Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 550; pp. 145 - 154
Main Authors Ostwal, Mayur, Shinde, Digambar B., Wang, Xinbo, Gadwal, Ikhlas, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the highest H2 permeance of 804 × 10−9mol/m2sPa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~ 29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287 × 10−9mol/m2sPa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability. •GO-MoS2 hybrid membranes exhibited high selectivity and high permeance.•GO assists in packing the MoS2 nanosheets.•The membranes were stable under long term testing.
AbstractList Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the highest H2 permeance of 804 × 10−9mol/m2sPa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~ 29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287 × 10−9mol/m2sPa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability. •GO-MoS2 hybrid membranes exhibited high selectivity and high permeance.•GO assists in packing the MoS2 nanosheets.•The membranes were stable under long term testing.
Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~ 75% by weight of MoS2 exhibited the highest H2 permeance of 804 × 10−9mol/m2sPa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~ 29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287 × 10−9mol/m2sPa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.
Author Shinde, Digambar B.
Ostwal, Mayur
Gadwal, Ikhlas
Lai, Zhiping
Wang, Xinbo
Author_xml – sequence: 1
  givenname: Mayur
  surname: Ostwal
  fullname: Ostwal, Mayur
– sequence: 2
  givenname: Digambar B.
  surname: Shinde
  fullname: Shinde, Digambar B.
– sequence: 3
  givenname: Xinbo
  surname: Wang
  fullname: Wang, Xinbo
– sequence: 4
  givenname: Ikhlas
  surname: Gadwal
  fullname: Gadwal, Ikhlas
– sequence: 5
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
BookMark eNqFkL1OwzAUhS0EEm3hDRgysiT4J7ETBiRUQUGqBAPMlmNfU1dJXOwU0Y134A15EtKWiQGmK917zrlH3xgddr4DhM4Izggm_GKZtdBG7TKKicgIzTBnB2hESsFSRig7RCPMBE8FK8tjNI5xiQchLqsRepwFtVpAB4l_dwaSr4_PpPXNpjbQrdvEuLhu7Paw2NTBmWR4VAfVQUysD8PSBP8CXRJhpYLqne9O0JFVTYTTnzlBz7c3T9O7dP4wu59ez1OdU9qnItfWCl0Zjmuja8u5UjpnHBNNLcdCVYUlzFaUCMpETU2FMbelKmqhaM4Zm6Dzfe4q-Nc1xF62LmpomqGcX0dJKSU4LwomBunlXqqDjzGAldr1u7J9UK6RBMstRrmUe4xyi1ESKvHuT_7LvAquVWHzn-1qb4OBwZuDIAcFdBqMC6B7abz7O-AbOiaSkg
CitedBy_id crossref_primary_10_1016_j_cherd_2023_10_014
crossref_primary_10_1021_acs_iecr_1c02098
crossref_primary_10_1016_j_jece_2024_112078
crossref_primary_10_1016_j_memsci_2022_120443
crossref_primary_10_1016_j_talanta_2020_121039
crossref_primary_10_1007_s42247_023_00561_5
crossref_primary_10_1016_j_colsurfa_2021_126945
crossref_primary_10_1016_j_memsci_2024_123511
crossref_primary_10_1039_D2RA00725H
crossref_primary_10_1002_cben_202000038
crossref_primary_10_1016_j_jece_2023_109329
crossref_primary_10_1016_j_chemosphere_2022_137643
crossref_primary_10_1016_j_memsci_2019_117348
crossref_primary_10_1016_j_rechem_2021_100273
crossref_primary_10_1002_adfm_201902014
crossref_primary_10_1039_C8RA03156H
crossref_primary_10_1080_15422119_2022_2037000
crossref_primary_10_15541_jim20190548
crossref_primary_10_1134_S1995078020030027
crossref_primary_10_1016_j_apsusc_2023_158822
crossref_primary_10_1016_j_memsci_2020_118994
crossref_primary_10_1002_cben_202200042
crossref_primary_10_1021_acs_jpcc_1c06894
crossref_primary_10_1016_j_bios_2024_116434
crossref_primary_10_1016_j_memsci_2018_08_070
crossref_primary_10_1016_j_seppur_2020_116730
crossref_primary_10_1021_acs_iecr_2c03649
crossref_primary_10_1016_j_ccr_2023_215595
crossref_primary_10_1021_acs_jpclett_9b01780
crossref_primary_10_1016_j_jiec_2022_04_024
crossref_primary_10_1002_asia_202000013
crossref_primary_10_1016_j_carbon_2020_12_082
crossref_primary_10_1016_j_memsci_2021_119076
crossref_primary_10_1039_D0TA02249G
crossref_primary_10_1021_acsami_9b09330
crossref_primary_10_1002_aic_18105
crossref_primary_10_1038_s41560_021_00946_y
Cites_doi 10.1063/1.1702301
10.1021/jacs.6b01502
10.1126/science.279.5357.1710
10.1021/cr3003888
10.1126/science.1203771
10.1016/0376-7388(91)80060-J
10.1021/acsami.5b08410
10.1039/C4CC06207H
10.1021/acs.chemmater.5b04475
10.1021/ie8019032
10.1039/C5EE03856A
10.1016/j.memsci.2010.11.053
10.1021/ja01539a017
10.1016/j.memsci.2009.09.009
10.1186/1556-276X-8-129
10.1126/science.1254227
10.1126/science.1236686
10.1002/anie.201003328
10.1021/la900474y
10.1016/j.ijhydene.2013.04.154
10.1016/j.memsci.2010.02.074
10.1002/aic.11457
10.1021/ja108681n
10.1038/nchem.1820
10.1021/acsnano.5b07304
10.1016/j.memsci.2008.04.030
10.1039/C5NR06321C
10.1021/cm5043099
10.1016/j.memsci.2006.11.027
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2017.12.063
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 154
ExternalDocumentID 10_1016_j_memsci_2017_12_063
S0376738817329976
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c422t-74cff7c9d60bdcbf66aac43601c2f607a95f13f9217237b2d9006f8a5b7a24633
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Tue Aug 05 10:12:15 EDT 2025
Tue Jul 01 02:49:23 EDT 2025
Thu Apr 24 22:54:37 EDT 2025
Fri Feb 23 02:28:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Composite membranes
Gas separation
Graphene oxide
Molybdenum disulfide
Vacuum filtration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-74cff7c9d60bdcbf66aac43601c2f607a95f13f9217237b2d9006f8a5b7a24633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10754/626442
PQID 2221045537
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2221045537
crossref_citationtrail_10_1016_j_memsci_2017_12_063
crossref_primary_10_1016_j_memsci_2017_12_063
elsevier_sciencedirect_doi_10_1016_j_memsci_2017_12_063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-15
PublicationDateYYYYMMDD 2018-03-15
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of membrane science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Landauer (bib28) 1952; 23
Burress, Gadipelli, Ford, Simmons, Zhou, Yildirim (bib25) 2010; 49
Robeson (bib4) 1991; 62
Gu, Oyama (bib8) 2009; 345
Hummers, Offeman (bib20) 1958; 80
Wang, Wang, Wang, Hu, Jin (bib18) 2015; 7
Wang, Chen, Yin, Xu, Wu, He (bib26) 2015; 7
de Vos, Verweij (bib6) 1998; 279
Li, Song, Zhang, Huang, Li, Mao, Ploehn, Bao, Yu (bib15) 2013; 342
Robeson (bib5) 2008; 320
Gin, Noble (bib1) 2011; 332
Kumar, Bardhan, Tongay, Wu, Belcher, Grossman (bib22) 2014; 6
Shen, Liu, Huang, Chu, Jin, Xu (bib27) 2016; 10
Gao, Si, Li, Zhang, Zhang, Yang, Xue (bib24) 2013; 8
Vinh-Thang, Kaliaguine (bib29) 2013; 113
Peng, Li, Ban, Jin, Jiao, Liu, Yang (bib14) 2014; 346
Achari, Eswaramoorthy (bib17) 2016; 9
Bernardo, Drioli, Golemme (bib2) 2009; 48
Ostwal, Singh, Dec, Lusk, Way (bib3) 2011; 369
Chi, Wang, Peng, Qian, Hu, Dong, Zhao (bib16) 2016; 28
Tang, Dong, Nenoff (bib10) 2009; 25
Hong, Sun, Chen, Zhang, Gu, Xu (bib12) 2013; 38
Yu, Funke, Noble, Falconer (bib11) 2011; 133
Elyassi, Sahimi, Tsotsis (bib7) 2007; 288
Kanezashi, O'Brien-Abraham, Lin, Suzuki (bib9) 2008; 54
Li, Liang, Bux, Yang, Caro (bib13) 2010; 354
Fan, Xu, Li, Zhou, Sun, Nguyen, Terrones, Mallouk (bib21) 2016; 138
Sun, Wang, Wu, Wang, Yang, Pan, Liu (bib23) 2015; 27
Kim, Yoon, Yoo, Park, Gleason, Freeman, Park (bib19) 2014; 50
Kumar (10.1016/j.memsci.2017.12.063_bib22) 2014; 6
Li (10.1016/j.memsci.2017.12.063_bib15) 2013; 342
Robeson (10.1016/j.memsci.2017.12.063_bib4) 1991; 62
Hong (10.1016/j.memsci.2017.12.063_bib12) 2013; 38
Chi (10.1016/j.memsci.2017.12.063_bib16) 2016; 28
Li (10.1016/j.memsci.2017.12.063_bib13) 2010; 354
Sun (10.1016/j.memsci.2017.12.063_bib23) 2015; 27
Elyassi (10.1016/j.memsci.2017.12.063_bib7) 2007; 288
Wang (10.1016/j.memsci.2017.12.063_bib26) 2015; 7
Achari (10.1016/j.memsci.2017.12.063_bib17) 2016; 9
Fan (10.1016/j.memsci.2017.12.063_bib21) 2016; 138
Vinh-Thang (10.1016/j.memsci.2017.12.063_bib29) 2013; 113
de Vos (10.1016/j.memsci.2017.12.063_bib6) 1998; 279
Robeson (10.1016/j.memsci.2017.12.063_bib5) 2008; 320
Gao (10.1016/j.memsci.2017.12.063_bib24) 2013; 8
Bernardo (10.1016/j.memsci.2017.12.063_bib2) 2009; 48
Yu (10.1016/j.memsci.2017.12.063_bib11) 2011; 133
Tang (10.1016/j.memsci.2017.12.063_bib10) 2009; 25
Gu (10.1016/j.memsci.2017.12.063_bib8) 2009; 345
Kanezashi (10.1016/j.memsci.2017.12.063_bib9) 2008; 54
Peng (10.1016/j.memsci.2017.12.063_bib14) 2014; 346
Gin (10.1016/j.memsci.2017.12.063_bib1) 2011; 332
Shen (10.1016/j.memsci.2017.12.063_bib27) 2016; 10
Burress (10.1016/j.memsci.2017.12.063_bib25) 2010; 49
Wang (10.1016/j.memsci.2017.12.063_bib18) 2015; 7
Hummers (10.1016/j.memsci.2017.12.063_bib20) 1958; 80
Kim (10.1016/j.memsci.2017.12.063_bib19) 2014; 50
Ostwal (10.1016/j.memsci.2017.12.063_bib3) 2011; 369
Landauer (10.1016/j.memsci.2017.12.063_bib28) 1952; 23
References_xml – volume: 345
  start-page: 267
  year: 2009
  end-page: 275
  ident: bib8
  article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates
  publication-title: J. Membr. Sci.
– volume: 354
  start-page: 48
  year: 2010
  end-page: 54
  ident: bib13
  article-title: Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation
  publication-title: J. Membr. Sci.
– volume: 80
  year: 1958
  ident: bib20
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 8902
  year: 2010
  end-page: 8904
  ident: bib25
  article-title: Graphene oxide framework materials: theoretical predictions and experimental results
  publication-title: Angew. Chem. Int. Ed.
– volume: 279
  start-page: 1710
  year: 1998
  end-page: 1711
  ident: bib6
  article-title: High-selectivity, high-flux silica membranes for gas separation
  publication-title: Science
– volume: 113
  start-page: 4980
  year: 2013
  end-page: 5028
  ident: bib29
  article-title: Predictive models for mixed-matrix membrane performance: a review
  publication-title: Chem. Rev.
– volume: 25
  start-page: 4848
  year: 2009
  end-page: 4852
  ident: bib10
  article-title: Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen
  publication-title: Langmuir
– volume: 28
  start-page: 2921
  year: 2016
  end-page: 2927
  ident: bib16
  article-title: Facile preparation of graphene oxide membranes for gas separation
  publication-title: Chem. Mater.
– volume: 38
  start-page: 8409
  year: 2013
  end-page: 8414
  ident: bib12
  article-title: Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane
  publication-title: Int. J. Hydrog. Energy
– volume: 6
  start-page: 151
  year: 2014
  end-page: 158
  ident: bib22
  article-title: Scalable enhancement of graphene oxide properties by thermally driven phase transformation
  publication-title: Nat. Chem.
– volume: 23
  start-page: 779
  year: 1952
  end-page: 784
  ident: bib28
  article-title: The electrical resistance of binary metallic mixtures
  publication-title: J. Appl. Phys.
– volume: 346
  start-page: 1356
  year: 2014
  end-page: 1359
  ident: bib14
  article-title: Metal-organic framework nanosheets as building blocks for molecular sieving membranes
  publication-title: Science
– volume: 10
  start-page: 3398
  year: 2016
  end-page: 3409
  ident: bib27
  article-title: Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving
  publication-title: ACS Nano
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  ident: bib5
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
– volume: 50
  start-page: 13563
  year: 2014
  end-page: 13566
  ident: bib19
  article-title: High-performance CO
  publication-title: Chem. Commun.
– volume: 27
  start-page: 2367
  year: 2015
  end-page: 2373
  ident: bib23
  article-title: Inhibiting the corrosion-promotion activity of graphene
  publication-title: Chem. Mater.
– volume: 7
  start-page: 17649
  year: 2015
  end-page: 17652
  ident: bib18
  article-title: Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation
  publication-title: Nanoscale
– volume: 138
  start-page: 5143
  year: 2016
  end-page: 5149
  ident: bib21
  article-title: Controlled exfoliation of MoS2 crystals into trilayer nanosheets
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 129
  year: 2013
  ident: bib24
  article-title: Ferromagnetism in freestanding MoS
  publication-title: Nanoscale Res. Lett.
– volume: 342
  start-page: 95
  year: 2013
  end-page: 98
  ident: bib15
  article-title: Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation
  publication-title: Science
– volume: 9
  start-page: 1224
  year: 2016
  end-page: 1228
  ident: bib17
  article-title: High performance MoS2 membranes: effects of thermally driven phase transition on CO
  publication-title: Energy Environ. Sci.
– volume: 369
  start-page: 139
  year: 2011
  end-page: 147
  ident: bib3
  article-title: 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO
  publication-title: J. Membr. Sci.
– volume: 54
  start-page: 1478
  year: 2008
  end-page: 1486
  ident: bib9
  article-title: Gas permeation through DDR-type zeolite membranes at high temperatures
  publication-title: AIChE J.
– volume: 133
  start-page: 1748
  year: 2011
  end-page: 1750
  ident: bib11
  article-title: H2 separation using defect-free, inorganic composite membranes
  publication-title: J. Am. Chem. Soc.
– volume: 332
  start-page: 674
  year: 2011
  end-page: 676
  ident: bib1
  article-title: Designing the next generation of chemical separation membranes
  publication-title: Science
– volume: 7
  start-page: 26226
  year: 2015
  end-page: 26234
  ident: bib26
  article-title: Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 4638
  year: 2009
  end-page: 4663
  ident: bib2
  article-title: Membrane gas separation: a review/state of the art
  publication-title: Ind. Eng. Chem. Res.
– volume: 62
  start-page: 165
  year: 1991
  end-page: 185
  ident: bib4
  article-title: Correlation of separation factor versus permeability for polymeric membranes
  publication-title: J. Membr. Sci.
– volume: 288
  start-page: 290
  year: 2007
  end-page: 297
  ident: bib7
  article-title: Silicon carbide membranes for gas separation applications
  publication-title: J. Membr. Sci.
– volume: 23
  start-page: 779
  year: 1952
  ident: 10.1016/j.memsci.2017.12.063_bib28
  article-title: The electrical resistance of binary metallic mixtures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702301
– volume: 138
  start-page: 5143
  year: 2016
  ident: 10.1016/j.memsci.2017.12.063_bib21
  article-title: Controlled exfoliation of MoS2 crystals into trilayer nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01502
– volume: 279
  start-page: 1710
  year: 1998
  ident: 10.1016/j.memsci.2017.12.063_bib6
  article-title: High-selectivity, high-flux silica membranes for gas separation
  publication-title: Science
  doi: 10.1126/science.279.5357.1710
– volume: 113
  start-page: 4980
  year: 2013
  ident: 10.1016/j.memsci.2017.12.063_bib29
  article-title: Predictive models for mixed-matrix membrane performance: a review
  publication-title: Chem. Rev.
  doi: 10.1021/cr3003888
– volume: 332
  start-page: 674
  year: 2011
  ident: 10.1016/j.memsci.2017.12.063_bib1
  article-title: Designing the next generation of chemical separation membranes
  publication-title: Science
  doi: 10.1126/science.1203771
– volume: 62
  start-page: 165
  year: 1991
  ident: 10.1016/j.memsci.2017.12.063_bib4
  article-title: Correlation of separation factor versus permeability for polymeric membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(91)80060-J
– volume: 7
  start-page: 26226
  year: 2015
  ident: 10.1016/j.memsci.2017.12.063_bib26
  article-title: Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08410
– volume: 50
  start-page: 13563
  year: 2014
  ident: 10.1016/j.memsci.2017.12.063_bib19
  article-title: High-performance CO2-philic graphene oxide membranes under wet-conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06207H
– volume: 28
  start-page: 2921
  year: 2016
  ident: 10.1016/j.memsci.2017.12.063_bib16
  article-title: Facile preparation of graphene oxide membranes for gas separation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04475
– volume: 48
  start-page: 4638
  year: 2009
  ident: 10.1016/j.memsci.2017.12.063_bib2
  article-title: Membrane gas separation: a review/state of the art
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie8019032
– volume: 9
  start-page: 1224
  year: 2016
  ident: 10.1016/j.memsci.2017.12.063_bib17
  article-title: High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03856A
– volume: 369
  start-page: 139
  year: 2011
  ident: 10.1016/j.memsci.2017.12.063_bib3
  article-title: 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.053
– volume: 80
  year: 1958
  ident: 10.1016/j.memsci.2017.12.063_bib20
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 345
  start-page: 267
  year: 2009
  ident: 10.1016/j.memsci.2017.12.063_bib8
  article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.09.009
– volume: 8
  start-page: 129
  year: 2013
  ident: 10.1016/j.memsci.2017.12.063_bib24
  article-title: Ferromagnetism in freestanding MoS
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-129
– volume: 346
  start-page: 1356
  year: 2014
  ident: 10.1016/j.memsci.2017.12.063_bib14
  article-title: Metal-organic framework nanosheets as building blocks for molecular sieving membranes
  publication-title: Science
  doi: 10.1126/science.1254227
– volume: 342
  start-page: 95
  year: 2013
  ident: 10.1016/j.memsci.2017.12.063_bib15
  article-title: Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation
  publication-title: Science
  doi: 10.1126/science.1236686
– volume: 49
  start-page: 8902
  year: 2010
  ident: 10.1016/j.memsci.2017.12.063_bib25
  article-title: Graphene oxide framework materials: theoretical predictions and experimental results
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201003328
– volume: 25
  start-page: 4848
  year: 2009
  ident: 10.1016/j.memsci.2017.12.063_bib10
  article-title: Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen
  publication-title: Langmuir
  doi: 10.1021/la900474y
– volume: 38
  start-page: 8409
  year: 2013
  ident: 10.1016/j.memsci.2017.12.063_bib12
  article-title: Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.04.154
– volume: 354
  start-page: 48
  year: 2010
  ident: 10.1016/j.memsci.2017.12.063_bib13
  article-title: Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.02.074
– volume: 54
  start-page: 1478
  year: 2008
  ident: 10.1016/j.memsci.2017.12.063_bib9
  article-title: Gas permeation through DDR-type zeolite membranes at high temperatures
  publication-title: AIChE J.
  doi: 10.1002/aic.11457
– volume: 133
  start-page: 1748
  year: 2011
  ident: 10.1016/j.memsci.2017.12.063_bib11
  article-title: H2 separation using defect-free, inorganic composite membranes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108681n
– volume: 6
  start-page: 151
  year: 2014
  ident: 10.1016/j.memsci.2017.12.063_bib22
  article-title: Scalable enhancement of graphene oxide properties by thermally driven phase transformation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1820
– volume: 10
  start-page: 3398
  year: 2016
  ident: 10.1016/j.memsci.2017.12.063_bib27
  article-title: Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07304
– volume: 320
  start-page: 390
  year: 2008
  ident: 10.1016/j.memsci.2017.12.063_bib5
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.04.030
– volume: 7
  start-page: 17649
  year: 2015
  ident: 10.1016/j.memsci.2017.12.063_bib18
  article-title: Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation
  publication-title: Nanoscale
  doi: 10.1039/C5NR06321C
– volume: 27
  start-page: 2367
  year: 2015
  ident: 10.1016/j.memsci.2017.12.063_bib23
  article-title: Inhibiting the corrosion-promotion activity of graphene
  publication-title: Chem. Mater.
  doi: 10.1021/cm5043099
– volume: 288
  start-page: 290
  year: 2007
  ident: 10.1016/j.memsci.2017.12.063_bib7
  article-title: Silicon carbide membranes for gas separation applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.11.027
SSID ssj0017089
Score 2.4323835
Snippet Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms artificial membranes
carbon dioxide
Composite membranes
filtration
Gas separation
Graphene oxide
hydrogen
Molybdenum disulfide
nanomaterials
Vacuum filtration
Title Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation
URI https://dx.doi.org/10.1016/j.memsci.2017.12.063
https://www.proquest.com/docview/2221045537
Volume 550
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBbBvaSHkOZB3aZGhVxV76600u4xhDpOS00gMfgmVi_qYntDbENyCfkP-Yf5JZnZR2gKxZDjakdCzIw-zezOg5BjYyNTJHnBMjCPmRC5Z1kWS5YEXvAg4-ACJif_GsnhWPyYpJMtctrmwmBYZYP9NaZXaN2M9Btu9q-n0_5lhIVIOKysOGCqwrLbQijU8m_3L2EesYqqNnhIzJC6TZ-rYrzmfg5LY4CXqj4KSv6_6-kfoK5un8Eu2WnMRnpS7-wD2fKLPfL-r2KC--TiDGtPA3TR8nbqPH16eKTzcnZnHEa7UzddrmcBX_y-wywtCrsCTxmQjoLdCoPupgRloktfVwMvFwdkPPh-dTpkTb8EZkWSrJgSNgRlcycj46wJUhaFFRxcLpsEGakiT0PMQ449qbgyicvhyIWsSI0qEiE5PySdRbnwHwk1wlsJcnQGfWehMiAUNouM9SlYOFmX8JZN2jbFxLGnxUy3UWN_dM1cjczVcaKBuV3CXmZd18U0NtCrVgL6lVJowPsNM7-2AtNwXvAnCDC0XC812EPggaYpV5_evPpnsg1PVWpinB6Rzupm7b-AbbIyvUr5euTdyfnP4egZX9fl0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4IPKAPBFEjoFITfaw703bamQcejICLXGIiJLzV6S0s2d0h7G5kX4z_wZ_iP_KXcM5ciJoYEhNep5d0vp75ek7nXAh5bV1iS16ULAf1mElZBJbnqWI8ilJElUYfMTj56Fj1T-XHs-xsgfzsYmHQrbLl_obTa7Zun_RaNHuXg0Hvc4KJSATMrAVwqlatZ-VBmH8Fu22yvb8Dm_yG873dk_d91pYWYE5yPmVauhi1K7xKrHc2KlWWTgqwThyPKtFlkcVUxALLNwltuS9AOmNeZlaXXCq8BQXeX5JAF1g24e23W7-SVCd13T1cHcPldfF6tVPZKIzgXdCjTNe3kEr86zz862Soj7u9VbLS6qn0XQPFI7IQxmvk4W_ZCx-TTx8w2TVwJa2uBz7QX99_0FE1nFuP7vXUDyazYcSG8zmGhVFYFZjmQK0UFGV46K8qkF46CU368Wr8hJzeC4pPyeK4GodnhFoZnALB8RaNdalz6ChdnlgXMlCp8nUiOpiMa7OXYxGNoenc1C5MA65BcE3KDYC7TtjtqMsme8cd_XW3A-YPKTRwwNwx8lW3YQY-UPzrAoBWs4kBBQxM3iwTeuO_Z98iy_2To0NzuH98sEkeQEsdF5lmz8ni9GoWXoBiNLUva0Gk5Mt9S_4NxaEhNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+oxide+%E2%80%93+molybdenum+disulfide+hybrid+membranes+for+hydrogen+separation&rft.jtitle=Journal+of+membrane+science&rft.au=Ostwal%2C+Mayur&rft.au=Shinde%2C+Digambar+B.&rft.au=Wang%2C+Xinbo&rft.au=Gadwal%2C+Ikhlas&rft.date=2018-03-15&rft.issn=0376-7388&rft.volume=550&rft.spage=145&rft.epage=154&rft_id=info:doi/10.1016%2Fj.memsci.2017.12.063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2017_12_063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon