=1&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1007%2Fs10994-012-5297-4&rft.externalDBID=n%2Fa&rft.externalDocID=27566787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon