Cadmium passivation induced negative differential resistance in cove edge graphene nanoribbon device

Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 8598 - 11
Main Authors Kharwar, Saurabh, Gity, Farzan, Hurley, Paul K., Ansari, Lida
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green’s function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices.
AbstractList Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green’s function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices.
Abstract Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green’s function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices.
Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green's function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices.Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green's function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices.
ArticleNumber 8598
Author Ansari, Lida
Kharwar, Saurabh
Hurley, Paul K.
Gity, Farzan
Author_xml – sequence: 1
  givenname: Saurabh
  surname: Kharwar
  fullname: Kharwar, Saurabh
  email: saurabh.kharwar@tyndall.ie
  organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC)
– sequence: 2
  givenname: Farzan
  surname: Gity
  fullname: Gity, Farzan
  organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC)
– sequence: 3
  givenname: Paul K.
  surname: Hurley
  fullname: Hurley, Paul K.
  organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC), School of Chemistry, University College Cork (UCC)
– sequence: 4
  givenname: Lida
  surname: Ansari
  fullname: Ansari, Lida
  organization: Micro-Nano Systems (MNS) Centre, Tyndall National Institute, University College Cork (UCC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40074794$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAInHhEvBnEp8QWlGoVIkLnK2xPUm9ytqLnWzFv8fdlNJywBdbM8-8Hnvel9VJiAGr6jUl7ynh_YcsqFR9Q5hsFOu4bG6fVWeMCNkwztjJo_NpdZHzlpQlmRJUvahOBSGd6JQ4q9wG3M4vu3oPOfsDzD6G2ge3WHR1wLEEDlg7PwyYMMwepjph9nmGYLGAtY0lj27Eekywv8GAdYAQkzemKDk8eIuvqucDTBkv7vfz6sfl5--br831ty9Xm0_XjRWMzU1ncQCuaDeA5EhMh2CtU04BZ4oxJoRysm8dtIZTCj0jnXXCSAbWSIeEn1dXq66LsNX75HeQfukIXh8DMY0a0uzthFoaI7FFI2WR6LEHJbloO2eo5IYzUbQ-rlr7xezQ2fL4BNMT0aeZ4G_0GA-aUlXm09Ki8O5eIcWfC-ZZ73y2OE0QMC5Zc9q1bc9ozwr69h90G5cUyl8dKdEqSWSh3jxu6aGXP9MsAFsBm2LOCYcHhBJ95xq9ukYX1-ija_RtKeJrUS5wGDH9vfs_Vb8BgiPGpw
Cites_doi 10.1038/am.2012.58
10.1038/s41928-021-00549-1
10.1109/TED.2017.2738838
10.1038/srep21273
10.1063/1.3340834
10.1088/1674-1056/abfbd0
10.1016/j.diamond.2020.108131
10.1109/TNANO.2020.3048734
10.1021/acs.nanolett.1c04362
10.1109/TNANO.2013.2268899
10.1080/23311940.2017.1391734
10.1038/nature17151
10.1063/1.4890607
10.1016/j.jmgm.2021.108117
10.1103/PhysRevB.65.165401
10.1063/1.4866094
10.1039/c0jm00261e
10.1109/T-ED.1987.23215
10.1021/jacs.5b03017
10.1016/j.ssc.2019.04.005
10.1007/s00894-017-3528-0
10.1002/pssb.200982343
10.1038/nature05180
10.1021/acsomega.2c01917
10.1007/s10825-023-02009-9
10.1021/nn9003428
10.1126/science.1167130
10.1016/j.physe.2020.114418
10.1038/nmat2710
10.1038/s42254-021-00370-x
10.1007/s11664-020-08637-2
10.1016/j.orgel.2017.09.002
10.1103/PhysRev.121.1070
10.1016/j.diamond.2019.107613
10.1038/s41467-020-19051-x
10.1016/j.spmi.2015.07.069
10.1039/C6RA27101D
10.1038/s41557-022-01042-8
10.1016/j.jmgm.2020.107543
10.1016/j.physe.2019.113575
10.1007/s12598-015-0471-z
10.1109/TED.2016.2586459
10.1021/jacs.1c09000
10.1039/D0RA02997A
10.1016/j.physe.2018.07.017
10.1021/ja502764d
10.1002/admi.201700400
10.1021/jacs.7b03467
10.1016/j.commatsci.2012.10.011
10.1016/j.physleta.2018.03.039
10.1016/j.matpr.2021.04.183
10.1063/1.4833554
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-92735-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_5bb5e6eb55cd48e8a953467db153b324
PMC11903861
40074794
10_1038_s41598_025_92735_w
Genre Journal Article
GrantInformation_xml – fundername: Science Foundation Ireland
  grantid: 12/RC/2278; 12/RC/2278; 12/RC/2278; 12/RC/2278
  funderid: http://dx.doi.org/10.13039/501100001602
– fundername: Science Foundation Ireland
  grantid: 12/RC/2278
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
SNYQT
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c422t-7cefa3917fa53e0b7eaccd9d9a329222449d586da6b311a8207cd4b52acb5de03
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:04 EDT 2025
Thu Aug 21 18:34:09 EDT 2025
Fri Jul 11 08:43:26 EDT 2025
Wed Aug 13 09:17:17 EDT 2025
Thu Apr 03 07:03:08 EDT 2025
Sun Jul 06 05:02:49 EDT 2025
Thu Mar 13 04:25:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-7cefa3917fa53e0b7eaccd9d9a329222449d586da6b311a8207cd4b52acb5de03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-92735-w
PMID 40074794
PQID 3176469505
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5bb5e6eb55cd48e8a953467db153b324
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11903861
proquest_miscellaneous_3176682182
proquest_journals_3176469505
pubmed_primary_40074794
crossref_primary_10_1038_s41598_025_92735_w
springer_journals_10_1038_s41598_025_92735_w
PublicationCentury 2000
PublicationDate 2025-03-12
PublicationDateYYYYMMDD 2025-03-12
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References R Mondal (92735_CR35) 2022; 112
S Kharwar (92735_CR39) 2021; 47
D Dass (92735_CR1) 2020; 110
H Karakachian (92735_CR44) 2020; 11
CW Bates (92735_CR24) 1961; 121
S Dutta (92735_CR3) 2010; 20
G Zollo (92735_CR13) 2022; 7
R Yogi (92735_CR41) 2019; 114
J Liu (92735_CR9) 2015; 137
J Lawrence (92735_CR4) 2022; 14
B Bhattacharya (92735_CR34) 2018; 24
Y Zhao (92735_CR45) 2015; 5
V Nam Do (92735_CR47) 2010; 107
DC Elias (92735_CR17) 2009; 323
S Sen (92735_CR23) 1987; 34
S Singh (92735_CR53) 2017; 7
S Ayaz Khan (92735_CR21) 2017; 4
X Wang (92735_CR12) 2021; 144
S Jamalzadeh Kheirabadi (92735_CR54) 2023; 36
S Abdelaal (92735_CR31) 2020; 101
L Gan (92735_CR30) 2012; 4
R Balog (92735_CR16) 2010; 9
A Sengupta (92735_CR52) 2013; 114
NK Jaiswal (92735_CR32) 2013; 12
O Omeroglu (92735_CR19) 2018; 104
R Mondal (92735_CR36) 2020; 97
TD Cassiano (92735_CR15) 2020; 10
M Zoghi (92735_CR46) 2017; 64
PK Srivastava (92735_CR51) 2021; 4
M Brandbyge (92735_CR25) 2002; 65
A Kuloglu (92735_CR40) 2013; 68
P Ruffieux (92735_CR27) 2016; 531
AN Abbas (92735_CR10) 2014; 136
NK Jaiswal (92735_CR43) 2017; 51
Y-W Son (92735_CR6) 2006; 444
AY Goharrizi (92735_CR49) 2016; 63
Y Li (92735_CR7) 2009; 3
Y Li (92735_CR33) 2014; 116
VK Nishad (92735_CR26) 2021; 20
E Salih (92735_CR8) 2021; 125
SK Gupta (92735_CR5) 2015; 86
R Gillen (92735_CR29) 2009; 246
R Beiranvand (92735_CR20) 2016; 35
S Kharwar (92735_CR37) 2021; 50
I Ivanov (92735_CR11) 2017; 139
M Pizzochero (92735_CR18) 2022; 22
P Narin (92735_CR38) 2019; 296
P Tseng (92735_CR48) 2018; 382
Y Zhou (92735_CR50) 2014; 115
H Owlia (92735_CR22) 2023; 22
H Wang (92735_CR2) 2021; 3
R Ishikawa (92735_CR28) 2016; 6
SV Inge (92735_CR42) 2017; 4
H Yang (92735_CR14) 2021; 30
References_xml – volume: 4
  start-page: e31
  year: 2012
  ident: 92735_CR30
  publication-title: NPG Asia Mater
  doi: 10.1038/am.2012.58
– volume: 4
  start-page: 269
  year: 2021
  ident: 92735_CR51
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00549-1
– volume: 64
  start-page: 4322
  year: 2017
  ident: 92735_CR46
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2738838
– volume: 6
  start-page: 21273
  year: 2016
  ident: 92735_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/srep21273
– volume: 107
  year: 2010
  ident: 92735_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3340834
– volume: 30
  year: 2021
  ident: 92735_CR14
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/abfbd0
– volume: 110
  year: 2020
  ident: 92735_CR1
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2020.108131
– volume: 20
  start-page: 92
  year: 2021
  ident: 92735_CR26
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2020.3048734
– volume: 22
  start-page: 1922
  year: 2022
  ident: 92735_CR18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04362
– volume: 12
  start-page: 685
  year: 2013
  ident: 92735_CR32
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2013.2268899
– volume: 4
  start-page: 1391734
  year: 2017
  ident: 92735_CR21
  publication-title: Cogent Phys.
  doi: 10.1080/23311940.2017.1391734
– volume: 531
  start-page: 489
  year: 2016
  ident: 92735_CR27
  publication-title: Nature
  doi: 10.1038/nature17151
– volume: 116
  year: 2014
  ident: 92735_CR33
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4890607
– volume: 112
  year: 2022
  ident: 92735_CR35
  publication-title: J. Mol. Graph Model.
  doi: 10.1016/j.jmgm.2021.108117
– volume: 65
  year: 2002
  ident: 92735_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.165401
– volume: 115
  year: 2014
  ident: 92735_CR50
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4866094
– volume: 20
  start-page: 8207
  year: 2010
  ident: 92735_CR3
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00261e
– volume: 34
  start-page: 2185
  year: 1987
  ident: 92735_CR23
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1987.23215
– volume: 5
  start-page: 1
  year: 2015
  ident: 92735_CR45
  publication-title: Sci. Rep.
– volume: 137
  start-page: 6097
  year: 2015
  ident: 92735_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03017
– volume: 296
  start-page: 8
  year: 2019
  ident: 92735_CR38
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2019.04.005
– volume: 24
  start-page: 1
  year: 2018
  ident: 92735_CR34
  publication-title: J. Mol. Graph Model.
  doi: 10.1007/s00894-017-3528-0
– volume: 246
  start-page: 2577
  year: 2009
  ident: 92735_CR29
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200982343
– volume: 444
  start-page: 347
  year: 2006
  ident: 92735_CR6
  publication-title: Nature
  doi: 10.1038/nature05180
– volume: 7
  start-page: 25164
  year: 2022
  ident: 92735_CR13
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01917
– volume: 22
  start-page: 626
  year: 2023
  ident: 92735_CR22
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-023-02009-9
– volume: 3
  start-page: 1952
  year: 2009
  ident: 92735_CR7
  publication-title: ACS Nano
  doi: 10.1021/nn9003428
– volume: 323
  start-page: 610
  year: 2009
  ident: 92735_CR17
  publication-title: Science
  doi: 10.1126/science.1167130
– volume: 125
  year: 2021
  ident: 92735_CR8
  publication-title: Physica E
  doi: 10.1016/j.physe.2020.114418
– volume: 9
  start-page: 315
  year: 2010
  ident: 92735_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2710
– volume: 3
  start-page: 791
  year: 2021
  ident: 92735_CR2
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00370-x
– volume: 50
  start-page: 1196
  year: 2021
  ident: 92735_CR37
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-020-08637-2
– volume: 51
  start-page: 25
  year: 2017
  ident: 92735_CR43
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.09.002
– volume: 121
  start-page: 1070
  year: 1961
  ident: 92735_CR24
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.121.1070
– volume: 101
  year: 2020
  ident: 92735_CR31
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2019.107613
– volume: 11
  start-page: 6380
  year: 2020
  ident: 92735_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19051-x
– volume: 86
  start-page: 355
  year: 2015
  ident: 92735_CR5
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.07.069
– volume: 7
  start-page: 12783
  year: 2017
  ident: 92735_CR53
  publication-title: RSC Adv.
  doi: 10.1039/C6RA27101D
– volume: 36
  start-page: 13
  year: 2023
  ident: 92735_CR54
  publication-title: J. Condens. Matter Phys.
– volume: 14
  start-page: 1451
  year: 2022
  ident: 92735_CR4
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-022-01042-8
– volume: 97
  year: 2020
  ident: 92735_CR36
  publication-title: J. Mol. Graph Model.
  doi: 10.1016/j.jmgm.2020.107543
– volume: 114
  year: 2019
  ident: 92735_CR41
  publication-title: Physica E
  doi: 10.1016/j.physe.2019.113575
– volume: 35
  start-page: 771
  year: 2016
  ident: 92735_CR20
  publication-title: Rare Metals
  doi: 10.1007/s12598-015-0471-z
– volume: 63
  start-page: 3761
  year: 2016
  ident: 92735_CR49
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2586459
– volume: 144
  start-page: 228
  year: 2021
  ident: 92735_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09000
– volume: 10
  start-page: 26937
  year: 2020
  ident: 92735_CR15
  publication-title: RSC Adv.
  doi: 10.1039/D0RA02997A
– volume: 104
  start-page: 124
  year: 2018
  ident: 92735_CR19
  publication-title: Physica E
  doi: 10.1016/j.physe.2018.07.017
– volume: 136
  start-page: 7555
  year: 2014
  ident: 92735_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502764d
– volume: 4
  start-page: 1700400
  year: 2017
  ident: 92735_CR42
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201700400
– volume: 139
  start-page: 7982
  year: 2017
  ident: 92735_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03467
– volume: 68
  start-page: 18
  year: 2013
  ident: 92735_CR40
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.011
– volume: 382
  start-page: 1427
  year: 2018
  ident: 92735_CR48
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.03.039
– volume: 47
  start-page: 2227
  year: 2021
  ident: 92735_CR39
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.04.183
– volume: 114
  year: 2013
  ident: 92735_CR52
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4833554
SSID ssj0000529419
Score 2.4478734
Snippet Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this...
Abstract Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8598
SubjectTerms 639/301/357/995
639/925/927/1007
Cadmium
Graphene
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBL6btukqJCb62IrYdXOjahIeSQUwO5CT3G7ULjDckuof8-I8m7zfZBL71ashDz_MaSvwF4n2beoBo8l9gmrobW8hAH5BQtddCq820obJ9n_cm5Or3QF_dafeU7YZUeuAruQIegscegdUzKoPFWS3LuFMhVA6GBHH0p590rpiqrt7Cqs9NfMq00BzeUqfLfZEJzSylb89utTFQI-_-EMn-_LPnLiWlJRMdP4PGEINmnuvOn8ADHZ_Cw9pT88RzSkU-X89UluyJYPLUuY1R4kwoTG_FrIfpm674o5N_fGVXcGUWS-mkiiwsaz1_ZWCGzpljIRj8uruch0EoJc2h5AefHn78cnfCplQKPSogln0UcvKTSbPCatBJmFG9jssl6KSxBBKVs0qZPvg-y6zzBghmJO2jhY9AJW_kSdsbFiK-BxZSpQ-k9gVKh6fyAqvXdQCt6oWJs4MNarO6qMma4ctItjatKcKQEV5Tgbhs4zJLfzMxs1-UB2YCbbMD9ywYa2FvrzU0ueOMIGPVU-xPCa-DdZpicJ5-I-BEXqzqnN5nEvoFXVc2bnajSW8DS4mbLALa2uj0yzr8Vgu6OUJY0fdfAx7Wt_NzX32Xx5n_IYhceiWzk-cqh2IOd5fUK9wk3LcPb4iJ3H1AXhg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJu0BRmJG1hN_EjsE4KKquLAiUp7s_xKqUSTbXdXFf-eseNstbyusWONPU977G8A3obOqih6S3msAxV9ranzfaRoLaWTorG1y2ifX9vTM_FlIRflwG1VrlXONjEb6jD6dEZ-hH6uxa0cOuwPyyuaqkal7GopoXEX7iXosiTV3aLbnrGkLJZodHkrU3N1tEJ_ld6UMUk1Om5Jb3b8UYbt_1us-eeVyd_yptkdnTyChyWOJB8nxj-GO3F4AvenypI_n0I4tuHyYnNJlhgclwJmBLffyMhAhnie4b7JXB0FtfwHwX13iiVRCLAj8SO2p7M2kiGt0SKSwQ64IM7hSCEmA_MMzk4-fzs-paWgAvWCsTXtfOwtxw1abyXyxnVodX3QQVvONAYKQuggVRts63jTWAwOOh-Ek8x6J0Os-XPYG8YhvgTiQwIQxf9Y5CKqxvZR1LbpcUTLhPcVvJuX1Swn3AyT891cmYkJBplgMhPMTQWf0spveybM6_xhvD43RYWMdE7GNjopkSgVldWSo5kPDo22w7iwgsOZb6Yo4srcik0Fb7bNqEIpL2KHOG6mPq1KUPYVvJjYvKVE5AoDGgdXOwKwQ-puy3DxPcN0o0TibNumgvezrNzS9e-12P__NA7gAUvim64UskPYW19v4iuMi9budRb-X1a2DvA
  priority: 102
  providerName: ProQuest
Title Cadmium passivation induced negative differential resistance in cove edge graphene nanoribbon device
URI https://link.springer.com/article/10.1038/s41598-025-92735-w
https://www.ncbi.nlm.nih.gov/pubmed/40074794
https://www.proquest.com/docview/3176469505
https://www.proquest.com/docview/3176682182
https://pubmed.ncbi.nlm.nih.gov/PMC11903861
https://doaj.org/article/5bb5e6eb55cd48e8a953467db153b324
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFH5kodBL6V6n6aBCb62prcWWjpMhIcwhlLaBuQltTgcaO0xmCP33eZLtKdOmh54M1sJDn_T0afsewAdfGxl4Y3IWCp_zplC5dU3I0VsKK3hpCpvUPi-q80s-X4jFHtDxLUy6tJ8kLZObHm-Hfb7FiSY-BqMiVzjjivxuHw6jVDv27cPpdP5tvt1ZiWdXvFTDC5mCyQcK78xCSaz_IYb590XJP05L0yR09hSeDOyRTHt7n8FeaJ_Doz6e5K8X4GfGXy831-QGKfEQtozgohvh86QNV0nkm4wxUXBs_yS42o4MEqHHjMR1mB532EgSskY_SFrTdqultViTD9GtvITLs9Pvs_N8CKOQO07pOq9daAzDZVljBCJia_S1ziuvDKMK6QHnygtZeVNZVpYGKUHtPLeCGmeFDwV7BQdt14Y3QJyPsqFYjgbGgyxNE3hhygZrNJQ7l8HHsVn1Ta-WodMpN5O6B0EjCDqBoO8yOIktv80Zla7Tj251pQfktbBWhCpYIdAoGaRRgqFz9xZdtUU2mMHxiJseht-tRlJU4bof2V0G77fJOHDiaYhpQ7fp81QyCthn8LqHeWsJT3EFFFYudzrAjqm7Ke3yRxLnLpFhMVmVGXwa-8pvu_7dFkf_l_0tPKaxO8eLhfQYDtarTXiH7GhtJ7BfL-rJMCjwe3J68eUr_p1Vs0nacbgHGlwS_A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviGcJFDASnCBq4kfiHBCCQrWlpadW2pvxK6VSmyzdXa36p_iNjJ1kq-V163XtWLOexzfjsWcAXrlSS89rnTKfuZTXWZUaW_sUraUwguc6M7Ha52ExOuZfxmK8Bj-HtzDhWuVgE6Ohdq0NZ-TbiHMFhnII2O8nP9LQNSpkV4cWGp1Y7PvLBYZs03d7n5C_rynd_Xy0M0r7rgKp5ZTO0tL6WjOMUmotkEBToumxrnKVZrRCtOS8ckIWTheG5blGhCyt40ZQbY1wPmO47g24icCbhWCvHJfLM52QNeN51b_NyZjcniI-hjdsVKQVOgoiXazgX2wT8Dff9s8rmr_laSP87d6FO73fSj50gnYP1nxzH251nSwvH4Db0e78dH5OJuiM9w3TCIb7KDiONP4klhcnQzcWtCpnBOP84Lui0OFEYlscD2d7JJbQRgtMGt0gA4zBlZwPBu0hHF_LVj-C9aZt_GMg1oWCpfgd9Yx7meva80znNa6oKbc2gTfDtqpJV6dDxfw6k6pjgkImqMgEtUjgY9j55cxQYzv-0F6cqF5llTBG-MIbIZAo6aWuBENYcQZBwqAfmsDWwDfVK_5UXYlpAi-Xw6iyIQ-jG9_OuzmFDKXzE9js2LykhMeOBhUuLlcEYIXU1ZHm9HssC56jb8dkkSfwdpCVK7r-vRdP_v83XsDt0dHXA3Wwd7j_FDZoEOVwnZFuwfrsYu6foU82M8-jIhD4dt2a9wulzUzp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEM-SUsBIcIJoE8dOnANC9LFqKVpViEq9Gb9SKtFk293Vqn-NX8fYSbZaXrde144163l8Mx57BuC1LZRwrFJx5hIbsyopY20qF6O15JqzVCU6VPsc5_vH7NMJP1mDn_1bGH-tsreJwVDbxvgz8iHiXI6hHAL2sOquRRztjj5MLmLfQcpnWvt2Gq2IHLqrBYZv0_cHu8jrN5SO9r7u7Mddh4HYMEpncWFcpTKMWCrFkVhdoBkytrSlymiJyMlYabnIrcp1lqYK0bIwlmlOldHcuiTDdW_BeuGjogGsb--Nj74sT3h8Do2lZfdSJ8nEcIpo6V-0UR6X6DbweLGChqFpwN883T8vbP6WtQ1gOLoP9zovlnxsxe4BrLn6Idxu-1pePQK7o-z52fycTNA179qnEQz-UYwsqd1pKDZO-t4saGN-EIz6vSeLIogTiWlw3J_0kVBQG-0xqVWNLNAaV7LOm7fHcHwjm_0EBnVTu6dAjPXlS_E76jLmRKoqxxKVVriiosyYCN722yonbdUOGbLtmZAtEyQyQQYmyEUE237nlzN9xe3wQ3N5KjsFllxr7nKnOUeihBOq5BmCjNUIGRq90gi2er7JzgxM5bXQRvBqOYwK7LMyqnbNvJ2TC19IP4KNls1LSljob1Di4mJFAFZIXR2pz76HIuEpenqZyNMI3vWyck3Xv_di8_9_4yXcQa2Tnw_Gh8_gLvWS7O820i0YzC7n7jk6aDP9otMEAt9uWvl-AZ57UoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadmium+passivation+induced+negative+differential+resistance+in+cove+edge+graphene+nanoribbon+device&rft.jtitle=Scientific+reports&rft.au=Kharwar%2C+Saurabh&rft.au=Gity%2C+Farzan&rft.au=Hurley%2C+Paul+K.&rft.au=Ansari%2C+Lida&rft.date=2025-03-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-92735-w&rft.externalDocID=PMC11903861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon