Cadmium passivation induced negative differential resistance in cove edge graphene nanoribbon device
Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 8598 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green’s function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices. |
---|---|
AbstractList | Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green’s function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices. Abstract Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green’s function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices. Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green's function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices.Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green's function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices. |
ArticleNumber | 8598 |
Author | Ansari, Lida Kharwar, Saurabh Hurley, Paul K. Gity, Farzan |
Author_xml | – sequence: 1 givenname: Saurabh surname: Kharwar fullname: Kharwar, Saurabh email: saurabh.kharwar@tyndall.ie organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC) – sequence: 2 givenname: Farzan surname: Gity fullname: Gity, Farzan organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC) – sequence: 3 givenname: Paul K. surname: Hurley fullname: Hurley, Paul K. organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC), School of Chemistry, University College Cork (UCC) – sequence: 4 givenname: Lida surname: Ansari fullname: Ansari, Lida organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40074794$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAInHhEvBnEp8QWlGoVIkLnK2xPUm9ytqLnWzFv8fdlNJywBdbM8-8Hnvel9VJiAGr6jUl7ynh_YcsqFR9Q5hsFOu4bG6fVWeMCNkwztjJo_NpdZHzlpQlmRJUvahOBSGd6JQ4q9wG3M4vu3oPOfsDzD6G2ge3WHR1wLEEDlg7PwyYMMwepjph9nmGYLGAtY0lj27Eekywv8GAdYAQkzemKDk8eIuvqucDTBkv7vfz6sfl5--br831ty9Xm0_XjRWMzU1ncQCuaDeA5EhMh2CtU04BZ4oxJoRysm8dtIZTCj0jnXXCSAbWSIeEn1dXq66LsNX75HeQfukIXh8DMY0a0uzthFoaI7FFI2WR6LEHJbloO2eo5IYzUbQ-rlr7xezQ2fL4BNMT0aeZ4G_0GA-aUlXm09Ki8O5eIcWfC-ZZ73y2OE0QMC5Zc9q1bc9ozwr69h90G5cUyl8dKdEqSWSh3jxu6aGXP9MsAFsBm2LOCYcHhBJ95xq9ukYX1-ija_RtKeJrUS5wGDH9vfs_Vb8BgiPGpw |
Cites_doi | 10.1038/am.2012.58 10.1038/s41928-021-00549-1 10.1109/TED.2017.2738838 10.1038/srep21273 10.1063/1.3340834 10.1088/1674-1056/abfbd0 10.1016/j.diamond.2020.108131 10.1109/TNANO.2020.3048734 10.1021/acs.nanolett.1c04362 10.1109/TNANO.2013.2268899 10.1080/23311940.2017.1391734 10.1038/nature17151 10.1063/1.4890607 10.1016/j.jmgm.2021.108117 10.1103/PhysRevB.65.165401 10.1063/1.4866094 10.1039/c0jm00261e 10.1109/T-ED.1987.23215 10.1021/jacs.5b03017 10.1016/j.ssc.2019.04.005 10.1007/s00894-017-3528-0 10.1002/pssb.200982343 10.1038/nature05180 10.1021/acsomega.2c01917 10.1007/s10825-023-02009-9 10.1021/nn9003428 10.1126/science.1167130 10.1016/j.physe.2020.114418 10.1038/nmat2710 10.1038/s42254-021-00370-x 10.1007/s11664-020-08637-2 10.1016/j.orgel.2017.09.002 10.1103/PhysRev.121.1070 10.1016/j.diamond.2019.107613 10.1038/s41467-020-19051-x 10.1016/j.spmi.2015.07.069 10.1039/C6RA27101D 10.1038/s41557-022-01042-8 10.1016/j.jmgm.2020.107543 10.1016/j.physe.2019.113575 10.1007/s12598-015-0471-z 10.1109/TED.2016.2586459 10.1021/jacs.1c09000 10.1039/D0RA02997A 10.1016/j.physe.2018.07.017 10.1021/ja502764d 10.1002/admi.201700400 10.1021/jacs.7b03467 10.1016/j.commatsci.2012.10.011 10.1016/j.physleta.2018.03.039 10.1016/j.matpr.2021.04.183 10.1063/1.4833554 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-92735-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_5bb5e6eb55cd48e8a953467db153b324 PMC11903861 40074794 10_1038_s41598_025_92735_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science Foundation Ireland grantid: 12/RC/2278; 12/RC/2278; 12/RC/2278; 12/RC/2278 funderid: http://dx.doi.org/10.13039/501100001602 – fundername: Science Foundation Ireland grantid: 12/RC/2278 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX AFPKN CITATION PHGZM SNYQT NPM 3V. 7XB 88A 8FK AARCD K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c422t-7cefa3917fa53e0b7eaccd9d9a329222449d586da6b311a8207cd4b52acb5de03 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:04 EDT 2025 Thu Aug 21 18:34:09 EDT 2025 Fri Jul 11 08:43:26 EDT 2025 Wed Aug 13 09:17:17 EDT 2025 Thu Apr 03 07:03:08 EDT 2025 Sun Jul 06 05:02:49 EDT 2025 Thu Mar 13 04:25:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-7cefa3917fa53e0b7eaccd9d9a329222449d586da6b311a8207cd4b52acb5de03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-92735-w |
PMID | 40074794 |
PQID | 3176469505 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5bb5e6eb55cd48e8a953467db153b324 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11903861 proquest_miscellaneous_3176682182 proquest_journals_3176469505 pubmed_primary_40074794 crossref_primary_10_1038_s41598_025_92735_w springer_journals_10_1038_s41598_025_92735_w |
PublicationCentury | 2000 |
PublicationDate | 2025-03-12 |
PublicationDateYYYYMMDD | 2025-03-12 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | R Mondal (92735_CR35) 2022; 112 S Kharwar (92735_CR39) 2021; 47 D Dass (92735_CR1) 2020; 110 H Karakachian (92735_CR44) 2020; 11 CW Bates (92735_CR24) 1961; 121 S Dutta (92735_CR3) 2010; 20 G Zollo (92735_CR13) 2022; 7 R Yogi (92735_CR41) 2019; 114 J Liu (92735_CR9) 2015; 137 J Lawrence (92735_CR4) 2022; 14 B Bhattacharya (92735_CR34) 2018; 24 Y Zhao (92735_CR45) 2015; 5 V Nam Do (92735_CR47) 2010; 107 DC Elias (92735_CR17) 2009; 323 S Sen (92735_CR23) 1987; 34 S Singh (92735_CR53) 2017; 7 S Ayaz Khan (92735_CR21) 2017; 4 X Wang (92735_CR12) 2021; 144 S Jamalzadeh Kheirabadi (92735_CR54) 2023; 36 S Abdelaal (92735_CR31) 2020; 101 L Gan (92735_CR30) 2012; 4 R Balog (92735_CR16) 2010; 9 A Sengupta (92735_CR52) 2013; 114 NK Jaiswal (92735_CR32) 2013; 12 O Omeroglu (92735_CR19) 2018; 104 R Mondal (92735_CR36) 2020; 97 TD Cassiano (92735_CR15) 2020; 10 M Zoghi (92735_CR46) 2017; 64 PK Srivastava (92735_CR51) 2021; 4 M Brandbyge (92735_CR25) 2002; 65 A Kuloglu (92735_CR40) 2013; 68 P Ruffieux (92735_CR27) 2016; 531 AN Abbas (92735_CR10) 2014; 136 NK Jaiswal (92735_CR43) 2017; 51 Y-W Son (92735_CR6) 2006; 444 AY Goharrizi (92735_CR49) 2016; 63 Y Li (92735_CR7) 2009; 3 Y Li (92735_CR33) 2014; 116 VK Nishad (92735_CR26) 2021; 20 E Salih (92735_CR8) 2021; 125 SK Gupta (92735_CR5) 2015; 86 R Gillen (92735_CR29) 2009; 246 R Beiranvand (92735_CR20) 2016; 35 S Kharwar (92735_CR37) 2021; 50 I Ivanov (92735_CR11) 2017; 139 M Pizzochero (92735_CR18) 2022; 22 P Narin (92735_CR38) 2019; 296 P Tseng (92735_CR48) 2018; 382 Y Zhou (92735_CR50) 2014; 115 H Owlia (92735_CR22) 2023; 22 H Wang (92735_CR2) 2021; 3 R Ishikawa (92735_CR28) 2016; 6 SV Inge (92735_CR42) 2017; 4 H Yang (92735_CR14) 2021; 30 |
References_xml | – volume: 4 start-page: e31 year: 2012 ident: 92735_CR30 publication-title: NPG Asia Mater doi: 10.1038/am.2012.58 – volume: 4 start-page: 269 year: 2021 ident: 92735_CR51 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00549-1 – volume: 64 start-page: 4322 year: 2017 ident: 92735_CR46 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2738838 – volume: 6 start-page: 21273 year: 2016 ident: 92735_CR28 publication-title: Sci. Rep. doi: 10.1038/srep21273 – volume: 107 year: 2010 ident: 92735_CR47 publication-title: J. Appl. Phys. doi: 10.1063/1.3340834 – volume: 30 year: 2021 ident: 92735_CR14 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/abfbd0 – volume: 110 year: 2020 ident: 92735_CR1 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2020.108131 – volume: 20 start-page: 92 year: 2021 ident: 92735_CR26 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2020.3048734 – volume: 22 start-page: 1922 year: 2022 ident: 92735_CR18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04362 – volume: 12 start-page: 685 year: 2013 ident: 92735_CR32 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2013.2268899 – volume: 4 start-page: 1391734 year: 2017 ident: 92735_CR21 publication-title: Cogent Phys. doi: 10.1080/23311940.2017.1391734 – volume: 531 start-page: 489 year: 2016 ident: 92735_CR27 publication-title: Nature doi: 10.1038/nature17151 – volume: 116 year: 2014 ident: 92735_CR33 publication-title: J. Appl. Phys. doi: 10.1063/1.4890607 – volume: 112 year: 2022 ident: 92735_CR35 publication-title: J. Mol. Graph Model. doi: 10.1016/j.jmgm.2021.108117 – volume: 65 year: 2002 ident: 92735_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.165401 – volume: 115 year: 2014 ident: 92735_CR50 publication-title: J. Appl. Phys. doi: 10.1063/1.4866094 – volume: 20 start-page: 8207 year: 2010 ident: 92735_CR3 publication-title: J. Mater. Chem. doi: 10.1039/c0jm00261e – volume: 34 start-page: 2185 year: 1987 ident: 92735_CR23 publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1987.23215 – volume: 5 start-page: 1 year: 2015 ident: 92735_CR45 publication-title: Sci. Rep. – volume: 137 start-page: 6097 year: 2015 ident: 92735_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03017 – volume: 296 start-page: 8 year: 2019 ident: 92735_CR38 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2019.04.005 – volume: 24 start-page: 1 year: 2018 ident: 92735_CR34 publication-title: J. Mol. Graph Model. doi: 10.1007/s00894-017-3528-0 – volume: 246 start-page: 2577 year: 2009 ident: 92735_CR29 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200982343 – volume: 444 start-page: 347 year: 2006 ident: 92735_CR6 publication-title: Nature doi: 10.1038/nature05180 – volume: 7 start-page: 25164 year: 2022 ident: 92735_CR13 publication-title: ACS Omega doi: 10.1021/acsomega.2c01917 – volume: 22 start-page: 626 year: 2023 ident: 92735_CR22 publication-title: J. Comput. Electron. doi: 10.1007/s10825-023-02009-9 – volume: 3 start-page: 1952 year: 2009 ident: 92735_CR7 publication-title: ACS Nano doi: 10.1021/nn9003428 – volume: 323 start-page: 610 year: 2009 ident: 92735_CR17 publication-title: Science doi: 10.1126/science.1167130 – volume: 125 year: 2021 ident: 92735_CR8 publication-title: Physica E doi: 10.1016/j.physe.2020.114418 – volume: 9 start-page: 315 year: 2010 ident: 92735_CR16 publication-title: Nat. Mater. doi: 10.1038/nmat2710 – volume: 3 start-page: 791 year: 2021 ident: 92735_CR2 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00370-x – volume: 50 start-page: 1196 year: 2021 ident: 92735_CR37 publication-title: J. Electron. Mater. doi: 10.1007/s11664-020-08637-2 – volume: 51 start-page: 25 year: 2017 ident: 92735_CR43 publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.09.002 – volume: 121 start-page: 1070 year: 1961 ident: 92735_CR24 publication-title: Phys. Rev. doi: 10.1103/PhysRev.121.1070 – volume: 101 year: 2020 ident: 92735_CR31 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2019.107613 – volume: 11 start-page: 6380 year: 2020 ident: 92735_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19051-x – volume: 86 start-page: 355 year: 2015 ident: 92735_CR5 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.07.069 – volume: 7 start-page: 12783 year: 2017 ident: 92735_CR53 publication-title: RSC Adv. doi: 10.1039/C6RA27101D – volume: 36 start-page: 13 year: 2023 ident: 92735_CR54 publication-title: J. Condens. Matter Phys. – volume: 14 start-page: 1451 year: 2022 ident: 92735_CR4 publication-title: Nat. Chem. doi: 10.1038/s41557-022-01042-8 – volume: 97 year: 2020 ident: 92735_CR36 publication-title: J. Mol. Graph Model. doi: 10.1016/j.jmgm.2020.107543 – volume: 114 year: 2019 ident: 92735_CR41 publication-title: Physica E doi: 10.1016/j.physe.2019.113575 – volume: 35 start-page: 771 year: 2016 ident: 92735_CR20 publication-title: Rare Metals doi: 10.1007/s12598-015-0471-z – volume: 63 start-page: 3761 year: 2016 ident: 92735_CR49 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2586459 – volume: 144 start-page: 228 year: 2021 ident: 92735_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09000 – volume: 10 start-page: 26937 year: 2020 ident: 92735_CR15 publication-title: RSC Adv. doi: 10.1039/D0RA02997A – volume: 104 start-page: 124 year: 2018 ident: 92735_CR19 publication-title: Physica E doi: 10.1016/j.physe.2018.07.017 – volume: 136 start-page: 7555 year: 2014 ident: 92735_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502764d – volume: 4 start-page: 1700400 year: 2017 ident: 92735_CR42 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201700400 – volume: 139 start-page: 7982 year: 2017 ident: 92735_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03467 – volume: 68 start-page: 18 year: 2013 ident: 92735_CR40 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.10.011 – volume: 382 start-page: 1427 year: 2018 ident: 92735_CR48 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.03.039 – volume: 47 start-page: 2227 year: 2021 ident: 92735_CR39 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.04.183 – volume: 114 year: 2013 ident: 92735_CR52 publication-title: J. Appl. Phys. doi: 10.1063/1.4833554 |
SSID | ssj0000529419 |
Score | 2.4478734 |
Snippet | Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this... Abstract Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8598 |
SubjectTerms | 639/301/357/995 639/925/927/1007 Cadmium Graphene Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBL6btukqJCb62IrYdXOjahIeSQUwO5CT3G7ULjDckuof8-I8m7zfZBL71ashDz_MaSvwF4n2beoBo8l9gmrobW8hAH5BQtddCq820obJ9n_cm5Or3QF_dafeU7YZUeuAruQIegscegdUzKoPFWS3LuFMhVA6GBHH0p590rpiqrt7Cqs9NfMq00BzeUqfLfZEJzSylb89utTFQI-_-EMn-_LPnLiWlJRMdP4PGEINmnuvOn8ADHZ_Cw9pT88RzSkU-X89UluyJYPLUuY1R4kwoTG_FrIfpm674o5N_fGVXcGUWS-mkiiwsaz1_ZWCGzpljIRj8uruch0EoJc2h5AefHn78cnfCplQKPSogln0UcvKTSbPCatBJmFG9jssl6KSxBBKVs0qZPvg-y6zzBghmJO2jhY9AJW_kSdsbFiK-BxZSpQ-k9gVKh6fyAqvXdQCt6oWJs4MNarO6qMma4ctItjatKcKQEV5Tgbhs4zJLfzMxs1-UB2YCbbMD9ywYa2FvrzU0ueOMIGPVU-xPCa-DdZpicJ5-I-BEXqzqnN5nEvoFXVc2bnajSW8DS4mbLALa2uj0yzr8Vgu6OUJY0fdfAx7Wt_NzX32Xx5n_IYhceiWzk-cqh2IOd5fUK9wk3LcPb4iJ3H1AXhg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BRmJG1hN_EjsE4KKquLAiUp7s_xKqUSTbXdXFf-eseNstbyusWONPU977G8A3obOqih6S3msAxV9ranzfaRoLaWTorG1y2ifX9vTM_FlIRflwG1VrlXONjEb6jD6dEZ-hH6uxa0cOuwPyyuaqkal7GopoXEX7iXosiTV3aLbnrGkLJZodHkrU3N1tEJ_ld6UMUk1Om5Jb3b8UYbt_1us-eeVyd_yptkdnTyChyWOJB8nxj-GO3F4AvenypI_n0I4tuHyYnNJlhgclwJmBLffyMhAhnie4b7JXB0FtfwHwX13iiVRCLAj8SO2p7M2kiGt0SKSwQ64IM7hSCEmA_MMzk4-fzs-paWgAvWCsTXtfOwtxw1abyXyxnVodX3QQVvONAYKQuggVRts63jTWAwOOh-Ek8x6J0Os-XPYG8YhvgTiQwIQxf9Y5CKqxvZR1LbpcUTLhPcVvJuX1Swn3AyT891cmYkJBplgMhPMTQWf0spveybM6_xhvD43RYWMdE7GNjopkSgVldWSo5kPDo22w7iwgsOZb6Yo4srcik0Fb7bNqEIpL2KHOG6mPq1KUPYVvJjYvKVE5AoDGgdXOwKwQ-puy3DxPcN0o0TibNumgvezrNzS9e-12P__NA7gAUvim64UskPYW19v4iuMi9budRb-X1a2DvA priority: 102 providerName: ProQuest |
Title | Cadmium passivation induced negative differential resistance in cove edge graphene nanoribbon device |
URI | https://link.springer.com/article/10.1038/s41598-025-92735-w https://www.ncbi.nlm.nih.gov/pubmed/40074794 https://www.proquest.com/docview/3176469505 https://www.proquest.com/docview/3176682182 https://pubmed.ncbi.nlm.nih.gov/PMC11903861 https://doaj.org/article/5bb5e6eb55cd48e8a953467db153b324 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFH5kodBL6V6n6aBCb62prcWWjpMhIcwhlLaBuQltTgcaO0xmCP33eZLtKdOmh54M1sJDn_T0afsewAdfGxl4Y3IWCp_zplC5dU3I0VsKK3hpCpvUPi-q80s-X4jFHtDxLUy6tJ8kLZObHm-Hfb7FiSY-BqMiVzjjivxuHw6jVDv27cPpdP5tvt1ZiWdXvFTDC5mCyQcK78xCSaz_IYb590XJP05L0yR09hSeDOyRTHt7n8FeaJ_Doz6e5K8X4GfGXy831-QGKfEQtozgohvh86QNV0nkm4wxUXBs_yS42o4MEqHHjMR1mB532EgSskY_SFrTdqultViTD9GtvITLs9Pvs_N8CKOQO07pOq9daAzDZVljBCJia_S1ziuvDKMK6QHnygtZeVNZVpYGKUHtPLeCGmeFDwV7BQdt14Y3QJyPsqFYjgbGgyxNE3hhygZrNJQ7l8HHsVn1Ta-WodMpN5O6B0EjCDqBoO8yOIktv80Zla7Tj251pQfktbBWhCpYIdAoGaRRgqFz9xZdtUU2mMHxiJseht-tRlJU4bof2V0G77fJOHDiaYhpQ7fp81QyCthn8LqHeWsJT3EFFFYudzrAjqm7Ke3yRxLnLpFhMVmVGXwa-8pvu_7dFkf_l_0tPKaxO8eLhfQYDtarTXiH7GhtJ7BfL-rJMCjwe3J68eUr_p1Vs0nacbgHGlwS_A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviGcJFDASnCBq4kfiHBCCQrWlpadW2pvxK6VSmyzdXa36p_iNjJ1kq-V163XtWLOexzfjsWcAXrlSS89rnTKfuZTXWZUaW_sUraUwguc6M7Ha52ExOuZfxmK8Bj-HtzDhWuVgE6Ohdq0NZ-TbiHMFhnII2O8nP9LQNSpkV4cWGp1Y7PvLBYZs03d7n5C_rynd_Xy0M0r7rgKp5ZTO0tL6WjOMUmotkEBToumxrnKVZrRCtOS8ckIWTheG5blGhCyt40ZQbY1wPmO47g24icCbhWCvHJfLM52QNeN51b_NyZjcniI-hjdsVKQVOgoiXazgX2wT8Dff9s8rmr_laSP87d6FO73fSj50gnYP1nxzH251nSwvH4Db0e78dH5OJuiM9w3TCIb7KDiONP4klhcnQzcWtCpnBOP84Lui0OFEYlscD2d7JJbQRgtMGt0gA4zBlZwPBu0hHF_LVj-C9aZt_GMg1oWCpfgd9Yx7meva80znNa6oKbc2gTfDtqpJV6dDxfw6k6pjgkImqMgEtUjgY9j55cxQYzv-0F6cqF5llTBG-MIbIZAo6aWuBENYcQZBwqAfmsDWwDfVK_5UXYlpAi-Xw6iyIQ-jG9_OuzmFDKXzE9js2LykhMeOBhUuLlcEYIXU1ZHm9HssC56jb8dkkSfwdpCVK7r-vRdP_v83XsDt0dHXA3Wwd7j_FDZoEOVwnZFuwfrsYu6foU82M8-jIhD4dt2a9wulzUzp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEM-SUsBIcIJoE8dOnANC9LFqKVpViEq9Gb9SKtFk293Vqn-NX8fYSbZaXrde144163l8Mx57BuC1LZRwrFJx5hIbsyopY20qF6O15JqzVCU6VPsc5_vH7NMJP1mDn_1bGH-tsreJwVDbxvgz8iHiXI6hHAL2sOquRRztjj5MLmLfQcpnWvt2Gq2IHLqrBYZv0_cHu8jrN5SO9r7u7Mddh4HYMEpncWFcpTKMWCrFkVhdoBkytrSlymiJyMlYabnIrcp1lqYK0bIwlmlOldHcuiTDdW_BeuGjogGsb--Nj74sT3h8Do2lZfdSJ8nEcIpo6V-0UR6X6DbweLGChqFpwN883T8vbP6WtQ1gOLoP9zovlnxsxe4BrLn6Idxu-1pePQK7o-z52fycTNA179qnEQz-UYwsqd1pKDZO-t4saGN-EIz6vSeLIogTiWlw3J_0kVBQG-0xqVWNLNAaV7LOm7fHcHwjm_0EBnVTu6dAjPXlS_E76jLmRKoqxxKVVriiosyYCN722yonbdUOGbLtmZAtEyQyQQYmyEUE237nlzN9xe3wQ3N5KjsFllxr7nKnOUeihBOq5BmCjNUIGRq90gi2er7JzgxM5bXQRvBqOYwK7LMyqnbNvJ2TC19IP4KNls1LSljob1Di4mJFAFZIXR2pz76HIuEpenqZyNMI3vWyck3Xv_di8_9_4yXcQa2Tnw_Gh8_gLvWS7O820i0YzC7n7jk6aDP9otMEAt9uWvl-AZ57UoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadmium+passivation+induced+negative+differential+resistance+in+cove+edge+graphene+nanoribbon+device&rft.jtitle=Scientific+reports&rft.au=Kharwar%2C+Saurabh&rft.au=Gity%2C+Farzan&rft.au=Hurley%2C+Paul+K.&rft.au=Ansari%2C+Lida&rft.date=2025-03-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-92735-w&rft.externalDocID=PMC11903861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |