Efficiently learning the preferences of people
This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations d...
Saved in:
Published in | Machine learning Vol. 90; no. 1; pp. 1 - 28 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.01.2013
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-6125 1573-0565 |
DOI | 10.1007/s10994-012-5297-4 |
Cover
Abstract | This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations data is available from multiple subjects. We use the multi-task formalism to enhance the individual training data by making use of the preference information learned from other subjects. Furthermore, since obtaining labels is expensive, we optimally choose which data to ask a subject for labelling to obtain the most of information about her/his preferences. This paradigm—called active learning—has hardly been studied in a multi-task formalism. We propose an alternative for the standard criteria in active learning which actively chooses queries by making use of the available preference data from other subjects. The advantage of this alternative is the reduced computation costs and reduced time subjects are involved. We validate empirically our approach on three real-world data sets involving the preferences of people. |
---|---|
AbstractList | This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations data is available from multiple subjects. We use the multi-task formalism to enhance the individual training data by making use of the preference information learned from other subjects. Furthermore, since obtaining labels is expensive, we optimally choose which data to ask a subject for labelling to obtain the most of information about her/his preferences. This paradigm—called active learning—has hardly been studied in a multi-task formalism. We propose an alternative for the standard criteria in active learning which actively chooses queries by making use of the available preference data from other subjects. The advantage of this alternative is the reduced computation costs and reduced time subjects are involved. We validate empirically our approach on three real-world data sets involving the preferences of people. This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the available training data is scarce and obtaining labeled training data is expensive. Fortunately in many of the preference learning situations data is available from multiple subjects. We use the multi-task formalism to enhance the individual training data by making use of the preference information learned from other subjects. Furthermore, since obtaining labels is expensive, we optimally choose which data to ask a subject for labelling to obtain the most of information about her/his preferences. This paradigm--called active learning--has hardly been studied in a multi-task formalism. We propose an alternative for the standard criteria in active learning which actively chooses queries by making use of the available preference data from other subjects. The advantage of this alternative is the reduced computation costs and reduced time subjects are involved. We validate empirically our approach on three real-world data sets involving the preferences of people.[PUBLICATION ABSTRACT] |
Author | Birlutiu, Adriana Heskes, Tom Groot, Perry |
Author_xml | – sequence: 1 givenname: Adriana surname: Birlutiu fullname: Birlutiu, Adriana email: A.Birlutiu@science.ru.nl organization: Institute for Computing and Information Sciences, Radboud University Nijmegen, Romanian Institute of Science and Technology – sequence: 2 givenname: Perry surname: Groot fullname: Groot, Perry organization: Institute for Computing and Information Sciences, Radboud University Nijmegen, Dept. of Electrical Engineering, Control Systems, Technical University Eindhoven – sequence: 3 givenname: Tom surname: Heskes fullname: Heskes, Tom organization: Institute for Computing and Information Sciences, Radboud University Nijmegen |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27566787$$DView record in Pascal Francis |
BookMark | eNp9kMtKAzEUQIMoWB8f4G5ABDdTczN5zCxFfEHBja5DmrmpKdPMmEwX_XtTWkQKurqbc5J7zxk5Dn1AQq6AToFSdZeANg0vKbBSsEaV_IhMQKiqpEKKYzKhdS1KCUyckrOUlpRSJms5IdNH57z1GMZuU3RoYvBhUYyfWAwRHUYMFlPRu2LAfujwgpw40yW83M9z8vH0-P7wUs7enl8f7mel5YyNZd1yFJWUbs6aFlrJ5oIqJipWC1DWMqPqxnBurLJ8jm1DQXEqwKFobQNuXp2T2927Q-y_1phGvfLJYteZgP06aZAKuFD56IxeH6DLfh1D3k4Dk1JWvALI1M2eMsmazkUTrE96iH5l4kYzJaRUtcoc7Dgb-5Rygh8EqN6W1rvSOpfW29KaZ0cdONaPZvR9GKPx3b8m25kp_xIWGH_t_qf0DcaWka8 |
CitedBy_id | crossref_primary_10_1145_2542182_2542195 crossref_primary_10_3389_fbuil_2021_643630 crossref_primary_10_4018_ijkss_2013100103 crossref_primary_10_1109_TITS_2016_2565643 crossref_primary_10_1016_j_inffus_2023_101970 crossref_primary_10_1007_s10994_018_5705_5 crossref_primary_10_1109_ACCESS_2023_3260771 crossref_primary_10_1145_3503489 crossref_primary_10_17706_jsw_11_2_133_147 crossref_primary_10_3389_fphy_2018_00051 |
Cites_doi | 10.1111/j.0824-7935.2004.00233.x 10.1145/1390334.1390352 10.1023/A:1007379606734 10.1162/neco.2008.08-07-594 10.1093/biomet/67.2.381 10.1162/neco.1992.4.1.1 10.1509/jmkr.39.2.214.19080 10.1007/s10994-007-5019-5 10.1121/1.2754061 10.1287/mnsc.28.10.1137 10.1016/j.jspi.2003.09.022 10.1145/1055709.1055714 10.1162/neco.1992.4.4.590 10.1145/1390156.1390183 10.1023/A:1007330508534 10.1007/978-3-642-15939-8_32 10.3102/10769986019001043 10.1214/ss/1177009939 10.3115/1613715.1613855 10.1145/1040830.1040857 10.1198/016214507000001346 10.1007/s10791-009-9123-y 10.2307/2234772 10.1145/1143844.1143980 10.1613/jair.295 10.1017/CBO9780511804441 10.1201/9780429258480 |
ContentType | Journal Article |
Copyright | The Author(s) 2012 2014 INIST-CNRS The Author(s) 2013 |
Copyright_xml | – notice: The Author(s) 2012 – notice: 2014 INIST-CNRS – notice: The Author(s) 2013 |
DBID | C6C AAYXX CITATION IQODW 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-012-5297-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1573-0565 |
EndPage | 28 |
ExternalDocumentID | 2858312641 27566787 10_1007_s10994_012_5297_4 |
Genre | Feature |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT IQODW 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c422t-8d4e5366fb29d1d62b50725328517cc2a789a44ac7c4bed90174051fe5dc91fb3 |
IEDL.DBID | AGYKE |
ISSN | 0885-6125 |
IngestDate | Fri Sep 05 10:48:25 EDT 2025 Sun Jul 13 05:38:37 EDT 2025 Wed Apr 02 07:26:15 EDT 2025 Tue Jul 01 00:46:04 EDT 2025 Thu Apr 24 23:13:32 EDT 2025 Fri Feb 21 02:28:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Learning preferences Active learning Experimental design Multi-task learning Hierarchical modeling Hierarchical classification Labelling Inductive learning Optimization Knowledge transfer Hierarchic relation Multithread Active system Supervised learning Preference Learning algorithm |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-8d4e5366fb29d1d62b50725328517cc2a789a44ac7c4bed90174051fe5dc91fb3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10994-012-5297-4 |
PQID | 1266634311 |
PQPubID | 54194 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_1671457109 proquest_journals_1266634311 pascalfrancis_primary_27566787 crossref_primary_10_1007_s10994_012_5297_4 crossref_citationtrail_10_1007_s10994_012_5297_4 springer_journals_10_1007_s10994_012_5297_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130100 2013-1-00 2013 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 1 year: 2013 text: 20130100 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: Heidelberg – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2013 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Arehart, Kates, Anderson, Harvey (CR3) 2007; 122 Clyde, Muller, Parmigiani (CR26) 1993 Geman, Bienenstock, Doursat (CR38) 1992; 4 Melville, Mooney (CR53) 2004 McCallum, Nigam (CR52) 1998 Glickman, Jensen (CR40) 2005; 127 Ford, Silvey (CR34) 1980; 67 Anand (CR2) 1993; 103 Evgeniou, Micchelli, Pontil (CR32) 2005; 6 Bishop (CR10) 2006 Christensen (CR23) 1997 Blythe (CR12) 2002 Groot, Birlutiu, Heskes (CR41) 2010 Xu, Kersting, Joachims (CR64) 2010 Brochu, de Freitas, Ghosh, Platt, Koller, Singer, Roweis (CR19) 2008 Berger (CR7) 1994; 19 Blei, Ng, Jordan (CR11) 2003; 3 MacKay (CR50) 1992; 4 Arens (CR4) 2008 CR5 Boutilier, Zemel, Marlin (CR15) 2003 Lewis, Gale (CR49) 1994 Yu, Bi, Tresp (CR67) 2006 Harpale, Yang (CR43) 2008 Settles, Craven (CR60) 2008 Chaloner, Verdinelli (CR22) 1995; 10 Schein, Ungar (CR58) 2007; 68 Seeger (CR59) 2008; 9 Seung, Opper, Sompolinsky (CR61) 1992 Guo, Sanner (CR42) 2010 Thrun (CR62) 1995 Lewi, Butera, Paninski (CR48) 2009; 21 Bakker, Heskes (CR6) 2003; 4 Fedorov (CR33) 1972 Dasgupta, Hsu (CR29) 2008 Chu, Ghahramani (CR25) 2005 Qin, Liu, Xu, Li (CR56) 2010; 13 Birlutiu, Groot, Heskes (CR9) 2009; 73 Jin, Si (CR46) 2004 Yu, Tresp, Schwaighofer (CR66) 2005 Kanninen (CR47) 2002; 39 Heskes, de Vries (CR44) 2005 Boyd, Vandenberghe (CR16) 2004 Hollander, Wolfe (CR45) 1973 Yu, Schwaighofer, Tresp, Ma, Zhang (CR65) 2003 Tversky (CR63) 1998 CR54 Bradley, Terry (CR17) 1952; 39 Caruana (CR20) 1997; 28 Birlutiu, Heskes (CR8) 2007 Chajewska, Koller, Parr (CR21) 2000 Dagan, Engelson (CR28) 1995 Boutilier (CR14) 2002 Doyle (CR30) 2004; 20 Dror, Steinberg (CR31) 2008; 103 MacKay (CR51) 2002 Fürnkranz, Hüllermeier (CR36) 2010 Freund, Shamir, Tishby (CR35) 1997; 28 Gelman, Carlin, Stern, Rubin (CR37) 2003 Gervasio, Moffitt, Pollack (CR39) 2005 Chu, Ghahramani (CR24) 2005 Pahikkala, Waegeman, Tsivtsivadze, De Baets, Salakoski (CR55) 2009 Sanborn, Griffiths (CR57) 2008 Cohn, Ghahramani, Jordan (CR27) 1996; 4 Brinker (CR18) 2004 Bordley (CR13) 1982; 28 Adomavicius, Sankaranarayanan, Sen, Tuzhilin (CR1) 2005; 23 S. Guo (5297_CR42) 2010 A. N. Sanborn (5297_CR57) 2008 H. A. Dror (5297_CR31) 2008; 103 D. J. C. MacKay (5297_CR50) 1992; 4 M. P. F. Berger (5297_CR7) 1994; 19 E. Brochu (5297_CR19) 2008 M. Glickman (5297_CR40) 2005; 127 K. Chaloner (5297_CR22) 1995; 10 T. Heskes (5297_CR44) 2005 J. Lewi (5297_CR48) 2009; 21 5297_CR54 K. Yu (5297_CR65) 2003 B. Kanninen (5297_CR47) 2002; 39 C. Boutilier (5297_CR15) 2003 A. Tversky (5297_CR63) 1998 T. Pahikkala (5297_CR55) 2009 W. Chu (5297_CR25) 2005 S. Harpale (5297_CR43) 2008 K. H. Arehart (5297_CR3) 2007; 122 S. Thrun (5297_CR62) 1995 V. V. Fedorov (5297_CR33) 1972 A. McCallum (5297_CR52) 1998 P. Melville (5297_CR53) 2004 Y. Freund (5297_CR35) 1997; 28 J. Fürnkranz (5297_CR36) 2010 R. A. Bradley (5297_CR17) 1952; 39 D. M. Blei (5297_CR11) 2003; 3 J. Blythe (5297_CR12) 2002 C. M. Bishop (5297_CR10) 2006 T. Qin (5297_CR56) 2010; 13 R. Christensen (5297_CR23) 1997 R. Arens (5297_CR4) 2008 H. S. Seung (5297_CR61) 1992 C. Boutilier (5297_CR14) 2002 R. F. Bordley (5297_CR13) 1982; 28 T. Evgeniou (5297_CR32) 2005; 6 P. Anand (5297_CR2) 1993; 103 P. C. Groot (5297_CR41) 2010 K. Brinker (5297_CR18) 2004 B. Bakker (5297_CR6) 2003; 4 A. Adomavicius (5297_CR1) 2005; 23 M. Clyde (5297_CR26) 1993 A. Schein (5297_CR58) 2007; 68 I. Dagan (5297_CR28) 1995 M. W. Seeger (5297_CR59) 2008; 9 I. Ford (5297_CR34) 1980; 67 D. J. C. MacKay (5297_CR51) 2002 B. Settles (5297_CR60) 2008 S. Boyd (5297_CR16) 2004 R. Caruana (5297_CR20) 1997; 28 J. Doyle (5297_CR30) 2004; 20 U. Chajewska (5297_CR21) 2000 K. Yu (5297_CR67) 2006 K. Yu (5297_CR66) 2005 R. Jin (5297_CR46) 2004 D. A. Cohn (5297_CR27) 1996; 4 M. Hollander (5297_CR45) 1973 D. Lewis (5297_CR49) 1994 A. Gelman (5297_CR37) 2003 W. Chu (5297_CR24) 2005 5297_CR5 A. Birlutiu (5297_CR9) 2009; 73 S. Dasgupta (5297_CR29) 2008 S. Geman (5297_CR38) 1992; 4 A. Birlutiu (5297_CR8) 2007 M. T. Gervasio (5297_CR39) 2005 Z. Xu (5297_CR64) 2010 |
References_xml | – volume: 20 start-page: 111 issue: 2 year: 2004 end-page: 136 ident: CR30 article-title: Prospects for preferences publication-title: Computational Intelligence doi: 10.1111/j.0824-7935.2004.00233.x – start-page: 84 year: 2009 end-page: 100 ident: CR55 article-title: From ranking to intransitive preference learning: rock-paper-scissors and beyond publication-title: Proceedings of the ECML/PKDD workshop on preference learning – volume: 9 start-page: 759 year: 2008 end-page: 813 ident: CR59 article-title: Bayesian inference and optimal design for the sparse linear model publication-title: Journal of Machine Learning Research – start-page: 91 year: 2008 end-page: 98 ident: CR43 article-title: Personalized active learning for collaborative filtering publication-title: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval doi: 10.1145/1390334.1390352 – volume: 28 start-page: 41 issue: 1 year: 1997 end-page: 75 ident: CR20 article-title: Multitask learning publication-title: Machine Learning doi: 10.1023/A:1007379606734 – volume: 21 start-page: 619 issue: 3 year: 2009 end-page: 687 ident: CR48 article-title: Sequential optimal design of neurophysiology experiments publication-title: Neural Computation doi: 10.1162/neco.2008.08-07-594 – volume: 67 start-page: 381 year: 1980 end-page: 388 ident: CR34 article-title: A sequentially constructed design for estimating a nonlinear parametric function publication-title: Biometrika doi: 10.1093/biomet/67.2.381 – year: 2002 ident: CR51 publication-title: Information theory, inference & learning algorithms – volume: 4 start-page: 1 issue: 1 year: 1992 end-page: 58 ident: CR38 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Computation doi: 10.1162/neco.1992.4.1.1 – volume: 73 start-page: 1177 issue: 7–9 year: 2009 end-page: 1185 ident: CR9 article-title: Multi-task preference learning with an application to hearing aid personalization publication-title: Neurocomputing – volume: 39 start-page: 307 year: 2002 end-page: 317 ident: CR47 article-title: Optimal design for multinomial choice experiments publication-title: Journal of Marketing Research doi: 10.1509/jmkr.39.2.214.19080 – ident: CR54 – volume: 68 start-page: 235 issue: 3 year: 2007 end-page: 265 ident: CR58 article-title: Active learning for logistic regression: an evaluation publication-title: Machine Learning doi: 10.1007/s10994-007-5019-5 – volume: 122 start-page: 1150 issue: 2 year: 2007 end-page: 1164 ident: CR3 article-title: Effects of noise and distortion on speech quality judgments in normal-hearing and hearing-impaired listeners publication-title: Journal of the Acoustical Society of America doi: 10.1121/1.2754061 – year: 2004 ident: CR18 article-title: Active learning of label ranking functions publication-title: Proceedings of the 27th international conference on machine learning – volume: 4 start-page: 129 issue: 1 year: 1996 end-page: 145 ident: CR27 article-title: Active learning with statistical models publication-title: Journal of Artificial Intelligence Research – volume: 39 start-page: 324 year: 1952 end-page: 345 ident: CR17 article-title: Rank analysis of incomplete block designs, I: the method of paired comparisons publication-title: Biometrika – year: 1998 ident: CR63 publication-title: Preference, belief, and similarity – start-page: 289 year: 2010 end-page: 296 ident: CR42 article-title: Real-time multiattribute Bayesian preference elicitation with pairwise comparison queries publication-title: Proceedings of the 13th international conference on artificial intelligence and statistics – volume: 28 start-page: 1137 issue: 10 year: 1982 end-page: 1148 ident: CR13 article-title: A multiplicative formula for aggregating probability assessments publication-title: Management Science doi: 10.1287/mnsc.28.10.1137 – year: 2004 ident: CR16 publication-title: Convex optimization – year: 2006 ident: CR10 publication-title: Pattern recognition and machine learning – year: 2005 ident: CR24 article-title: Extensions of Gaussian processes for ranking: semi-supervised and active learning publication-title: NIPS workshop on learning to rank – volume: 127 start-page: 279 year: 2005 end-page: 293 ident: CR40 article-title: Adaptive paired comparison design publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2003.09.022 – start-page: 287 year: 1992 end-page: 294 ident: CR61 article-title: Query by Committee publication-title: Proceedings of the 5th annual workshop on computational learning theory – ident: CR5 – volume: 23 start-page: 103 issue: 1 year: 2005 end-page: 145 ident: CR1 article-title: Incorporating contextual information in recommender systems using a multidimensional approach publication-title: ACM Transactions on Information Systems doi: 10.1145/1055709.1055714 – start-page: 278 year: 2004 end-page: 285 ident: CR46 article-title: A Bayesian approach toward active learning for collaborative filtering publication-title: Proceedings of the 20th conference on uncertainty in artificial intelligence – start-page: 350 year: 1998 end-page: 358 ident: CR52 article-title: Employing EM and pool-based active learning for text classification publication-title: Proceedings of the 15th international conference on machine learning – volume: 4 start-page: 590 year: 1992 end-page: 604 ident: CR50 article-title: Information-based objective functions for active data selection publication-title: Neural Computation doi: 10.1162/neco.1992.4.4.590 – year: 1972 ident: CR33 publication-title: Theory of optimal experiments – start-page: 249 year: 2010 end-page: 254 ident: CR41 article-title: Bayesian Monte Carlo for the global optimization of expensive functions publication-title: Proceedings of the 19th European conference on artificial intelligence – start-page: 150 year: 1995 end-page: 157 ident: CR28 article-title: Committee-based sampling for training probabilistic classifiers publication-title: Proceedings of the 12th international conference on machine learning – start-page: 208 year: 2008 end-page: 215 ident: CR29 article-title: Hierarchical sampling for active learning publication-title: Proceedings of the 25th international conference on machine learning doi: 10.1145/1390156.1390183 – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: CR11 article-title: Latent Dirichlet allocation publication-title: Journal of Machine Learning Research – start-page: 363 year: 2008 end-page: 383 ident: CR4 article-title: Learning SVM ranking function from user feedback using document metadata and active learning in the biomedical domain publication-title: Proceedings of the ECML/PKDD workshop on preference learning – volume: 28 start-page: 133 issue: 2–3 year: 1997 end-page: 168 ident: CR35 article-title: Selective sampling using the query by committee algorithm publication-title: Machine Learning doi: 10.1023/A:1007330508534 – start-page: 127 year: 2005 end-page: 134 ident: CR44 article-title: Incremental utility elicitation for adaptive personalization publication-title: Proceedings of the 17th Belgium-Netherlands conference on artificial intelligence – year: 2010 ident: CR36 publication-title: Preference learning – start-page: 374 year: 2007 end-page: 381 ident: CR8 article-title: Expectation propagation for rating players in sports competitions publication-title: Proceedings of the 11th European conference on principles and practice of knowledge discovery in databases – start-page: 499 year: 2010 end-page: 514 ident: CR64 article-title: Fast active exploration for link-based preference learning using Gaussian processes publication-title: Proceedings of the 2010 European conference on machine learning and knowledge discovery in databases: part III doi: 10.1007/978-3-642-15939-8_32 – start-page: 409 year: 2008 end-page: 416 ident: CR19 article-title: Active preference learning with discrete choice data publication-title: Advances in neural information processing systems – volume: 19 start-page: 43 year: 1994 end-page: 56 ident: CR7 article-title: D-optimal sequential sampling designs for item response theory models publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/10769986019001043 – volume: 10 start-page: 273 year: 1995 end-page: 304 ident: CR22 article-title: Bayesian experimental design: a review publication-title: Statistical Science doi: 10.1214/ss/1177009939 – volume: 4 start-page: 83 year: 2003 end-page: 99 ident: CR6 article-title: Task clustering and gating for Bayesian multitask learning publication-title: Journal of Machine Learning Research – year: 2005 ident: CR66 article-title: Learning Gaussian processes from multiple tasks publication-title: Proceedings of the 22nd international conference on machine learning – start-page: 1070 year: 2008 end-page: 1079 ident: CR60 article-title: An analysis of active learning strategies for sequence labeling tasks publication-title: Proceedings of the conference on empirical methods in natural language processing doi: 10.3115/1613715.1613855 – start-page: 90 year: 2005 end-page: 97 ident: CR39 article-title: Active preference learning for personalized calender scheduling assistance publication-title: Proceedings of the 10th international conference on intelligent user interfaces doi: 10.1145/1040830.1040857 – start-page: 616 year: 2003 end-page: 623 ident: CR65 article-title: Collaborative ensemble learning: combining collaborative and content-based information filtering publication-title: Proceedings of the 19th conference on uncertainty in artificial intelligence – start-page: 239 year: 2002 end-page: 246 ident: CR14 article-title: A POMDP formulation of preference elicitation problems publication-title: Proceedings of the 18th national conference on artificial intelligence – start-page: 278 year: 1993 end-page: 292 ident: CR26 article-title: Optimal design for heart defibrillators publication-title: Case studies in Bayesian statistics – year: 2003 ident: CR37 publication-title: Bayesian data analysis – start-page: 98 year: 2003 end-page: 106 ident: CR15 article-title: Active collaborative filtering publication-title: Proceedings of the 19th annual conference on uncertainty in artificial intelligence – volume: 6 start-page: 615 year: 2005 end-page: 637 ident: CR32 article-title: Learning multiple tasks with kernel methods publication-title: Journal of Machine Learning Research – start-page: 363 year: 2000 end-page: 369 ident: CR21 article-title: Making rational decisions using adaptive utility elicitation publication-title: Proceedings of the 17th national conference on artificial intelligence – volume: 103 start-page: 288 issue: 481 year: 2008 end-page: 298 ident: CR31 article-title: Sequential experimental designs for generalized linear models publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000001346 – volume: 13 start-page: 346 issue: 4 year: 2010 end-page: 374 ident: CR56 article-title: LETOR: a benchmark collection for research on learning to rank for information retrieval publication-title: Information Retrieval doi: 10.1007/s10791-009-9123-y – year: 2005 ident: CR25 article-title: Preference learning with Gaussian processes publication-title: Proceedings of the 22nd international conference on machine learning – start-page: 584 year: 2004 end-page: 591 ident: CR53 article-title: Diverse ensembles for active learning publication-title: Proceedings of the 21st international conference on machine learning – start-page: 3 year: 1994 end-page: 12 ident: CR49 article-title: A sequential algorithm for training text classifiers publication-title: Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval – start-page: 640 year: 1995 end-page: 646 ident: CR62 article-title: Is learning the th thing any easier than learning the first? publication-title: Advances in neural information processing systems – start-page: 526 year: 2002 end-page: 532 ident: CR12 article-title: Visual exploration and incremental utility elicitation publication-title: Proceedings of the 18th national conference on artificial intelligence – year: 1973 ident: CR45 publication-title: Nonparametric statistical methods – year: 1997 ident: CR23 publication-title: Log-linear models and logistic regression – year: 2008 ident: CR57 article-title: Markov chain Monte Carlo with people publication-title: Advances in neural information processing systems – volume: 103 start-page: 337 issue: 417 year: 1993 end-page: 346 ident: CR2 article-title: The philosophy of intransitive preferences publication-title: The Economic Journal doi: 10.2307/2234772 – start-page: 1081 year: 2006 end-page: 1088 ident: CR67 article-title: Active learning via transductive experimental design publication-title: Proceedings of the 23rd international conference on machine learning – start-page: 278 volume-title: Proceedings of the 20th conference on uncertainty in artificial intelligence year: 2004 ident: 5297_CR46 – volume: 20 start-page: 111 issue: 2 year: 2004 ident: 5297_CR30 publication-title: Computational Intelligence doi: 10.1111/j.0824-7935.2004.00233.x – volume-title: Theory of optimal experiments year: 1972 ident: 5297_CR33 – start-page: 289 volume-title: Proceedings of the 13th international conference on artificial intelligence and statistics year: 2010 ident: 5297_CR42 – start-page: 640 volume-title: Advances in neural information processing systems year: 1995 ident: 5297_CR62 – start-page: 499 volume-title: Proceedings of the 2010 European conference on machine learning and knowledge discovery in databases: part III year: 2010 ident: 5297_CR64 doi: 10.1007/978-3-642-15939-8_32 – volume: 4 start-page: 1 issue: 1 year: 1992 ident: 5297_CR38 publication-title: Neural Computation doi: 10.1162/neco.1992.4.1.1 – volume: 103 start-page: 288 issue: 481 year: 2008 ident: 5297_CR31 publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000001346 – volume-title: Proceedings of the 22nd international conference on machine learning year: 2005 ident: 5297_CR25 – volume: 73 start-page: 1177 issue: 7–9 year: 2009 ident: 5297_CR9 publication-title: Neurocomputing – start-page: 127 volume-title: Proceedings of the 17th Belgium-Netherlands conference on artificial intelligence year: 2005 ident: 5297_CR44 – volume: 21 start-page: 619 issue: 3 year: 2009 ident: 5297_CR48 publication-title: Neural Computation doi: 10.1162/neco.2008.08-07-594 – volume-title: Preference, belief, and similarity year: 1998 ident: 5297_CR63 – volume: 3 start-page: 993 year: 2003 ident: 5297_CR11 publication-title: Journal of Machine Learning Research – volume: 28 start-page: 1137 issue: 10 year: 1982 ident: 5297_CR13 publication-title: Management Science doi: 10.1287/mnsc.28.10.1137 – start-page: 409 volume-title: Advances in neural information processing systems year: 2008 ident: 5297_CR19 – volume: 4 start-page: 83 year: 2003 ident: 5297_CR6 publication-title: Journal of Machine Learning Research – volume-title: Advances in neural information processing systems year: 2008 ident: 5297_CR57 – start-page: 584 volume-title: Proceedings of the 21st international conference on machine learning year: 2004 ident: 5297_CR53 – start-page: 363 volume-title: Proceedings of the ECML/PKDD workshop on preference learning year: 2008 ident: 5297_CR4 – volume: 122 start-page: 1150 issue: 2 year: 2007 ident: 5297_CR3 publication-title: Journal of the Acoustical Society of America doi: 10.1121/1.2754061 – start-page: 278 volume-title: Case studies in Bayesian statistics year: 1993 ident: 5297_CR26 – start-page: 1081 volume-title: Proceedings of the 23rd international conference on machine learning year: 2006 ident: 5297_CR67 doi: 10.1145/1143844.1143980 – volume: 67 start-page: 381 year: 1980 ident: 5297_CR34 publication-title: Biometrika doi: 10.1093/biomet/67.2.381 – start-page: 98 volume-title: Proceedings of the 19th annual conference on uncertainty in artificial intelligence year: 2003 ident: 5297_CR15 – volume: 4 start-page: 590 year: 1992 ident: 5297_CR50 publication-title: Neural Computation doi: 10.1162/neco.1992.4.4.590 – start-page: 1070 volume-title: Proceedings of the conference on empirical methods in natural language processing year: 2008 ident: 5297_CR60 doi: 10.3115/1613715.1613855 – volume: 28 start-page: 41 issue: 1 year: 1997 ident: 5297_CR20 publication-title: Machine Learning doi: 10.1023/A:1007379606734 – volume: 19 start-page: 43 year: 1994 ident: 5297_CR7 publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/10769986019001043 – volume-title: Information theory, inference & learning algorithms year: 2002 ident: 5297_CR51 – volume-title: NIPS workshop on learning to rank year: 2005 ident: 5297_CR24 – volume-title: Pattern recognition and machine learning year: 2006 ident: 5297_CR10 – start-page: 249 volume-title: Proceedings of the 19th European conference on artificial intelligence year: 2010 ident: 5297_CR41 – start-page: 616 volume-title: Proceedings of the 19th conference on uncertainty in artificial intelligence year: 2003 ident: 5297_CR65 – start-page: 90 volume-title: Proceedings of the 10th international conference on intelligent user interfaces year: 2005 ident: 5297_CR39 doi: 10.1145/1040830.1040857 – start-page: 208 volume-title: Proceedings of the 25th international conference on machine learning year: 2008 ident: 5297_CR29 doi: 10.1145/1390156.1390183 – start-page: 374 volume-title: Proceedings of the 11th European conference on principles and practice of knowledge discovery in databases year: 2007 ident: 5297_CR8 – start-page: 350 volume-title: Proceedings of the 15th international conference on machine learning year: 1998 ident: 5297_CR52 – start-page: 150 volume-title: Proceedings of the 12th international conference on machine learning year: 1995 ident: 5297_CR28 – start-page: 3 volume-title: Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval year: 1994 ident: 5297_CR49 – volume-title: Log-linear models and logistic regression year: 1997 ident: 5297_CR23 – volume: 6 start-page: 615 year: 2005 ident: 5297_CR32 publication-title: Journal of Machine Learning Research – start-page: 84 volume-title: Proceedings of the ECML/PKDD workshop on preference learning year: 2009 ident: 5297_CR55 – volume: 4 start-page: 129 issue: 1 year: 1996 ident: 5297_CR27 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.295 – start-page: 287 volume-title: Proceedings of the 5th annual workshop on computational learning theory year: 1992 ident: 5297_CR61 – volume: 68 start-page: 235 issue: 3 year: 2007 ident: 5297_CR58 publication-title: Machine Learning doi: 10.1007/s10994-007-5019-5 – volume: 28 start-page: 133 issue: 2–3 year: 1997 ident: 5297_CR35 publication-title: Machine Learning doi: 10.1023/A:1007330508534 – ident: 5297_CR54 – start-page: 526 volume-title: Proceedings of the 18th national conference on artificial intelligence year: 2002 ident: 5297_CR12 – volume-title: Proceedings of the 22nd international conference on machine learning year: 2005 ident: 5297_CR66 – start-page: 363 volume-title: Proceedings of the 17th national conference on artificial intelligence year: 2000 ident: 5297_CR21 – volume-title: Convex optimization year: 2004 ident: 5297_CR16 doi: 10.1017/CBO9780511804441 – ident: 5297_CR5 – volume: 127 start-page: 279 year: 2005 ident: 5297_CR40 publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2003.09.022 – volume: 103 start-page: 337 issue: 417 year: 1993 ident: 5297_CR2 publication-title: The Economic Journal doi: 10.2307/2234772 – start-page: 239 volume-title: Proceedings of the 18th national conference on artificial intelligence year: 2002 ident: 5297_CR14 – volume: 23 start-page: 103 issue: 1 year: 2005 ident: 5297_CR1 publication-title: ACM Transactions on Information Systems doi: 10.1145/1055709.1055714 – volume: 39 start-page: 324 year: 1952 ident: 5297_CR17 publication-title: Biometrika – volume: 13 start-page: 346 issue: 4 year: 2010 ident: 5297_CR56 publication-title: Information Retrieval doi: 10.1007/s10791-009-9123-y – volume-title: Preference learning year: 2010 ident: 5297_CR36 – volume-title: Bayesian data analysis year: 2003 ident: 5297_CR37 doi: 10.1201/9780429258480 – volume-title: Proceedings of the 27th international conference on machine learning year: 2004 ident: 5297_CR18 – volume: 9 start-page: 759 year: 2008 ident: 5297_CR59 publication-title: Journal of Machine Learning Research – volume-title: Nonparametric statistical methods year: 1973 ident: 5297_CR45 – volume: 39 start-page: 307 year: 2002 ident: 5297_CR47 publication-title: Journal of Marketing Research doi: 10.1509/jmkr.39.2.214.19080 – volume: 10 start-page: 273 year: 1995 ident: 5297_CR22 publication-title: Statistical Science doi: 10.1214/ss/1177009939 – start-page: 91 volume-title: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval year: 2008 ident: 5297_CR43 doi: 10.1145/1390334.1390352 |
SSID | ssj0002686 |
Score | 2.1336124 |
Snippet | This paper presents a framework for optimizing the preference learning process. In many real-world applications in which preference learning is involved the... |
SourceID | proquest pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Applied sciences Artificial Intelligence Computer Science Computer science; control theory; systems Control Data processing. List processing. Character string processing Exact sciences and technology Formalism Labelling Learning Learning and adaptive systems Mechatronics Memory organisation. Data processing Natural Language Processing (NLP) Optimization Queries Robotics Simulation and Modeling Software Training |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odhHE32J1jgqelKhNk_44icrGEBwiDnYrTdJ4Ge1028H_3pc27ZzgjqVNWl7y8n19L3kfwCWj2hzIzAgXAn9QlPBJHLCYILONONOS-2VJoZdhMBix5zEf24DbzG6rrNfEcqFWhTQx8lsPkSTwEe68--knMapRJrtqJTQ2oY1LcITzvP3YG76-NWsxDUqtR3QlTgyW13nN6vBcWRbXaAHQOCRsBZm2p-kMjaQrdYsV-vknY1oCUX8PdiyDdB-qId-HjSw_gN1ancG1znoIN72yOgSCyuTbteIQHy7yPXfaaIvM3EK71SbyIxj1e-9PA2LVEYhklM5JpFjG_SDQgsbKUwEVSO0o9ylyqFBKmoZRnDKWylAykSnE_RDJmaczrmTsaeEfQysv8uwEXLyOTGjBtMXxkZGOUq2w7ztPhIIpB-5qyyTSlg43ChaTZFn02BgzQWMmxpgJc-CqaTKt6mase7i7Yu6mhalNj2gaOtCp7Z9YH5slyxnhwEVzG73DpDzSPCsW-EwQeoyb_aYOXNfj9quL_77odP0Lz2CLlrIYJhTTgdb8a5GdIzmZi66dgT_Pdd19 priority: 102 providerName: ProQuest |
Title | Efficiently learning the preferences of people |
URI | https://link.springer.com/article/10.1007/s10994-012-5297-4 https://www.proquest.com/docview/1266634311 https://www.proquest.com/docview/1671457109 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vgjit1g_RgWflA6bJmn6uI1tojhENphPpUkbHxzbcNuD_vVe-uU2VNhLS8kH6V3S-zV3-R3ANSXaHMhMHCYl_qDE0nMCTgMHka1gVCvmpZRCT11-36cPAzbIz3FPi2j3wiWZfqkXDrulNLaGu58EvkM3YYu5IhAV2Kp3Xh9b5QeY8DTBI64f5hgDXjgzf-tkyRztTKIpSkZnKS2WMOeKmzS1Pu096BXjzoJO3mvzmayprxVKxzVfbB92czRq17PpcwAbyegQ9opMD3a-8I-g1kqZJtBADT_tPNHEm43Y0Z6UeUqm9ljbWUD6MfTbrV7z3skzLTiKEjJzREwT5nGuJQliN-ZEIkwkzCOIx3ylSOSLIKI0Ur6iMokRQ_gI9FydsFgFrpbeCVRG41FyCjY-C7NNYdqirpXQItIx9n3nSl_S2IK7QuChymnITTaMYfhDoGzkEaI8QiOPkFpwUzaZZBwc_1WuLmmxbGF47tEy-xZcFGoN8_U6DV3EKdxDMOVacFUW40oz7pNolIznWIf7LmUmdtWC20KTC138NaKztWqfwzZJM26YXZ4LqMw-5skl4p6ZrMKmaHeqONvbjUa3ms96vDda3ecXLG3yJl77pP4Nn6b7ZA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQJAX0gQhcwUntpZSCOnccBIVTYLs8TSNzS-MUF7S7sIrR_it_YmbzoIpUbxyi2E43HM59n7PkAvknh6UKm40pr3KBYHfEslhlHZJsq6Y2KypJCF5dx71qe3qibGXhu7sLQscrGJpaG2g4Mxch3Q_QkcYTuLjwY3nNijaLsakOhUanFmZs84ZZttH9yhPP7XYju8dWvHq9ZBbiRQox5aqVTURx7LTIb2lhohERCRYJY6o0RRZJmhZSFSYzUzqK_TBDUhN4pa7LQ6wjHnYV5GUUZUUWk3d-t5RdxySyJC1dxQg5NFrW6qlcW4SXmAZElXE75wcVhMcIp8RWXxhTYfZWfLd1edwWWarzKDisF-wgzrv8JlhsuCFabhs-wc1zWokAXdjdhNRXFLUN0yYYtk8mIDTyrjqx_get3kdoqzPUHfbcGDJ9TCmRQX9QGk_q08BbH3gt1oqUNYK-RTG7qQuXEl3GXv5RYJmHmKMychJnLAH60XYZVlY63Gm9OibvtQZXw0XcnAXQa-ef1ih7lL_oXwHb7GtciJViKvhs8Yps4CaWi060B_Gzm7Z8h_vdH629_cAs-9K4uzvPzk8uzr7AgSkIOCgJ1YG788Og2EBaN9Wapiwz-vLfy_wUGkBhs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaoqVUAfqCmUulJ7aWUgju0kh6oqsCso7QpVReIW4hcXtLt0FyH-Gr-OmbxgK5UbxzzsROOxv8_2eD6Aj1IEOpDpuTIGJyjOJDzXMufIbDMlg1VJlVLo11DvH8sfJ-pkAW7aszAUVtmOidVA7caW1si3YkQSnSDcxVuhCYs42ht8m1xwUpCindZWTqN2kUN_fYXTt-nXgz1s609CDPp_dvd5ozDArRRixjMnvUq0DkbkLnZaGKRHQiWCFOutFWWa5aWUpU2tNN4hdqZIcOLglbN5HEyC9T6BRbypZQ8Wd_rDo98dDghd6UxiN1aceES7p1of3KtS8pIOgchTLudQ8fmknGIDhVpZY476_rNbW4HgYAWWGvbKvtfu9gIW_OglLLfKEKwZKF7BZr_KTIGAdn7NGmGKM4Zck006XZMpGwdWB7C_huNHsdsq9EbjkX8DDK8zWtagsugbNgtZGRzWvR2b1EgXwXZrmcI2actJPeO8uEu4TMYs0JgFGbOQEXzuikzqnB0PvbwxZ-6uBOXFRyRPI1hv7V80_Xta3HljBB-6x9gzabulHPnxJb6j01gqinWN4Evbbveq-N8fvX34g-_hKTp-8fNgeLgGz0SlzkErQuvQm_299O-QI83MRuOMDE4f2_9vASRKHgc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiently+learning+the+preferences+of+people&rft.jtitle=Machine+learning&rft.au=BIRLUTIU%2C+Adriana&rft.au=GROOT%2C+Perry&rft.au=HESKES%2C+Tom&rft.date=2013&rft.pub=Springer&rft.issn=0885-6125&rft.volume=90&rft.issue=1&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1007%2Fs10994-012-5297-4&rft.externalDBID=n%2Fa&rft.externalDocID=27566787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |