Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation
Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the...
Saved in:
Published in | Journal of membrane science Vol. 550; pp. 145 - 154 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the highest H2 permeance of 804 × 10−9mol/m2sPa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~ 29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287 × 10−9mol/m2sPa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.
•GO-MoS2 hybrid membranes exhibited high selectivity and high permeance.•GO assists in packing the MoS2 nanosheets.•The membranes were stable under long term testing. |
---|---|
AbstractList | Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the highest H2 permeance of 804 × 10−9mol/m2sPa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~ 29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287 × 10−9mol/m2sPa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.
•GO-MoS2 hybrid membranes exhibited high selectivity and high permeance.•GO assists in packing the MoS2 nanosheets.•The membranes were stable under long term testing. Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the highest H2 permeance of 804 × 10−9mol/m2sPa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~ 29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287 × 10−9mol/m2sPa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability. |
Author | Shinde, Digambar B. Ostwal, Mayur Gadwal, Ikhlas Lai, Zhiping Wang, Xinbo |
Author_xml | – sequence: 1 givenname: Mayur surname: Ostwal fullname: Ostwal, Mayur – sequence: 2 givenname: Digambar B. surname: Shinde fullname: Shinde, Digambar B. – sequence: 3 givenname: Xinbo surname: Wang fullname: Wang, Xinbo – sequence: 4 givenname: Ikhlas surname: Gadwal fullname: Gadwal, Ikhlas – sequence: 5 givenname: Zhiping surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa |
BookMark | eNqFkL1OwzAUhS0EEm3hDRgysiT4J7ETBiRUQUGqBAPMlmNfU1dJXOwU0Y134A15EtKWiQGmK917zrlH3xgddr4DhM4Izggm_GKZtdBG7TKKicgIzTBnB2hESsFSRig7RCPMBE8FK8tjNI5xiQchLqsRepwFtVpAB4l_dwaSr4_PpPXNpjbQrdvEuLhu7Paw2NTBmWR4VAfVQUysD8PSBP8CXRJhpYLqne9O0JFVTYTTnzlBz7c3T9O7dP4wu59ez1OdU9qnItfWCl0Zjmuja8u5UjpnHBNNLcdCVYUlzFaUCMpETU2FMbelKmqhaM4Zm6Dzfe4q-Nc1xF62LmpomqGcX0dJKSU4LwomBunlXqqDjzGAldr1u7J9UK6RBMstRrmUe4xyi1ESKvHuT_7LvAquVWHzn-1qb4OBwZuDIAcFdBqMC6B7abz7O-AbOiaSkg |
CitedBy_id | crossref_primary_10_1016_j_cherd_2023_10_014 crossref_primary_10_1021_acs_iecr_1c02098 crossref_primary_10_1016_j_jece_2024_112078 crossref_primary_10_1016_j_memsci_2022_120443 crossref_primary_10_1016_j_talanta_2020_121039 crossref_primary_10_1007_s42247_023_00561_5 crossref_primary_10_1016_j_colsurfa_2021_126945 crossref_primary_10_1016_j_memsci_2024_123511 crossref_primary_10_1039_D2RA00725H crossref_primary_10_1002_cben_202000038 crossref_primary_10_1016_j_jece_2023_109329 crossref_primary_10_1016_j_chemosphere_2022_137643 crossref_primary_10_1016_j_memsci_2019_117348 crossref_primary_10_1016_j_rechem_2021_100273 crossref_primary_10_1002_adfm_201902014 crossref_primary_10_1039_C8RA03156H crossref_primary_10_1080_15422119_2022_2037000 crossref_primary_10_15541_jim20190548 crossref_primary_10_1134_S1995078020030027 crossref_primary_10_1016_j_apsusc_2023_158822 crossref_primary_10_1016_j_memsci_2020_118994 crossref_primary_10_1002_cben_202200042 crossref_primary_10_1021_acs_jpcc_1c06894 crossref_primary_10_1016_j_bios_2024_116434 crossref_primary_10_1016_j_memsci_2018_08_070 crossref_primary_10_1016_j_seppur_2020_116730 crossref_primary_10_1021_acs_iecr_2c03649 crossref_primary_10_1016_j_ccr_2023_215595 crossref_primary_10_1021_acs_jpclett_9b01780 crossref_primary_10_1016_j_jiec_2022_04_024 crossref_primary_10_1002_asia_202000013 crossref_primary_10_1016_j_carbon_2020_12_082 crossref_primary_10_1016_j_memsci_2021_119076 crossref_primary_10_1039_D0TA02249G crossref_primary_10_1021_acsami_9b09330 crossref_primary_10_1002_aic_18105 crossref_primary_10_1038_s41560_021_00946_y |
Cites_doi | 10.1063/1.1702301 10.1021/jacs.6b01502 10.1126/science.279.5357.1710 10.1021/cr3003888 10.1126/science.1203771 10.1016/0376-7388(91)80060-J 10.1021/acsami.5b08410 10.1039/C4CC06207H 10.1021/acs.chemmater.5b04475 10.1021/ie8019032 10.1039/C5EE03856A 10.1016/j.memsci.2010.11.053 10.1021/ja01539a017 10.1016/j.memsci.2009.09.009 10.1186/1556-276X-8-129 10.1126/science.1254227 10.1126/science.1236686 10.1002/anie.201003328 10.1021/la900474y 10.1016/j.ijhydene.2013.04.154 10.1016/j.memsci.2010.02.074 10.1002/aic.11457 10.1021/ja108681n 10.1038/nchem.1820 10.1021/acsnano.5b07304 10.1016/j.memsci.2008.04.030 10.1039/C5NR06321C 10.1021/cm5043099 10.1016/j.memsci.2006.11.027 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2017.12.063 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
EndPage | 154 |
ExternalDocumentID | 10_1016_j_memsci_2017_12_063 S0376738817329976 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c422t-74cff7c9d60bdcbf66aac43601c2f607a95f13f9217237b2d9006f8a5b7a24633 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Tue Aug 05 10:12:15 EDT 2025 Tue Jul 01 02:49:23 EDT 2025 Thu Apr 24 22:54:37 EDT 2025 Fri Feb 23 02:28:51 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Composite membranes Gas separation Graphene oxide Molybdenum disulfide Vacuum filtration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-74cff7c9d60bdcbf66aac43601c2f607a95f13f9217237b2d9006f8a5b7a24633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10754/626442 |
PQID | 2221045537 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2221045537 crossref_citationtrail_10_1016_j_memsci_2017_12_063 crossref_primary_10_1016_j_memsci_2017_12_063 elsevier_sciencedirect_doi_10_1016_j_memsci_2017_12_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-15 |
PublicationDateYYYYMMDD | 2018-03-15 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Landauer (bib28) 1952; 23 Burress, Gadipelli, Ford, Simmons, Zhou, Yildirim (bib25) 2010; 49 Robeson (bib4) 1991; 62 Gu, Oyama (bib8) 2009; 345 Hummers, Offeman (bib20) 1958; 80 Wang, Wang, Wang, Hu, Jin (bib18) 2015; 7 Wang, Chen, Yin, Xu, Wu, He (bib26) 2015; 7 de Vos, Verweij (bib6) 1998; 279 Li, Song, Zhang, Huang, Li, Mao, Ploehn, Bao, Yu (bib15) 2013; 342 Robeson (bib5) 2008; 320 Gin, Noble (bib1) 2011; 332 Kumar, Bardhan, Tongay, Wu, Belcher, Grossman (bib22) 2014; 6 Shen, Liu, Huang, Chu, Jin, Xu (bib27) 2016; 10 Gao, Si, Li, Zhang, Zhang, Yang, Xue (bib24) 2013; 8 Vinh-Thang, Kaliaguine (bib29) 2013; 113 Peng, Li, Ban, Jin, Jiao, Liu, Yang (bib14) 2014; 346 Achari, Eswaramoorthy (bib17) 2016; 9 Bernardo, Drioli, Golemme (bib2) 2009; 48 Ostwal, Singh, Dec, Lusk, Way (bib3) 2011; 369 Chi, Wang, Peng, Qian, Hu, Dong, Zhao (bib16) 2016; 28 Tang, Dong, Nenoff (bib10) 2009; 25 Hong, Sun, Chen, Zhang, Gu, Xu (bib12) 2013; 38 Yu, Funke, Noble, Falconer (bib11) 2011; 133 Elyassi, Sahimi, Tsotsis (bib7) 2007; 288 Kanezashi, O'Brien-Abraham, Lin, Suzuki (bib9) 2008; 54 Li, Liang, Bux, Yang, Caro (bib13) 2010; 354 Fan, Xu, Li, Zhou, Sun, Nguyen, Terrones, Mallouk (bib21) 2016; 138 Sun, Wang, Wu, Wang, Yang, Pan, Liu (bib23) 2015; 27 Kim, Yoon, Yoo, Park, Gleason, Freeman, Park (bib19) 2014; 50 Kumar (10.1016/j.memsci.2017.12.063_bib22) 2014; 6 Li (10.1016/j.memsci.2017.12.063_bib15) 2013; 342 Robeson (10.1016/j.memsci.2017.12.063_bib4) 1991; 62 Hong (10.1016/j.memsci.2017.12.063_bib12) 2013; 38 Chi (10.1016/j.memsci.2017.12.063_bib16) 2016; 28 Li (10.1016/j.memsci.2017.12.063_bib13) 2010; 354 Sun (10.1016/j.memsci.2017.12.063_bib23) 2015; 27 Elyassi (10.1016/j.memsci.2017.12.063_bib7) 2007; 288 Wang (10.1016/j.memsci.2017.12.063_bib26) 2015; 7 Achari (10.1016/j.memsci.2017.12.063_bib17) 2016; 9 Fan (10.1016/j.memsci.2017.12.063_bib21) 2016; 138 Vinh-Thang (10.1016/j.memsci.2017.12.063_bib29) 2013; 113 de Vos (10.1016/j.memsci.2017.12.063_bib6) 1998; 279 Robeson (10.1016/j.memsci.2017.12.063_bib5) 2008; 320 Gao (10.1016/j.memsci.2017.12.063_bib24) 2013; 8 Bernardo (10.1016/j.memsci.2017.12.063_bib2) 2009; 48 Yu (10.1016/j.memsci.2017.12.063_bib11) 2011; 133 Tang (10.1016/j.memsci.2017.12.063_bib10) 2009; 25 Gu (10.1016/j.memsci.2017.12.063_bib8) 2009; 345 Kanezashi (10.1016/j.memsci.2017.12.063_bib9) 2008; 54 Peng (10.1016/j.memsci.2017.12.063_bib14) 2014; 346 Gin (10.1016/j.memsci.2017.12.063_bib1) 2011; 332 Shen (10.1016/j.memsci.2017.12.063_bib27) 2016; 10 Burress (10.1016/j.memsci.2017.12.063_bib25) 2010; 49 Wang (10.1016/j.memsci.2017.12.063_bib18) 2015; 7 Hummers (10.1016/j.memsci.2017.12.063_bib20) 1958; 80 Kim (10.1016/j.memsci.2017.12.063_bib19) 2014; 50 Ostwal (10.1016/j.memsci.2017.12.063_bib3) 2011; 369 Landauer (10.1016/j.memsci.2017.12.063_bib28) 1952; 23 |
References_xml | – volume: 345 start-page: 267 year: 2009 end-page: 275 ident: bib8 article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates publication-title: J. Membr. Sci. – volume: 354 start-page: 48 year: 2010 end-page: 54 ident: bib13 article-title: Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation publication-title: J. Membr. Sci. – volume: 80 year: 1958 ident: bib20 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8902 year: 2010 end-page: 8904 ident: bib25 article-title: Graphene oxide framework materials: theoretical predictions and experimental results publication-title: Angew. Chem. Int. Ed. – volume: 279 start-page: 1710 year: 1998 end-page: 1711 ident: bib6 article-title: High-selectivity, high-flux silica membranes for gas separation publication-title: Science – volume: 113 start-page: 4980 year: 2013 end-page: 5028 ident: bib29 article-title: Predictive models for mixed-matrix membrane performance: a review publication-title: Chem. Rev. – volume: 25 start-page: 4848 year: 2009 end-page: 4852 ident: bib10 article-title: Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen publication-title: Langmuir – volume: 28 start-page: 2921 year: 2016 end-page: 2927 ident: bib16 article-title: Facile preparation of graphene oxide membranes for gas separation publication-title: Chem. Mater. – volume: 38 start-page: 8409 year: 2013 end-page: 8414 ident: bib12 article-title: Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane publication-title: Int. J. Hydrog. Energy – volume: 6 start-page: 151 year: 2014 end-page: 158 ident: bib22 article-title: Scalable enhancement of graphene oxide properties by thermally driven phase transformation publication-title: Nat. Chem. – volume: 23 start-page: 779 year: 1952 end-page: 784 ident: bib28 article-title: The electrical resistance of binary metallic mixtures publication-title: J. Appl. Phys. – volume: 346 start-page: 1356 year: 2014 end-page: 1359 ident: bib14 article-title: Metal-organic framework nanosheets as building blocks for molecular sieving membranes publication-title: Science – volume: 10 start-page: 3398 year: 2016 end-page: 3409 ident: bib27 article-title: Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving publication-title: ACS Nano – volume: 320 start-page: 390 year: 2008 end-page: 400 ident: bib5 article-title: The upper bound revisited publication-title: J. Membr. Sci. – volume: 50 start-page: 13563 year: 2014 end-page: 13566 ident: bib19 article-title: High-performance CO publication-title: Chem. Commun. – volume: 27 start-page: 2367 year: 2015 end-page: 2373 ident: bib23 article-title: Inhibiting the corrosion-promotion activity of graphene publication-title: Chem. Mater. – volume: 7 start-page: 17649 year: 2015 end-page: 17652 ident: bib18 article-title: Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation publication-title: Nanoscale – volume: 138 start-page: 5143 year: 2016 end-page: 5149 ident: bib21 article-title: Controlled exfoliation of MoS2 crystals into trilayer nanosheets publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 129 year: 2013 ident: bib24 article-title: Ferromagnetism in freestanding MoS publication-title: Nanoscale Res. Lett. – volume: 342 start-page: 95 year: 2013 end-page: 98 ident: bib15 article-title: Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation publication-title: Science – volume: 9 start-page: 1224 year: 2016 end-page: 1228 ident: bib17 article-title: High performance MoS2 membranes: effects of thermally driven phase transition on CO publication-title: Energy Environ. Sci. – volume: 369 start-page: 139 year: 2011 end-page: 147 ident: bib3 article-title: 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO publication-title: J. Membr. Sci. – volume: 54 start-page: 1478 year: 2008 end-page: 1486 ident: bib9 article-title: Gas permeation through DDR-type zeolite membranes at high temperatures publication-title: AIChE J. – volume: 133 start-page: 1748 year: 2011 end-page: 1750 ident: bib11 article-title: H2 separation using defect-free, inorganic composite membranes publication-title: J. Am. Chem. Soc. – volume: 332 start-page: 674 year: 2011 end-page: 676 ident: bib1 article-title: Designing the next generation of chemical separation membranes publication-title: Science – volume: 7 start-page: 26226 year: 2015 end-page: 26234 ident: bib26 article-title: Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 4638 year: 2009 end-page: 4663 ident: bib2 article-title: Membrane gas separation: a review/state of the art publication-title: Ind. Eng. Chem. Res. – volume: 62 start-page: 165 year: 1991 end-page: 185 ident: bib4 article-title: Correlation of separation factor versus permeability for polymeric membranes publication-title: J. Membr. Sci. – volume: 288 start-page: 290 year: 2007 end-page: 297 ident: bib7 article-title: Silicon carbide membranes for gas separation applications publication-title: J. Membr. Sci. – volume: 23 start-page: 779 year: 1952 ident: 10.1016/j.memsci.2017.12.063_bib28 article-title: The electrical resistance of binary metallic mixtures publication-title: J. Appl. Phys. doi: 10.1063/1.1702301 – volume: 138 start-page: 5143 year: 2016 ident: 10.1016/j.memsci.2017.12.063_bib21 article-title: Controlled exfoliation of MoS2 crystals into trilayer nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01502 – volume: 279 start-page: 1710 year: 1998 ident: 10.1016/j.memsci.2017.12.063_bib6 article-title: High-selectivity, high-flux silica membranes for gas separation publication-title: Science doi: 10.1126/science.279.5357.1710 – volume: 113 start-page: 4980 year: 2013 ident: 10.1016/j.memsci.2017.12.063_bib29 article-title: Predictive models for mixed-matrix membrane performance: a review publication-title: Chem. Rev. doi: 10.1021/cr3003888 – volume: 332 start-page: 674 year: 2011 ident: 10.1016/j.memsci.2017.12.063_bib1 article-title: Designing the next generation of chemical separation membranes publication-title: Science doi: 10.1126/science.1203771 – volume: 62 start-page: 165 year: 1991 ident: 10.1016/j.memsci.2017.12.063_bib4 article-title: Correlation of separation factor versus permeability for polymeric membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(91)80060-J – volume: 7 start-page: 26226 year: 2015 ident: 10.1016/j.memsci.2017.12.063_bib26 article-title: Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08410 – volume: 50 start-page: 13563 year: 2014 ident: 10.1016/j.memsci.2017.12.063_bib19 article-title: High-performance CO2-philic graphene oxide membranes under wet-conditions publication-title: Chem. Commun. doi: 10.1039/C4CC06207H – volume: 28 start-page: 2921 year: 2016 ident: 10.1016/j.memsci.2017.12.063_bib16 article-title: Facile preparation of graphene oxide membranes for gas separation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04475 – volume: 48 start-page: 4638 year: 2009 ident: 10.1016/j.memsci.2017.12.063_bib2 article-title: Membrane gas separation: a review/state of the art publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie8019032 – volume: 9 start-page: 1224 year: 2016 ident: 10.1016/j.memsci.2017.12.063_bib17 article-title: High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03856A – volume: 369 start-page: 139 year: 2011 ident: 10.1016/j.memsci.2017.12.063_bib3 article-title: 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.053 – volume: 80 year: 1958 ident: 10.1016/j.memsci.2017.12.063_bib20 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 345 start-page: 267 year: 2009 ident: 10.1016/j.memsci.2017.12.063_bib8 article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.09.009 – volume: 8 start-page: 129 year: 2013 ident: 10.1016/j.memsci.2017.12.063_bib24 article-title: Ferromagnetism in freestanding MoS publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-129 – volume: 346 start-page: 1356 year: 2014 ident: 10.1016/j.memsci.2017.12.063_bib14 article-title: Metal-organic framework nanosheets as building blocks for molecular sieving membranes publication-title: Science doi: 10.1126/science.1254227 – volume: 342 start-page: 95 year: 2013 ident: 10.1016/j.memsci.2017.12.063_bib15 article-title: Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation publication-title: Science doi: 10.1126/science.1236686 – volume: 49 start-page: 8902 year: 2010 ident: 10.1016/j.memsci.2017.12.063_bib25 article-title: Graphene oxide framework materials: theoretical predictions and experimental results publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201003328 – volume: 25 start-page: 4848 year: 2009 ident: 10.1016/j.memsci.2017.12.063_bib10 article-title: Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen publication-title: Langmuir doi: 10.1021/la900474y – volume: 38 start-page: 8409 year: 2013 ident: 10.1016/j.memsci.2017.12.063_bib12 article-title: Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.04.154 – volume: 354 start-page: 48 year: 2010 ident: 10.1016/j.memsci.2017.12.063_bib13 article-title: Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.074 – volume: 54 start-page: 1478 year: 2008 ident: 10.1016/j.memsci.2017.12.063_bib9 article-title: Gas permeation through DDR-type zeolite membranes at high temperatures publication-title: AIChE J. doi: 10.1002/aic.11457 – volume: 133 start-page: 1748 year: 2011 ident: 10.1016/j.memsci.2017.12.063_bib11 article-title: H2 separation using defect-free, inorganic composite membranes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108681n – volume: 6 start-page: 151 year: 2014 ident: 10.1016/j.memsci.2017.12.063_bib22 article-title: Scalable enhancement of graphene oxide properties by thermally driven phase transformation publication-title: Nat. Chem. doi: 10.1038/nchem.1820 – volume: 10 start-page: 3398 year: 2016 ident: 10.1016/j.memsci.2017.12.063_bib27 article-title: Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving publication-title: ACS Nano doi: 10.1021/acsnano.5b07304 – volume: 320 start-page: 390 year: 2008 ident: 10.1016/j.memsci.2017.12.063_bib5 article-title: The upper bound revisited publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.030 – volume: 7 start-page: 17649 year: 2015 ident: 10.1016/j.memsci.2017.12.063_bib18 article-title: Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation publication-title: Nanoscale doi: 10.1039/C5NR06321C – volume: 27 start-page: 2367 year: 2015 ident: 10.1016/j.memsci.2017.12.063_bib23 article-title: Inhibiting the corrosion-promotion activity of graphene publication-title: Chem. Mater. doi: 10.1021/cm5043099 – volume: 288 start-page: 290 year: 2007 ident: 10.1016/j.memsci.2017.12.063_bib7 article-title: Silicon carbide membranes for gas separation applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.11.027 |
SSID | ssj0017089 |
Score | 2.4323835 |
Snippet | Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 145 |
SubjectTerms | artificial membranes carbon dioxide Composite membranes filtration Gas separation Graphene oxide hydrogen Molybdenum disulfide nanomaterials Vacuum filtration |
Title | Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation |
URI | https://dx.doi.org/10.1016/j.memsci.2017.12.063 https://www.proquest.com/docview/2221045537 |
Volume | 550 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBbBvaSHkOZB3aZGhVxV76600u4xhDpOS00gMfgmVi_qYntDbENyCfkP-Yf5JZnZR2gKxZDjakdCzIw-zezOg5BjYyNTJHnBMjCPmRC5Z1kWS5YEXvAg4-ACJif_GsnhWPyYpJMtctrmwmBYZYP9NaZXaN2M9Btu9q-n0_5lhIVIOKysOGCqwrLbQijU8m_3L2EesYqqNnhIzJC6TZ-rYrzmfg5LY4CXqj4KSv6_6-kfoK5un8Eu2WnMRnpS7-wD2fKLPfL-r2KC--TiDGtPA3TR8nbqPH16eKTzcnZnHEa7UzddrmcBX_y-wywtCrsCTxmQjoLdCoPupgRloktfVwMvFwdkPPh-dTpkTb8EZkWSrJgSNgRlcycj46wJUhaFFRxcLpsEGakiT0PMQ449qbgyicvhyIWsSI0qEiE5PySdRbnwHwk1wlsJcnQGfWehMiAUNouM9SlYOFmX8JZN2jbFxLGnxUy3UWN_dM1cjczVcaKBuV3CXmZd18U0NtCrVgL6lVJowPsNM7-2AtNwXvAnCDC0XC812EPggaYpV5_evPpnsg1PVWpinB6Rzupm7b-AbbIyvUr5euTdyfnP4egZX9fl0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4IPKAPBFEjoFITfaw703bamQcejICLXGIiJLzV6S0s2d0h7G5kX4z_wZ_iP_KXcM5ciJoYEhNep5d0vp75ek7nXAh5bV1iS16ULAf1mElZBJbnqWI8ilJElUYfMTj56Fj1T-XHs-xsgfzsYmHQrbLl_obTa7Zun_RaNHuXg0Hvc4KJSATMrAVwqlatZ-VBmH8Fu22yvb8Dm_yG873dk_d91pYWYE5yPmVauhi1K7xKrHc2KlWWTgqwThyPKtFlkcVUxALLNwltuS9AOmNeZlaXXCq8BQXeX5JAF1g24e23W7-SVCd13T1cHcPldfF6tVPZKIzgXdCjTNe3kEr86zz862Soj7u9VbLS6qn0XQPFI7IQxmvk4W_ZCx-TTx8w2TVwJa2uBz7QX99_0FE1nFuP7vXUDyazYcSG8zmGhVFYFZjmQK0UFGV46K8qkF46CU368Wr8hJzeC4pPyeK4GodnhFoZnALB8RaNdalz6ChdnlgXMlCp8nUiOpiMa7OXYxGNoenc1C5MA65BcE3KDYC7TtjtqMsme8cd_XW3A-YPKTRwwNwx8lW3YQY-UPzrAoBWs4kBBQxM3iwTeuO_Z98iy_2To0NzuH98sEkeQEsdF5lmz8ni9GoWXoBiNLUva0Gk5Mt9S_4NxaEhNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+oxide+%E2%80%93+molybdenum+disulfide+hybrid+membranes+for+hydrogen+separation&rft.jtitle=Journal+of+membrane+science&rft.au=Ostwal%2C+Mayur&rft.au=Shinde%2C+Digambar+B.&rft.au=Wang%2C+Xinbo&rft.au=Gadwal%2C+Ikhlas&rft.date=2018-03-15&rft.issn=0376-7388&rft.volume=550&rft.spage=145&rft.epage=154&rft_id=info:doi/10.1016%2Fj.memsci.2017.12.063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2017_12_063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |