Impact of current-induced degradation process on the electro-optical characteristics of InGaN/GaN multiple-quantum-well photodetectors fabricated on sapphire substrate
The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively studied. The root mechanism for degradation has been studied employing combined electro-optical measurements. The collected results indicate that (...
Saved in:
Published in | Applied Physics Letters Vol. 118; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Melville
AIP Publishing
11.01.2021
American Institute of Physics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively studied. The root mechanism for degradation has been studied employing combined electro-optical measurements. The collected results indicate that (i) stress can induce an increase in parasitic current leakage paths and trap-assisted tunneling in reverse and subturn-on forward bias ranges, respectively; (ii) during stress, the overall capacitance increases and localization improves in the apparent carrier concentration within the active region; (iii) stress causes a significant decrease in quantum well intensity and an increase in yellow luminescence; (iv) stress induces an increase in the external quantum efficiency due to broadening of the space-charge region; and (v) the detectivity of the device decreases after the stress treatment. These results suggest that degradation is largely attributed to the activation of initially inactive defects, mainly Mg–H, C-related, and VGa defects in the investigated devices, with consequent worsening of their performances. |
---|---|
AbstractList | The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively studied. The root mechanism for degradation has been studied employing combined electro-optical measurements. The collected results indicate that (i) stress can induce an increase in parasitic current leakage paths and trap-assisted tunneling in reverse and subturn-on forward bias ranges, respectively; (ii) during stress, the overall capacitance increases and localization improves in the apparent carrier concentration within the active region; (iii) stress causes a significant decrease in quantum well intensity and an increase in yellow luminescence; (iv) stress induces an increase in the external quantum efficiency due to broadening of the space-charge region; and (v) the detectivity of the device decreases after the stress treatment. These results suggest that degradation is largely attributed to the activation of initially inactive defects, mainly Mg–H, C-related, and VGa defects in the investigated devices, with consequent worsening of their performances. |
Author | Pradip Dalapati Makoto Miyoshi Takashi Egawa Kosuke Yamamoto |
Author_xml | – sequence: 1 givenname: Pradip surname: Dalapati fullname: Dalapati, Pradip organization: Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology – sequence: 2 givenname: Kosuke surname: Yamamoto fullname: Yamamoto, Kosuke organization: Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology – sequence: 3 givenname: Takashi surname: Egawa fullname: Egawa, Takashi organization: 2Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Nagoya 466-8555, Japan – sequence: 4 givenname: Makoto surname: Miyoshi fullname: Miyoshi, Makoto organization: 2Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Nagoya 466-8555, Japan |
BackLink | https://cir.nii.ac.jp/crid/1873116917978534400$$DView record in CiNii |
BookMark | eNp9ksuKFDEUhoOMYDvOwjcI6EYh07lUKlVLGXRsGHSj6yKVOmVHqpNMknLwiXxNT9ujggwucuHwnf9cn5KzEAMQ8lzwS8FbtdWXnEsjpHlENoIbw5QQ3RnZcM4Va3stnpCLUvzIhVGd4qbZkB-7Q7Ku0jhTt-YMoTIfptXBRCf4ku1kq4-BphwdlELxW_dAYQFXc2QxVe_sQt3eZlSB7AsaylFtF67thy0eeliX6tMC7Ha1oa4HdgfLQtM-1jhBRaGYC53tmFGqYlyMUWxKe5-BlnUsNaP5GXk826XAxf17Tj6_e_vp6j27-Xi9u3pzw1wjZWWmNSAM16q3vTRGWGwA5zDKEWzTSunMaLDwWYDrTMcnLRrFnRJcStsoq9U5eXHSxYpvVyh1-BrXHDDkIBtUF1objtT2RLkcS8kwD87XX53CZP0yCD4cBzLo4X4g6PHqH4-U_cHm7w-yr09s-a36B_4W819wSNP8P_gh5ZcnOHiPKR9v0RnckrYXpjedVk2Du_ITKs21Cg |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1016_j_sna_2021_113050 crossref_primary_10_1016_j_optmat_2022_112284 crossref_primary_10_1016_j_apsusc_2024_161532 crossref_primary_10_1109_TED_2023_3294348 crossref_primary_10_1016_j_jallcom_2023_168991 crossref_primary_10_1016_j_ijleo_2021_167691 crossref_primary_10_1116_6_0002101 crossref_primary_10_1016_j_vacuum_2023_112159 crossref_primary_10_1063_5_0232885 crossref_primary_10_1007_s42247_021_00242_1 crossref_primary_10_1016_j_ijsolstr_2024_113097 crossref_primary_10_1364_OL_434920 crossref_primary_10_1016_j_sna_2022_113935 crossref_primary_10_1109_JLT_2021_3115167 crossref_primary_10_1088_1674_1056_ac4cb8 |
Cites_doi | 10.1063/1.368380 10.1016/j.optmat.2020.110352 10.1038/s41598-019-48621-3 10.1021/acsaelm.9b00834 10.1039/C7NR01290J 10.1109/LED.2002.802601 10.1109/TED.2016.2631720 10.1109/TED.2019.2920521 10.1002/pssa.201700323 10.1002/pssb.201552062 10.1063/5.0010540 10.1063/1.5135633 10.1088/2053-1591/aa8147 10.1063/1.5012608 10.1038/s41598-020-59033-z 10.1063/1.2213509 10.7567/1347-4065/ab1128 10.1016/j.cryogenics.2014.10.002 10.1088/0268-1242/18/4/201 10.1007/s11664-015-4311-6 10.1002/pssa.201431743 10.1063/1.123988 10.1063/1.3685717 10.1063/1.3497082 10.1063/1.5140689 10.1063/1.4995275 10.1063/1.5024704 10.1063/1.5006650 10.1016/j.ijleo.2015.12.044 10.1103/PhysRevLett.110.087404 10.1007/s11082-019-2182-4 10.1063/1.4770465 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under license by AIP Publishing. |
DBID | RYH AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0027127 |
DatabaseName | CiNii Complete CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0027127 apl |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH ABFTF ABJGX ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CS3 D0L EBS F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RYH SJN TAE TN5 UPT WH7 XJE YZZ ~02 AAEUA ESX UCJ AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c422t-767e170539a92771a11800eb2bea4622c7b7307f1ec8780d51430c31022a43a53 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 05:37:26 EDT 2025 Tue Jul 01 01:08:02 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Fri Jun 21 00:13:55 EDT 2024 Thu Jun 23 13:36:23 EDT 2022 Thu Jun 26 22:04:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English Japanese |
License | Published under license by AIP Publishing. 0003-6951/2021/118(2)/021101/5/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-767e170539a92771a11800eb2bea4622c7b7307f1ec8780d51430c31022a43a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9021-726x 0000-0001-9583-1891 0000-0001-9021-726X |
PQID | 2476715570 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_5_0027127 nii_cinii_1873116917978534400 crossref_citationtrail_10_1063_5_0027127 proquest_journals_2476715570 crossref_primary_10_1063_5_0027127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-11 20210111 |
PublicationDateYYYYMMDD | 2021-01-11 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied Physics Letters |
PublicationYear | 2021 |
Publisher | AIP Publishing American Institute of Physics |
Publisher_xml | – name: AIP Publishing – name: American Institute of Physics |
References | Liu, Yang, Patanè, Yu, Yan, Wang, Lu, Li, Zhao (c32) 2017 Meneghini, Barbisan, Rodighiero, Meneghesso, Zanoni (c9) 2010 Miyoshi, Ohta, Mori, Egawa (c12) 2018 Mori, Egawa, Miyoshi (c13) 2017 Wang, Zheng, Zhu, Xu, Xu, Liang, Dai, Li, Zhou, Mao, Zhang, Ma, Hao (c11) 2020 Reshchikov, Vorobiov, Andrieiev, Ding, Izyumskaya, Avrutin, Usikov, Helava, Makarov (c26) 2020 Li, Wang, He, Zhang, Sun, Li, Guo, Chen, Chen, Lu (c23) 2012 Monti, De Santi, Ruos, Piva, Glaab, Rass, Einfeldt, Mehnke, Enslin, Wernicke, Kneissl, Meneghesso, Zanoni, Meneghini (c8) 2019 Dalapati, Manik, Basu (c22) 2016 Dalapati, Manik, Basu (c21) 2016 Demchenko, Diallo, Reshchikov (c27) 2013 Zhao, Jiang, Yang, Zhu, Liu, Zhang, Liang, Li, Li, Gong (c28) 2006 Shkir, Khan, Ashraf, Almohammedi, Dieguez, AlFaify (c31) 2019 Renso, De Santi, Caria, Torre, Zecchin, Meneghesso, Zanoni, Meneghini (c10) 2020 Dalapati, Manik, Basu (c4) 2015 Glaab, Haefke, Ruschel, Brendel, Rass, Kolbe, Knauer, Weyers, Einfeldt, Guttmann, Kuhn, Enslin, Wernicke, Kneissl (c30) 2018 Pant, Singh, Chowdhury, Roul, Nanda, Krupanidhi (c1) 2020 Dalapati, Yamamoto, Egawaa, Miyoshi (c7) 2020 Huang, Fu, Chen, Lu, Baranowski, Montes, Yang, Gunning, Koleske, Zhao (c6) 2017 Moon, Lim (c17) 1999 Kim, Ahn, Dong, Park, Lee, Moon, Yuh, Choi, Lee, Hong, Song (c19) 2012 Reshchikov, Albarakati, Monavarian, Avrutin, Morkoc (c25) 2018 Brendel, Hagedorn, Brunner, Reiner, Zeimer, Weyers (c3) 2019 Cao, Stokes, Sandvik, LeBoeuf, Kretchmer, Walker (c20) 2002 Lyons, Alkauskas, Janotti, Van de Walle (c24) 2015 Monroy, Omnes, Calle (c5) 2003 Dalapati, Manik, Basu (c16) 2020 Pant, Singh, Chowdhury, Roul, Nanda, Krupanidhi (c2) 2020 Mandurrino, Verzellesi, Goano, Vallone, Bertazzi, Ghione, Meneghini, Meneghesso, Zanoni (c15) 2015 Usami, Ando, Tanaka, Nagamatsu, Deki, Kushimoto, Nitta, Honda, Amano, Sugawara, Yao, Ishikawa (c29) 2018 Monti, Meneghini, De Santi, Meneghesso, Zanoni, Glaab, Rass, Einfeldt, Mehnke, Enslin, Wernicke, Kneissl (c14) 2017 Moon, Choe, Kwon, Shin, Lim (c18) 1998 (2023061717352672800_c7) 2020; 109 (2023061717352672800_c10) 2020; 127 (2023061717352672800_c20) 2002; 23 (2023061717352672800_c4) 2015; 65 (2023061717352672800_c8) 2019; 66 (2023061717352672800_c24) 2015; 252 (2023061717352672800_c5) 2003; 18 (2023061717352672800_c12) 2018; 215 (2023061717352672800_c16) 2020; 52 (2023061717352672800_c1) 2020; 8 (2023061717352672800_c11) 2020; 116 (2023061717352672800_c28) 2006; 88 (2023061717352672800_c21) 2016; 127 (2023061717352672800_c22) 2016; 45 (2023061717352672800_c14) 2017; 64 (2023061717352672800_c29) 2018; 112 (2023061717352672800_c9) 2010; 97 (2023061717352672800_c31) 2019; 9 (2023061717352672800_c13) 2017; 4 (2023061717352672800_c15) 2015; 212 (2023061717352672800_c27) 2013; 110 (2023061717352672800_c2) 2020; 2 (2023061717352672800_c23) 2012; 112 (2023061717352672800_c3) 2019; 58 (2023061717352672800_c19) 2012; 100 (2023061717352672800_c32) 2017; 9 (2023061717352672800_c30) 2018; 123 (2023061717352672800_c17) 1999; 74 (2023061717352672800_c26) 2020; 10 (2023061717352672800_c25) 2018; 123 (2023061717352672800_c18) 1998; 84 (2023061717352672800_c6) 2017; 111 |
References_xml | – start-page: 071910 year: 2012 ident: c19 publication-title: Appl. Phys. Lett. – start-page: 535 year: 2002 ident: c20 publication-title: IEEE Electron Devices Lett. – start-page: 2598 year: 2016 ident: c21 publication-title: Optik – start-page: SCCC21 year: 2019 ident: c3 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 2683 year: 2016 ident: c22 publication-title: J. Electron. Mater. – start-page: 085904 year: 2017 ident: c13 publication-title: Mater. Res. Express – start-page: 182106 year: 2018 ident: c29 publication-title: Appl. Phys. Lett. – start-page: 123515 year: 2012 ident: c23 publication-title: J. Appl. Phys. – start-page: 3387 year: 2019 ident: c8 publication-title: IEEE Trans. Electron Devices – start-page: 8142 year: 2017 ident: c32 publication-title: Nanoscale – start-page: 54 year: 2020 ident: c16 publication-title: Opt. Quantum Electron. – start-page: 769 year: 2020 ident: c2 publication-title: ACS Appl. Electron. Mater. – start-page: 110352 year: 2020 ident: c7 publication-title: Opt. Mater. – start-page: 241917 year: 2006 ident: c28 publication-title: Appl. Phys. Lett. – start-page: 2673 year: 1998 ident: c18 publication-title: J. Appl. Phys. – start-page: 161520 year: 2018 ident: c25 publication-title: J. Appl. Phys. – start-page: 203501 year: 2020 ident: c11 publication-title: Appl. Phys. Lett. – start-page: 1700323 year: 2018 ident: c12 publication-title: Phys. Status Solidi A – start-page: 900 year: 2015 ident: c24 publication-title: Phys. Status Solidi B – start-page: 947 year: 2015 ident: c15 publication-title: Phys. Status Solidi A – start-page: 2987 year: 1999 ident: c17 publication-title: Appl. Phys. Lett. – start-page: 185701 year: 2020 ident: c10 publication-title: J. Appl. Phys. – start-page: 200 year: 2017 ident: c14 publication-title: IEEE Trans. Electron Devices – start-page: 087404 year: 2013 ident: c27 publication-title: Phys. Rev. Lett. – start-page: 233511 year: 2017 ident: c6 publication-title: Appl. Phys. Lett. – start-page: 2223 year: 2020 ident: c26 publication-title: Sci. Rep. – start-page: 020907 year: 2020 ident: c1 publication-title: APL Mater. – start-page: 104502 year: 2018 ident: c30 publication-title: J. Appl. Phys. – start-page: 143506 year: 2010 ident: c9 publication-title: Appl. Phys. Lett. – start-page: 12436 year: 2019 ident: c31 publication-title: Sci. Rep. – start-page: 10 year: 2015 ident: c4 publication-title: Cryogenics – start-page: R33 year: 2003 ident: c5 publication-title: Semicond. Sci. Technol. – volume: 84 start-page: 2673 issue: 5 year: 1998 ident: 2023061717352672800_c18 publication-title: J. Appl. Phys. doi: 10.1063/1.368380 – volume: 109 start-page: 110352 year: 2020 ident: 2023061717352672800_c7 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110352 – volume: 9 start-page: 12436 year: 2019 ident: 2023061717352672800_c31 publication-title: Sci. Rep. doi: 10.1038/s41598-019-48621-3 – volume: 2 start-page: 769 issue: 3 year: 2020 ident: 2023061717352672800_c2 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.9b00834 – volume: 9 start-page: 8142 issue: 24 year: 2017 ident: 2023061717352672800_c32 publication-title: Nanoscale doi: 10.1039/C7NR01290J – volume: 23 start-page: 535 issue: 9 year: 2002 ident: 2023061717352672800_c20 publication-title: IEEE Electron Devices Lett. doi: 10.1109/LED.2002.802601 – volume: 64 start-page: 200 issue: 1 year: 2017 ident: 2023061717352672800_c14 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2631720 – volume: 66 start-page: 3387 issue: 8 year: 2019 ident: 2023061717352672800_c8 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2920521 – volume: 215 start-page: 1700323 issue: 10 year: 2018 ident: 2023061717352672800_c12 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201700323 – volume: 252 start-page: 900 issue: 5 year: 2015 ident: 2023061717352672800_c24 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201552062 – volume: 116 start-page: 203501 issue: 20 year: 2020 ident: 2023061717352672800_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0010540 – volume: 127 start-page: 185701 issue: 18 year: 2020 ident: 2023061717352672800_c10 publication-title: J. Appl. Phys. doi: 10.1063/1.5135633 – volume: 4 start-page: 085904 issue: 8 year: 2017 ident: 2023061717352672800_c13 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aa8147 – volume: 123 start-page: 104502 issue: 10 year: 2018 ident: 2023061717352672800_c30 publication-title: J. Appl. Phys. doi: 10.1063/1.5012608 – volume: 10 start-page: 2223 year: 2020 ident: 2023061717352672800_c26 publication-title: Sci. Rep. doi: 10.1038/s41598-020-59033-z – volume: 88 start-page: 241917 issue: 24 year: 2006 ident: 2023061717352672800_c28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2213509 – volume: 58 start-page: SCCC21 issue: SC year: 2019 ident: 2023061717352672800_c3 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/1347-4065/ab1128 – volume: 65 start-page: 10 year: 2015 ident: 2023061717352672800_c4 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2014.10.002 – volume: 18 start-page: R33 issue: 47 year: 2003 ident: 2023061717352672800_c5 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/18/4/201 – volume: 45 start-page: 2683 issue: 6 year: 2016 ident: 2023061717352672800_c22 publication-title: J. Electron. Mater. doi: 10.1007/s11664-015-4311-6 – volume: 212 start-page: 947 issue: 5 year: 2015 ident: 2023061717352672800_c15 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201431743 – volume: 74 start-page: 2987 issue: 20 year: 1999 ident: 2023061717352672800_c17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123988 – volume: 100 start-page: 071910 issue: 7 year: 2012 ident: 2023061717352672800_c19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3685717 – volume: 97 start-page: 143506 issue: 14 year: 2010 ident: 2023061717352672800_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3497082 – volume: 8 start-page: 020907 issue: 2 year: 2020 ident: 2023061717352672800_c1 publication-title: APL Mater. doi: 10.1063/1.5140689 – volume: 123 start-page: 161520 issue: 16 year: 2018 ident: 2023061717352672800_c25 publication-title: J. Appl. Phys. doi: 10.1063/1.4995275 – volume: 112 start-page: 182106 issue: 18 year: 2018 ident: 2023061717352672800_c29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5024704 – volume: 111 start-page: 233511 issue: 23 year: 2017 ident: 2023061717352672800_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5006650 – volume: 127 start-page: 2598 issue: 5 year: 2016 ident: 2023061717352672800_c21 publication-title: Optik doi: 10.1016/j.ijleo.2015.12.044 – volume: 110 start-page: 087404 issue: 8 year: 2013 ident: 2023061717352672800_c27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.087404 – volume: 52 start-page: 54 issue: 2 year: 2020 ident: 2023061717352672800_c16 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-019-2182-4 – volume: 112 start-page: 123515 issue: 12 year: 2012 ident: 2023061717352672800_c23 publication-title: J. Appl. Phys. doi: 10.1063/1.4770465 |
SSID | ssib017383074 ssib000366330 ssib008092178 ssib002557321 ssib006540872 ssj0005233 ssib004908453 ssib006540871 ssib053818346 ssib020074058 |
Score | 2.4335377 |
Snippet | The impact of defects on the degradation behaviors of InGaN/GaN multiple-quantum-well photodetectors submitted to dc current stress has been intensively... |
SourceID | proquest crossref scitation nii |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Carrier density Current leakage Defects Degradation Gallium nitrides Indium gallium nitrides Optical measurement Optical properties Photometers Quantum efficiency Quantum wells Sapphire Substrates |
Title | Impact of current-induced degradation process on the electro-optical characteristics of InGaN/GaN multiple-quantum-well photodetectors fabricated on sapphire substrate |
URI | https://cir.nii.ac.jp/crid/1873116917978534400 http://dx.doi.org/10.1063/5.0027127 https://www.proquest.com/docview/2476715570 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6TQh4QDCYKGzIAh6QKrMkdv49TrAxoBQkWqlvkR07YqJrwprwwBfgo_A1OcdOmpRqAh5qRZHlS3y_ns-X8-8Qeu5FEaeSxURIRxIWK0UiP_MIFb6AvZjrc1Fn-U6C8xl7N_fng8HPTtZSVYqX6Y-t50r-R6twD_SqT8n-g2bbQeEGXIN-oQUNQ_tXOn7bHnFMDc0SgR12pb_oS80BYcoljQpzFsB-FhjZwjckL0wYO92gbK7PlrzhE3gsaNuMQ_KtAiVUl6SO9hVf8jKXqlSmWk_GRV1uCCSDlBUvCh3zHq3AKtXst10XuPF7TUxlNVrUB4o69e0XXGd5ayYlaRKsa6vELzmgKh-9z1fVV9UNVng6UkHcTuJH8xWqlwnxycjrmWlKgtgy0SpjmZ1QB1StsW5M99p2N1voP5YE8MFgwurIWegaHoI-7fbkY3I2G4-T6el8uoP2PNhvgMHcO3n9Yfy5ky1EaVN8UT9ZQ1IV0ON26J5rs7O8uOjtWm6CS2OyKzoOzPQuumN3HvjEwOgeGqjlPrrd4aPcRzfsHN1Hvwy0cJ7hDWjhDrSwhRaGS4AW3oAW3oCWHq2G1jH88FZg4T6w8BpYWkYDLNwC6wGanZ1OX50TW9ODpMzzShIGodIMTjTmMcy0yzUFoaOEJxRngeeloYA1J8xclUZh5Ejtzzsp1XEJzij36QHaXeZL9RBhngpfKgqYEJIx4cRpLKNYcuaC38cZH6IXjTqSZup13ZVFUideBDTxE6u5IXradi0My8u2TkegUxhKt24UguAghvUsBI-XwVI4RIeNthNrJFaJx-CNXc1zN0TPWgRcJ2RLr-_51bpHUsjs0fWiHqNb6z_fIdotryp1BL5zKZ5YXP8GOX7NDA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+current-induced+degradation+process+on+the+electro-optical+characteristics+of+InGaN%2FGaN+multiple-quantum-well+photodetectors+fabricated+on+sapphire+substrate&rft.jtitle=Applied+physics+letters&rft.au=Dalapati+Pradip&rft.au=Yamamoto+Kosuke&rft.date=2021-01-11&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=118&rft.issue=2&rft_id=info:doi/10.1063%2F5.0027127&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |