Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis

This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline media. Interface engineering could not only induce synergistic effect but also improve the intrinsic activity and increase the number of act...

Full description

Saved in:
Bibliographic Details
Published inScience bulletin Vol. 66; no. 1; pp. 85 - 96
Main Authors Zhao, Guoqiang, Jiang, Yinzhu, Dou, Shi-Xue, Sun, Wenping, Pan, Hongge
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline media. Interface engineering could not only induce synergistic effect but also improve the intrinsic activity and increase the number of active sites. This review would provide insightful ideas toward rational design of electrocatalysts for alkaline hydrogen electrocatalysis. [Display omitted] Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media. Recently, intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis, and the research advances also bring substantial non-trivial fundamental insights accordingly. Herein, we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR. Two major subjects—how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR—are discussed. Specifically, heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components, which could balance the adsorption/desorption behaviors of the intermediates at the interfaces. Meanwhile, interface engineering can effectively tune the electronic structures of the active sites via electronic interaction, interfacial bonding, and lattice strain, which would appropriately optimize the binding energy of targeted intermediates like hydrogen. Furthermore, the confinement effect is critical for delivering high durability by sustaining high density of active sites. At last, our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided.
AbstractList This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline media. Interface engineering could not only induce synergistic effect but also improve the intrinsic activity and increase the number of active sites. This review would provide insightful ideas toward rational design of electrocatalysts for alkaline hydrogen electrocatalysis. [Display omitted] Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media. Recently, intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis, and the research advances also bring substantial non-trivial fundamental insights accordingly. Herein, we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR. Two major subjects—how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR—are discussed. Specifically, heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components, which could balance the adsorption/desorption behaviors of the intermediates at the interfaces. Meanwhile, interface engineering can effectively tune the electronic structures of the active sites via electronic interaction, interfacial bonding, and lattice strain, which would appropriately optimize the binding energy of targeted intermediates like hydrogen. Furthermore, the confinement effect is critical for delivering high durability by sustaining high density of active sites. At last, our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided.
Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media. Recently, intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis, and the research advances also bring substantial non-trivial fundamental insights accordingly. Herein, we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR. Two major subjects-how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR-are discussed. Specifically, heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components, which could balance the adsorption/desorption behaviors of the intermediates at the interfaces. Meanwhile, interface engineering can effectively tune the electronic structures of the active sites via electronic interaction, interfacial bonding, and lattice strain, which would appropriately optimize the binding energy of targeted intermediates like hydrogen. Furthermore, the confinement effect is critical for delivering high durability by sustaining high density of active sites. At last, our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided.
Author Jiang, Yinzhu
Zhao, Guoqiang
Pan, Hongge
Dou, Shi-Xue
Sun, Wenping
Author_xml – sequence: 1
  givenname: Guoqiang
  surname: Zhao
  fullname: Zhao, Guoqiang
  organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
– sequence: 2
  givenname: Yinzhu
  surname: Jiang
  fullname: Jiang, Yinzhu
  organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
– sequence: 3
  givenname: Shi-Xue
  surname: Dou
  fullname: Dou, Shi-Xue
  organization: Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
– sequence: 4
  givenname: Wenping
  surname: Sun
  fullname: Sun, Wenping
  email: wenpingsun@zju.edu.cn
  organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
– sequence: 5
  givenname: Hongge
  surname: Pan
  fullname: Pan, Hongge
  email: honggepan@zju.edu.cn
  organization: School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36654318$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUtNb-AQ-yf6DrJLvd3YAXET8KBS96Dtlk0qauiSSp0n9vStWDB08zMM8z8L5nZOS8Q0IuKJQUaHO1KaOyfcmAQQm8BFofkTEDPp9x1tHR795Wp2Qa4wYgI5zV0J6Q06pp5nVFuzHxC5cwGKmwQLeyDjFYtyq8KdaYDz6msFVpG1AXOKBKwSuZ5LCLKRbJf8qgY4HGWGXRpUIOr3LIT4r1Tge_QvdHsvGcHBs5RJx-zwl5ub97vn2cLZ8eFrc3y5mqGUuztpFgTA0cqhZ1nQcCaMNYVQM2aID2Pae0bdoWK2Cc9xVS2vVqDh3Oua4m5PLw933bv6EW78G-ybATP8kzwA6AyiFjQPOLUBD7hsVG7BsW-4YFcJHry1L3R1I2yWS9S0Ha4X_1-qBiTv1hMewRdAq1Dbkiob39T_8CKZSZLA
CitedBy_id crossref_primary_10_1039_D2EE02216H
crossref_primary_10_1016_j_jallcom_2022_165814
crossref_primary_10_1016_j_cej_2023_143761
crossref_primary_10_1016_j_jechem_2022_01_031
crossref_primary_10_3390_nano12010132
crossref_primary_10_1016_j_fuel_2024_133227
crossref_primary_10_1039_D3TA01993D
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_1002_aenm_202102134
crossref_primary_10_1002_sstr_202200404
crossref_primary_10_1007_s12274_023_5996_0
crossref_primary_10_1016_j_cej_2022_135186
crossref_primary_10_1016_j_jmst_2023_08_053
crossref_primary_10_1016_j_jiec_2022_12_030
crossref_primary_10_1016_j_ccr_2024_216190
crossref_primary_10_1039_D2NR01974D
crossref_primary_10_1039_D3EE04251K
crossref_primary_10_1016_j_cej_2024_155118
crossref_primary_10_1016_j_apcatb_2024_124442
crossref_primary_10_1016_j_mtnano_2021_100146
crossref_primary_10_1002_adma_202105400
crossref_primary_10_1039_D2TA09660A
crossref_primary_10_1016_j_jechem_2024_02_007
crossref_primary_10_1016_j_colsurfa_2022_130822
crossref_primary_10_1039_D3NR01940C
crossref_primary_10_1002_adma_202211099
crossref_primary_10_1016_S1872_2067_23_64532_2
crossref_primary_10_1021_acs_inorgchem_3c00686
crossref_primary_10_1016_j_jallcom_2021_162411
crossref_primary_10_1016_j_jallcom_2023_169727
crossref_primary_10_1016_j_ijhydene_2024_02_053
crossref_primary_10_1038_s41560_024_01604_9
crossref_primary_10_1016_j_cej_2023_141854
crossref_primary_10_1016_j_ijhydene_2024_02_214
crossref_primary_10_1016_j_ccr_2024_216343
crossref_primary_10_1002_smll_202300974
crossref_primary_10_1007_s12274_023_6392_5
crossref_primary_10_1002_adfm_202113224
crossref_primary_10_1021_acs_langmuir_4c01800
crossref_primary_10_1016_S1872_2067_21_63935_9
crossref_primary_10_1002_smll_202107417
crossref_primary_10_1021_acssuschemeng_3c03621
crossref_primary_10_26599_NRE_2024_9120121
crossref_primary_10_1016_j_nanoen_2021_105850
crossref_primary_10_1039_D3QM01000G
crossref_primary_10_1016_j_jallcom_2024_178350
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1039_D3CE00695F
crossref_primary_10_1016_j_mtphys_2022_100625
crossref_primary_10_3390_ma16217000
crossref_primary_10_1002_adfm_202424753
crossref_primary_10_5796_electrochemistry_23_00072
crossref_primary_10_1002_smll_202401730
crossref_primary_10_1016_j_ijhydene_2022_03_162
crossref_primary_10_1016_j_cej_2023_142538
crossref_primary_10_1002_adfm_202107479
crossref_primary_10_1039_D3CY01485A
crossref_primary_10_1016_j_jcis_2023_04_023
crossref_primary_10_1002_adfm_202202227
crossref_primary_10_3390_molecules28155736
crossref_primary_10_1021_acsmaterialslett_3c01144
crossref_primary_10_1007_s10854_021_06830_5
crossref_primary_10_1039_D2DT02373C
crossref_primary_10_1016_j_esci_2025_100400
crossref_primary_10_1016_j_fuel_2023_129946
crossref_primary_10_1016_j_apcatb_2022_121434
crossref_primary_10_1016_j_ijhydene_2024_06_381
crossref_primary_10_1016_j_watres_2023_119719
crossref_primary_10_1016_S1872_5805_24_60880_2
crossref_primary_10_1039_D1TA10903K
crossref_primary_10_1016_j_nanoen_2024_109299
crossref_primary_10_1002_adfm_202404535
crossref_primary_10_3390_app13053023
crossref_primary_10_5796_electrochemistry_24_00119
crossref_primary_10_1039_D4CE01090F
crossref_primary_10_1039_D2TA08870C
crossref_primary_10_1002_aenm_202402043
crossref_primary_10_1016_j_jallcom_2022_165362
crossref_primary_10_1002_adma_202502127
crossref_primary_10_1016_j_apsusc_2024_159391
crossref_primary_10_1016_j_jechem_2022_03_038
crossref_primary_10_1016_j_cclet_2022_107861
crossref_primary_10_1016_j_jallcom_2021_159907
crossref_primary_10_1039_D3QM00237C
crossref_primary_10_1002_aenm_202403889
crossref_primary_10_1002_adfm_202203263
crossref_primary_10_1016_j_nanoen_2022_107231
crossref_primary_10_1016_j_psep_2023_08_066
crossref_primary_10_1016_j_cej_2023_144375
crossref_primary_10_1002_adfm_202423760
crossref_primary_10_1016_j_jallcom_2023_172827
crossref_primary_10_1002_adfm_202300593
crossref_primary_10_1002_adma_202207114
crossref_primary_10_3390_nano14231907
crossref_primary_10_1002_inf2_12535
crossref_primary_10_1007_s11581_023_05091_y
crossref_primary_10_1016_j_apcatb_2023_122744
crossref_primary_10_1016_j_jelechem_2024_118163
crossref_primary_10_1016_j_gee_2023_05_003
crossref_primary_10_1002_inf2_12377
crossref_primary_10_1016_j_jallcom_2021_162614
crossref_primary_10_1016_j_jallcom_2021_159335
crossref_primary_10_1039_D4TA01919A
crossref_primary_10_1016_j_apcatb_2022_121534
crossref_primary_10_1002_smll_202300387
crossref_primary_10_2139_ssrn_4055980
crossref_primary_10_1002_adsu_202300017
crossref_primary_10_1021_acs_nanolett_1c01519
crossref_primary_10_1002_advs_202104774
crossref_primary_10_1002_cssc_202201985
crossref_primary_10_1016_j_jallcom_2022_167920
crossref_primary_10_1016_j_cej_2021_130654
crossref_primary_10_1038_s41929_024_01126_3
crossref_primary_10_1016_j_electacta_2023_142524
crossref_primary_10_1016_j_jechem_2022_06_047
crossref_primary_10_1016_j_ccr_2021_214144
crossref_primary_10_1021_acsanm_3c06236
crossref_primary_10_1007_s11426_022_1545_0
crossref_primary_10_1016_j_apcatb_2022_121088
crossref_primary_10_1021_acsami_3c13952
crossref_primary_10_1039_D3TA02004E
crossref_primary_10_1016_j_ijhydene_2024_09_257
crossref_primary_10_1016_j_apsusc_2025_162352
crossref_primary_10_1039_D4CS00370E
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1039_D4CE01165A
crossref_primary_10_1002_aic_18469
crossref_primary_10_1021_acsami_1c03341
crossref_primary_10_1021_acsnano_2c00641
crossref_primary_10_1002_adfm_202422013
crossref_primary_10_1016_j_apcatb_2024_124140
crossref_primary_10_1016_j_jcis_2023_06_189
crossref_primary_10_1039_D3CE00877K
crossref_primary_10_1002_aenm_202401444
crossref_primary_10_1002_smtd_202400007
crossref_primary_10_1016_j_jcis_2024_10_136
crossref_primary_10_1002_adma_202208821
crossref_primary_10_1002_adfm_202010633
crossref_primary_10_1039_D4QM00312H
crossref_primary_10_1039_D2TA03021G
crossref_primary_10_1016_j_ijhydene_2022_06_266
crossref_primary_10_1016_j_flatc_2024_100674
crossref_primary_10_1016_j_apcatb_2022_121876
crossref_primary_10_1021_acsami_2c13417
crossref_primary_10_1007_s12274_024_6474_z
crossref_primary_10_1002_smsc_202300036
crossref_primary_10_1007_s11581_023_05128_2
crossref_primary_10_1016_j_cej_2024_150904
crossref_primary_10_1039_D4NR01835D
crossref_primary_10_1002_smll_202304390
crossref_primary_10_1021_acsami_3c03501
crossref_primary_10_1007_s40843_022_2190_7
crossref_primary_10_1002_smll_202305000
crossref_primary_10_1016_j_jallcom_2022_165447
crossref_primary_10_1039_D2SE01414A
crossref_primary_10_1016_j_ijhydene_2023_07_353
crossref_primary_10_1039_D2CS00038E
crossref_primary_10_1021_acs_inorgchem_3c02487
crossref_primary_10_1016_j_ijhydene_2024_12_165
crossref_primary_10_1021_acsmaterialslett_3c01473
crossref_primary_10_1002_adfm_202113047
crossref_primary_10_1002_sus2_13
crossref_primary_10_1016_j_fuel_2024_131797
crossref_primary_10_1021_acsami_1c25097
crossref_primary_10_1039_D3CY00456B
crossref_primary_10_1016_j_apsusc_2022_152757
Cites_doi 10.1126/sciadv.1501602
10.1002/anie.201901010
10.1002/adfm.201803291
10.1016/j.nanoen.2017.11.063
10.1039/D0NR00993H
10.1016/j.scib.2019.10.024
10.1021/acs.nanolett.9b02729
10.1039/C8NR07045H
10.1002/anie.201708484
10.1039/C4CP01385A
10.1038/s41467-019-09210-0
10.1103/PhysRevB.89.115114
10.1002/anie.201907017
10.1016/j.nanoen.2017.08.031
10.1038/s41929-020-0446-9
10.1002/adma.202000872
10.1038/ncomms6848
10.1016/j.electacta.2019.135016
10.1016/j.matt.2019.09.011
10.1002/cssc.201800856
10.1002/adma.201600054
10.1002/adma.201804799
10.34133/2019/4029516
10.1002/anie.201909697
10.1002/anie.201710556
10.1039/C4EE02564D
10.1002/anie.201916314
10.1016/j.mattod.2019.12.003
10.1021/jacs.5b09021
10.1021/jacs.9b09229
10.1021/acscatal.9b03892
10.1016/j.nanoen.2020.104877
10.1016/j.jpowsour.2018.07.125
10.1021/jacs.8b13228
10.1039/C9TA11646J
10.1002/adma.201808066
10.1039/C5CS00434A
10.1038/ncomms10141
10.1063/1.4869749
10.1039/C9NH00485H
10.1039/C9EE01743G
10.1039/C3EE43899F
10.1038/nenergy.2017.31
10.1021/acsnano.7b08724
10.1039/C7SC01615H
10.1038/s41563-018-0133-2
10.1002/adfm.201700451
10.1103/PhysRevB.81.033402
10.1149/2.0471815jes
10.1021/acs.chemrev.9b00248
10.1002/celc.201800690
10.1038/nnano.2016.304
10.1021/acs.chemrev.9b00157
10.1039/C7TA09990H
10.1038/natrevmats.2017.59
10.1039/c1cp20701f
10.1039/C8TA09136F
10.1002/aenm.201801926
10.1021/acs.chemrev.9b00209
10.1016/j.scib.2019.12.003
10.1002/admi.201701666
10.1007/s40820-018-0229-x
10.1038/s41560-019-0326-1
10.1002/adfm.201705583
10.1021/acsnano.8b07841
10.1149/2.0251713jes
10.1016/j.jpowsour.2020.228147
10.1021/acsami.0c00506
10.1016/j.nanoen.2017.12.008
10.2298/JSC131118136D
10.1016/j.nanoen.2019.05.045
10.1039/C7EE02537H
10.1126/science.1211934
10.1021/acsnano.9b02510
10.1038/nchem.1574
10.1002/ange.201908194
10.1016/j.nanoen.2019.05.034
10.1016/j.nanoen.2019.104335
10.1021/acscatal.9b01582
10.1039/C9TA04888J
10.1016/S1381-1169(96)00348-2
10.1073/pnas.1817881116
10.1021/acs.nanolett.0c02782
10.1021/acscatal.9b03506
10.1002/anie.202005241
10.1039/C9CC00582J
10.1038/ncomms5695
10.1002/aenm.201803482
10.1021/acsenergylett.9b00348
10.1021/jacs.7b02434
10.1016/j.electacta.2018.07.104
10.1038/s41467-019-12773-7
10.1016/j.chempr.2020.06.037
10.1021/jacs.6b11291
10.1021/acs.jpcc.9b04731
10.1038/nnano.2015.340
10.1039/D0TA00708K
10.1038/s41467-020-15069-3
10.1016/j.apcatb.2019.118255
10.1021/acsaem.9b02274
10.1016/j.jpowsour.2017.05.006
10.1021/acscatal.7b02787
10.1038/nenergy.2017.70
10.1126/science.aad4998
10.1149/2.0271815jes
10.1016/j.nanoen.2018.09.046
10.1016/j.jcat.2019.10.028
10.1002/adma.201808167
10.1002/adma.201800696
10.1002/anie.201204842
10.1039/C8EE01157E
10.1149/1.3483106
10.1002/smll.201903057
10.1021/acsaem.8b02206
10.1002/ange.201905430
10.1039/C9TA03249E
ContentType Journal Article
Copyright 2020 Science China Press
Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Science China Press
– notice: Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
DOI 10.1016/j.scib.2020.09.014
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2095-9281
EndPage 96
ExternalDocumentID 36654318
10_1016_j_scib_2020_09_014
S2095927320306101
Genre Journal Article
Review
GroupedDBID --M
0R~
4.4
5VR
AACTN
AAEDT
AAEDW
AAIAV
AAJKR
AAKOC
AALRI
AAOAW
AARTL
AAXUO
AAYIU
ABBBX
ABJNI
ABMAC
ABQEM
ABQYD
ABTHY
ABUDA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKNC
ACPRK
ACRLP
ADBBV
ADINQ
AEBSH
AEGNC
AEHWI
AEJHL
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AFZKB
AGUBO
AGWZB
AGYKE
AHBYD
AHJVU
AIEXJ
AIIXL
AIKHN
AITUG
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AUKKA
AVWKF
AXJTR
AZFZN
BGNMA
BJAXD
BKOJK
CCEZO
CCVFK
CHBEP
EBS
EFJIC
EFLBG
FA0
FDB
FIRID
FRRFC
FYGXN
IXD
KOM
KOV
M41
M4Y
NU0
O9-
ROL
RSV
SOJ
SPC
SPCBC
SSE
SSK
SST
SSU
SSZ
T5K
~G-
-SA
-S~
5XA
5XB
AAIAL
AANXM
AAQFI
AATTM
AAXKI
AAYQN
AAYTO
AAYWO
AAYXX
AAYZH
ABFSG
ABJOX
ABTEG
ABTMW
ACBXY
ACSTC
ACVFH
ADCNI
ADKPE
ADRFC
ADVLN
AEIPS
AEOHA
AEPYU
AEUPX
AEZWR
AFBBN
AFHIU
AFJKZ
AFLOW
AFPUW
AFUIB
AGCQF
AGJBK
AGQMX
AGRNS
AHAVH
AHSBF
AHWEU
AIGII
AIIUN
AIXLP
AJBLW
AKBMS
AKRWK
AKYEP
AMKLP
ANKPU
APXCP
BNPGV
CAJEA
CITATION
CJPJV
CSCUP
EJD
H13
HX~
Q--
SSH
TCJ
TGP
U1G
U5K
UG4
NPM
ID FETCH-LOGICAL-c422t-76a0ff409037ed4903e00df22340e6ef01bb9117677e30299b3e118bc508e59d3
IEDL.DBID AIKHN
ISSN 2095-9273
IngestDate Thu Jan 02 22:53:07 EST 2025
Thu Apr 24 23:05:57 EDT 2025
Tue Jul 01 02:08:24 EDT 2025
Fri Feb 23 02:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heterostructure
Electrocatalysis
Interface engineering
Hydrogen evolution reaction
Hydrogen oxidation reaction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-76a0ff409037ed4903e00df22340e6ef01bb9117677e30299b3e118bc508e59d3
PMID 36654318
PageCount 12
ParticipantIDs pubmed_primary_36654318
crossref_primary_10_1016_j_scib_2020_09_014
crossref_citationtrail_10_1016_j_scib_2020_09_014
elsevier_sciencedirect_doi_10_1016_j_scib_2020_09_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Science bulletin
PublicationTitleAlternate Sci Bull (Beijing)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Shui, Du (b0070) 2019; 31
Danilovic, Subbaraman, Strmcnik (b0110) 2013; 78
Yang, Nash, Oliveira (b0150) 2019; 58
Ang, Dinh, Sun (b0100) 2019; 2019
Wang, Xu, Jaroniec (b0175) 2019; 10
Rui, Zhao, Lao (b0475) 2019; 19
Zhang, Shi, Wang (b0245) 2020; 65
Li, Chen, Yan (b0445) 2019; 7
Deng, Novoselov, Fu (b0530) 2016; 11
Tang, Hahn, Klobuchar (b0575) 2014; 16
Jayaramulu, Masa, Tomanec (b0450) 2017; 27
Kim, Kim, Lee (b0505) 2019; 141
Sheng, Zhuang, Gao (b0030) 2015; 6
Sheng, Bivens, Myint (b0570) 2014; 7
Liu, Ma, Huang (b0525) 2019; 31
Ming, Zhang, He (b0290) 2019; 15
Firouzjaie, Mustain (b0050) 2020; 10
Chen, Cui, Zhao (b0545) 2019; 58
Ni, Wang, Schouwink (b0510) 2020; 59
Shen, Lu, Qu (b0355) 2019; 62
Staffell, Scamman, Abad (b0005) 2019; 12
Zeng, Chang, Kubal (b0305) 2017; 2
Gong, Zhou, Tsai (b0340) 2014; 5
Wang, Hao, Jiang (b0105) 2015; 137
Chen, Zhou, Zhao (b0540) 2018; 28
Xie, Ren, Liu (b0325) 2018; 6
Hegde, Sun, Ren (b0205) 2020; 12
Haslam, Chin, Burstein (b0580) 2011; 13
Glenk, Reichelstein (b0010) 2019; 4
Zhao, Jin, Zheng (b0395) 2018; 8
Zhao, Rui, Dou (b0215) 2018; 28
Schnur, Groß (b0495) 2010; 81
Omasta, Wang, Peng (b0550) 2018; 375
Ishikawa, Ohyama, Okubo (b0200) 2020; 12
Yang, Bao, Li (b0320) 2019; 131
Martinez, Komini Babu, Holby (b0065) 2019; 31
Ledezma-Yanez, Wallace, Sebastián-Pascual (b0155) 2017; 2
Li, Ghoshal, Bates (b0380) 2017; 56
Xue, Garlyyev, Watzele (b0040) 2018; 5
Liu, Zhu, Ling (b0170) 2017; 40
Zhang, Zhang, Feng (b0265) 2019; 31
Xin, Vojvodic, Voss (b0485) 2014; 89
Niu, Fang, Zhou (b0310) 2019; 7
Mahmood, Li, Jung (b0425) 2017; 12
Zheng, Jiao, Vasileff (b0125) 2018; 57
Ramaswamy, Mukerjee (b0055) 2019; 119
Zhou, Weng, Popov (b0430) 2018; 12
Danilovic, Subbaraman, Strmcnik (b0115) 2012; 51
Feng, Ye, Xu (b0235) 2016; 28
Gerber, Serp (b0275) 2019; 120
Chen, Gong, Cong (b0220) 2020; 68
Li, Pei, He (b0255) 2019; 9
Zhao, Lin, Rui (b0315) 2018; 10
Bae, Mahmood, Jeon (b0190) 2020; 5
Tranca, Rodríguez-Hernández, Seifert (b0460) 2020; 381
Kweon, Okyay, Kim (b0285) 2020; 11
Zhou, Xie, Jiang (b0440) 2020; 3
Cheng, Li, Zheng (b0470) 2017; 10
Jin, Gu, Chen (b0210) 2020; 6
Wang, Peng, Zhou (b0410) 2019; 7
Chen, Cai, Li (b0295) 2020; 20
Xue, Liu, Ma (b0535) 2020; 65
Bian, Xiao, Sun (b0515) 2020; 263
Wang, Fu, Yang (b0225) 2020; 8
Wang, Parrondo, He (b0360) 2017; 164
Hu, Kuttiyiel, Sasaki (b0145) 2018; 165
Zhao, Li, Cheng (b0560) 2020; 32
Wang, Abruña (b0415) 2017; 139
Shi, Zhang (b0185) 2016; 45
Zheng, Cui, Qian (b0240) 2020; 59
Zhuang, Giles, Zheng (b0405) 2016; 7
Subbaraman, Tripkovic, Strmcnik (b0020) 2011; 334
Ruban, Hammer, Stoltze (b0480) 1997; 115
Feng, Li, Zheng (b0165) 2019; 123
Jin, Liu, Vasileff (b0390) 2018; 12
Rebollar, Intikhab, Snyder (b0135) 2018; 165
Jin, Liu, Jiao (b0345) 2018; 53
Strmcnik, Uchimura, Wang (b0025) 2013; 5
Luo, Guo (b0490) 2017; 2
Tian, Zhao, Sheng (b0095) 2019; 31
Zheng, Jiao, Zhu (b0120) 2016; 138
Campos-Roldán, González-Huerta, Alonso-Vante (b0090) 2018; 283
Wang, Wang, Yang (b0365) 2019; 12
Wang, Zheng, Sheng (b0080) 2020; 36
Jamesh, Sun (b0060) 2018; 400
Huang, Song, Dou (b0555) 2019; 1
Wang, Wang, Li (b0350) 2015; 8
Zheng, Chen, Zheng (b0280) 2019; 9
Chen, Zhang, Wang (b0455) 2019; 116
Yu, Lang, Yin (b0465) 2020; 11
Zhu, Hu, Zhao (b0180) 2020; 120
Seh, Kibsgaard, Dickens (b0015) 2017; 355
Cong, Yi, Song (b0085) 2018; 44
Zang, Niu, Wu (b0590) 2019; 10
Yang, Sun, Han (b0260) 2019; 131
Wei, Zhou, Long (b0330) 2018; 10
Liu, Li, Jiao (b0045) 2019; 141
Lao, Rui, Zhao (b0335) 2019; 58
Davydova, Speck, Paul (b0370) 2019; 9
Okubo, Ohyama, Satsuma (b0420) 2019; 55
Gao, Wang, Li (b0400) 2017; 8
Zheng, Sheng, Zhuang (b0140) 2016; 2
Chattot, Le Bacq, Beermann (b0520) 2018; 17
Kundu, Bhowmik, Mishra (b0130) 2018; 11
Zeng, Peng, Liu (b0195) 2020; 461
Kolb, Calle-Vallejo, Juurlink (b0300) 2014; 140
Shviro, Polani, Dunin-Borkowski (b0250) 2018; 5
Wang, Li, Huang (b0565) 2019; 2
Ohyama, Okubo, Ishikawa (b0035) 2020; 3
Liang, Zhong, Du (b0230) 2019; 13
Intikhab, Snyder, Tang (b0160) 2017; 7
Liu, Wen, Ying (b0585) 2018; 44
Jin, Liu, Chen (b0385) 2019; 4
Wu, Feng, Li (b0435) 2019; 62
Zhao, Rui, Dou (b0270) 2020; 8
Zhao, Hu, Gong (b0500) 2020; 74
Sheng, Gasteiger, Shao-Horn (b0075) 2010; 157
Liu, Lyu, Xiao (b0375) 2019; 327
Ledezma-Yanez (10.1016/j.scib.2020.09.014_b0155) 2017; 2
Strmcnik (10.1016/j.scib.2020.09.014_b0025) 2013; 5
Wang (10.1016/j.scib.2020.09.014_b0350) 2015; 8
Kim (10.1016/j.scib.2020.09.014_b0505) 2019; 141
Kolb (10.1016/j.scib.2020.09.014_b0300) 2014; 140
Li (10.1016/j.scib.2020.09.014_b0445) 2019; 7
Bae (10.1016/j.scib.2020.09.014_b0190) 2020; 5
Huang (10.1016/j.scib.2020.09.014_b0555) 2019; 1
Campos-Roldán (10.1016/j.scib.2020.09.014_b0090) 2018; 283
Zhou (10.1016/j.scib.2020.09.014_b0440) 2020; 3
Liu (10.1016/j.scib.2020.09.014_b0375) 2019; 327
Ang (10.1016/j.scib.2020.09.014_b0100) 2019; 2019
Shi (10.1016/j.scib.2020.09.014_b0185) 2016; 45
Staffell (10.1016/j.scib.2020.09.014_b0005) 2019; 12
Kundu (10.1016/j.scib.2020.09.014_b0130) 2018; 11
Ni (10.1016/j.scib.2020.09.014_b0510) 2020; 59
Schnur (10.1016/j.scib.2020.09.014_b0495) 2010; 81
Wang (10.1016/j.scib.2020.09.014_b0565) 2019; 2
Xin (10.1016/j.scib.2020.09.014_b0485) 2014; 89
Tian (10.1016/j.scib.2020.09.014_b0095) 2019; 31
Ohyama (10.1016/j.scib.2020.09.014_b0035) 2020; 3
Martinez (10.1016/j.scib.2020.09.014_b0065) 2019; 31
Jin (10.1016/j.scib.2020.09.014_b0210) 2020; 6
Zhou (10.1016/j.scib.2020.09.014_b0430) 2018; 12
Hu (10.1016/j.scib.2020.09.014_b0145) 2018; 165
Sheng (10.1016/j.scib.2020.09.014_b0570) 2014; 7
Cong (10.1016/j.scib.2020.09.014_b0085) 2018; 44
Jayaramulu (10.1016/j.scib.2020.09.014_b0450) 2017; 27
Bian (10.1016/j.scib.2020.09.014_b0515) 2020; 263
Yu (10.1016/j.scib.2020.09.014_b0465) 2020; 11
Liang (10.1016/j.scib.2020.09.014_b0230) 2019; 13
Chen (10.1016/j.scib.2020.09.014_b0295) 2020; 20
Shviro (10.1016/j.scib.2020.09.014_b0250) 2018; 5
Omasta (10.1016/j.scib.2020.09.014_b0550) 2018; 375
Feng (10.1016/j.scib.2020.09.014_b0235) 2016; 28
Zhao (10.1016/j.scib.2020.09.014_b0395) 2018; 8
Subbaraman (10.1016/j.scib.2020.09.014_b0020) 2011; 334
Wu (10.1016/j.scib.2020.09.014_b0435) 2019; 62
Danilovic (10.1016/j.scib.2020.09.014_b0115) 2012; 51
Jin (10.1016/j.scib.2020.09.014_b0385) 2019; 4
Luo (10.1016/j.scib.2020.09.014_b0490) 2017; 2
Okubo (10.1016/j.scib.2020.09.014_b0420) 2019; 55
Wang (10.1016/j.scib.2020.09.014_b0410) 2019; 7
Gerber (10.1016/j.scib.2020.09.014_b0275) 2019; 120
Zheng (10.1016/j.scib.2020.09.014_b0140) 2016; 2
Zhang (10.1016/j.scib.2020.09.014_b0245) 2020; 65
Ruban (10.1016/j.scib.2020.09.014_b0480) 1997; 115
Chattot (10.1016/j.scib.2020.09.014_b0520) 2018; 17
Rebollar (10.1016/j.scib.2020.09.014_b0135) 2018; 165
Wang (10.1016/j.scib.2020.09.014_b0360) 2017; 164
Jin (10.1016/j.scib.2020.09.014_b0345) 2018; 53
Davydova (10.1016/j.scib.2020.09.014_b0370) 2019; 9
Feng (10.1016/j.scib.2020.09.014_b0165) 2019; 123
Zeng (10.1016/j.scib.2020.09.014_b0305) 2017; 2
Niu (10.1016/j.scib.2020.09.014_b0310) 2019; 7
Wang (10.1016/j.scib.2020.09.014_b0225) 2020; 8
Chen (10.1016/j.scib.2020.09.014_b0455) 2019; 116
Zhao (10.1016/j.scib.2020.09.014_b0315) 2018; 10
Xue (10.1016/j.scib.2020.09.014_b0535) 2020; 65
Liu (10.1016/j.scib.2020.09.014_b0045) 2019; 141
Gong (10.1016/j.scib.2020.09.014_b0340) 2014; 5
Yang (10.1016/j.scib.2020.09.014_b0070) 2019; 31
Li (10.1016/j.scib.2020.09.014_b0380) 2017; 56
Hegde (10.1016/j.scib.2020.09.014_b0205) 2020; 12
Yang (10.1016/j.scib.2020.09.014_b0260) 2019; 131
Li (10.1016/j.scib.2020.09.014_b0255) 2019; 9
Shen (10.1016/j.scib.2020.09.014_b0355) 2019; 62
Zhao (10.1016/j.scib.2020.09.014_b0500) 2020; 74
Tranca (10.1016/j.scib.2020.09.014_b0460) 2020; 381
Xue (10.1016/j.scib.2020.09.014_b0040) 2018; 5
Liu (10.1016/j.scib.2020.09.014_b0525) 2019; 31
Jin (10.1016/j.scib.2020.09.014_b0390) 2018; 12
Jamesh (10.1016/j.scib.2020.09.014_b0060) 2018; 400
Haslam (10.1016/j.scib.2020.09.014_b0580) 2011; 13
Yang (10.1016/j.scib.2020.09.014_b0150) 2019; 58
Wang (10.1016/j.scib.2020.09.014_b0365) 2019; 12
Sheng (10.1016/j.scib.2020.09.014_b0030) 2015; 6
Zang (10.1016/j.scib.2020.09.014_b0590) 2019; 10
Zheng (10.1016/j.scib.2020.09.014_b0280) 2019; 9
Zeng (10.1016/j.scib.2020.09.014_b0195) 2020; 461
Zheng (10.1016/j.scib.2020.09.014_b0120) 2016; 138
Zheng (10.1016/j.scib.2020.09.014_b0125) 2018; 57
Zhuang (10.1016/j.scib.2020.09.014_b0405) 2016; 7
Wang (10.1016/j.scib.2020.09.014_b0105) 2015; 137
Wei (10.1016/j.scib.2020.09.014_b0330) 2018; 10
Wang (10.1016/j.scib.2020.09.014_b0175) 2019; 10
Gao (10.1016/j.scib.2020.09.014_b0400) 2017; 8
Chen (10.1016/j.scib.2020.09.014_b0220) 2020; 68
Danilovic (10.1016/j.scib.2020.09.014_b0110) 2013; 78
Liu (10.1016/j.scib.2020.09.014_b0170) 2017; 40
Zhao (10.1016/j.scib.2020.09.014_b0270) 2020; 8
Zhang (10.1016/j.scib.2020.09.014_b0265) 2019; 31
Yang (10.1016/j.scib.2020.09.014_b0320) 2019; 131
Chen (10.1016/j.scib.2020.09.014_b0540) 2018; 28
Seh (10.1016/j.scib.2020.09.014_b0015) 2017; 355
Kweon (10.1016/j.scib.2020.09.014_b0285) 2020; 11
Liu (10.1016/j.scib.2020.09.014_b0585) 2018; 44
Sheng (10.1016/j.scib.2020.09.014_b0075) 2010; 157
Cheng (10.1016/j.scib.2020.09.014_b0470) 2017; 10
Ming (10.1016/j.scib.2020.09.014_b0290) 2019; 15
Ramaswamy (10.1016/j.scib.2020.09.014_b0055) 2019; 119
Wang (10.1016/j.scib.2020.09.014_b0080) 2020; 36
Wang (10.1016/j.scib.2020.09.014_b0415) 2017; 139
Mahmood (10.1016/j.scib.2020.09.014_b0425) 2017; 12
Rui (10.1016/j.scib.2020.09.014_b0475) 2019; 19
Chen (10.1016/j.scib.2020.09.014_b0545) 2019; 58
Tang (10.1016/j.scib.2020.09.014_b0575) 2014; 16
Firouzjaie (10.1016/j.scib.2020.09.014_b0050) 2020; 10
Glenk (10.1016/j.scib.2020.09.014_b0010) 2019; 4
Zhao (10.1016/j.scib.2020.09.014_b0215) 2018; 28
Lao (10.1016/j.scib.2020.09.014_b0335) 2019; 58
Zhu (10.1016/j.scib.2020.09.014_b0180) 2020; 120
Zheng (10.1016/j.scib.2020.09.014_b0240) 2020; 59
Zhao (10.1016/j.scib.2020.09.014_b0560) 2020; 32
Xie (10.1016/j.scib.2020.09.014_b0325) 2018; 6
Ishikawa (10.1016/j.scib.2020.09.014_b0200) 2020; 12
Deng (10.1016/j.scib.2020.09.014_b0530) 2016; 11
Intikhab (10.1016/j.scib.2020.09.014_b0160) 2017; 7
References_xml – volume: 157
  start-page: B1529
  year: 2010
  end-page: B1536
  ident: b0075
  article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs. alkaline electrolytes
  publication-title: J Electrochem Soc
– volume: 2
  start-page: 17059
  year: 2017
  ident: b0490
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat Rev Mater
– volume: 11
  start-page: 1278
  year: 2020
  ident: b0285
  article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency
  publication-title: Nat Commun
– volume: 62
  start-page: 117
  year: 2019
  end-page: 126
  ident: b0435
  article-title: Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media
  publication-title: Nano Energy
– volume: 12
  start-page: 463
  year: 2019
  end-page: 491
  ident: b0005
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ Sci
– volume: 9
  start-page: 1803482
  year: 2019
  ident: b0280
  article-title: Electronic structure engineering of LiCoO
  publication-title: Adv Energy Mater
– volume: 44
  start-page: 7
  year: 2018
  end-page: 14
  ident: b0585
  article-title: Amorphous Ni(OH)
  publication-title: Nano Energy
– volume: 2
  start-page: 17070
  year: 2017
  ident: b0305
  article-title: Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion
  publication-title: Nat Energy
– volume: 4
  start-page: 216
  year: 2019
  end-page: 222
  ident: b0010
  article-title: Economics of converting renewable power to hydrogen
  publication-title: Nat Energy
– volume: 5
  start-page: 1701666
  year: 2018
  ident: b0250
  article-title: Bifunctional electrocatalysis on pd-ni core-shell nanoparticles for hydrogen oxidation reaction in alkaline medium
  publication-title: Adv Mater Interfaces
– volume: 4
  start-page: 805
  year: 2019
  end-page: 810
  ident: b0385
  article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction
  publication-title: ACS Energy Lett
– volume: 55
  start-page: 3101
  year: 2019
  end-page: 3104
  ident: b0420
  article-title: Surface modification of Pt nanoparticles with other metals boosting the alkaline hydrogen oxidation reaction
  publication-title: Chem Commun
– volume: 13
  start-page: 7975
  year: 2019
  end-page: 7984
  ident: b0230
  article-title: Interfacing epitaxial dinickel phosphide to 2D nickel thiophosphate nanosheets for boosting electrocatalytic water splitting
  publication-title: ACS Nano
– volume: 8
  start-page: 5728
  year: 2017
  end-page: 5734
  ident: b0400
  article-title: A nickel nanocatalyst within a H-BN shell for enhanced hydrogen oxidation reactions
  publication-title: Chem Sci
– volume: 10
  start-page: 75
  year: 2018
  ident: b0330
  article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions
  publication-title: Nano-micro Lett
– volume: 62
  start-page: 601
  year: 2019
  end-page: 609
  ident: b0355
  article-title: Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media?
  publication-title: Nano Energy
– volume: 355
  year: 2017
  ident: b0015
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 12
  start-page: 4148
  year: 2018
  end-page: 4155
  ident: b0430
  article-title: Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions
  publication-title: ACS Nano
– volume: 2
  start-page: 3160
  year: 2019
  end-page: 3165
  ident: b0565
  article-title: Exploring the composition-activity relation of Ni-Cu binary alloy electrocatalysts for hydrogen oxidation reaction in alkaline media
  publication-title: ACS Appl Energy Mater
– volume: 28
  start-page: 1803291
  year: 2018
  ident: b0215
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv Funct Mater
– volume: 131
  start-page: 14317
  year: 2019
  end-page: 14321
  ident: b0320
  article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO
  publication-title: Angew Chem
– volume: 8
  start-page: 1801926
  year: 2018
  ident: b0395
  article-title: Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis
  publication-title: Adv Energy Mater
– volume: 461
  year: 2020
  ident: b0195
  article-title: Extraordinary activity of mesoporous carbon supported ru toward the hydrogen oxidation reaction in alkaline media
  publication-title: J Power Sources
– volume: 10
  start-page: 2450
  year: 2017
  end-page: 2458
  ident: b0470
  article-title: Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction
  publication-title: Energy Environ Sci
– volume: 2
  year: 2017
  ident: b0155
  article-title: Interfacial water reorganization as a ph-dependent descriptor of the hydrogen evolution rate on platinum electrodes
  publication-title: Nat Energy
– volume: 32
  start-page: 2000872
  year: 2020
  ident: b0560
  article-title: An Ir/Ni(OH)
  publication-title: Adv Mater
– volume: 119
  start-page: 11945
  year: 2019
  end-page: 11979
  ident: b0055
  article-title: Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer
  publication-title: Chem Rev
– volume: 58
  start-page: 12540
  year: 2019
  end-page: 12544
  ident: b0545
  article-title: Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution
  publication-title: Angew Chem Int Ed
– volume: 2
  year: 2016
  ident: b0140
  article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy
  publication-title: Sci Adv
– volume: 59
  start-page: 14533
  year: 2020
  end-page: 14540
  ident: b0240
  article-title: Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting
  publication-title: Angew Chem Int Ed
– volume: 12
  start-page: 441
  year: 2017
  end-page: 446
  ident: b0425
  article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
  publication-title: Nat Nanotechnol
– volume: 141
  start-page: 18256
  year: 2019
  end-page: 18263
  ident: b0505
  article-title: Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core-shell nanocrystals
  publication-title: J Am Chem Soc
– volume: 120
  start-page: 851
  year: 2020
  end-page: 918
  ident: b0180
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem Rev
– volume: 12
  start-page: 8432
  year: 2020
  end-page: 8442
  ident: b0205
  article-title: NiAg
  publication-title: Nanoscale
– volume: 19
  start-page: 8447
  year: 2019
  end-page: 8453
  ident: b0475
  article-title: Direct hybridization of noble metal nanostructures on 2D metal–organic framework nanosheets to catalyze hydrogen evolution
  publication-title: Nano Lett
– volume: 7
  start-page: 8314
  year: 2017
  end-page: 8319
  ident: b0160
  article-title: Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis
  publication-title: ACS Catal
– volume: 31
  start-page: 1800696
  year: 2019
  ident: b0525
  article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications
  publication-title: Adv Mater
– volume: 16
  start-page: 19250
  year: 2014
  end-page: 19257
  ident: b0575
  article-title: Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte
  publication-title: Phys Chem Chem Phys
– volume: 9
  start-page: 6837
  year: 2019
  end-page: 6845
  ident: b0370
  article-title: Stability limits of Ni-based hydrogen oxidation electrocatalysts for anion exchange membrane fuel cells
  publication-title: ACS Catal
– volume: 400
  start-page: 31
  year: 2018
  end-page: 68
  ident: b0060
  article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–a review
  publication-title: J Power Sources
– volume: 165
  start-page: J3209
  year: 2018
  end-page: J3221
  ident: b0135
  article-title: Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling
  publication-title: J Electrochem Soc
– volume: 15
  start-page: 1903057
  year: 2019
  ident: b0290
  article-title: Room-temperature sustainable synthesis of selected platinum group metal (PGM= Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation
  publication-title: Small
– volume: 81
  year: 2010
  ident: b0495
  article-title: Strain and coordination effects in the adsorption properties of early transition metals: a density-functional theory study
  publication-title: Phys Rev B
– volume: 1
  start-page: 1494
  year: 2019
  end-page: 1518
  ident: b0555
  article-title: Strategies to break the scaling relation toward enhanced oxygen electrocatalysis
  publication-title: Matter
– volume: 20
  start-page: 6807
  year: 2020
  end-page: 6814
  ident: b0295
  article-title: Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts towards oxygen reduction reaction
  publication-title: Nano Lett
– volume: 17
  start-page: 827
  year: 2018
  end-page: 833
  ident: b0520
  article-title: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis
  publication-title: Nat Mater
– volume: 375
  start-page: 205
  year: 2018
  end-page: 213
  ident: b0550
  article-title: Importance of balancing membrane and electrode water in anion exchange membrane fuel cells
  publication-title: J Power Sources
– volume: 44
  start-page: 288
  year: 2018
  end-page: 303
  ident: b0085
  article-title: Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts
  publication-title: Nano Energy
– volume: 140
  year: 2014
  ident: b0300
  article-title: Density functional theory study of adsorption of H
  publication-title: J Chem Phys
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  ident: b0020
  article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li
  publication-title: Science
– volume: 5
  start-page: 300
  year: 2013
  end-page: 306
  ident: b0025
  article-title: Improviing the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
  publication-title: Nat Chem
– volume: 53
  start-page: 690
  year: 2018
  end-page: 697
  ident: b0345
  article-title: Constructing tunable dual active sites on two-dimensional C
  publication-title: Nano Energy
– volume: 139
  start-page: 6807
  year: 2017
  end-page: 6810
  ident: b0415
  article-title: IrPdRu/C as H
  publication-title: J Am Chem Soc
– volume: 59
  start-page: 10797
  year: 2020
  end-page: 10801
  ident: b0510
  article-title: Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles
  publication-title: Angew Chem Int Ed
– volume: 27
  year: 2017
  ident: b0450
  article-title: Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal‐organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution
  publication-title: Adv Funct Mater
– volume: 263
  year: 2020
  ident: b0515
  article-title: Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: a case for studying electronic and ensemble effects in hydrogen evolution reaction
  publication-title: Appl Catal B
– volume: 74
  year: 2020
  ident: b0500
  article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis
  publication-title: Nano Energy
– volume: 123
  start-page: 23931
  year: 2019
  end-page: 23939
  ident: b0165
  article-title: Role of hydroxyl species in hydrogen oxidation reaction: a DFT study
  publication-title: J Phys Chem C
– volume: 8
  start-page: 6926
  year: 2020
  end-page: 6956
  ident: b0225
  article-title: Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis
  publication-title: J Mater Chem A
– volume: 141
  start-page: 3232
  year: 2019
  end-page: 3239
  ident: b0045
  article-title: Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts
  publication-title: J Am Chem Soc
– volume: 9
  start-page: 10870
  year: 2019
  end-page: 10875
  ident: b0255
  article-title: Hybrids of ptru nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction
  publication-title: ACS Catal
– volume: 11
  year: 2020
  ident: b0465
  article-title: Pt-O bond as an active site superior to Pt
  publication-title: Nat Commun
– volume: 13
  start-page: 12968
  year: 2011
  end-page: 12974
  ident: b0580
  article-title: Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon
  publication-title: Phys Chem Chem Phys
– volume: 28
  start-page: 4698
  year: 2016
  end-page: 4703
  ident: b0235
  article-title: Design and synthesis of FeOOH/CeO
  publication-title: Adv Mater
– volume: 58
  start-page: 5432
  year: 2019
  end-page: 5437
  ident: b0335
  article-title: Platinum/nickel bicarbonateheterostructures towardsaccelerated hydrogen evolution under alkalineconditions
  publication-title: Angew Chem Int Ed
– volume: 7
  start-page: 1719
  year: 2014
  end-page: 1724
  ident: b0570
  article-title: Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes
  publication-title: Energy Environ Sci
– volume: 10
  start-page: 1217
  year: 2019
  ident: b0590
  article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability
  publication-title: Nat Commun
– volume: 56
  start-page: 15594
  year: 2017
  end-page: 15598
  ident: b0380
  article-title: Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media
  publication-title: Angew Chem Int Ed
– volume: 115
  start-page: 421
  year: 1997
  end-page: 429
  ident: b0480
  article-title: Surface electronic structure and reactivity of transition and noble metals
  publication-title: J Mol Catal A Chem
– volume: 381
  start-page: 234
  year: 2020
  end-page: 247
  ident: b0460
  article-title: Theoretical models for hydrogen evolution reaction at combined Mo
  publication-title: J Catal
– volume: 164
  start-page: F1307
  year: 2017
  end-page: F1315
  ident: b0360
  article-title: Pt/C/Ni(OH)
  publication-title: J Electrochem Soc
– volume: 165
  start-page: J3355
  year: 2018
  end-page: J3362
  ident: b0145
  article-title: Determination of hydrogen oxidation reaction mechanism based on Pt-H-ad energetics in alkaline electrolyte
  publication-title: J Electrochem Soc
– volume: 8
  start-page: 177
  year: 2015
  end-page: 181
  ident: b0350
  article-title: Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?
  publication-title: Energy Environ Sci
– volume: 120
  start-page: 1250
  year: 2019
  end-page: 1349
  ident: b0275
  article-title: A theory/experience description of support effects in carbon-supported catalysts
  publication-title: Chem Rev
– volume: 5
  start-page: 2326
  year: 2018
  end-page: 2329
  ident: b0040
  article-title: Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes
  publication-title: ChemElectroChem
– volume: 6
  start-page: 1967
  year: 2018
  end-page: 1970
  ident: b0325
  article-title: Ni(OH)
  publication-title: J Mater Chem A
– volume: 5
  start-page: 4695
  year: 2014
  ident: b0340
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat Commun
– volume: 58
  start-page: 17718
  year: 2019
  end-page: 17723
  ident: b0150
  article-title: Understanding the ph dependence of underpotential deposited hydrogen on platinum
  publication-title: Angew Chem Int Ed
– volume: 57
  start-page: 7568
  year: 2018
  end-page: 7579
  ident: b0125
  article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts
  publication-title: Angew Chem Int Ed
– volume: 131
  start-page: 10754
  year: 2019
  end-page: 10759
  ident: b0260
  article-title: Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal–organic framework
  publication-title: Angew Chem
– volume: 7
  start-page: 6676
  year: 2019
  end-page: 6685
  ident: b0410
  article-title: Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 40
  start-page: 264
  year: 2017
  end-page: 273
  ident: b0170
  article-title: S-NiFe
  publication-title: Nano Energy
– volume: 10
  start-page: 4876
  year: 2019
  ident: b0175
  article-title: Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions
  publication-title: Nat Commun
– volume: 31
  year: 2019
  ident: b0095
  article-title: Hydrogen evolution and oxidation: mechanistic studies and material advances
  publication-title: Adv Mater
– volume: 5
  start-page: 43
  year: 2020
  end-page: 56
  ident: b0190
  article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction
  publication-title: Nanoscale Horiz
– volume: 3
  start-page: 1854
  year: 2020
  end-page: 1859
  ident: b0035
  article-title: Removal of surface poisoning improving hydrogen oxidation performance of Pt catalysts under basic conditions
  publication-title: ACS Appl Energy Mater
– volume: 28
  start-page: 1705583
  year: 2018
  ident: b0540
  article-title: Electrochemically inert g-C
  publication-title: Adv Funct Mater
– volume: 78
  start-page: 2007
  year: 2013
  end-page: 2015
  ident: b0110
  article-title: Electrocatalysis of the HER in acid and alkaline media
  publication-title: J Serb Chem Soc
– volume: 11
  start-page: 2388
  year: 2018
  end-page: 2401
  ident: b0130
  article-title: Platinum nanostructure/nitrogen‐doped carbon hybrid: enhancing its base media HER/HOR activity through bi‐functionality of the catalyst
  publication-title: ChemSusChem
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: b0185
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem Soc Rev
– volume: 116
  start-page: 6635
  year: 2019
  end-page: 6640
  ident: b0455
  article-title: Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 454
  year: 2020
  end-page: 462
  ident: b0440
  article-title: Lattice-confined ru clusters with high Co tolerance and activity for the hydrogen oxidation reaction
  publication-title: Nat Catal
– volume: 65
  start-page: 359
  year: 2020
  end-page: 366
  ident: b0245
  article-title: Vertically aligned NiS
  publication-title: Sci Bull
– volume: 51
  start-page: 12495
  year: 2012
  end-page: 12498
  ident: b0115
  article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)
  publication-title: Angew Chem Int Ed
– volume: 12
  start-page: 12761
  year: 2018
  end-page: 12769
  ident: b0390
  article-title: Single-crystal nitrogen-rich two-dimensional Mo
  publication-title: ACS Nano
– volume: 6
  start-page: 2382
  year: 2020
  end-page: 2394
  ident: b0210
  article-title: Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution
  publication-title: Chem
– volume: 138
  start-page: 16174
  year: 2016
  end-page: 16181
  ident: b0120
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 3522
  year: 2019
  end-page: 3529
  ident: b0365
  article-title: Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution
  publication-title: Energy Environ Sci
– volume: 137
  start-page: 15070
  year: 2015
  end-page: 15073
  ident: b0105
  article-title: C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction
  publication-title: J Am Chem Soc
– volume: 8
  start-page: 6393
  year: 2020
  end-page: 6405
  ident: b0270
  article-title: Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts
  publication-title: J Mater Chem A
– volume: 89
  year: 2014
  ident: b0485
  article-title: Effects of d-band shape on the surface reactivity of transition-metal alloys
  publication-title: Phys Rev B
– volume: 10
  start-page: 225
  year: 2020
  end-page: 234
  ident: b0050
  article-title: Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells
  publication-title: ACS Catal
– volume: 327
  year: 2019
  ident: b0375
  article-title: Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media
  publication-title: Electrochim Acta
– volume: 31
  start-page: 1808167
  year: 2019
  ident: b0265
  article-title: Support and interface effects in water-splitting electrocatalysts
  publication-title: Adv Mater
– volume: 7
  start-page: 10141
  year: 2016
  ident: b0405
  article-title: Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte
  publication-title: Nat Commun
– volume: 12
  start-page: 22771
  year: 2020
  end-page: 22777
  ident: b0200
  article-title: Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  year: 2015
  ident: b0030
  article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy
  publication-title: Nat Commun
– volume: 36
  start-page: 125
  year: 2020
  end-page: 138
  ident: b0080
  article-title: Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions
  publication-title: Mater Today
– volume: 2019
  year: 2019
  ident: b0100
  article-title: Highly efficient and stable hydrogen production in all ph range by two-dimensional structured metal-doped tungsten semicarbides
  publication-title: Research
– volume: 68
  year: 2020
  ident: b0220
  article-title: Eutectoid-structured WC/W
  publication-title: Nano Energy
– volume: 7
  start-page: 23432
  year: 2019
  end-page: 23450
  ident: b0445
  article-title: Interfacial effects in supported catalysts for electrocatalysis
  publication-title: J Mater Chem A
– volume: 11
  start-page: 218
  year: 2016
  end-page: 230
  ident: b0530
  article-title: Catalysis with two-dimensional materials and their heterostructures
  publication-title: Nat Nanotechnol
– volume: 7
  start-page: 10924
  year: 2019
  end-page: 10929
  ident: b0310
  article-title: Manipulating the water dissociation kinetics of Ni
  publication-title: J Mater Chem A
– volume: 31
  start-page: 1804799
  year: 2019
  ident: b0070
  article-title: Carbon-based metal-free orr electrocatalysts for fuel cells: past, present, and future
  publication-title: Adv Mater
– volume: 65
  start-page: 123
  year: 2020
  end-page: 130
  ident: b0535
  article-title: A highly active and durable electrocatalyst for large current density hydrogen evolution reaction
  publication-title: Sci Bull
– volume: 283
  start-page: 1829
  year: 2018
  end-page: 1834
  ident: b0090
  article-title: The oxophilic and electronic effects on anchored platinum nanoparticles on sp
  publication-title: Electrochim Acta
– volume: 10
  start-page: 19074
  year: 2018
  end-page: 19081
  ident: b0315
  article-title: Epitaxial growth of Ni(OH)
  publication-title: Nanoscale
– volume: 31
  start-page: eaad4998
  year: 2019
  end-page: 1806545
  ident: b0065
  article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction
  publication-title: Adv Mater
– volume: 2
  year: 2016
  ident: 10.1016/j.scib.2020.09.014_b0140
  article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1501602
– volume: 58
  start-page: 5432
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0335
  article-title: Platinum/nickel bicarbonateheterostructures towardsaccelerated hydrogen evolution under alkalineconditions
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201901010
– volume: 28
  start-page: 1803291
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0215
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201803291
– volume: 44
  start-page: 7
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0585
  article-title: Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: a mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.063
– volume: 12
  start-page: 8432
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0205
  article-title: NiAg0.4 3D porous nanoclusters with epitaxial interfaces exhibiting Pt like activity towards hydrogen evolution in alkaline medium
  publication-title: Nanoscale
  doi: 10.1039/D0NR00993H
– volume: 65
  start-page: 123
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0535
  article-title: A highly active and durable electrocatalyst for large current density hydrogen evolution reaction
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.10.024
– volume: 19
  start-page: 8447
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0475
  article-title: Direct hybridization of noble metal nanostructures on 2D metal–organic framework nanosheets to catalyze hydrogen evolution
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b02729
– volume: 10
  start-page: 19074
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0315
  article-title: Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR07045H
– volume: 56
  start-page: 15594
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0380
  article-title: Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201708484
– volume: 11
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0465
  article-title: Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction
  publication-title: Nat Commun
– volume: 16
  start-page: 19250
  year: 2014
  ident: 10.1016/j.scib.2020.09.014_b0575
  article-title: Nickel-silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP01385A
– volume: 10
  start-page: 1217
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0590
  article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09210-0
– volume: 89
  year: 2014
  ident: 10.1016/j.scib.2020.09.014_b0485
  article-title: Effects of d-band shape on the surface reactivity of transition-metal alloys
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.89.115114
– volume: 58
  start-page: 12540
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0545
  article-title: Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201907017
– volume: 40
  start-page: 264
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0170
  article-title: S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.031
– volume: 3
  start-page: 454
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0440
  article-title: Lattice-confined ru clusters with high Co tolerance and activity for the hydrogen oxidation reaction
  publication-title: Nat Catal
  doi: 10.1038/s41929-020-0446-9
– volume: 32
  start-page: 2000872
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0560
  article-title: An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium (V), and beyond
  publication-title: Adv Mater
  doi: 10.1002/adma.202000872
– volume: 6
  year: 2015
  ident: 10.1016/j.scib.2020.09.014_b0030
  article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy
  publication-title: Nat Commun
  doi: 10.1038/ncomms6848
– volume: 327
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0375
  article-title: Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.135016
– volume: 1
  start-page: 1494
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0555
  article-title: Strategies to break the scaling relation toward enhanced oxygen electrocatalysis
  publication-title: Matter
  doi: 10.1016/j.matt.2019.09.011
– volume: 11
  start-page: 2388
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0130
  article-title: Platinum nanostructure/nitrogen‐doped carbon hybrid: enhancing its base media HER/HOR activity through bi‐functionality of the catalyst
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800856
– volume: 28
  start-page: 4698
  year: 2016
  ident: 10.1016/j.scib.2020.09.014_b0235
  article-title: Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction
  publication-title: Adv Mater
  doi: 10.1002/adma.201600054
– volume: 31
  start-page: 1804799
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0070
  article-title: Carbon-based metal-free orr electrocatalysts for fuel cells: past, present, and future
  publication-title: Adv Mater
  doi: 10.1002/adma.201804799
– volume: 2019
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0100
  article-title: Highly efficient and stable hydrogen production in all ph range by two-dimensional structured metal-doped tungsten semicarbides
  publication-title: Research
  doi: 10.34133/2019/4029516
– volume: 58
  start-page: 17718
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0150
  article-title: Understanding the ph dependence of underpotential deposited hydrogen on platinum
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201909697
– volume: 57
  start-page: 7568
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0125
  article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201710556
– volume: 8
  start-page: 177
  year: 2015
  ident: 10.1016/j.scib.2020.09.014_b0350
  article-title: Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE02564D
– volume: 59
  start-page: 10797
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0510
  article-title: Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201916314
– volume: 36
  start-page: 125
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0080
  article-title: Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2019.12.003
– volume: 137
  start-page: 15070
  year: 2015
  ident: 10.1016/j.scib.2020.09.014_b0105
  article-title: C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b09021
– volume: 141
  start-page: 18256
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0505
  article-title: Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core-shell nanocrystals
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b09229
– volume: 10
  start-page: 225
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0050
  article-title: Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03892
– volume: 74
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0500
  article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104877
– volume: 400
  start-page: 31
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0060
  article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–a review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.07.125
– volume: 141
  start-page: 3232
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0045
  article-title: Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b13228
– volume: 8
  start-page: 6926
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0225
  article-title: Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA11646J
– volume: 31
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0095
  article-title: Hydrogen evolution and oxidation: mechanistic studies and material advances
  publication-title: Adv Mater
  doi: 10.1002/adma.201808066
– volume: 45
  start-page: 1529
  year: 2016
  ident: 10.1016/j.scib.2020.09.014_b0185
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00434A
– volume: 7
  start-page: 10141
  year: 2016
  ident: 10.1016/j.scib.2020.09.014_b0405
  article-title: Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte
  publication-title: Nat Commun
  doi: 10.1038/ncomms10141
– volume: 140
  year: 2014
  ident: 10.1016/j.scib.2020.09.014_b0300
  article-title: Density functional theory study of adsorption of H2O, H, O, and OH on stepped platinum surfaces
  publication-title: J Chem Phys
  doi: 10.1063/1.4869749
– volume: 5
  start-page: 43
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0190
  article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction
  publication-title: Nanoscale Horiz
  doi: 10.1039/C9NH00485H
– volume: 12
  start-page: 3522
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0365
  article-title: Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE01743G
– volume: 7
  start-page: 1719
  year: 2014
  ident: 10.1016/j.scib.2020.09.014_b0570
  article-title: Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes
  publication-title: Energy Environ Sci
  doi: 10.1039/C3EE43899F
– volume: 2
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0155
  article-title: Interfacial water reorganization as a ph-dependent descriptor of the hydrogen evolution rate on platinum electrodes
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2017.31
– volume: 12
  start-page: 4148
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0430
  article-title: Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08724
– volume: 8
  start-page: 5728
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0400
  article-title: A nickel nanocatalyst within a H-BN shell for enhanced hydrogen oxidation reactions
  publication-title: Chem Sci
  doi: 10.1039/C7SC01615H
– volume: 17
  start-page: 827
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0520
  article-title: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis
  publication-title: Nat Mater
  doi: 10.1038/s41563-018-0133-2
– volume: 27
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0450
  article-title: Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal‐organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201700451
– volume: 81
  year: 2010
  ident: 10.1016/j.scib.2020.09.014_b0495
  article-title: Strain and coordination effects in the adsorption properties of early transition metals: a density-functional theory study
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.81.033402
– volume: 165
  start-page: J3355
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0145
  article-title: Determination of hydrogen oxidation reaction mechanism based on Pt-H-ad energetics in alkaline electrolyte
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0471815jes
– volume: 120
  start-page: 851
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0180
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00248
– volume: 5
  start-page: 2326
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0040
  article-title: Influence of alkali metal cations on the hydrogen evolution reaction activity of Pt, Ir, Au, and Ag electrodes in alkaline electrolytes
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800690
– volume: 12
  start-page: 441
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0425
  article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2016.304
– volume: 119
  start-page: 11945
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0055
  article-title: Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00157
– volume: 6
  start-page: 1967
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0325
  article-title: Ni(OH)2-PtO2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA09990H
– volume: 2
  start-page: 17059
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0490
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2017.59
– volume: 13
  start-page: 12968
  year: 2011
  ident: 10.1016/j.scib.2020.09.014_b0580
  article-title: Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c1cp20701f
– volume: 7
  start-page: 6676
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0410
  article-title: Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA09136F
– volume: 8
  start-page: 1801926
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0395
  article-title: Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201801926
– volume: 120
  start-page: 1250
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0275
  article-title: A theory/experience description of support effects in carbon-supported catalysts
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00209
– volume: 65
  start-page: 359
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0245
  article-title: Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.12.003
– volume: 5
  start-page: 1701666
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0250
  article-title: Bifunctional electrocatalysis on pd-ni core-shell nanoparticles for hydrogen oxidation reaction in alkaline medium
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201701666
– volume: 10
  start-page: 75
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0330
  article-title: Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions
  publication-title: Nano-micro Lett
  doi: 10.1007/s40820-018-0229-x
– volume: 4
  start-page: 216
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0010
  article-title: Economics of converting renewable power to hydrogen
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0326-1
– volume: 28
  start-page: 1705583
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0540
  article-title: Electrochemically inert g-C3N4 promotes water oxidation catalysis
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201705583
– volume: 12
  start-page: 12761
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0390
  article-title: Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07841
– volume: 164
  start-page: F1307
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0360
  article-title: Pt/C/Ni(OH)2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0251713jes
– volume: 461
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0195
  article-title: Extraordinary activity of mesoporous carbon supported ru toward the hydrogen oxidation reaction in alkaline media
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228147
– volume: 12
  start-page: 22771
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0200
  article-title: Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c00506
– volume: 44
  start-page: 288
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0085
  article-title: Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.008
– volume: 78
  start-page: 2007
  year: 2013
  ident: 10.1016/j.scib.2020.09.014_b0110
  article-title: Electrocatalysis of the HER in acid and alkaline media
  publication-title: J Serb Chem Soc
  doi: 10.2298/JSC131118136D
– volume: 62
  start-page: 601
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0355
  article-title: Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media?
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.045
– volume: 31
  start-page: eaad4998
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0065
  article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction
  publication-title: Adv Mater
– volume: 10
  start-page: 2450
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0470
  article-title: Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE02537H
– volume: 334
  start-page: 1256
  year: 2011
  ident: 10.1016/j.scib.2020.09.014_b0020
  article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 13
  start-page: 7975
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0230
  article-title: Interfacing epitaxial dinickel phosphide to 2D nickel thiophosphate nanosheets for boosting electrocatalytic water splitting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02510
– volume: 5
  start-page: 300
  year: 2013
  ident: 10.1016/j.scib.2020.09.014_b0025
  article-title: Improviing the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
  publication-title: Nat Chem
  doi: 10.1038/nchem.1574
– volume: 131
  start-page: 14317
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0320
  article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures
  publication-title: Angew Chem
  doi: 10.1002/ange.201908194
– volume: 62
  start-page: 117
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0435
  article-title: Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.034
– volume: 68
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0220
  article-title: Eutectoid-structured WC/W2C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104335
– volume: 9
  start-page: 6837
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0370
  article-title: Stability limits of Ni-based hydrogen oxidation electrocatalysts for anion exchange membrane fuel cells
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b01582
– volume: 7
  start-page: 23432
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0445
  article-title: Interfacial effects in supported catalysts for electrocatalysis
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA04888J
– volume: 115
  start-page: 421
  year: 1997
  ident: 10.1016/j.scib.2020.09.014_b0480
  article-title: Surface electronic structure and reactivity of transition and noble metals
  publication-title: J Mol Catal A Chem
  doi: 10.1016/S1381-1169(96)00348-2
– volume: 116
  start-page: 6635
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0455
  article-title: Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1817881116
– volume: 20
  start-page: 6807
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0295
  article-title: Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts towards oxygen reduction reaction
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c02782
– volume: 9
  start-page: 10870
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0255
  article-title: Hybrids of ptru nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03506
– volume: 59
  start-page: 14533
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0240
  article-title: Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202005241
– volume: 55
  start-page: 3101
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0420
  article-title: Surface modification of Pt nanoparticles with other metals boosting the alkaline hydrogen oxidation reaction
  publication-title: Chem Commun
  doi: 10.1039/C9CC00582J
– volume: 5
  start-page: 4695
  year: 2014
  ident: 10.1016/j.scib.2020.09.014_b0340
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat Commun
  doi: 10.1038/ncomms5695
– volume: 9
  start-page: 1803482
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0280
  article-title: Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201803482
– volume: 4
  start-page: 805
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0385
  article-title: Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.9b00348
– volume: 139
  start-page: 6807
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0415
  article-title: IrPdRu/C as H2 oxidation catalysts for alkaline fuel cells-
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b02434
– volume: 283
  start-page: 1829
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0090
  article-title: The oxophilic and electronic effects on anchored platinum nanoparticles on sp2 carbon sites: the hydrogen evolution and oxidation reactions in alkaline medium
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.07.104
– volume: 10
  start-page: 4876
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0175
  article-title: Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12773-7
– volume: 6
  start-page: 2382
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0210
  article-title: Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.037
– volume: 138
  start-page: 16174
  year: 2016
  ident: 10.1016/j.scib.2020.09.014_b0120
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b11291
– volume: 123
  start-page: 23931
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0165
  article-title: Role of hydroxyl species in hydrogen oxidation reaction: a DFT study
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b04731
– volume: 11
  start-page: 218
  year: 2016
  ident: 10.1016/j.scib.2020.09.014_b0530
  article-title: Catalysis with two-dimensional materials and their heterostructures
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2015.340
– volume: 8
  start-page: 6393
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0270
  article-title: Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA00708K
– volume: 11
  start-page: 1278
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0285
  article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15069-3
– volume: 263
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0515
  article-title: Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: a case for studying electronic and ensemble effects in hydrogen evolution reaction
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.118255
– volume: 3
  start-page: 1854
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0035
  article-title: Removal of surface poisoning improving hydrogen oxidation performance of Pt catalysts under basic conditions
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.9b02274
– volume: 375
  start-page: 205
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0550
  article-title: Importance of balancing membrane and electrode water in anion exchange membrane fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.05.006
– volume: 7
  start-page: 8314
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0160
  article-title: Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b02787
– volume: 2
  start-page: 17070
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0305
  article-title: Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2017.70
– volume: 355
  year: 2017
  ident: 10.1016/j.scib.2020.09.014_b0015
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 165
  start-page: J3209
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0135
  article-title: Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0271815jes
– volume: 53
  start-page: 690
  year: 2018
  ident: 10.1016/j.scib.2020.09.014_b0345
  article-title: Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.046
– volume: 381
  start-page: 234
  year: 2020
  ident: 10.1016/j.scib.2020.09.014_b0460
  article-title: Theoretical models for hydrogen evolution reaction at combined Mo2C and N-doped graphene
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.10.028
– volume: 31
  start-page: 1808167
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0265
  article-title: Support and interface effects in water-splitting electrocatalysts
  publication-title: Adv Mater
  doi: 10.1002/adma.201808167
– volume: 31
  start-page: 1800696
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0525
  article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications
  publication-title: Adv Mater
  doi: 10.1002/adma.201800696
– volume: 51
  start-page: 12495
  year: 2012
  ident: 10.1016/j.scib.2020.09.014_b0115
  article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201204842
– volume: 12
  start-page: 463
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0005
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE01157E
– volume: 157
  start-page: B1529
  year: 2010
  ident: 10.1016/j.scib.2020.09.014_b0075
  article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs. alkaline electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3483106
– volume: 15
  start-page: 1903057
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0290
  article-title: Room-temperature sustainable synthesis of selected platinum group metal (PGM= Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation
  publication-title: Small
  doi: 10.1002/smll.201903057
– volume: 2
  start-page: 3160
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0565
  article-title: Exploring the composition-activity relation of Ni-Cu binary alloy electrocatalysts for hydrogen oxidation reaction in alkaline media
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.8b02206
– volume: 131
  start-page: 10754
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0260
  article-title: Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal–organic framework
  publication-title: Angew Chem
  doi: 10.1002/ange.201905430
– volume: 7
  start-page: 10924
  year: 2019
  ident: 10.1016/j.scib.2020.09.014_b0310
  article-title: Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA03249E
SSID ssj0001492407
ssib054405809
Score 2.6315413
SecondaryResourceType review_article
Snippet This review summarized the recent advances of interface engineering of heterostructured electrocatalysts toward efficient hydrogen electrocatalysis in alkaline...
Boosting the alkaline hydrogen evolution and oxidation reaction (HER/HOR) kinetics is vital to practicing the renewable hydrogen cycle in alkaline media....
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Electrocatalysis
Heterostructure
Hydrogen evolution reaction
Hydrogen oxidation reaction
Interface engineering
Title Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis
URI https://dx.doi.org/10.1016/j.scib.2020.09.014
https://www.ncbi.nlm.nih.gov/pubmed/36654318
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gu3BBjOd4TDlwAKFqaZK263GamMZj08RD4lY1rSMG04poOezf47QprwNInCpVdVo5rv3Fsj8TchwL1tNCCQeDu3AQEYdOrHvKkYpBCC5nAZhu5PHEH93LywfvYYUM6l4YU1ZpfX_l00tvbe90rTa7L7NZ95abFBZGX25gr2t6uJpchD6adrN_cTWafKZaZGjOLWbMHDOTCVHGts9UlV64usKTImcl46kr_whRX-LPcIOsW-BI-9W3tcgKLDZJy_6aOT2x_NGnWyQrs3w6ToDCJ9sgzTR9NLUvWUUZ-_YKKbVDcMoczjIvclqUVbQ5hZJZAgMSjefPsYGi9HGZvmZobj-EZvk2uR-e3w1Gjp2r4CSS88IJ_JhpLU2GJoBU4gUYSzUCBcnAB81cpdAHBn4QgGAYr5QAPIeoBMEceGEqdkhjkS1gj1DlJkpL7Qc89qTWusdSRDAsZYhrPNRum7i1KqPEko6b2RfzqK4ue4qM-iOj_oiFEaq_Tc4-ZF4qyo1fn_bqHYq-GU6EMeFXud1qOz_eIcwgZnRx-_9c8YCscVPwwlzH9Q5JAzcTjhCxFKqDFjm4uZ52rGV2yOpkOn4HtPPsXA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYAL4v2GHDiAULW0Tdv1iCamjT0ugLRb1LSOGKB1WseBf4_dZuNxGBKnSlWdVnZqf7Hsz4xdJr5oGl_7DgZ330FEHDuJaWpHagExuJ6IgLqRB8Ow8yTvR8GoxlqLXhgqq7S-v_Lppbe2dxpWm43peNx48CiFhdHXI9jrUg_XGrFTBXW2dtvtdYZfqRYZ07mFxswJmkyIMrZ9pqr0wtU1nhQ9UTKeuvKPEPUt_rS32KYFjvy2-rZtVoPJDtu2v2bBryx_9PUuy8ssn0lS4PDFNshzw5-p9iWvKGPfZ5BxOwSnzOF8FPOCz8sq2oJDySyBAYknb68JQVH-_JHNctxuv4TGxR57at89tjqOnavgpNLz5k4UJsIYSRmaCDKJFxAiMwgUpIAQjHC1Rh8YhVEEvsB4pX3Ac4hOEcxBEGf-PqtP8gkcMq7dVBtpwshLAmmMaYoMEYzIBOKaALV7xNyFKlVqScdp9sWbWlSXvShSvyL1KxErVP8Ru1nKTCvKjZVPBwsLqR8bR2FMWCl3UJlz-Q6fBjGjizv-54oXbL3zOOirfnfYO2EbHhW_CNdxg1NWR8PCGaKXuT63u_MT5UjsoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+engineering+of+heterostructured+electrocatalysts+towards+efficient+alkaline+hydrogen+electrocatalysis&rft.jtitle=Science+bulletin+%28Beijing%29&rft.au=Zhao%2C+Guoqiang&rft.au=Jiang%2C+Yinzhu&rft.au=Dou%2C+Shi-Xue&rft.au=Sun%2C+Wenping&rft.date=2021-01-15&rft.issn=2095-9273&rft.volume=66&rft.issue=1&rft.spage=85&rft.epage=96&rft_id=info:doi/10.1016%2Fj.scib.2020.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scib_2020_09_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-9273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-9273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-9273&client=summon