Effect of water on seismic attenuation of the upper mantle: The origin of the sharp lithosphere-asthenosphere boundary

Oceanic lithosphere moves over a mechanically weak layer (asthenosphere) characterized by low seismic velocity and high attenuation. Near mid-ocean ridges, partial melting can produce such conditions because of the high-temperature geotherm. However, seismic observations have also shown a large and...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 32; p. e2221770120
Main Authors Liu, Chao, Yoshino, Takashi, Yamazaki, Daisuke, Tsujino, Noriyoshi, Gomi, Hitoshi, Sakurai, Moe, Zhang, Youyue, Wang, Ran, Guan, Longli, Lau, Kayan, Tange, Yoshinori, Higo, Yuji
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oceanic lithosphere moves over a mechanically weak layer (asthenosphere) characterized by low seismic velocity and high attenuation. Near mid-ocean ridges, partial melting can produce such conditions because of the high-temperature geotherm. However, seismic observations have also shown a large and sharp velocity reduction under oceanic plates at the lithosphere-asthenosphere boundary (LAB) far from mid-ocean ridges. Here, we report the effect of water on the seismic properties of olivine aggregates in water-undersaturated conditions at 3 GPa and 1,223 to 1,373 K via in-situ X-ray observation using cyclic loading. Our results show that water substantially enhances the energy dispersion and reduces the elastic moduli over a wide range of seismic frequencies (0.5 to 1,000 s). An attenuation peak that appears at higher frequencies (1 to 5 s) becomes more pronounced as the water content increases. If water exists only in the asthenosphere, this is consistent with the observation that the attenuation in the asthenosphere is almost constant over a wide frequency range. These sharp seismic changes at the oceanic LAB far from mid-ocean ridges could be explained by the difference in water content between the lithosphere and asthenosphere.
AbstractList Oceanic lithosphere moves over a mechanically weak layer (asthenosphere) characterized by low seismic velocity and high attenuation. Near mid-ocean ridges, partial melting can produce such conditions because of the high-temperature geotherm. However, seismic observations have also shown a large and sharp velocity reduction under oceanic plates at the lithosphere-asthenosphere boundary (LAB) far from mid-ocean ridges. Here, we report the effect of water on the seismic properties of olivine aggregates in water-undersaturated conditions at 3 GPa and 1,223 to 1,373 K via in-situ X-ray observation using cyclic loading. Our results show that water substantially enhances the energy dispersion and reduces the elastic moduli over a wide range of seismic frequencies (0.5 to 1,000 s). An attenuation peak that appears at higher frequencies (1 to 5 s) becomes more pronounced as the water content increases. If water exists only in the asthenosphere, this is consistent with the observation that the attenuation in the asthenosphere is almost constant over a wide frequency range. These sharp seismic changes at the oceanic LAB far from mid-ocean ridges could be explained by the difference in water content between the lithosphere and asthenosphere.
The origin of seismic wave attenuation observed in the oceanic asthenosphere is key to understanding the low viscosity of the asthenosphere and how it enables the relative motion of tectonic plates covering the Earth's surface. We experimentally determined the effect of water on the anelastic properties of olivine aggregates over a wide range of frequencies. The presence of water induces attenuation at high frequencies, leading to a decrease in shear wave velocity. Water retention in the asthenosphere can account for both the sharp drops in shear wave velocity at the oceanic lithosphere–asthenosphere boundary and the frequency-independent attenuation in the asthenosphere beneath old oceanic plates. The presence of water weakens the asthenosphere, allowing the lithosphere to move more smoothly over it. Oceanic lithosphere moves over a mechanically weak layer (asthenosphere) characterized by low seismic velocity and high attenuation. Near mid-ocean ridges, partial melting can produce such conditions because of the high-temperature geotherm. However, seismic observations have also shown a large and sharp velocity reduction under oceanic plates at the lithosphere–asthenosphere boundary (LAB) far from mid-ocean ridges. Here, we report the effect of water on the seismic properties of olivine aggregates in water-undersaturated conditions at 3 GPa and 1,223 to 1,373 K via in-situ X-ray observation using cyclic loading. Our results show that water substantially enhances the energy dispersion and reduces the elastic moduli over a wide range of seismic frequencies (0.5 to 1,000 s). An attenuation peak that appears at higher frequencies (1 to 5 s) becomes more pronounced as the water content increases. If water exists only in the asthenosphere, this is consistent with the observation that the attenuation in the asthenosphere is almost constant over a wide frequency range. These sharp seismic changes at the oceanic LAB far from mid-ocean ridges could be explained by the difference in water content between the lithosphere and asthenosphere.
Author Yamazaki, Daisuke
Higo, Yuji
Liu, Chao
Zhang, Youyue
Yoshino, Takashi
Tange, Yoshinori
Wang, Ran
Sakurai, Moe
Guan, Longli
Tsujino, Noriyoshi
Gomi, Hitoshi
Lau, Kayan
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-8904-9895
  surname: Liu
  fullname: Liu, Chao
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 2
  givenname: Takashi
  orcidid: 0000-0002-5422-7396
  surname: Yoshino
  fullname: Yoshino, Takashi
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 3
  givenname: Daisuke
  surname: Yamazaki
  fullname: Yamazaki, Daisuke
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 4
  givenname: Noriyoshi
  orcidid: 0000-0001-9242-2240
  surname: Tsujino
  fullname: Tsujino, Noriyoshi
  organization: Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 678-5198, Japan
– sequence: 5
  givenname: Hitoshi
  orcidid: 0000-0003-3582-4221
  surname: Gomi
  fullname: Gomi, Hitoshi
  organization: Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
– sequence: 6
  givenname: Moe
  orcidid: 0009-0007-9539-0767
  surname: Sakurai
  fullname: Sakurai, Moe
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 7
  givenname: Youyue
  orcidid: 0000-0003-4917-7256
  surname: Zhang
  fullname: Zhang, Youyue
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 8
  givenname: Ran
  surname: Wang
  fullname: Wang, Ran
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 9
  givenname: Longli
  surname: Guan
  fullname: Guan, Longli
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 10
  givenname: Kayan
  surname: Lau
  fullname: Lau, Kayan
  organization: Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan
– sequence: 11
  givenname: Yoshinori
  surname: Tange
  fullname: Tange, Yoshinori
  organization: Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 678-5198, Japan
– sequence: 12
  givenname: Yuji
  orcidid: 0000-0002-4221-8783
  surname: Higo
  fullname: Higo, Yuji
  organization: Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 678-5198, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37523543$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtv3CAUhVGVqpmkXXdXIXXTjZPLwwZ3U1VR-pAiZZOsEWYgJrLBBZyo_76MMp02WSHO-Ti6l3OCjkIMFqH3BM4ICHa-BJ3PKKVECCAUXqENgZ40He_hCG0AqGgkp_wYneR8DwB9K-ENOmaipazlbIMeLp2zpuDo8KMuNuEYcLY-z95gXYoNqy6-atUvo8XrslRm1qFM9jO-qUpM_s4f_DzqtODJlzHmZbTJNjpXPexveIhr2Or0-y167fSU7bv9eYpuv13eXPxorq6__7z4etUYTmlphBNSWq014wMwZ7VruSZO8m3PO0Zc58i2ax0Vg-EgDHADhmlmXCdbMINgp-jLU-6yDrPdGhtK0pNakp_rFCpqr547wY_qLj4oArx-MOU14dM-IcVfq81FzT4bO0062LhmRSXnnSRSyIp-fIHexzWFut-O6lnbCcoqdf5EmRRzTtYdpiGgdqWqXanqX6n1xYf_lzjwf1tkfwBJUqI9
CitedBy_id crossref_primary_10_1016_j_pepi_2024_107160
crossref_primary_10_1029_2024GC011517
crossref_primary_10_1007_s00190_023_01781_7
crossref_primary_10_1038_s41467_024_47887_0
Cites_doi 10.1126/science.1169499
10.1126/science.276.5310.240
10.1130/G21759.1
10.1016/j.epsl.2020.116148
10.1029/JB095iB04p05079
10.1016/j.pepi.2009.04.001
10.1063/1.2735587
10.1029/2000JB900131
10.1016/j.carbon.2010.12.003
10.1029/2001JB000679
10.1016/j.epsl.2014.05.041
10.1002/2016JB013526
10.1016/0026-0800(71)90005-X
10.1016/0031-9201(87)90042-2
10.1029/2020JB020309
10.2138/am.2011.3720
10.1038/nature25764
10.1007/BF02664244
10.1016/j.epsl.2005.02.008
10.1126/science.1215433
10.1002/2014GC005444
10.1029/2018JB016463
10.1016/j.epsl.2012.01.001
10.1126/science.1169754
10.1007/s002690100189
10.1146/annurev-earth-060313-054732
10.1016/j.pepi.2013.11.014
10.1002/2014JB011146
10.1029/2021JB022504
10.1016/S0012-821X(02)00663-5
10.1063/1.4963747
10.1038/nature04612
10.1007/s00269-022-01182-w
10.1038/378170a0
10.1029/2022JB025174
10.1016/j.pepi.2009.12.003
10.1126/science.aao3508
10.1016/j.pepi.2010.09.005
10.1029/2000GC000070
10.1029/2007JB005429
10.1002/2016JB013316
10.1146/annurev-earth-050212-124022
10.1002/9781119249740.ch1
10.1007/s00269-009-0350-y
10.1093/petrology/egn007
10.1029/2008JB005813
ContentType Journal Article
Copyright Copyright National Academy of Sciences Aug 8, 2023
Copyright © 2023 the Author(s). Published by PNAS. 2023
Copyright_xml – notice: Copyright National Academy of Sciences Aug 8, 2023
– notice: Copyright © 2023 the Author(s). Published by PNAS. 2023
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2221770120
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage e2221770120
ExternalDocumentID 10_1073_pnas_2221770120
37523543
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: 17H01155
– fundername: ;
  grantid: 17H01155
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c422t-7f788eaaa34b03feaf54a1f84d94631f6f1d65f27bc407c04c0c3a3cf6850cb73
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:31:48 EDT 2024
Fri Aug 16 10:10:09 EDT 2024
Thu Oct 10 17:31:35 EDT 2024
Fri Aug 23 03:32:42 EDT 2024
Tue Aug 27 13:54:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords water
attenuation
lithosphere-asthenosphere boundary
Language English
License This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-7f788eaaa34b03feaf54a1f84d94631f6f1d65f27bc407c04c0c3a3cf6850cb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Peter Kelemen, Lamont-Doherty Earth Observatory, NY; received December 27, 2022; accepted June 20, 2023
1Present address: Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou Province 550081, people’s republic China.
ORCID 0000-0003-4917-7256
0009-0007-9539-0767
0000-0002-4221-8783
0000-0003-3582-4221
0000-0001-8904-9895
0000-0001-9242-2240
0000-0002-5422-7396
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410724/
PMID 37523543
PQID 2849356723
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10410724
proquest_miscellaneous_2844681878
proquest_journals_2849356723
crossref_primary_10_1073_pnas_2221770120
pubmed_primary_37523543
PublicationCentury 2000
PublicationDate 2023-08-08
PublicationDateYYYYMMDD 2023-08-08
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
Nowick A. (e_1_3_4_41_2) 1972
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
Liu C. (e_1_3_4_21_2) 2021
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
Malkin A. Y. (e_1_3_4_42_2) 2022
e_1_3_4_28_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
Tharimena S. (e_1_3_4_32_2) 2017; 122
Tange Y. (e_1_3_4_39_2) 2009; 114
References_xml – ident: e_1_3_4_31_2
  doi: 10.1126/science.1169499
– ident: e_1_3_4_35_2
  doi: 10.1126/science.276.5310.240
– ident: e_1_3_4_25_2
  doi: 10.1130/G21759.1
– ident: e_1_3_4_4_2
  doi: 10.1016/j.epsl.2020.116148
– ident: e_1_3_4_23_2
  doi: 10.1029/JB095iB04p05079
– ident: e_1_3_4_11_2
  doi: 10.1016/j.pepi.2009.04.001
– ident: e_1_3_4_19_2
  doi: 10.1063/1.2735587
– ident: e_1_3_4_43_2
  doi: 10.1029/2000JB900131
– ident: e_1_3_4_45_2
  doi: 10.1016/j.carbon.2010.12.003
– ident: e_1_3_4_47_2
  doi: 10.1029/2001JB000679
– ident: e_1_3_4_49_2
  doi: 10.1016/j.epsl.2014.05.041
– volume: 122
  start-page: 2131
  year: 2017
  ident: e_1_3_4_32_2
  article-title: Imaging Pacific lithosphere seismic discontinuities-Insights from SS precursor modeling
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2016JB013526
  contributor:
    fullname: Tharimena S.
– ident: e_1_3_4_50_2
  doi: 10.1016/0026-0800(71)90005-X
– ident: e_1_3_4_40_2
  doi: 10.1016/0031-9201(87)90042-2
– ident: e_1_3_4_17_2
  doi: 10.1029/2020JB020309
– ident: e_1_3_4_24_2
  doi: 10.2138/am.2011.3720
– ident: e_1_3_4_16_2
  doi: 10.1038/nature25764
– ident: e_1_3_4_27_2
  doi: 10.1007/BF02664244
– ident: e_1_3_4_7_2
  doi: 10.1016/j.epsl.2005.02.008
– ident: e_1_3_4_1_2
  doi: 10.1126/science.1215433
– ident: e_1_3_4_14_2
  doi: 10.1002/2014GC005444
– ident: e_1_3_4_2_2
  doi: 10.1029/2018JB016463
– ident: e_1_3_4_6_2
  doi: 10.1016/j.epsl.2012.01.001
– ident: e_1_3_4_33_2
  doi: 10.1126/science.1169754
– ident: e_1_3_4_44_2
  doi: 10.1007/s002690100189
– ident: e_1_3_4_29_2
  doi: 10.1146/annurev-earth-060313-054732
– ident: e_1_3_4_26_2
  doi: 10.1016/j.pepi.2013.11.014
– ident: e_1_3_4_28_2
  doi: 10.1002/2014JB011146
– ident: e_1_3_4_37_2
  doi: 10.1029/2021JB022504
– ident: e_1_3_4_48_2
  doi: 10.1016/S0012-821X(02)00663-5
– ident: e_1_3_4_20_2
  doi: 10.1063/1.4963747
– ident: e_1_3_4_36_2
  doi: 10.1038/nature04612
– ident: e_1_3_4_18_2
  doi: 10.1007/s00269-022-01182-w
– ident: e_1_3_4_46_2
  doi: 10.1038/378170a0
– ident: e_1_3_4_5_2
  doi: 10.1029/2022JB025174
– ident: e_1_3_4_12_2
  doi: 10.1016/j.pepi.2009.12.003
– ident: e_1_3_4_3_2
  doi: 10.1126/science.aao3508
– volume-title: Anelastic Relaxation in Crystalline Solids
  year: 1972
  ident: e_1_3_4_41_2
  contributor:
    fullname: Nowick A.
– ident: e_1_3_4_8_2
  doi: 10.1016/j.pepi.2010.09.005
– ident: e_1_3_4_34_2
  doi: 10.1029/2000GC000070
– start-page: 1
  year: 2021
  ident: e_1_3_4_21_2
  article-title: Exploration of the best reference material on anelastic measurement by cyclic loading under high pressure
  publication-title: High Press Res.
  contributor:
    fullname: Liu C.
– ident: e_1_3_4_30_2
  doi: 10.1029/2007JB005429
– volume-title: Rheology: Concepts, Methods, and Applications
  year: 2022
  ident: e_1_3_4_42_2
  contributor:
    fullname: Malkin A. Y.
– ident: e_1_3_4_9_2
  doi: 10.1002/2016JB013316
– ident: e_1_3_4_22_2
– ident: e_1_3_4_10_2
  doi: 10.1146/annurev-earth-050212-124022
– ident: e_1_3_4_13_2
  doi: 10.1002/9781119249740.ch1
– ident: e_1_3_4_38_2
  doi: 10.1007/s00269-009-0350-y
– ident: e_1_3_4_15_2
  doi: 10.1093/petrology/egn007
– volume: 114
  start-page: 1
  year: 2009
  ident: e_1_3_4_39_2
  article-title: Unified analyses for P - V - T equation of state of MgO: A solution for pressure-scale problems in high P - T experiments
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JB005813
  contributor:
    fullname: Tange Y.
– ident: e_1_3_4_51_2
SSID ssj0009580
Score 2.4994335
Snippet Oceanic lithosphere moves over a mechanically weak layer (asthenosphere) characterized by low seismic velocity and high attenuation. Near mid-ocean ridges,...
The origin of seismic wave attenuation observed in the oceanic asthenosphere is key to understanding the low viscosity of the asthenosphere and how it enables...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e2221770120
SubjectTerms Asthenosphere
Attenuation
Cyclic loads
Frequency ranges
High temperature
Lava
Lithosphere
Mid-ocean ridges
Modulus of elasticity
Moisture content
Olivine
Physical Sciences
Ridges
Seismic properties
Upper mantle
Velocity
Water content
Title Effect of water on seismic attenuation of the upper mantle: The origin of the sharp lithosphere-asthenosphere boundary
URI https://www.ncbi.nlm.nih.gov/pubmed/37523543
https://www.proquest.com/docview/2849356723
https://search.proquest.com/docview/2844681878
https://pubmed.ncbi.nlm.nih.gov/PMC10410724
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4BB8SlKqU_KRQZiQM97G5iO3aWG0JF_IiqhyJxixzH1q7EOtFmVy23vkPfkCdhnMTbbrn1aI0jR56Z-Jt45huAYzsuDcIOPShkyv3fKvwOWi1wKMoktpIa7ouTb7-Kyzt-fZ_eb4AItTBt0r4upkP3MBu66aTNraxnehTyxEbfbs8xhMCohfLRJmyihYYYfUW1m3WFJxTX5ZQHQh_JRrVTzRBPxERKXzS6A9tMYiSWcrZ-LL3Amv-mTP51Bl28hlc9eCRn3UvuwoZxb2C3d8-GnPQc0p_34GfHSkwqS34gmpyTypHGTJvZVBPPqOk6hm8vRwRIlnWNc2a4yw_mlKDpkK5hVpA3EzWvCSL2SdV4HgLz9Ou3ajxxQj8mRdueaf74Fu4uvnw_vxz0TRYGmlO6GEiLQbBRSjFexMwaZVOuEpvxcswFS6ywSSlSS2WhMfbTMdexZoppK7I01oVk72DLVc58AEJLIWJjuKQelxSpktrEukQUokxmLI3gJOxxXndcGnl7By5Z7jWT_9FMBAdBB3nvVCjO-JilQlIWwdFKjO7g7ziUM9WyncMFghCZRfC-U9lqraDrCLI1Za4meKrtdQlaYEu5HSzu4_8_ug87vlV9mzyYHcDWYr40nxDQLIpDhPJXN4etFT8DBXH5QA
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VIkEvQIFCoICROJTDZhPbsbPcUEW1QLfi0IreIsextSu6SbTZVQsn_oE_5EsYJ_HClhMco3HkRDMTvxfPPAO8sqPCIOzQg1wm3P2twu-g1QIvRRFHVlLDXXPy5ESMz_iH8-R8C4TvhWmL9nU-C8uLeVjOpm1tZT3XQ18nNvw0OUQKgayF8uENuIkJGwnP0tdiu2nXekJxZk65l_SRbFiXqglxTYyldG2jO3CLSeRiCWebC9NfaPN60eQfq9DRXfjsn78rPvkSrpZ5qL9dk3b89xe8B3d6YEredvZd2DLlfdjtU78hB70-9esHcNUpHpPKkktEqgtSlaQxs2Y-08SpdZaderizI7okq7rGMXP04IV5QzAsSXcYl7c3U7WoCbKBadU4jQPz8_sP1ThRhv6a5O3RT4uvD-Hs6N3p4XjQH-Aw0JzS5UBaJNhGKcV4HjFrlE24im3KixEXLLbCxoVILJW5Rl6pI64jzRTTVqRJpHPJ9mC7rErzGAgthIiM4ZI6zJMnSmoT6QIRjjKpsTSAA--9rO50OrJ2f12yzPk8--3zAPa9d7M-YdGc8hFLhKQsgJdrM6aa2z9RpalW7RguEODINIBHXTCs5_JRFEC6ESbrAU7Ge9OCzm_lvL2zn_z_rS_g9vh0cpwdvz_5-BR2KAKxtkgx3Yft5WJlniFwWubP2yz5BehDGnI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapeKOWZUsBIHMph87AdO8sNFVbl0aoHKlXiEDmOrV3RdaLNrnic-A_8Q34J4zwWttx6tGYiy5oZ-5t45jPACzsuDcIOPSpkyv3fKtwHrRY4FGUSW0kN983JJ6fi-Jy_v0gv-qrKpi-rdLqYhe5yHrrZtK2trOc6GurEorOTI0whMGuhPKpLG92EWxi0cTZk6mvC3axrP6E4O6d8oPWRLKqdakI8FxMpfevoDmwziflYytnm4fQf4rxaOPnPSTTZhc_DGroClC_halmE-scVesfrLfIO3O4BKnnd6ezBDePuwl6_BTTksOepfnkPvnXMx6Sy5Csi1gWpHGnMrJnPNPGsna5jEfdyRJlkVdeoM0dLXppXBN2TdI9yDfJmqhY1waxgWjWe68D8_vlLNZ6coR-Ton0CavH9PpxP3n46Oh71DzmMNKd0OZIWE22jlGK8iJk1yqZcJTbj5ZgLllhhk1KklspCY36pY65jzRTTVmRprAvJHsCWq5x5BISWQsTGcEk99ilSJbWJdYlIR5nMWBrA4WDBvO74OvL2nl2y3Ns9_2v3AA4GC-d94KI442OWCklZAM_XYgw5f4-inKlWrQ4XCHRkFsDDziHWcw2eFEC24SprBU_nvSlBB2hpvQeD71__02ewffZmkn98d_rhMexQxGNtrWJ2AFvLxco8Qfy0LJ62gfIHpyEc8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+water+on+seismic+attenuation+of+the+upper+mantle%3A+The+origin+of+the+sharp+lithosphere%E2%80%93asthenosphere+boundary&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Liu%2C+Chao&rft.au=Yoshino%2C+Takashi&rft.au=Yamazaki%2C+Daisuke&rft.au=Tsujino%2C+Noriyoshi&rft.date=2023-08-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=32&rft_id=info:doi/10.1073%2Fpnas.2221770120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon