Impact of current-induced degradation process on the electro-optical characteristics of InGaN/GaN multiple-quantum-well photodetectors fabricated on sapphire substrate

The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively studied. The root mechanism for degradation has been studied employing combined electro-optical measurements. The collected results indicate that (...

Full description

Saved in:
Bibliographic Details
Published inApplied Physics Letters Vol. 118; no. 2
Main Authors Dalapati, Pradip, Yamamoto, Kosuke, Egawa, Takashi, Miyoshi, Makoto
Format Journal Article
LanguageEnglish
Japanese
Published Melville AIP Publishing 11.01.2021
American Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively studied. The root mechanism for degradation has been studied employing combined electro-optical measurements. The collected results indicate that (i) stress can induce an increase in parasitic current leakage paths and trap-assisted tunneling in reverse and subturn-on forward bias ranges, respectively; (ii) during stress, the overall capacitance increases and localization improves in the apparent carrier concentration within the active region; (iii) stress causes a significant decrease in quantum well intensity and an increase in yellow luminescence; (iv) stress induces an increase in the external quantum efficiency due to broadening of the space-charge region; and (v) the detectivity of the device decreases after the stress treatment. These results suggest that degradation is largely attributed to the activation of initially inactive defects, mainly Mg–H, C-related, and VGa defects in the investigated devices, with consequent worsening of their performances.
AbstractList The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively studied. The root mechanism for degradation has been studied employing combined electro-optical measurements. The collected results indicate that (i) stress can induce an increase in parasitic current leakage paths and trap-assisted tunneling in reverse and subturn-on forward bias ranges, respectively; (ii) during stress, the overall capacitance increases and localization improves in the apparent carrier concentration within the active region; (iii) stress causes a significant decrease in quantum well intensity and an increase in yellow luminescence; (iv) stress induces an increase in the external quantum efficiency due to broadening of the space-charge region; and (v) the detectivity of the device decreases after the stress treatment. These results suggest that degradation is largely attributed to the activation of initially inactive defects, mainly Mg–H, C-related, and VGa defects in the investigated devices, with consequent worsening of their performances.
Author Pradip Dalapati
Makoto Miyoshi
Takashi Egawa
Kosuke Yamamoto
Author_xml – sequence: 1
  givenname: Pradip
  surname: Dalapati
  fullname: Dalapati, Pradip
  organization: Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology
– sequence: 2
  givenname: Kosuke
  surname: Yamamoto
  fullname: Yamamoto, Kosuke
  organization: Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology
– sequence: 3
  givenname: Takashi
  surname: Egawa
  fullname: Egawa, Takashi
  organization: 2Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Nagoya 466-8555, Japan
– sequence: 4
  givenname: Makoto
  surname: Miyoshi
  fullname: Miyoshi, Makoto
  organization: 2Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Nagoya 466-8555, Japan
BackLink https://cir.nii.ac.jp/crid/1873116917978534400$$DView record in CiNii
BookMark eNp9ksuKFDEUhoOMYDvOwjcI6EYh07lUKlVLGXRsGHSj6yKVOmVHqpNMknLwiXxNT9ujggwucuHwnf9cn5KzEAMQ8lzwS8FbtdWXnEsjpHlENoIbw5QQ3RnZcM4Va3stnpCLUvzIhVGd4qbZkB-7Q7Ku0jhTt-YMoTIfptXBRCf4ku1kq4-BphwdlELxW_dAYQFXc2QxVe_sQt3eZlSB7AsaylFtF67thy0eeliX6tMC7Ha1oa4HdgfLQtM-1jhBRaGYC53tmFGqYlyMUWxKe5-BlnUsNaP5GXk826XAxf17Tj6_e_vp6j27-Xi9u3pzw1wjZWWmNSAM16q3vTRGWGwA5zDKEWzTSunMaLDwWYDrTMcnLRrFnRJcStsoq9U5eXHSxYpvVyh1-BrXHDDkIBtUF1objtT2RLkcS8kwD87XX53CZP0yCD4cBzLo4X4g6PHqH4-U_cHm7w-yr09s-a36B_4W819wSNP8P_gh5ZcnOHiPKR9v0RnckrYXpjedVk2Du_ITKs21Cg
CODEN APPLAB
CitedBy_id crossref_primary_10_1016_j_sna_2021_113050
crossref_primary_10_1016_j_optmat_2022_112284
crossref_primary_10_1016_j_apsusc_2024_161532
crossref_primary_10_1109_TED_2023_3294348
crossref_primary_10_1016_j_jallcom_2023_168991
crossref_primary_10_1016_j_ijleo_2021_167691
crossref_primary_10_1116_6_0002101
crossref_primary_10_1016_j_vacuum_2023_112159
crossref_primary_10_1063_5_0232885
crossref_primary_10_1007_s42247_021_00242_1
crossref_primary_10_1016_j_ijsolstr_2024_113097
crossref_primary_10_1364_OL_434920
crossref_primary_10_1016_j_sna_2022_113935
crossref_primary_10_1109_JLT_2021_3115167
crossref_primary_10_1088_1674_1056_ac4cb8
Cites_doi 10.1063/1.368380
10.1016/j.optmat.2020.110352
10.1038/s41598-019-48621-3
10.1021/acsaelm.9b00834
10.1039/C7NR01290J
10.1109/LED.2002.802601
10.1109/TED.2016.2631720
10.1109/TED.2019.2920521
10.1002/pssa.201700323
10.1002/pssb.201552062
10.1063/5.0010540
10.1063/1.5135633
10.1088/2053-1591/aa8147
10.1063/1.5012608
10.1038/s41598-020-59033-z
10.1063/1.2213509
10.7567/1347-4065/ab1128
10.1016/j.cryogenics.2014.10.002
10.1088/0268-1242/18/4/201
10.1007/s11664-015-4311-6
10.1002/pssa.201431743
10.1063/1.123988
10.1063/1.3685717
10.1063/1.3497082
10.1063/1.5140689
10.1063/1.4995275
10.1063/1.5024704
10.1063/1.5006650
10.1016/j.ijleo.2015.12.044
10.1103/PhysRevLett.110.087404
10.1007/s11082-019-2182-4
10.1063/1.4770465
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under license by AIP Publishing.
DBID RYH
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0027127
DatabaseName CiNii Complete
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0027127
apl
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAGWI
AAGZG
AAPUP
AAYIH
ABFTF
ABJGX
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D0L
EBS
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RYH
SJN
TAE
TN5
UPT
WH7
XJE
YZZ
~02
AAEUA
ESX
UCJ
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c422t-767e170539a92771a11800eb2bea4622c7b7307f1ec8780d51430c31022a43a53
ISSN 0003-6951
IngestDate Mon Jun 30 05:37:26 EDT 2025
Tue Jul 01 01:08:02 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Fri Jun 21 00:13:55 EDT 2024
Thu Jun 23 13:36:23 EDT 2022
Thu Jun 26 22:04:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
Japanese
License Published under license by AIP Publishing.
0003-6951/2021/118(2)/021101/5/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-767e170539a92771a11800eb2bea4622c7b7307f1ec8780d51430c31022a43a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9021-726x
0000-0001-9583-1891
0000-0001-9021-726X
PQID 2476715570
PQPubID 2050678
PageCount 5
ParticipantIDs scitation_primary_10_1063_5_0027127
nii_cinii_1873116917978534400
crossref_citationtrail_10_1063_5_0027127
proquest_journals_2476715570
crossref_primary_10_1063_5_0027127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-11
20210111
PublicationDateYYYYMMDD 2021-01-11
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-11
  day: 11
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied Physics Letters
PublicationYear 2021
Publisher AIP Publishing
American Institute of Physics
Publisher_xml – name: AIP Publishing
– name: American Institute of Physics
References Liu, Yang, Patanè, Yu, Yan, Wang, Lu, Li, Zhao (c32) 2017
Meneghini, Barbisan, Rodighiero, Meneghesso, Zanoni (c9) 2010
Miyoshi, Ohta, Mori, Egawa (c12) 2018
Mori, Egawa, Miyoshi (c13) 2017
Wang, Zheng, Zhu, Xu, Xu, Liang, Dai, Li, Zhou, Mao, Zhang, Ma, Hao (c11) 2020
Reshchikov, Vorobiov, Andrieiev, Ding, Izyumskaya, Avrutin, Usikov, Helava, Makarov (c26) 2020
Li, Wang, He, Zhang, Sun, Li, Guo, Chen, Chen, Lu (c23) 2012
Monti, De Santi, Ruos, Piva, Glaab, Rass, Einfeldt, Mehnke, Enslin, Wernicke, Kneissl, Meneghesso, Zanoni, Meneghini (c8) 2019
Dalapati, Manik, Basu (c22) 2016
Dalapati, Manik, Basu (c21) 2016
Demchenko, Diallo, Reshchikov (c27) 2013
Zhao, Jiang, Yang, Zhu, Liu, Zhang, Liang, Li, Li, Gong (c28) 2006
Shkir, Khan, Ashraf, Almohammedi, Dieguez, AlFaify (c31) 2019
Renso, De Santi, Caria, Torre, Zecchin, Meneghesso, Zanoni, Meneghini (c10) 2020
Dalapati, Manik, Basu (c4) 2015
Glaab, Haefke, Ruschel, Brendel, Rass, Kolbe, Knauer, Weyers, Einfeldt, Guttmann, Kuhn, Enslin, Wernicke, Kneissl (c30) 2018
Pant, Singh, Chowdhury, Roul, Nanda, Krupanidhi (c1) 2020
Dalapati, Yamamoto, Egawaa, Miyoshi (c7) 2020
Huang, Fu, Chen, Lu, Baranowski, Montes, Yang, Gunning, Koleske, Zhao (c6) 2017
Moon, Lim (c17) 1999
Kim, Ahn, Dong, Park, Lee, Moon, Yuh, Choi, Lee, Hong, Song (c19) 2012
Reshchikov, Albarakati, Monavarian, Avrutin, Morkoc (c25) 2018
Brendel, Hagedorn, Brunner, Reiner, Zeimer, Weyers (c3) 2019
Cao, Stokes, Sandvik, LeBoeuf, Kretchmer, Walker (c20) 2002
Lyons, Alkauskas, Janotti, Van de Walle (c24) 2015
Monroy, Omnes, Calle (c5) 2003
Dalapati, Manik, Basu (c16) 2020
Pant, Singh, Chowdhury, Roul, Nanda, Krupanidhi (c2) 2020
Mandurrino, Verzellesi, Goano, Vallone, Bertazzi, Ghione, Meneghini, Meneghesso, Zanoni (c15) 2015
Usami, Ando, Tanaka, Nagamatsu, Deki, Kushimoto, Nitta, Honda, Amano, Sugawara, Yao, Ishikawa (c29) 2018
Monti, Meneghini, De Santi, Meneghesso, Zanoni, Glaab, Rass, Einfeldt, Mehnke, Enslin, Wernicke, Kneissl (c14) 2017
Moon, Choe, Kwon, Shin, Lim (c18) 1998
(2023061717352672800_c7) 2020; 109
(2023061717352672800_c10) 2020; 127
(2023061717352672800_c20) 2002; 23
(2023061717352672800_c4) 2015; 65
(2023061717352672800_c8) 2019; 66
(2023061717352672800_c24) 2015; 252
(2023061717352672800_c5) 2003; 18
(2023061717352672800_c12) 2018; 215
(2023061717352672800_c16) 2020; 52
(2023061717352672800_c1) 2020; 8
(2023061717352672800_c11) 2020; 116
(2023061717352672800_c28) 2006; 88
(2023061717352672800_c21) 2016; 127
(2023061717352672800_c22) 2016; 45
(2023061717352672800_c14) 2017; 64
(2023061717352672800_c29) 2018; 112
(2023061717352672800_c9) 2010; 97
(2023061717352672800_c31) 2019; 9
(2023061717352672800_c13) 2017; 4
(2023061717352672800_c15) 2015; 212
(2023061717352672800_c27) 2013; 110
(2023061717352672800_c2) 2020; 2
(2023061717352672800_c23) 2012; 112
(2023061717352672800_c3) 2019; 58
(2023061717352672800_c19) 2012; 100
(2023061717352672800_c32) 2017; 9
(2023061717352672800_c30) 2018; 123
(2023061717352672800_c17) 1999; 74
(2023061717352672800_c26) 2020; 10
(2023061717352672800_c25) 2018; 123
(2023061717352672800_c18) 1998; 84
(2023061717352672800_c6) 2017; 111
References_xml – start-page: 071910
  year: 2012
  ident: c19
  publication-title: Appl. Phys. Lett.
– start-page: 535
  year: 2002
  ident: c20
  publication-title: IEEE Electron Devices Lett.
– start-page: 2598
  year: 2016
  ident: c21
  publication-title: Optik
– start-page: SCCC21
  year: 2019
  ident: c3
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 2683
  year: 2016
  ident: c22
  publication-title: J. Electron. Mater.
– start-page: 085904
  year: 2017
  ident: c13
  publication-title: Mater. Res. Express
– start-page: 182106
  year: 2018
  ident: c29
  publication-title: Appl. Phys. Lett.
– start-page: 123515
  year: 2012
  ident: c23
  publication-title: J. Appl. Phys.
– start-page: 3387
  year: 2019
  ident: c8
  publication-title: IEEE Trans. Electron Devices
– start-page: 8142
  year: 2017
  ident: c32
  publication-title: Nanoscale
– start-page: 54
  year: 2020
  ident: c16
  publication-title: Opt. Quantum Electron.
– start-page: 769
  year: 2020
  ident: c2
  publication-title: ACS Appl. Electron. Mater.
– start-page: 110352
  year: 2020
  ident: c7
  publication-title: Opt. Mater.
– start-page: 241917
  year: 2006
  ident: c28
  publication-title: Appl. Phys. Lett.
– start-page: 2673
  year: 1998
  ident: c18
  publication-title: J. Appl. Phys.
– start-page: 161520
  year: 2018
  ident: c25
  publication-title: J. Appl. Phys.
– start-page: 203501
  year: 2020
  ident: c11
  publication-title: Appl. Phys. Lett.
– start-page: 1700323
  year: 2018
  ident: c12
  publication-title: Phys. Status Solidi A
– start-page: 900
  year: 2015
  ident: c24
  publication-title: Phys. Status Solidi B
– start-page: 947
  year: 2015
  ident: c15
  publication-title: Phys. Status Solidi A
– start-page: 2987
  year: 1999
  ident: c17
  publication-title: Appl. Phys. Lett.
– start-page: 185701
  year: 2020
  ident: c10
  publication-title: J. Appl. Phys.
– start-page: 200
  year: 2017
  ident: c14
  publication-title: IEEE Trans. Electron Devices
– start-page: 087404
  year: 2013
  ident: c27
  publication-title: Phys. Rev. Lett.
– start-page: 233511
  year: 2017
  ident: c6
  publication-title: Appl. Phys. Lett.
– start-page: 2223
  year: 2020
  ident: c26
  publication-title: Sci. Rep.
– start-page: 020907
  year: 2020
  ident: c1
  publication-title: APL Mater.
– start-page: 104502
  year: 2018
  ident: c30
  publication-title: J. Appl. Phys.
– start-page: 143506
  year: 2010
  ident: c9
  publication-title: Appl. Phys. Lett.
– start-page: 12436
  year: 2019
  ident: c31
  publication-title: Sci. Rep.
– start-page: 10
  year: 2015
  ident: c4
  publication-title: Cryogenics
– start-page: R33
  year: 2003
  ident: c5
  publication-title: Semicond. Sci. Technol.
– volume: 84
  start-page: 2673
  issue: 5
  year: 1998
  ident: 2023061717352672800_c18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368380
– volume: 109
  start-page: 110352
  year: 2020
  ident: 2023061717352672800_c7
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110352
– volume: 9
  start-page: 12436
  year: 2019
  ident: 2023061717352672800_c31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48621-3
– volume: 2
  start-page: 769
  issue: 3
  year: 2020
  ident: 2023061717352672800_c2
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.9b00834
– volume: 9
  start-page: 8142
  issue: 24
  year: 2017
  ident: 2023061717352672800_c32
  publication-title: Nanoscale
  doi: 10.1039/C7NR01290J
– volume: 23
  start-page: 535
  issue: 9
  year: 2002
  ident: 2023061717352672800_c20
  publication-title: IEEE Electron Devices Lett.
  doi: 10.1109/LED.2002.802601
– volume: 64
  start-page: 200
  issue: 1
  year: 2017
  ident: 2023061717352672800_c14
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2631720
– volume: 66
  start-page: 3387
  issue: 8
  year: 2019
  ident: 2023061717352672800_c8
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2920521
– volume: 215
  start-page: 1700323
  issue: 10
  year: 2018
  ident: 2023061717352672800_c12
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201700323
– volume: 252
  start-page: 900
  issue: 5
  year: 2015
  ident: 2023061717352672800_c24
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201552062
– volume: 116
  start-page: 203501
  issue: 20
  year: 2020
  ident: 2023061717352672800_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0010540
– volume: 127
  start-page: 185701
  issue: 18
  year: 2020
  ident: 2023061717352672800_c10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5135633
– volume: 4
  start-page: 085904
  issue: 8
  year: 2017
  ident: 2023061717352672800_c13
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aa8147
– volume: 123
  start-page: 104502
  issue: 10
  year: 2018
  ident: 2023061717352672800_c30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5012608
– volume: 10
  start-page: 2223
  year: 2020
  ident: 2023061717352672800_c26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59033-z
– volume: 88
  start-page: 241917
  issue: 24
  year: 2006
  ident: 2023061717352672800_c28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2213509
– volume: 58
  start-page: SCCC21
  issue: SC
  year: 2019
  ident: 2023061717352672800_c3
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/1347-4065/ab1128
– volume: 65
  start-page: 10
  year: 2015
  ident: 2023061717352672800_c4
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2014.10.002
– volume: 18
  start-page: R33
  issue: 47
  year: 2003
  ident: 2023061717352672800_c5
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/18/4/201
– volume: 45
  start-page: 2683
  issue: 6
  year: 2016
  ident: 2023061717352672800_c22
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-015-4311-6
– volume: 212
  start-page: 947
  issue: 5
  year: 2015
  ident: 2023061717352672800_c15
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201431743
– volume: 74
  start-page: 2987
  issue: 20
  year: 1999
  ident: 2023061717352672800_c17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123988
– volume: 100
  start-page: 071910
  issue: 7
  year: 2012
  ident: 2023061717352672800_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3685717
– volume: 97
  start-page: 143506
  issue: 14
  year: 2010
  ident: 2023061717352672800_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3497082
– volume: 8
  start-page: 020907
  issue: 2
  year: 2020
  ident: 2023061717352672800_c1
  publication-title: APL Mater.
  doi: 10.1063/1.5140689
– volume: 123
  start-page: 161520
  issue: 16
  year: 2018
  ident: 2023061717352672800_c25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4995275
– volume: 112
  start-page: 182106
  issue: 18
  year: 2018
  ident: 2023061717352672800_c29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5024704
– volume: 111
  start-page: 233511
  issue: 23
  year: 2017
  ident: 2023061717352672800_c6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5006650
– volume: 127
  start-page: 2598
  issue: 5
  year: 2016
  ident: 2023061717352672800_c21
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.12.044
– volume: 110
  start-page: 087404
  issue: 8
  year: 2013
  ident: 2023061717352672800_c27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.087404
– volume: 52
  start-page: 54
  issue: 2
  year: 2020
  ident: 2023061717352672800_c16
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-019-2182-4
– volume: 112
  start-page: 123515
  issue: 12
  year: 2012
  ident: 2023061717352672800_c23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4770465
SSID ssib017383074
ssib000366330
ssib008092178
ssib002557321
ssib006540872
ssj0005233
ssib004908453
ssib006540871
ssib053818346
ssib020074058
Score 2.4335377
Snippet The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively...
SourceID proquest
crossref
scitation
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Carrier density
Current leakage
Defects
Degradation
Gallium nitrides
Indium gallium nitrides
Optical measurement
Optical properties
Photometers
Quantum efficiency
Quantum wells
Sapphire
Substrates
Title Impact of current-induced degradation process on the electro-optical characteristics of InGaN/GaN multiple-quantum-well photodetectors fabricated on sapphire substrate
URI https://cir.nii.ac.jp/crid/1873116917978534400
http://dx.doi.org/10.1063/5.0027127
https://www.proquest.com/docview/2476715570
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6TQh4QDCYKGzIAh6QKrMkdv49TrAxoBQkWqlvkR07YqJrwprwwBfgo_A1OcdOmpRqAh5qRZHlS3y_ns-X8-8Qeu5FEaeSxURIRxIWK0UiP_MIFb6AvZjrc1Fn-U6C8xl7N_fng8HPTtZSVYqX6Y-t50r-R6twD_SqT8n-g2bbQeEGXIN-oQUNQ_tXOn7bHnFMDc0SgR12pb_oS80BYcoljQpzFsB-FhjZwjckL0wYO92gbK7PlrzhE3gsaNuMQ_KtAiVUl6SO9hVf8jKXqlSmWk_GRV1uCCSDlBUvCh3zHq3AKtXst10XuPF7TUxlNVrUB4o69e0XXGd5ayYlaRKsa6vELzmgKh-9z1fVV9UNVng6UkHcTuJH8xWqlwnxycjrmWlKgtgy0SpjmZ1QB1StsW5M99p2N1voP5YE8MFgwurIWegaHoI-7fbkY3I2G4-T6el8uoP2PNhvgMHcO3n9Yfy5ky1EaVN8UT9ZQ1IV0ON26J5rs7O8uOjtWm6CS2OyKzoOzPQuumN3HvjEwOgeGqjlPrrd4aPcRzfsHN1Hvwy0cJ7hDWjhDrSwhRaGS4AW3oAW3oCWHq2G1jH88FZg4T6w8BpYWkYDLNwC6wGanZ1OX50TW9ODpMzzShIGodIMTjTmMcy0yzUFoaOEJxRngeeloYA1J8xclUZh5Ejtzzsp1XEJzij36QHaXeZL9RBhngpfKgqYEJIx4cRpLKNYcuaC38cZH6IXjTqSZup13ZVFUideBDTxE6u5IXradi0My8u2TkegUxhKt24UguAghvUsBI-XwVI4RIeNthNrJFaJx-CNXc1zN0TPWgRcJ2RLr-_51bpHUsjs0fWiHqNb6z_fIdotryp1BL5zKZ5YXP8GOX7NDA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+current-induced+degradation+process+on+the+electro-optical+characteristics+of+InGaN%2FGaN+multiple-quantum-well+photodetectors+fabricated+on+sapphire+substrate&rft.jtitle=Applied+physics+letters&rft.au=Dalapati+Pradip&rft.au=Yamamoto+Kosuke&rft.date=2021-01-11&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=118&rft.issue=2&rft_id=info:doi/10.1063%2F5.0027127&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon