Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis
This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline media. Interface engineering could not only induce synergistic effect but also improve the intrinsic activity and increase the number of act...
Saved in:
Published in | Science bulletin Vol. 66; no. 1; pp. 85 - 96 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline media. Interface engineering could not only induce synergistic effect but also improve the intrinsic activity and increase the number of active sites. This review would provide insightful ideas toward rational design of electrocatalysts for alkaline hydrogen electrocatalysis.
[Display omitted]
Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media. Recently, intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis, and the research advances also bring substantial non-trivial fundamental insights accordingly. Herein, we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR. Two major subjects—how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR—are discussed. Specifically, heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components, which could balance the adsorption/desorption behaviors of the intermediates at the interfaces. Meanwhile, interface engineering can effectively tune the electronic structures of the active sites via electronic interaction, interfacial bonding, and lattice strain, which would appropriately optimize the binding energy of targeted intermediates like hydrogen. Furthermore, the confinement effect is critical for delivering high durability by sustaining high density of active sites. At last, our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided. |
---|---|
AbstractList | This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline media. Interface engineering could not only induce synergistic effect but also improve the intrinsic activity and increase the number of active sites. This review would provide insightful ideas toward rational design of electrocatalysts for alkaline hydrogen electrocatalysis.
[Display omitted]
Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media. Recently, intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis, and the research advances also bring substantial non-trivial fundamental insights accordingly. Herein, we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR. Two major subjects—how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR—are discussed. Specifically, heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components, which could balance the adsorption/desorption behaviors of the intermediates at the interfaces. Meanwhile, interface engineering can effectively tune the electronic structures of the active sites via electronic interaction, interfacial bonding, and lattice strain, which would appropriately optimize the binding energy of targeted intermediates like hydrogen. Furthermore, the confinement effect is critical for delivering high durability by sustaining high density of active sites. At last, our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided. Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media. Recently, intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis, and the research advances also bring substantial non-trivial fundamental insights accordingly. Herein, we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR. Two major subjects-how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR-are discussed. Specifically, heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components, which could balance the adsorption/desorption behaviors of the intermediates at the interfaces. Meanwhile, interface engineering can effectively tune the electronic structures of the active sites via electronic interaction, interfacial bonding, and lattice strain, which would appropriately optimize the binding energy of targeted intermediates like hydrogen. Furthermore, the confinement effect is critical for delivering high durability by sustaining high density of active sites. At last, our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided. |
Author | Jiang, Yinzhu Zhao, Guoqiang Pan, Hongge Dou, Shi-Xue Sun, Wenping |
Author_xml | – sequence: 1 givenname: Guoqiang surname: Zhao fullname: Zhao, Guoqiang organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China – sequence: 2 givenname: Yinzhu surname: Jiang fullname: Jiang, Yinzhu organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China – sequence: 3 givenname: Shi-Xue surname: Dou fullname: Dou, Shi-Xue organization: Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia – sequence: 4 givenname: Wenping surname: Sun fullname: Sun, Wenping email: wenpingsun@zju.edu.cn organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China – sequence: 5 givenname: Hongge surname: Pan fullname: Pan, Hongge email: honggepan@zju.edu.cn organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36654318$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNUtNb-AQ-yf6DrJLvd3YAXET8KBS96Dtlk0qauiSSp0n9vStWDB08zMM8z8L5nZOS8Q0IuKJQUaHO1KaOyfcmAQQm8BFofkTEDPp9x1tHR795Wp2Qa4wYgI5zV0J6Q06pp5nVFuzHxC5cwGKmwQLeyDjFYtyq8KdaYDz6msFVpG1AXOKBKwSuZ5LCLKRbJf8qgY4HGWGXRpUIOr3LIT4r1Tge_QvdHsvGcHBs5RJx-zwl5ub97vn2cLZ8eFrc3y5mqGUuztpFgTA0cqhZ1nQcCaMNYVQM2aID2Pae0bdoWK2Cc9xVS2vVqDh3Oua4m5PLw933bv6EW78G-ybATP8kzwA6AyiFjQPOLUBD7hsVG7BsW-4YFcJHry1L3R1I2yWS9S0Ha4X_1-qBiTv1hMewRdAq1Dbkiob39T_8CKZSZLA |
CitedBy_id | crossref_primary_10_1039_D2EE02216H crossref_primary_10_1016_j_jallcom_2022_165814 crossref_primary_10_1016_j_cej_2023_143761 crossref_primary_10_1016_j_jechem_2022_01_031 crossref_primary_10_3390_nano12010132 crossref_primary_10_1016_j_fuel_2024_133227 crossref_primary_10_1039_D3TA01993D crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_1002_aenm_202102134 crossref_primary_10_1002_sstr_202200404 crossref_primary_10_1007_s12274_023_5996_0 crossref_primary_10_1016_j_cej_2022_135186 crossref_primary_10_1016_j_jmst_2023_08_053 crossref_primary_10_1016_j_jiec_2022_12_030 crossref_primary_10_1016_j_ccr_2024_216190 crossref_primary_10_1039_D2NR01974D crossref_primary_10_1039_D3EE04251K crossref_primary_10_1016_j_cej_2024_155118 crossref_primary_10_1016_j_apcatb_2024_124442 crossref_primary_10_1016_j_mtnano_2021_100146 crossref_primary_10_1002_adma_202105400 crossref_primary_10_1039_D2TA09660A crossref_primary_10_1016_j_jechem_2024_02_007 crossref_primary_10_1016_j_colsurfa_2022_130822 crossref_primary_10_1039_D3NR01940C crossref_primary_10_1002_adma_202211099 crossref_primary_10_1016_S1872_2067_23_64532_2 crossref_primary_10_1021_acs_inorgchem_3c00686 crossref_primary_10_1016_j_jallcom_2021_162411 crossref_primary_10_1016_j_jallcom_2023_169727 crossref_primary_10_1016_j_ijhydene_2024_02_053 crossref_primary_10_1038_s41560_024_01604_9 crossref_primary_10_1016_j_cej_2023_141854 crossref_primary_10_1016_j_ijhydene_2024_02_214 crossref_primary_10_1016_j_ccr_2024_216343 crossref_primary_10_1002_smll_202300974 crossref_primary_10_1007_s12274_023_6392_5 crossref_primary_10_1002_adfm_202113224 crossref_primary_10_1021_acs_langmuir_4c01800 crossref_primary_10_1016_S1872_2067_21_63935_9 crossref_primary_10_1002_smll_202107417 crossref_primary_10_1021_acssuschemeng_3c03621 crossref_primary_10_26599_NRE_2024_9120121 crossref_primary_10_1016_j_nanoen_2021_105850 crossref_primary_10_1039_D3QM01000G crossref_primary_10_1016_j_jallcom_2024_178350 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1039_D3CE00695F crossref_primary_10_1016_j_mtphys_2022_100625 crossref_primary_10_3390_ma16217000 crossref_primary_10_1002_adfm_202424753 crossref_primary_10_5796_electrochemistry_23_00072 crossref_primary_10_1002_smll_202401730 crossref_primary_10_1016_j_ijhydene_2022_03_162 crossref_primary_10_1016_j_cej_2023_142538 crossref_primary_10_1002_adfm_202107479 crossref_primary_10_1039_D3CY01485A crossref_primary_10_1016_j_jcis_2023_04_023 crossref_primary_10_1002_adfm_202202227 crossref_primary_10_3390_molecules28155736 crossref_primary_10_1021_acsmaterialslett_3c01144 crossref_primary_10_1007_s10854_021_06830_5 crossref_primary_10_1039_D2DT02373C crossref_primary_10_1016_j_esci_2025_100400 crossref_primary_10_1016_j_fuel_2023_129946 crossref_primary_10_1016_j_apcatb_2022_121434 crossref_primary_10_1016_j_ijhydene_2024_06_381 crossref_primary_10_1016_j_watres_2023_119719 crossref_primary_10_1016_S1872_5805_24_60880_2 crossref_primary_10_1039_D1TA10903K crossref_primary_10_1016_j_nanoen_2024_109299 crossref_primary_10_1002_adfm_202404535 crossref_primary_10_3390_app13053023 crossref_primary_10_5796_electrochemistry_24_00119 crossref_primary_10_1039_D4CE01090F crossref_primary_10_1039_D2TA08870C crossref_primary_10_1002_aenm_202402043 crossref_primary_10_1016_j_jallcom_2022_165362 crossref_primary_10_1002_adma_202502127 crossref_primary_10_1016_j_apsusc_2024_159391 crossref_primary_10_1016_j_jechem_2022_03_038 crossref_primary_10_1016_j_cclet_2022_107861 crossref_primary_10_1016_j_jallcom_2021_159907 crossref_primary_10_1039_D3QM00237C crossref_primary_10_1002_aenm_202403889 crossref_primary_10_1002_adfm_202203263 crossref_primary_10_1016_j_nanoen_2022_107231 crossref_primary_10_1016_j_psep_2023_08_066 crossref_primary_10_1016_j_cej_2023_144375 crossref_primary_10_1002_adfm_202423760 crossref_primary_10_1016_j_jallcom_2023_172827 crossref_primary_10_1002_adfm_202300593 crossref_primary_10_1002_adma_202207114 crossref_primary_10_3390_nano14231907 crossref_primary_10_1002_inf2_12535 crossref_primary_10_1007_s11581_023_05091_y crossref_primary_10_1016_j_apcatb_2023_122744 crossref_primary_10_1016_j_jelechem_2024_118163 crossref_primary_10_1016_j_gee_2023_05_003 crossref_primary_10_1002_inf2_12377 crossref_primary_10_1016_j_jallcom_2021_162614 crossref_primary_10_1016_j_jallcom_2021_159335 crossref_primary_10_1039_D4TA01919A crossref_primary_10_1016_j_apcatb_2022_121534 crossref_primary_10_1002_smll_202300387 crossref_primary_10_2139_ssrn_4055980 crossref_primary_10_1002_adsu_202300017 crossref_primary_10_1021_acs_nanolett_1c01519 crossref_primary_10_1002_advs_202104774 crossref_primary_10_1002_cssc_202201985 crossref_primary_10_1016_j_jallcom_2022_167920 crossref_primary_10_1016_j_cej_2021_130654 crossref_primary_10_1038_s41929_024_01126_3 crossref_primary_10_1016_j_electacta_2023_142524 crossref_primary_10_1016_j_jechem_2022_06_047 crossref_primary_10_1016_j_ccr_2021_214144 crossref_primary_10_1021_acsanm_3c06236 crossref_primary_10_1007_s11426_022_1545_0 crossref_primary_10_1016_j_apcatb_2022_121088 crossref_primary_10_1021_acsami_3c13952 crossref_primary_10_1039_D3TA02004E crossref_primary_10_1016_j_ijhydene_2024_09_257 crossref_primary_10_1016_j_apsusc_2025_162352 crossref_primary_10_1039_D4CS00370E crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1039_D4CE01165A crossref_primary_10_1002_aic_18469 crossref_primary_10_1021_acsami_1c03341 crossref_primary_10_1021_acsnano_2c00641 crossref_primary_10_1002_adfm_202422013 crossref_primary_10_1016_j_apcatb_2024_124140 crossref_primary_10_1016_j_jcis_2023_06_189 crossref_primary_10_1039_D3CE00877K crossref_primary_10_1002_aenm_202401444 crossref_primary_10_1002_smtd_202400007 crossref_primary_10_1016_j_jcis_2024_10_136 crossref_primary_10_1002_adma_202208821 crossref_primary_10_1002_adfm_202010633 crossref_primary_10_1039_D4QM00312H crossref_primary_10_1039_D2TA03021G crossref_primary_10_1016_j_ijhydene_2022_06_266 crossref_primary_10_1016_j_flatc_2024_100674 crossref_primary_10_1016_j_apcatb_2022_121876 crossref_primary_10_1021_acsami_2c13417 crossref_primary_10_1007_s12274_024_6474_z crossref_primary_10_1002_smsc_202300036 crossref_primary_10_1007_s11581_023_05128_2 crossref_primary_10_1016_j_cej_2024_150904 crossref_primary_10_1039_D4NR01835D crossref_primary_10_1002_smll_202304390 crossref_primary_10_1021_acsami_3c03501 crossref_primary_10_1007_s40843_022_2190_7 crossref_primary_10_1002_smll_202305000 crossref_primary_10_1016_j_jallcom_2022_165447 crossref_primary_10_1039_D2SE01414A crossref_primary_10_1016_j_ijhydene_2023_07_353 crossref_primary_10_1039_D2CS00038E crossref_primary_10_1021_acs_inorgchem_3c02487 crossref_primary_10_1016_j_ijhydene_2024_12_165 crossref_primary_10_1021_acsmaterialslett_3c01473 crossref_primary_10_1002_adfm_202113047 crossref_primary_10_1002_sus2_13 crossref_primary_10_1016_j_fuel_2024_131797 crossref_primary_10_1021_acsami_1c25097 crossref_primary_10_1039_D3CY00456B crossref_primary_10_1016_j_apsusc_2022_152757 |
Cites_doi | 10.1126/sciadv.1501602 10.1002/anie.201901010 10.1002/adfm.201803291 10.1016/j.nanoen.2017.11.063 10.1039/D0NR00993H 10.1016/j.scib.2019.10.024 10.1021/acs.nanolett.9b02729 10.1039/C8NR07045H 10.1002/anie.201708484 10.1039/C4CP01385A 10.1038/s41467-019-09210-0 10.1103/PhysRevB.89.115114 10.1002/anie.201907017 10.1016/j.nanoen.2017.08.031 10.1038/s41929-020-0446-9 10.1002/adma.202000872 10.1038/ncomms6848 10.1016/j.electacta.2019.135016 10.1016/j.matt.2019.09.011 10.1002/cssc.201800856 10.1002/adma.201600054 10.1002/adma.201804799 10.34133/2019/4029516 10.1002/anie.201909697 10.1002/anie.201710556 10.1039/C4EE02564D 10.1002/anie.201916314 10.1016/j.mattod.2019.12.003 10.1021/jacs.5b09021 10.1021/jacs.9b09229 10.1021/acscatal.9b03892 10.1016/j.nanoen.2020.104877 10.1016/j.jpowsour.2018.07.125 10.1021/jacs.8b13228 10.1039/C9TA11646J 10.1002/adma.201808066 10.1039/C5CS00434A 10.1038/ncomms10141 10.1063/1.4869749 10.1039/C9NH00485H 10.1039/C9EE01743G 10.1039/C3EE43899F 10.1038/nenergy.2017.31 10.1021/acsnano.7b08724 10.1039/C7SC01615H 10.1038/s41563-018-0133-2 10.1002/adfm.201700451 10.1103/PhysRevB.81.033402 10.1149/2.0471815jes 10.1021/acs.chemrev.9b00248 10.1002/celc.201800690 10.1038/nnano.2016.304 10.1021/acs.chemrev.9b00157 10.1039/C7TA09990H 10.1038/natrevmats.2017.59 10.1039/c1cp20701f 10.1039/C8TA09136F 10.1002/aenm.201801926 10.1021/acs.chemrev.9b00209 10.1016/j.scib.2019.12.003 10.1002/admi.201701666 10.1007/s40820-018-0229-x 10.1038/s41560-019-0326-1 10.1002/adfm.201705583 10.1021/acsnano.8b07841 10.1149/2.0251713jes 10.1016/j.jpowsour.2020.228147 10.1021/acsami.0c00506 10.1016/j.nanoen.2017.12.008 10.2298/JSC131118136D 10.1016/j.nanoen.2019.05.045 10.1039/C7EE02537H 10.1126/science.1211934 10.1021/acsnano.9b02510 10.1038/nchem.1574 10.1002/ange.201908194 10.1016/j.nanoen.2019.05.034 10.1016/j.nanoen.2019.104335 10.1021/acscatal.9b01582 10.1039/C9TA04888J 10.1016/S1381-1169(96)00348-2 10.1073/pnas.1817881116 10.1021/acs.nanolett.0c02782 10.1021/acscatal.9b03506 10.1002/anie.202005241 10.1039/C9CC00582J 10.1038/ncomms5695 10.1002/aenm.201803482 10.1021/acsenergylett.9b00348 10.1021/jacs.7b02434 10.1016/j.electacta.2018.07.104 10.1038/s41467-019-12773-7 10.1016/j.chempr.2020.06.037 10.1021/jacs.6b11291 10.1021/acs.jpcc.9b04731 10.1038/nnano.2015.340 10.1039/D0TA00708K 10.1038/s41467-020-15069-3 10.1016/j.apcatb.2019.118255 10.1021/acsaem.9b02274 10.1016/j.jpowsour.2017.05.006 10.1021/acscatal.7b02787 10.1038/nenergy.2017.70 10.1126/science.aad4998 10.1149/2.0271815jes 10.1016/j.nanoen.2018.09.046 10.1016/j.jcat.2019.10.028 10.1002/adma.201808167 10.1002/adma.201800696 10.1002/anie.201204842 10.1039/C8EE01157E 10.1149/1.3483106 10.1002/smll.201903057 10.1021/acsaem.8b02206 10.1002/ange.201905430 10.1039/C9TA03249E |
ContentType | Journal Article |
Copyright | 2020 Science China Press Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Science China Press – notice: Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM |
DOI | 10.1016/j.scib.2020.09.014 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2095-9281 |
EndPage | 96 |
ExternalDocumentID | 36654318 10_1016_j_scib_2020_09_014 S2095927320306101 |
Genre | Journal Article Review |
GroupedDBID | --M 0R~ 4.4 5VR AACTN AAEDT AAEDW AAIAV AAJKR AAKOC AALRI AAOAW AARTL AAXUO AAYIU ABBBX ABJNI ABMAC ABQEM ABQYD ABTHY ABUDA ABYKQ ACDAQ ACGFS ACIWK ACKNC ACPRK ACRLP ADBBV ADINQ AEBSH AEGNC AEHWI AEJHL AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AFZKB AGUBO AGWZB AGYKE AHBYD AHJVU AIEXJ AIIXL AIKHN AITUG AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AUKKA AVWKF AXJTR AZFZN BGNMA BJAXD BKOJK CCEZO CCVFK CHBEP EBS EFJIC EFLBG FA0 FDB FIRID FRRFC FYGXN IXD KOM KOV M41 M4Y NU0 O9- ROL RSV SOJ SPC SPCBC SSE SSK SST SSU SSZ T5K ~G- -SA -S~ 5XA 5XB AAIAL AANXM AAQFI AATTM AAXKI AAYQN AAYTO AAYWO AAYXX AAYZH ABFSG ABJOX ABTEG ABTMW ACBXY ACSTC ACVFH ADCNI ADKPE ADRFC ADVLN AEIPS AEOHA AEPYU AEUPX AEZWR AFBBN AFHIU AFJKZ AFLOW AFPUW AFUIB AGCQF AGJBK AGQMX AGRNS AHAVH AHSBF AHWEU AIGII AIIUN AIXLP AJBLW AKBMS AKRWK AKYEP AMKLP ANKPU APXCP BNPGV CAJEA CITATION CJPJV CSCUP EJD H13 HX~ Q-- SSH TCJ TGP U1G U5K UG4 NPM |
ID | FETCH-LOGICAL-c422t-76a0ff409037ed4903e00df22340e6ef01bb9117677e30299b3e118bc508e59d3 |
IEDL.DBID | AIKHN |
ISSN | 2095-9273 |
IngestDate | Thu Jan 02 22:53:07 EST 2025 Thu Apr 24 23:05:57 EDT 2025 Tue Jul 01 02:08:24 EDT 2025 Fri Feb 23 02:48:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Heterostructure Electrocatalysis Interface engineering Hydrogen evolution reaction Hydrogen oxidation reaction |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-76a0ff409037ed4903e00df22340e6ef01bb9117677e30299b3e118bc508e59d3 |
PMID | 36654318 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_36654318 crossref_primary_10_1016_j_scib_2020_09_014 crossref_citationtrail_10_1016_j_scib_2020_09_014 elsevier_sciencedirect_doi_10_1016_j_scib_2020_09_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Science bulletin |
PublicationTitleAlternate | Sci Bull (Beijing) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Shui, Du (b0070) 2019; 31 Danilovic, Subbaraman, Strmcnik (b0110) 2013; 78 Yang, Nash, Oliveira (b0150) 2019; 58 Ang, Dinh, Sun (b0100) 2019; 2019 Wang, Xu, Jaroniec (b0175) 2019; 10 Rui, Zhao, Lao (b0475) 2019; 19 Zhang, Shi, Wang (b0245) 2020; 65 Li, Chen, Yan (b0445) 2019; 7 Deng, Novoselov, Fu (b0530) 2016; 11 Tang, Hahn, Klobuchar (b0575) 2014; 16 Jayaramulu, Masa, Tomanec (b0450) 2017; 27 Kim, Kim, Lee (b0505) 2019; 141 Sheng, Zhuang, Gao (b0030) 2015; 6 Sheng, Bivens, Myint (b0570) 2014; 7 Liu, Ma, Huang (b0525) 2019; 31 Ming, Zhang, He (b0290) 2019; 15 Firouzjaie, Mustain (b0050) 2020; 10 Chen, Cui, Zhao (b0545) 2019; 58 Ni, Wang, Schouwink (b0510) 2020; 59 Shen, Lu, Qu (b0355) 2019; 62 Staffell, Scamman, Abad (b0005) 2019; 12 Zeng, Chang, Kubal (b0305) 2017; 2 Gong, Zhou, Tsai (b0340) 2014; 5 Wang, Hao, Jiang (b0105) 2015; 137 Chen, Zhou, Zhao (b0540) 2018; 28 Xie, Ren, Liu (b0325) 2018; 6 Hegde, Sun, Ren (b0205) 2020; 12 Haslam, Chin, Burstein (b0580) 2011; 13 Glenk, Reichelstein (b0010) 2019; 4 Zhao, Jin, Zheng (b0395) 2018; 8 Zhao, Rui, Dou (b0215) 2018; 28 Schnur, Groß (b0495) 2010; 81 Omasta, Wang, Peng (b0550) 2018; 375 Ishikawa, Ohyama, Okubo (b0200) 2020; 12 Yang, Bao, Li (b0320) 2019; 131 Martinez, Komini Babu, Holby (b0065) 2019; 31 Ledezma-Yanez, Wallace, Sebastián-Pascual (b0155) 2017; 2 Li, Ghoshal, Bates (b0380) 2017; 56 Xue, Garlyyev, Watzele (b0040) 2018; 5 Liu, Zhu, Ling (b0170) 2017; 40 Zhang, Zhang, Feng (b0265) 2019; 31 Xin, Vojvodic, Voss (b0485) 2014; 89 Niu, Fang, Zhou (b0310) 2019; 7 Mahmood, Li, Jung (b0425) 2017; 12 Zheng, Jiao, Vasileff (b0125) 2018; 57 Ramaswamy, Mukerjee (b0055) 2019; 119 Zhou, Weng, Popov (b0430) 2018; 12 Danilovic, Subbaraman, Strmcnik (b0115) 2012; 51 Feng, Ye, Xu (b0235) 2016; 28 Gerber, Serp (b0275) 2019; 120 Chen, Gong, Cong (b0220) 2020; 68 Li, Pei, He (b0255) 2019; 9 Zhao, Lin, Rui (b0315) 2018; 10 Bae, Mahmood, Jeon (b0190) 2020; 5 Tranca, Rodríguez-Hernández, Seifert (b0460) 2020; 381 Kweon, Okyay, Kim (b0285) 2020; 11 Zhou, Xie, Jiang (b0440) 2020; 3 Cheng, Li, Zheng (b0470) 2017; 10 Jin, Gu, Chen (b0210) 2020; 6 Wang, Peng, Zhou (b0410) 2019; 7 Chen, Cai, Li (b0295) 2020; 20 Xue, Liu, Ma (b0535) 2020; 65 Bian, Xiao, Sun (b0515) 2020; 263 Wang, Fu, Yang (b0225) 2020; 8 Wang, Parrondo, He (b0360) 2017; 164 Hu, Kuttiyiel, Sasaki (b0145) 2018; 165 Zhao, Li, Cheng (b0560) 2020; 32 Wang, Abruña (b0415) 2017; 139 Shi, Zhang (b0185) 2016; 45 Zheng, Cui, Qian (b0240) 2020; 59 Zhuang, Giles, Zheng (b0405) 2016; 7 Subbaraman, Tripkovic, Strmcnik (b0020) 2011; 334 Ruban, Hammer, Stoltze (b0480) 1997; 115 Feng, Li, Zheng (b0165) 2019; 123 Jin, Liu, Vasileff (b0390) 2018; 12 Rebollar, Intikhab, Snyder (b0135) 2018; 165 Jin, Liu, Jiao (b0345) 2018; 53 Strmcnik, Uchimura, Wang (b0025) 2013; 5 Luo, Guo (b0490) 2017; 2 Tian, Zhao, Sheng (b0095) 2019; 31 Zheng, Jiao, Zhu (b0120) 2016; 138 Campos-Roldán, González-Huerta, Alonso-Vante (b0090) 2018; 283 Wang, Wang, Yang (b0365) 2019; 12 Wang, Zheng, Sheng (b0080) 2020; 36 Jamesh, Sun (b0060) 2018; 400 Huang, Song, Dou (b0555) 2019; 1 Wang, Wang, Li (b0350) 2015; 8 Zheng, Chen, Zheng (b0280) 2019; 9 Chen, Zhang, Wang (b0455) 2019; 116 Yu, Lang, Yin (b0465) 2020; 11 Zhu, Hu, Zhao (b0180) 2020; 120 Seh, Kibsgaard, Dickens (b0015) 2017; 355 Cong, Yi, Song (b0085) 2018; 44 Zang, Niu, Wu (b0590) 2019; 10 Yang, Sun, Han (b0260) 2019; 131 Wei, Zhou, Long (b0330) 2018; 10 Liu, Li, Jiao (b0045) 2019; 141 Lao, Rui, Zhao (b0335) 2019; 58 Davydova, Speck, Paul (b0370) 2019; 9 Okubo, Ohyama, Satsuma (b0420) 2019; 55 Gao, Wang, Li (b0400) 2017; 8 Zheng, Sheng, Zhuang (b0140) 2016; 2 Chattot, Le Bacq, Beermann (b0520) 2018; 17 Kundu, Bhowmik, Mishra (b0130) 2018; 11 Zeng, Peng, Liu (b0195) 2020; 461 Kolb, Calle-Vallejo, Juurlink (b0300) 2014; 140 Shviro, Polani, Dunin-Borkowski (b0250) 2018; 5 Wang, Li, Huang (b0565) 2019; 2 Ohyama, Okubo, Ishikawa (b0035) 2020; 3 Liang, Zhong, Du (b0230) 2019; 13 Intikhab, Snyder, Tang (b0160) 2017; 7 Liu, Wen, Ying (b0585) 2018; 44 Jin, Liu, Chen (b0385) 2019; 4 Wu, Feng, Li (b0435) 2019; 62 Zhao, Rui, Dou (b0270) 2020; 8 Zhao, Hu, Gong (b0500) 2020; 74 Sheng, Gasteiger, Shao-Horn (b0075) 2010; 157 Liu, Lyu, Xiao (b0375) 2019; 327 Ledezma-Yanez (10.1016/j.scib.2020.09.014_b0155) 2017; 2 Strmcnik (10.1016/j.scib.2020.09.014_b0025) 2013; 5 Wang (10.1016/j.scib.2020.09.014_b0350) 2015; 8 Kim (10.1016/j.scib.2020.09.014_b0505) 2019; 141 Kolb (10.1016/j.scib.2020.09.014_b0300) 2014; 140 Li (10.1016/j.scib.2020.09.014_b0445) 2019; 7 Bae (10.1016/j.scib.2020.09.014_b0190) 2020; 5 Huang (10.1016/j.scib.2020.09.014_b0555) 2019; 1 Campos-Roldán (10.1016/j.scib.2020.09.014_b0090) 2018; 283 Zhou (10.1016/j.scib.2020.09.014_b0440) 2020; 3 Liu (10.1016/j.scib.2020.09.014_b0375) 2019; 327 Ang (10.1016/j.scib.2020.09.014_b0100) 2019; 2019 Shi (10.1016/j.scib.2020.09.014_b0185) 2016; 45 Staffell (10.1016/j.scib.2020.09.014_b0005) 2019; 12 Kundu (10.1016/j.scib.2020.09.014_b0130) 2018; 11 Ni (10.1016/j.scib.2020.09.014_b0510) 2020; 59 Schnur (10.1016/j.scib.2020.09.014_b0495) 2010; 81 Wang (10.1016/j.scib.2020.09.014_b0565) 2019; 2 Xin (10.1016/j.scib.2020.09.014_b0485) 2014; 89 Tian (10.1016/j.scib.2020.09.014_b0095) 2019; 31 Ohyama (10.1016/j.scib.2020.09.014_b0035) 2020; 3 Martinez (10.1016/j.scib.2020.09.014_b0065) 2019; 31 Jin (10.1016/j.scib.2020.09.014_b0210) 2020; 6 Zhou (10.1016/j.scib.2020.09.014_b0430) 2018; 12 Hu (10.1016/j.scib.2020.09.014_b0145) 2018; 165 Sheng (10.1016/j.scib.2020.09.014_b0570) 2014; 7 Cong (10.1016/j.scib.2020.09.014_b0085) 2018; 44 Jayaramulu (10.1016/j.scib.2020.09.014_b0450) 2017; 27 Bian (10.1016/j.scib.2020.09.014_b0515) 2020; 263 Yu (10.1016/j.scib.2020.09.014_b0465) 2020; 11 Liang (10.1016/j.scib.2020.09.014_b0230) 2019; 13 Chen (10.1016/j.scib.2020.09.014_b0295) 2020; 20 Shviro (10.1016/j.scib.2020.09.014_b0250) 2018; 5 Omasta (10.1016/j.scib.2020.09.014_b0550) 2018; 375 Feng (10.1016/j.scib.2020.09.014_b0235) 2016; 28 Zhao (10.1016/j.scib.2020.09.014_b0395) 2018; 8 Subbaraman (10.1016/j.scib.2020.09.014_b0020) 2011; 334 Wu (10.1016/j.scib.2020.09.014_b0435) 2019; 62 Danilovic (10.1016/j.scib.2020.09.014_b0115) 2012; 51 Jin (10.1016/j.scib.2020.09.014_b0385) 2019; 4 Luo (10.1016/j.scib.2020.09.014_b0490) 2017; 2 Okubo (10.1016/j.scib.2020.09.014_b0420) 2019; 55 Wang (10.1016/j.scib.2020.09.014_b0410) 2019; 7 Gerber (10.1016/j.scib.2020.09.014_b0275) 2019; 120 Zheng (10.1016/j.scib.2020.09.014_b0140) 2016; 2 Zhang (10.1016/j.scib.2020.09.014_b0245) 2020; 65 Ruban (10.1016/j.scib.2020.09.014_b0480) 1997; 115 Chattot (10.1016/j.scib.2020.09.014_b0520) 2018; 17 Rebollar (10.1016/j.scib.2020.09.014_b0135) 2018; 165 Wang (10.1016/j.scib.2020.09.014_b0360) 2017; 164 Jin (10.1016/j.scib.2020.09.014_b0345) 2018; 53 Davydova (10.1016/j.scib.2020.09.014_b0370) 2019; 9 Feng (10.1016/j.scib.2020.09.014_b0165) 2019; 123 Zeng (10.1016/j.scib.2020.09.014_b0305) 2017; 2 Niu (10.1016/j.scib.2020.09.014_b0310) 2019; 7 Wang (10.1016/j.scib.2020.09.014_b0225) 2020; 8 Chen (10.1016/j.scib.2020.09.014_b0455) 2019; 116 Zhao (10.1016/j.scib.2020.09.014_b0315) 2018; 10 Xue (10.1016/j.scib.2020.09.014_b0535) 2020; 65 Liu (10.1016/j.scib.2020.09.014_b0045) 2019; 141 Gong (10.1016/j.scib.2020.09.014_b0340) 2014; 5 Yang (10.1016/j.scib.2020.09.014_b0070) 2019; 31 Li (10.1016/j.scib.2020.09.014_b0380) 2017; 56 Hegde (10.1016/j.scib.2020.09.014_b0205) 2020; 12 Yang (10.1016/j.scib.2020.09.014_b0260) 2019; 131 Li (10.1016/j.scib.2020.09.014_b0255) 2019; 9 Shen (10.1016/j.scib.2020.09.014_b0355) 2019; 62 Zhao (10.1016/j.scib.2020.09.014_b0500) 2020; 74 Tranca (10.1016/j.scib.2020.09.014_b0460) 2020; 381 Xue (10.1016/j.scib.2020.09.014_b0040) 2018; 5 Liu (10.1016/j.scib.2020.09.014_b0525) 2019; 31 Jin (10.1016/j.scib.2020.09.014_b0390) 2018; 12 Jamesh (10.1016/j.scib.2020.09.014_b0060) 2018; 400 Haslam (10.1016/j.scib.2020.09.014_b0580) 2011; 13 Yang (10.1016/j.scib.2020.09.014_b0150) 2019; 58 Wang (10.1016/j.scib.2020.09.014_b0365) 2019; 12 Sheng (10.1016/j.scib.2020.09.014_b0030) 2015; 6 Zang (10.1016/j.scib.2020.09.014_b0590) 2019; 10 Zheng (10.1016/j.scib.2020.09.014_b0280) 2019; 9 Zeng (10.1016/j.scib.2020.09.014_b0195) 2020; 461 Zheng (10.1016/j.scib.2020.09.014_b0120) 2016; 138 Zheng (10.1016/j.scib.2020.09.014_b0125) 2018; 57 Zhuang (10.1016/j.scib.2020.09.014_b0405) 2016; 7 Wang (10.1016/j.scib.2020.09.014_b0105) 2015; 137 Wei (10.1016/j.scib.2020.09.014_b0330) 2018; 10 Wang (10.1016/j.scib.2020.09.014_b0175) 2019; 10 Gao (10.1016/j.scib.2020.09.014_b0400) 2017; 8 Chen (10.1016/j.scib.2020.09.014_b0220) 2020; 68 Danilovic (10.1016/j.scib.2020.09.014_b0110) 2013; 78 Liu (10.1016/j.scib.2020.09.014_b0170) 2017; 40 Zhao (10.1016/j.scib.2020.09.014_b0270) 2020; 8 Zhang (10.1016/j.scib.2020.09.014_b0265) 2019; 31 Yang (10.1016/j.scib.2020.09.014_b0320) 2019; 131 Chen (10.1016/j.scib.2020.09.014_b0540) 2018; 28 Seh (10.1016/j.scib.2020.09.014_b0015) 2017; 355 Kweon (10.1016/j.scib.2020.09.014_b0285) 2020; 11 Liu (10.1016/j.scib.2020.09.014_b0585) 2018; 44 Sheng (10.1016/j.scib.2020.09.014_b0075) 2010; 157 Cheng (10.1016/j.scib.2020.09.014_b0470) 2017; 10 Ming (10.1016/j.scib.2020.09.014_b0290) 2019; 15 Ramaswamy (10.1016/j.scib.2020.09.014_b0055) 2019; 119 Wang (10.1016/j.scib.2020.09.014_b0080) 2020; 36 Wang (10.1016/j.scib.2020.09.014_b0415) 2017; 139 Mahmood (10.1016/j.scib.2020.09.014_b0425) 2017; 12 Rui (10.1016/j.scib.2020.09.014_b0475) 2019; 19 Chen (10.1016/j.scib.2020.09.014_b0545) 2019; 58 Tang (10.1016/j.scib.2020.09.014_b0575) 2014; 16 Firouzjaie (10.1016/j.scib.2020.09.014_b0050) 2020; 10 Glenk (10.1016/j.scib.2020.09.014_b0010) 2019; 4 Zhao (10.1016/j.scib.2020.09.014_b0215) 2018; 28 Lao (10.1016/j.scib.2020.09.014_b0335) 2019; 58 Zhu (10.1016/j.scib.2020.09.014_b0180) 2020; 120 Zheng (10.1016/j.scib.2020.09.014_b0240) 2020; 59 Zhao (10.1016/j.scib.2020.09.014_b0560) 2020; 32 Xie (10.1016/j.scib.2020.09.014_b0325) 2018; 6 Ishikawa (10.1016/j.scib.2020.09.014_b0200) 2020; 12 Deng (10.1016/j.scib.2020.09.014_b0530) 2016; 11 Intikhab (10.1016/j.scib.2020.09.014_b0160) 2017; 7 |
References_xml | – volume: 157 start-page: B1529 year: 2010 end-page: B1536 ident: b0075 article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs. alkaline electrolytes publication-title: J Electrochem Soc – volume: 2 start-page: 17059 year: 2017 ident: b0490 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat Rev Mater – volume: 11 start-page: 1278 year: 2020 ident: b0285 article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency publication-title: Nat Commun – volume: 62 start-page: 117 year: 2019 end-page: 126 ident: b0435 article-title: Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media publication-title: Nano Energy – volume: 12 start-page: 463 year: 2019 end-page: 491 ident: b0005 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ Sci – volume: 9 start-page: 1803482 year: 2019 ident: b0280 article-title: Electronic structure engineering of LiCoO publication-title: Adv Energy Mater – volume: 44 start-page: 7 year: 2018 end-page: 14 ident: b0585 article-title: Amorphous Ni(OH) publication-title: Nano Energy – volume: 2 start-page: 17070 year: 2017 ident: b0305 article-title: Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion publication-title: Nat Energy – volume: 4 start-page: 216 year: 2019 end-page: 222 ident: b0010 article-title: Economics of converting renewable power to hydrogen publication-title: Nat Energy – volume: 5 start-page: 1701666 year: 2018 ident: b0250 article-title: Bifunctional electrocatalysis on pd-ni core-shell nanoparticles for hydrogen oxidation reaction in alkaline medium publication-title: Adv Mater Interfaces – volume: 4 start-page: 805 year: 2019 end-page: 810 ident: b0385 article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction publication-title: ACS Energy Lett – volume: 55 start-page: 3101 year: 2019 end-page: 3104 ident: b0420 article-title: Surface modification of Pt nanoparticles with other metals boosting the alkaline hydrogen oxidation reaction publication-title: Chem Commun – volume: 13 start-page: 7975 year: 2019 end-page: 7984 ident: b0230 article-title: Interfacing epitaxial dinickel phosphide to 2D nickel thiophosphate nanosheets for boosting electrocatalytic water splitting publication-title: ACS Nano – volume: 8 start-page: 5728 year: 2017 end-page: 5734 ident: b0400 article-title: A nickel nanocatalyst within a H-BN shell for enhanced hydrogen oxidation reactions publication-title: Chem Sci – volume: 10 start-page: 75 year: 2018 ident: b0330 article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions publication-title: Nano-micro Lett – volume: 62 start-page: 601 year: 2019 end-page: 609 ident: b0355 article-title: Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media? publication-title: Nano Energy – volume: 355 year: 2017 ident: b0015 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 12 start-page: 4148 year: 2018 end-page: 4155 ident: b0430 article-title: Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions publication-title: ACS Nano – volume: 2 start-page: 3160 year: 2019 end-page: 3165 ident: b0565 article-title: Exploring the composition-activity relation of Ni-Cu binary alloy electrocatalysts for hydrogen oxidation reaction in alkaline media publication-title: ACS Appl Energy Mater – volume: 28 start-page: 1803291 year: 2018 ident: b0215 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv Funct Mater – volume: 131 start-page: 14317 year: 2019 end-page: 14321 ident: b0320 article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO publication-title: Angew Chem – volume: 8 start-page: 1801926 year: 2018 ident: b0395 article-title: Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis publication-title: Adv Energy Mater – volume: 461 year: 2020 ident: b0195 article-title: Extraordinary activity of mesoporous carbon supported ru toward the hydrogen oxidation reaction in alkaline media publication-title: J Power Sources – volume: 10 start-page: 2450 year: 2017 end-page: 2458 ident: b0470 article-title: Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction publication-title: Energy Environ Sci – volume: 2 year: 2017 ident: b0155 article-title: Interfacial water reorganization as a ph-dependent descriptor of the hydrogen evolution rate on platinum electrodes publication-title: Nat Energy – volume: 32 start-page: 2000872 year: 2020 ident: b0560 article-title: An Ir/Ni(OH) publication-title: Adv Mater – volume: 119 start-page: 11945 year: 2019 end-page: 11979 ident: b0055 article-title: Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer publication-title: Chem Rev – volume: 58 start-page: 12540 year: 2019 end-page: 12544 ident: b0545 article-title: Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution publication-title: Angew Chem Int Ed – volume: 2 year: 2016 ident: b0140 article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy publication-title: Sci Adv – volume: 59 start-page: 14533 year: 2020 end-page: 14540 ident: b0240 article-title: Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting publication-title: Angew Chem Int Ed – volume: 12 start-page: 441 year: 2017 end-page: 446 ident: b0425 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat Nanotechnol – volume: 141 start-page: 18256 year: 2019 end-page: 18263 ident: b0505 article-title: Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core-shell nanocrystals publication-title: J Am Chem Soc – volume: 120 start-page: 851 year: 2020 end-page: 918 ident: b0180 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem Rev – volume: 12 start-page: 8432 year: 2020 end-page: 8442 ident: b0205 article-title: NiAg publication-title: Nanoscale – volume: 19 start-page: 8447 year: 2019 end-page: 8453 ident: b0475 article-title: Direct hybridization of noble metal nanostructures on 2D metal–organic framework nanosheets to catalyze hydrogen evolution publication-title: Nano Lett – volume: 7 start-page: 8314 year: 2017 end-page: 8319 ident: b0160 article-title: Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis publication-title: ACS Catal – volume: 31 start-page: 1800696 year: 2019 ident: b0525 article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications publication-title: Adv Mater – volume: 16 start-page: 19250 year: 2014 end-page: 19257 ident: b0575 article-title: Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte publication-title: Phys Chem Chem Phys – volume: 9 start-page: 6837 year: 2019 end-page: 6845 ident: b0370 article-title: Stability limits of Ni-based hydrogen oxidation electrocatalysts for anion exchange membrane fuel cells publication-title: ACS Catal – volume: 400 start-page: 31 year: 2018 end-page: 68 ident: b0060 article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–a review publication-title: J Power Sources – volume: 165 start-page: J3209 year: 2018 end-page: J3221 ident: b0135 article-title: Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling publication-title: J Electrochem Soc – volume: 15 start-page: 1903057 year: 2019 ident: b0290 article-title: Room-temperature sustainable synthesis of selected platinum group metal (PGM= Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation publication-title: Small – volume: 81 year: 2010 ident: b0495 article-title: Strain and coordination effects in the adsorption properties of early transition metals: a density-functional theory study publication-title: Phys Rev B – volume: 1 start-page: 1494 year: 2019 end-page: 1518 ident: b0555 article-title: Strategies to break the scaling relation toward enhanced oxygen electrocatalysis publication-title: Matter – volume: 20 start-page: 6807 year: 2020 end-page: 6814 ident: b0295 article-title: Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts towards oxygen reduction reaction publication-title: Nano Lett – volume: 17 start-page: 827 year: 2018 end-page: 833 ident: b0520 article-title: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis publication-title: Nat Mater – volume: 375 start-page: 205 year: 2018 end-page: 213 ident: b0550 article-title: Importance of balancing membrane and electrode water in anion exchange membrane fuel cells publication-title: J Power Sources – volume: 44 start-page: 288 year: 2018 end-page: 303 ident: b0085 article-title: Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts publication-title: Nano Energy – volume: 140 year: 2014 ident: b0300 article-title: Density functional theory study of adsorption of H publication-title: J Chem Phys – volume: 334 start-page: 1256 year: 2011 end-page: 1260 ident: b0020 article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li publication-title: Science – volume: 5 start-page: 300 year: 2013 end-page: 306 ident: b0025 article-title: Improviing the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption publication-title: Nat Chem – volume: 53 start-page: 690 year: 2018 end-page: 697 ident: b0345 article-title: Constructing tunable dual active sites on two-dimensional C publication-title: Nano Energy – volume: 139 start-page: 6807 year: 2017 end-page: 6810 ident: b0415 article-title: IrPdRu/C as H publication-title: J Am Chem Soc – volume: 59 start-page: 10797 year: 2020 end-page: 10801 ident: b0510 article-title: Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles publication-title: Angew Chem Int Ed – volume: 27 year: 2017 ident: b0450 article-title: Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal‐organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution publication-title: Adv Funct Mater – volume: 263 year: 2020 ident: b0515 article-title: Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: a case for studying electronic and ensemble effects in hydrogen evolution reaction publication-title: Appl Catal B – volume: 74 year: 2020 ident: b0500 article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis publication-title: Nano Energy – volume: 123 start-page: 23931 year: 2019 end-page: 23939 ident: b0165 article-title: Role of hydroxyl species in hydrogen oxidation reaction: a DFT study publication-title: J Phys Chem C – volume: 8 start-page: 6926 year: 2020 end-page: 6956 ident: b0225 article-title: Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis publication-title: J Mater Chem A – volume: 141 start-page: 3232 year: 2019 end-page: 3239 ident: b0045 article-title: Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts publication-title: J Am Chem Soc – volume: 9 start-page: 10870 year: 2019 end-page: 10875 ident: b0255 article-title: Hybrids of ptru nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction publication-title: ACS Catal – volume: 11 year: 2020 ident: b0465 article-title: Pt-O bond as an active site superior to Pt publication-title: Nat Commun – volume: 13 start-page: 12968 year: 2011 end-page: 12974 ident: b0580 article-title: Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon publication-title: Phys Chem Chem Phys – volume: 28 start-page: 4698 year: 2016 end-page: 4703 ident: b0235 article-title: Design and synthesis of FeOOH/CeO publication-title: Adv Mater – volume: 58 start-page: 5432 year: 2019 end-page: 5437 ident: b0335 article-title: Platinum/nickel bicarbonateheterostructures towardsaccelerated hydrogen evolution under alkalineconditions publication-title: Angew Chem Int Ed – volume: 7 start-page: 1719 year: 2014 end-page: 1724 ident: b0570 article-title: Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes publication-title: Energy Environ Sci – volume: 10 start-page: 1217 year: 2019 ident: b0590 article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability publication-title: Nat Commun – volume: 56 start-page: 15594 year: 2017 end-page: 15598 ident: b0380 article-title: Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media publication-title: Angew Chem Int Ed – volume: 115 start-page: 421 year: 1997 end-page: 429 ident: b0480 article-title: Surface electronic structure and reactivity of transition and noble metals publication-title: J Mol Catal A Chem – volume: 381 start-page: 234 year: 2020 end-page: 247 ident: b0460 article-title: Theoretical models for hydrogen evolution reaction at combined Mo publication-title: J Catal – volume: 164 start-page: F1307 year: 2017 end-page: F1315 ident: b0360 article-title: Pt/C/Ni(OH) publication-title: J Electrochem Soc – volume: 165 start-page: J3355 year: 2018 end-page: J3362 ident: b0145 article-title: Determination of hydrogen oxidation reaction mechanism based on Pt-H-ad energetics in alkaline electrolyte publication-title: J Electrochem Soc – volume: 8 start-page: 177 year: 2015 end-page: 181 ident: b0350 article-title: Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? publication-title: Energy Environ Sci – volume: 120 start-page: 1250 year: 2019 end-page: 1349 ident: b0275 article-title: A theory/experience description of support effects in carbon-supported catalysts publication-title: Chem Rev – volume: 5 start-page: 2326 year: 2018 end-page: 2329 ident: b0040 article-title: Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes publication-title: ChemElectroChem – volume: 6 start-page: 1967 year: 2018 end-page: 1970 ident: b0325 article-title: Ni(OH) publication-title: J Mater Chem A – volume: 5 start-page: 4695 year: 2014 ident: b0340 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat Commun – volume: 58 start-page: 17718 year: 2019 end-page: 17723 ident: b0150 article-title: Understanding the ph dependence of underpotential deposited hydrogen on platinum publication-title: Angew Chem Int Ed – volume: 57 start-page: 7568 year: 2018 end-page: 7579 ident: b0125 article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts publication-title: Angew Chem Int Ed – volume: 131 start-page: 10754 year: 2019 end-page: 10759 ident: b0260 article-title: Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal–organic framework publication-title: Angew Chem – volume: 7 start-page: 6676 year: 2019 end-page: 6685 ident: b0410 article-title: Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction publication-title: J Mater Chem A – volume: 40 start-page: 264 year: 2017 end-page: 273 ident: b0170 article-title: S-NiFe publication-title: Nano Energy – volume: 10 start-page: 4876 year: 2019 ident: b0175 article-title: Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions publication-title: Nat Commun – volume: 31 year: 2019 ident: b0095 article-title: Hydrogen evolution and oxidation: mechanistic studies and material advances publication-title: Adv Mater – volume: 5 start-page: 43 year: 2020 end-page: 56 ident: b0190 article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction publication-title: Nanoscale Horiz – volume: 3 start-page: 1854 year: 2020 end-page: 1859 ident: b0035 article-title: Removal of surface poisoning improving hydrogen oxidation performance of Pt catalysts under basic conditions publication-title: ACS Appl Energy Mater – volume: 28 start-page: 1705583 year: 2018 ident: b0540 article-title: Electrochemically inert g-C publication-title: Adv Funct Mater – volume: 78 start-page: 2007 year: 2013 end-page: 2015 ident: b0110 article-title: Electrocatalysis of the HER in acid and alkaline media publication-title: J Serb Chem Soc – volume: 11 start-page: 2388 year: 2018 end-page: 2401 ident: b0130 article-title: Platinum nanostructure/nitrogen‐doped carbon hybrid: enhancing its base media HER/HOR activity through bi‐functionality of the catalyst publication-title: ChemSusChem – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: b0185 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem Soc Rev – volume: 116 start-page: 6635 year: 2019 end-page: 6640 ident: b0455 article-title: Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 454 year: 2020 end-page: 462 ident: b0440 article-title: Lattice-confined ru clusters with high Co tolerance and activity for the hydrogen oxidation reaction publication-title: Nat Catal – volume: 65 start-page: 359 year: 2020 end-page: 366 ident: b0245 article-title: Vertically aligned NiS publication-title: Sci Bull – volume: 51 start-page: 12495 year: 2012 end-page: 12498 ident: b0115 article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH) publication-title: Angew Chem Int Ed – volume: 12 start-page: 12761 year: 2018 end-page: 12769 ident: b0390 article-title: Single-crystal nitrogen-rich two-dimensional Mo publication-title: ACS Nano – volume: 6 start-page: 2382 year: 2020 end-page: 2394 ident: b0210 article-title: Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution publication-title: Chem – volume: 138 start-page: 16174 year: 2016 end-page: 16181 ident: b0120 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J Am Chem Soc – volume: 12 start-page: 3522 year: 2019 end-page: 3529 ident: b0365 article-title: Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution publication-title: Energy Environ Sci – volume: 137 start-page: 15070 year: 2015 end-page: 15073 ident: b0105 article-title: C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction publication-title: J Am Chem Soc – volume: 8 start-page: 6393 year: 2020 end-page: 6405 ident: b0270 article-title: Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts publication-title: J Mater Chem A – volume: 89 year: 2014 ident: b0485 article-title: Effects of d-band shape on the surface reactivity of transition-metal alloys publication-title: Phys Rev B – volume: 10 start-page: 225 year: 2020 end-page: 234 ident: b0050 article-title: Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells publication-title: ACS Catal – volume: 327 year: 2019 ident: b0375 article-title: Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media publication-title: Electrochim Acta – volume: 31 start-page: 1808167 year: 2019 ident: b0265 article-title: Support and interface effects in water-splitting electrocatalysts publication-title: Adv Mater – volume: 7 start-page: 10141 year: 2016 ident: b0405 article-title: Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte publication-title: Nat Commun – volume: 12 start-page: 22771 year: 2020 end-page: 22777 ident: b0200 article-title: Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site publication-title: ACS Appl Mater Interfaces – volume: 6 year: 2015 ident: b0030 article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy publication-title: Nat Commun – volume: 36 start-page: 125 year: 2020 end-page: 138 ident: b0080 article-title: Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions publication-title: Mater Today – volume: 2019 year: 2019 ident: b0100 article-title: Highly efficient and stable hydrogen production in all ph range by two-dimensional structured metal-doped tungsten semicarbides publication-title: Research – volume: 68 year: 2020 ident: b0220 article-title: Eutectoid-structured WC/W publication-title: Nano Energy – volume: 7 start-page: 23432 year: 2019 end-page: 23450 ident: b0445 article-title: Interfacial effects in supported catalysts for electrocatalysis publication-title: J Mater Chem A – volume: 11 start-page: 218 year: 2016 end-page: 230 ident: b0530 article-title: Catalysis with two-dimensional materials and their heterostructures publication-title: Nat Nanotechnol – volume: 7 start-page: 10924 year: 2019 end-page: 10929 ident: b0310 article-title: Manipulating the water dissociation kinetics of Ni publication-title: J Mater Chem A – volume: 31 start-page: 1804799 year: 2019 ident: b0070 article-title: Carbon-based metal-free orr electrocatalysts for fuel cells: past, present, and future publication-title: Adv Mater – volume: 65 start-page: 123 year: 2020 end-page: 130 ident: b0535 article-title: A highly active and durable electrocatalyst for large current density hydrogen evolution reaction publication-title: Sci Bull – volume: 283 start-page: 1829 year: 2018 end-page: 1834 ident: b0090 article-title: The oxophilic and electronic effects on anchored platinum nanoparticles on sp publication-title: Electrochim Acta – volume: 10 start-page: 19074 year: 2018 end-page: 19081 ident: b0315 article-title: Epitaxial growth of Ni(OH) publication-title: Nanoscale – volume: 31 start-page: eaad4998 year: 2019 end-page: 1806545 ident: b0065 article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction publication-title: Adv Mater – volume: 2 year: 2016 ident: 10.1016/j.scib.2020.09.014_b0140 article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy publication-title: Sci Adv doi: 10.1126/sciadv.1501602 – volume: 58 start-page: 5432 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0335 article-title: Platinum/nickel bicarbonateheterostructures towardsaccelerated hydrogen evolution under alkalineconditions publication-title: Angew Chem Int Ed doi: 10.1002/anie.201901010 – volume: 28 start-page: 1803291 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0215 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv Funct Mater doi: 10.1002/adfm.201803291 – volume: 44 start-page: 7 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0585 article-title: Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: a mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.063 – volume: 12 start-page: 8432 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0205 article-title: NiAg0.4 3D porous nanoclusters with epitaxial interfaces exhibiting Pt like activity towards hydrogen evolution in alkaline medium publication-title: Nanoscale doi: 10.1039/D0NR00993H – volume: 65 start-page: 123 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0535 article-title: A highly active and durable electrocatalyst for large current density hydrogen evolution reaction publication-title: Sci Bull doi: 10.1016/j.scib.2019.10.024 – volume: 19 start-page: 8447 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0475 article-title: Direct hybridization of noble metal nanostructures on 2D metal–organic framework nanosheets to catalyze hydrogen evolution publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b02729 – volume: 10 start-page: 19074 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0315 article-title: Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR07045H – volume: 56 start-page: 15594 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0380 article-title: Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media publication-title: Angew Chem Int Ed doi: 10.1002/anie.201708484 – volume: 11 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0465 article-title: Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction publication-title: Nat Commun – volume: 16 start-page: 19250 year: 2014 ident: 10.1016/j.scib.2020.09.014_b0575 article-title: Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP01385A – volume: 10 start-page: 1217 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0590 article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability publication-title: Nat Commun doi: 10.1038/s41467-019-09210-0 – volume: 89 year: 2014 ident: 10.1016/j.scib.2020.09.014_b0485 article-title: Effects of d-band shape on the surface reactivity of transition-metal alloys publication-title: Phys Rev B doi: 10.1103/PhysRevB.89.115114 – volume: 58 start-page: 12540 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0545 article-title: Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution publication-title: Angew Chem Int Ed doi: 10.1002/anie.201907017 – volume: 40 start-page: 264 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0170 article-title: S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.031 – volume: 3 start-page: 454 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0440 article-title: Lattice-confined ru clusters with high Co tolerance and activity for the hydrogen oxidation reaction publication-title: Nat Catal doi: 10.1038/s41929-020-0446-9 – volume: 32 start-page: 2000872 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0560 article-title: An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium (V), and beyond publication-title: Adv Mater doi: 10.1002/adma.202000872 – volume: 6 year: 2015 ident: 10.1016/j.scib.2020.09.014_b0030 article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy publication-title: Nat Commun doi: 10.1038/ncomms6848 – volume: 327 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0375 article-title: Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.135016 – volume: 1 start-page: 1494 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0555 article-title: Strategies to break the scaling relation toward enhanced oxygen electrocatalysis publication-title: Matter doi: 10.1016/j.matt.2019.09.011 – volume: 11 start-page: 2388 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0130 article-title: Platinum nanostructure/nitrogen‐doped carbon hybrid: enhancing its base media HER/HOR activity through bi‐functionality of the catalyst publication-title: ChemSusChem doi: 10.1002/cssc.201800856 – volume: 28 start-page: 4698 year: 2016 ident: 10.1016/j.scib.2020.09.014_b0235 article-title: Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction publication-title: Adv Mater doi: 10.1002/adma.201600054 – volume: 31 start-page: 1804799 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0070 article-title: Carbon-based metal-free orr electrocatalysts for fuel cells: past, present, and future publication-title: Adv Mater doi: 10.1002/adma.201804799 – volume: 2019 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0100 article-title: Highly efficient and stable hydrogen production in all ph range by two-dimensional structured metal-doped tungsten semicarbides publication-title: Research doi: 10.34133/2019/4029516 – volume: 58 start-page: 17718 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0150 article-title: Understanding the ph dependence of underpotential deposited hydrogen on platinum publication-title: Angew Chem Int Ed doi: 10.1002/anie.201909697 – volume: 57 start-page: 7568 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0125 article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts publication-title: Angew Chem Int Ed doi: 10.1002/anie.201710556 – volume: 8 start-page: 177 year: 2015 ident: 10.1016/j.scib.2020.09.014_b0350 article-title: Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? publication-title: Energy Environ Sci doi: 10.1039/C4EE02564D – volume: 59 start-page: 10797 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0510 article-title: Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles publication-title: Angew Chem Int Ed doi: 10.1002/anie.201916314 – volume: 36 start-page: 125 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0080 article-title: Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions publication-title: Mater Today doi: 10.1016/j.mattod.2019.12.003 – volume: 137 start-page: 15070 year: 2015 ident: 10.1016/j.scib.2020.09.014_b0105 article-title: C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction publication-title: J Am Chem Soc doi: 10.1021/jacs.5b09021 – volume: 141 start-page: 18256 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0505 article-title: Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core-shell nanocrystals publication-title: J Am Chem Soc doi: 10.1021/jacs.9b09229 – volume: 10 start-page: 225 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0050 article-title: Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells publication-title: ACS Catal doi: 10.1021/acscatal.9b03892 – volume: 74 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0500 article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104877 – volume: 400 start-page: 31 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0060 article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–a review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.07.125 – volume: 141 start-page: 3232 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0045 article-title: Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts publication-title: J Am Chem Soc doi: 10.1021/jacs.8b13228 – volume: 8 start-page: 6926 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0225 article-title: Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis publication-title: J Mater Chem A doi: 10.1039/C9TA11646J – volume: 31 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0095 article-title: Hydrogen evolution and oxidation: mechanistic studies and material advances publication-title: Adv Mater doi: 10.1002/adma.201808066 – volume: 45 start-page: 1529 year: 2016 ident: 10.1016/j.scib.2020.09.014_b0185 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem Soc Rev doi: 10.1039/C5CS00434A – volume: 7 start-page: 10141 year: 2016 ident: 10.1016/j.scib.2020.09.014_b0405 article-title: Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte publication-title: Nat Commun doi: 10.1038/ncomms10141 – volume: 140 year: 2014 ident: 10.1016/j.scib.2020.09.014_b0300 article-title: Density functional theory study of adsorption of H2O, H, O, and OH on stepped platinum surfaces publication-title: J Chem Phys doi: 10.1063/1.4869749 – volume: 5 start-page: 43 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0190 article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction publication-title: Nanoscale Horiz doi: 10.1039/C9NH00485H – volume: 12 start-page: 3522 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0365 article-title: Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution publication-title: Energy Environ Sci doi: 10.1039/C9EE01743G – volume: 7 start-page: 1719 year: 2014 ident: 10.1016/j.scib.2020.09.014_b0570 article-title: Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes publication-title: Energy Environ Sci doi: 10.1039/C3EE43899F – volume: 2 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0155 article-title: Interfacial water reorganization as a ph-dependent descriptor of the hydrogen evolution rate on platinum electrodes publication-title: Nat Energy doi: 10.1038/nenergy.2017.31 – volume: 12 start-page: 4148 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0430 article-title: Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions publication-title: ACS Nano doi: 10.1021/acsnano.7b08724 – volume: 8 start-page: 5728 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0400 article-title: A nickel nanocatalyst within a H-BN shell for enhanced hydrogen oxidation reactions publication-title: Chem Sci doi: 10.1039/C7SC01615H – volume: 17 start-page: 827 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0520 article-title: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis publication-title: Nat Mater doi: 10.1038/s41563-018-0133-2 – volume: 27 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0450 article-title: Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal‐organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution publication-title: Adv Funct Mater doi: 10.1002/adfm.201700451 – volume: 81 year: 2010 ident: 10.1016/j.scib.2020.09.014_b0495 article-title: Strain and coordination effects in the adsorption properties of early transition metals: a density-functional theory study publication-title: Phys Rev B doi: 10.1103/PhysRevB.81.033402 – volume: 165 start-page: J3355 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0145 article-title: Determination of hydrogen oxidation reaction mechanism based on Pt-H-ad energetics in alkaline electrolyte publication-title: J Electrochem Soc doi: 10.1149/2.0471815jes – volume: 120 start-page: 851 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0180 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00248 – volume: 5 start-page: 2326 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0040 article-title: Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes publication-title: ChemElectroChem doi: 10.1002/celc.201800690 – volume: 12 start-page: 441 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0425 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat Nanotechnol doi: 10.1038/nnano.2016.304 – volume: 119 start-page: 11945 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0055 article-title: Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00157 – volume: 6 start-page: 1967 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0325 article-title: Ni(OH)2-PtO2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution publication-title: J Mater Chem A doi: 10.1039/C7TA09990H – volume: 2 start-page: 17059 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0490 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2017.59 – volume: 13 start-page: 12968 year: 2011 ident: 10.1016/j.scib.2020.09.014_b0580 article-title: Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon publication-title: Phys Chem Chem Phys doi: 10.1039/c1cp20701f – volume: 7 start-page: 6676 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0410 article-title: Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction publication-title: J Mater Chem A doi: 10.1039/C8TA09136F – volume: 8 start-page: 1801926 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0395 article-title: Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis publication-title: Adv Energy Mater doi: 10.1002/aenm.201801926 – volume: 120 start-page: 1250 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0275 article-title: A theory/experience description of support effects in carbon-supported catalysts publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00209 – volume: 65 start-page: 359 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0245 article-title: Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media publication-title: Sci Bull doi: 10.1016/j.scib.2019.12.003 – volume: 5 start-page: 1701666 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0250 article-title: Bifunctional electrocatalysis on pd-ni core-shell nanoparticles for hydrogen oxidation reaction in alkaline medium publication-title: Adv Mater Interfaces doi: 10.1002/admi.201701666 – volume: 10 start-page: 75 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0330 article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions publication-title: Nano-micro Lett doi: 10.1007/s40820-018-0229-x – volume: 4 start-page: 216 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0010 article-title: Economics of converting renewable power to hydrogen publication-title: Nat Energy doi: 10.1038/s41560-019-0326-1 – volume: 28 start-page: 1705583 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0540 article-title: Electrochemically inert g-C3N4 promotes water oxidation catalysis publication-title: Adv Funct Mater doi: 10.1002/adfm.201705583 – volume: 12 start-page: 12761 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0390 article-title: Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting publication-title: ACS Nano doi: 10.1021/acsnano.8b07841 – volume: 164 start-page: F1307 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0360 article-title: Pt/C/Ni(OH)2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions publication-title: J Electrochem Soc doi: 10.1149/2.0251713jes – volume: 461 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0195 article-title: Extraordinary activity of mesoporous carbon supported ru toward the hydrogen oxidation reaction in alkaline media publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228147 – volume: 12 start-page: 22771 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0200 article-title: Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c00506 – volume: 44 start-page: 288 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0085 article-title: Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.008 – volume: 78 start-page: 2007 year: 2013 ident: 10.1016/j.scib.2020.09.014_b0110 article-title: Electrocatalysis of the HER in acid and alkaline media publication-title: J Serb Chem Soc doi: 10.2298/JSC131118136D – volume: 62 start-page: 601 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0355 article-title: Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media? publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.045 – volume: 31 start-page: eaad4998 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0065 article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction publication-title: Adv Mater – volume: 10 start-page: 2450 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0470 article-title: Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction publication-title: Energy Environ Sci doi: 10.1039/C7EE02537H – volume: 334 start-page: 1256 year: 2011 ident: 10.1016/j.scib.2020.09.014_b0020 article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces publication-title: Science doi: 10.1126/science.1211934 – volume: 13 start-page: 7975 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0230 article-title: Interfacing epitaxial dinickel phosphide to 2D nickel thiophosphate nanosheets for boosting electrocatalytic water splitting publication-title: ACS Nano doi: 10.1021/acsnano.9b02510 – volume: 5 start-page: 300 year: 2013 ident: 10.1016/j.scib.2020.09.014_b0025 article-title: Improviing the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption publication-title: Nat Chem doi: 10.1038/nchem.1574 – volume: 131 start-page: 14317 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0320 article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures publication-title: Angew Chem doi: 10.1002/ange.201908194 – volume: 62 start-page: 117 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0435 article-title: Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.034 – volume: 68 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0220 article-title: Eutectoid-structured WC/W2C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104335 – volume: 9 start-page: 6837 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0370 article-title: Stability limits of Ni-based hydrogen oxidation electrocatalysts for anion exchange membrane fuel cells publication-title: ACS Catal doi: 10.1021/acscatal.9b01582 – volume: 7 start-page: 23432 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0445 article-title: Interfacial effects in supported catalysts for electrocatalysis publication-title: J Mater Chem A doi: 10.1039/C9TA04888J – volume: 115 start-page: 421 year: 1997 ident: 10.1016/j.scib.2020.09.014_b0480 article-title: Surface electronic structure and reactivity of transition and noble metals publication-title: J Mol Catal A Chem doi: 10.1016/S1381-1169(96)00348-2 – volume: 116 start-page: 6635 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0455 article-title: Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1817881116 – volume: 20 start-page: 6807 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0295 article-title: Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts towards oxygen reduction reaction publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c02782 – volume: 9 start-page: 10870 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0255 article-title: Hybrids of ptru nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction publication-title: ACS Catal doi: 10.1021/acscatal.9b03506 – volume: 59 start-page: 14533 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0240 article-title: Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting publication-title: Angew Chem Int Ed doi: 10.1002/anie.202005241 – volume: 55 start-page: 3101 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0420 article-title: Surface modification of Pt nanoparticles with other metals boosting the alkaline hydrogen oxidation reaction publication-title: Chem Commun doi: 10.1039/C9CC00582J – volume: 5 start-page: 4695 year: 2014 ident: 10.1016/j.scib.2020.09.014_b0340 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat Commun doi: 10.1038/ncomms5695 – volume: 9 start-page: 1803482 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0280 article-title: Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis publication-title: Adv Energy Mater doi: 10.1002/aenm.201803482 – volume: 4 start-page: 805 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0385 article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.9b00348 – volume: 139 start-page: 6807 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0415 article-title: IrPdRu/C as H2 oxidation catalysts for alkaline fuel cells- publication-title: J Am Chem Soc doi: 10.1021/jacs.7b02434 – volume: 283 start-page: 1829 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0090 article-title: The oxophilic and electronic effects on anchored platinum nanoparticles on sp2 carbon sites: the hydrogen evolution and oxidation reactions in alkaline medium publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.07.104 – volume: 10 start-page: 4876 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0175 article-title: Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions publication-title: Nat Commun doi: 10.1038/s41467-019-12773-7 – volume: 6 start-page: 2382 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0210 article-title: Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution publication-title: Chem doi: 10.1016/j.chempr.2020.06.037 – volume: 138 start-page: 16174 year: 2016 ident: 10.1016/j.scib.2020.09.014_b0120 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J Am Chem Soc doi: 10.1021/jacs.6b11291 – volume: 123 start-page: 23931 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0165 article-title: Role of hydroxyl species in hydrogen oxidation reaction: a DFT study publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b04731 – volume: 11 start-page: 218 year: 2016 ident: 10.1016/j.scib.2020.09.014_b0530 article-title: Catalysis with two-dimensional materials and their heterostructures publication-title: Nat Nanotechnol doi: 10.1038/nnano.2015.340 – volume: 8 start-page: 6393 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0270 article-title: Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts publication-title: J Mater Chem A doi: 10.1039/D0TA00708K – volume: 11 start-page: 1278 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0285 article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency publication-title: Nat Commun doi: 10.1038/s41467-020-15069-3 – volume: 263 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0515 article-title: Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: a case for studying electronic and ensemble effects in hydrogen evolution reaction publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.118255 – volume: 3 start-page: 1854 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0035 article-title: Removal of surface poisoning improving hydrogen oxidation performance of Pt catalysts under basic conditions publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b02274 – volume: 375 start-page: 205 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0550 article-title: Importance of balancing membrane and electrode water in anion exchange membrane fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.05.006 – volume: 7 start-page: 8314 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0160 article-title: Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis publication-title: ACS Catal doi: 10.1021/acscatal.7b02787 – volume: 2 start-page: 17070 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0305 article-title: Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion publication-title: Nat Energy doi: 10.1038/nenergy.2017.70 – volume: 355 year: 2017 ident: 10.1016/j.scib.2020.09.014_b0015 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 165 start-page: J3209 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0135 article-title: Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling publication-title: J Electrochem Soc doi: 10.1149/2.0271815jes – volume: 53 start-page: 690 year: 2018 ident: 10.1016/j.scib.2020.09.014_b0345 article-title: Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.046 – volume: 381 start-page: 234 year: 2020 ident: 10.1016/j.scib.2020.09.014_b0460 article-title: Theoretical models for hydrogen evolution reaction at combined Mo2C and N-doped graphene publication-title: J Catal doi: 10.1016/j.jcat.2019.10.028 – volume: 31 start-page: 1808167 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0265 article-title: Support and interface effects in water-splitting electrocatalysts publication-title: Adv Mater doi: 10.1002/adma.201808167 – volume: 31 start-page: 1800696 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0525 article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications publication-title: Adv Mater doi: 10.1002/adma.201800696 – volume: 51 start-page: 12495 year: 2012 ident: 10.1016/j.scib.2020.09.014_b0115 article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts publication-title: Angew Chem Int Ed doi: 10.1002/anie.201204842 – volume: 12 start-page: 463 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0005 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ Sci doi: 10.1039/C8EE01157E – volume: 157 start-page: B1529 year: 2010 ident: 10.1016/j.scib.2020.09.014_b0075 article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs. alkaline electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.3483106 – volume: 15 start-page: 1903057 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0290 article-title: Room-temperature sustainable synthesis of selected platinum group metal (PGM= Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation publication-title: Small doi: 10.1002/smll.201903057 – volume: 2 start-page: 3160 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0565 article-title: Exploring the composition-activity relation of Ni-Cu binary alloy electrocatalysts for hydrogen oxidation reaction in alkaline media publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.8b02206 – volume: 131 start-page: 10754 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0260 article-title: Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal–organic framework publication-title: Angew Chem doi: 10.1002/ange.201905430 – volume: 7 start-page: 10924 year: 2019 ident: 10.1016/j.scib.2020.09.014_b0310 article-title: Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering publication-title: J Mater Chem A doi: 10.1039/C9TA03249E |
SSID | ssj0001492407 ssib054405809 |
Score | 2.6315413 |
SecondaryResourceType | review_article |
Snippet | This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline... Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media.... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 85 |
SubjectTerms | Electrocatalysis Heterostructure Hydrogen evolution reaction Hydrogen oxidation reaction Interface engineering |
Title | Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis |
URI | https://dx.doi.org/10.1016/j.scib.2020.09.014 https://www.ncbi.nlm.nih.gov/pubmed/36654318 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gu3BBjOd4TDlwAKFqaZK263GamMZj08RD4lY1rSMG04poOezf47QprwNInCpVdVo5rv3Fsj8TchwL1tNCCQeDu3AQEYdOrHvKkYpBCC5nAZhu5PHEH93LywfvYYUM6l4YU1ZpfX_l00tvbe90rTa7L7NZ95abFBZGX25gr2t6uJpchD6adrN_cTWafKZaZGjOLWbMHDOTCVHGts9UlV64usKTImcl46kr_whRX-LPcIOsW-BI-9W3tcgKLDZJy_6aOT2x_NGnWyQrs3w6ToDCJ9sgzTR9NLUvWUUZ-_YKKbVDcMoczjIvclqUVbQ5hZJZAgMSjefPsYGi9HGZvmZobj-EZvk2uR-e3w1Gjp2r4CSS88IJ_JhpLU2GJoBU4gUYSzUCBcnAB81cpdAHBn4QgGAYr5QAPIeoBMEceGEqdkhjkS1gj1DlJkpL7Qc89qTWusdSRDAsZYhrPNRum7i1KqPEko6b2RfzqK4ue4qM-iOj_oiFEaq_Tc4-ZF4qyo1fn_bqHYq-GU6EMeFXud1qOz_eIcwgZnRx-_9c8YCscVPwwlzH9Q5JAzcTjhCxFKqDFjm4uZ52rGV2yOpkOn4HtPPsXA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYAL4v2GHDiAULW0Tdv1iCamjT0ugLRb1LSOGKB1WseBf4_dZuNxGBKnSlWdVnZqf7Hsz4xdJr5oGl_7DgZ330FEHDuJaWpHagExuJ6IgLqRB8Ow8yTvR8GoxlqLXhgqq7S-v_Lppbe2dxpWm43peNx48CiFhdHXI9jrUg_XGrFTBXW2dtvtdYZfqRYZ07mFxswJmkyIMrZ9pqr0wtU1nhQ9UTKeuvKPEPUt_rS32KYFjvy2-rZtVoPJDtu2v2bBryx_9PUuy8ssn0lS4PDFNshzw5-p9iWvKGPfZ5BxOwSnzOF8FPOCz8sq2oJDySyBAYknb68JQVH-_JHNctxuv4TGxR57at89tjqOnavgpNLz5k4UJsIYSRmaCDKJFxAiMwgUpIAQjHC1Rh8YhVEEvsB4pX3Ac4hOEcxBEGf-PqtP8gkcMq7dVBtpwshLAmmMaYoMEYzIBOKaALV7xNyFKlVqScdp9sWbWlSXvShSvyL1KxErVP8Ru1nKTCvKjZVPBwsLqR8bR2FMWCl3UJlz-Q6fBjGjizv-54oXbL3zOOirfnfYO2EbHhW_CNdxg1NWR8PCGaKXuT63u_MT5UjsoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+engineering+of+heterostructured+electrocatalysts+towards+efficient+alkaline+hydrogen+electrocatalysis&rft.jtitle=Science+bulletin+%28Beijing%29&rft.au=Zhao%2C+Guoqiang&rft.au=Jiang%2C+Yinzhu&rft.au=Dou%2C+Shi-Xue&rft.au=Sun%2C+Wenping&rft.date=2021-01-15&rft.issn=2095-9273&rft.volume=66&rft.issue=1&rft.spage=85&rft.epage=96&rft_id=info:doi/10.1016%2Fj.scib.2020.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scib_2020_09_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-9273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-9273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-9273&client=summon |