A parameter adaptive EEFO VMD method to mitigate noise and trend interference of blast vibration signals

Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) m...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 10035 - 27
Main Authors Xu, Zhenyang, Zhang, Zuofu, Ren, Fuqiang, Wang, Xuesong, Liu, Aobo, Guo, Lianjun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α . The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals.
AbstractList Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α . The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals.
Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals.
Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals.Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals.
Abstract Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals.
ArticleNumber 10035
Author Guo, Lianjun
Ren, Fuqiang
Zhang, Zuofu
Liu, Aobo
Xu, Zhenyang
Wang, Xuesong
Author_xml – sequence: 1
  givenname: Zhenyang
  surname: Xu
  fullname: Xu, Zhenyang
  organization: School of Mining Engineering, University of Science and Technology LiaoNing
– sequence: 2
  givenname: Zuofu
  surname: Zhang
  fullname: Zhang, Zuofu
  organization: School of Mining Engineering, University of Science and Technology LiaoNing
– sequence: 3
  givenname: Fuqiang
  surname: Ren
  fullname: Ren, Fuqiang
  email: renfuqiang@ustl.edu.cn
  organization: School of Civil Engineering, University of Science and Technology LiaoNing
– sequence: 4
  givenname: Xuesong
  surname: Wang
  fullname: Wang, Xuesong
  organization: School of Mining Engineering, University of Science and Technology LiaoNing
– sequence: 5
  givenname: Aobo
  surname: Liu
  fullname: Liu, Aobo
  organization: School of Mining Engineering, University of Science and Technology LiaoNing
– sequence: 6
  givenname: Lianjun
  surname: Guo
  fullname: Guo, Lianjun
  organization: School of Mining Engineering, University of Science and Technology LiaoNing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40122933$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9vFCEUxyemxtbaf8CDIfHiZZTfAyfT1K02qelFvRJmeLPLZhZWYDfxv5fdqbX1IAd4fPm-Dy_wXjYnIQZomtcEvyeYqQ-ZE6FVi6loNeeEtOJZc0YxFy1llJ48ik-bi5zXuA5BNSf6RXPKMaFUM3bWrC7R1ia7gQIJWWe3xe8BLRbXd-jH10-o6qvoUIlo44tf2gIoRJ8B2VDVBHX2oaaOUOMBUBxRP9lc0N73yRYfA8p-GeyUXzXPx7rAxf163ny_Xny7-tLe3n2-ubq8bQdOaWnlSFTfCe2E6qVSrsO0H4UgToDEkvWEOqvlqIEJykB3eiSSdlo565ySVT5vbmaui3ZttslvbPplovXmKMS0NDYVP0xgiOAO845zSxhnjCspOZBuII7qoe4q6-PM2u76DbgBQkl2egJ9ehL8yizj3hCiGdZcVMK7e0KKP3eQi9n4PMA02QBxlw0jCkulFVXV-vYf6zru0uHpji4uK_QAfPO4pIda_vxoNdDZMKSYc4LxwUKwOXSOmTvH1M4xx84xByqbk3I1hyWkv3f_J-s3uXTDcw
Cites_doi 10.1016/j.sigpro.2016.02.011
10.1016/j.ymssp.2015.02.020
10.1016/j.soildyn.2011.04.004
10.1016/j.jclepro.2022.131724
10.1080/02626665609493644
10.1016/j.measurement.2020.108185
10.1016/j.isatra.2015.12.009
10.1016/j.measurement.2019.04.072
10.1016/j.chemolab.2012.03.011
10.1016/j.tust.2015.02.004
10.1002/cem.990
10.1016/j.measurement.2018.03.008
10.1007/s00603-019-02043-9
10.1016/j.soildyn.2017.01.007
10.1016/j.ymssp.2016.08.042
10.1016/j.measurement.2018.11.050
10.1098/rspa.1998.0193
10.1016/j.ymssp.2019.02.056
10.1016/j.compeleceng.2021.107070
10.1016/j.ymssp.2017.11.029
10.1016/j.trac.2009.07.007
10.1016/j.ymssp.2017.03.035
10.1016/j.measurement.2017.02.033
10.1142/S0219691314500441
10.1109/EMS.2017.16
10.1016/j.ymssp.2008.11.005
10.1016/j.soildyn.2018.11.025
10.1109/TSP.2013.2288675
10.1016/j.eswa.2023.122200
10.1016/j.ymssp.2018.01.019
10.1038/s41598-023-28404-7
10.1109/ACCESS.2021.3088783
10.1016/j.forsciint.2021.110691
10.1038/s41598-022-26576-2
10.1016/j.measurement.2017.06.032
10.1016/j.ymssp.2016.12.036
10.1080/03772063.2022.2135622
10.1007/s11071-017-3340-5
10.1016/j.ymssp.2020.107202
10.1373/49.7.1125
10.1016/j.ymssp.2022.108833
10.1016/j.ymssp.2022.109724
10.13465/j.cnki.jvs.2023.11.036
10.1016/j.physa.2018.09.165
10.1109/TBME.2017.2650259
10.1016/j.physa.2018.11.061
10.1049/iet-rpg.2016.0088
10.1016/j.renene.2015.12.010
10.3390/e22090995
10.1016/j.procs.2020.04.029
10.1109/TSP.2013.2265222
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-94411-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (New) (NC LIVE)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 27
ExternalDocumentID oai_doaj_org_article_154d04744a1343348664e17c1d29c486
PMC11930945
40122933
10_1038_s41598_025_94411_5
Genre Journal Article
GrantInformation_xml – fundername: Financial support from the National Natural Science Foundation of China
  grantid: Grant No. 51974187
– fundername: The Liaoning XingLiao Talent Plan
  grantid: Grant No. XLYC2203173
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AARCD
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c422t-6f18b759d58b688d702bf551d5e6063b12da96f9e3523e979f162798dadd869e3
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:58 EDT 2025
Thu Aug 21 18:40:02 EDT 2025
Mon Jul 21 10:09:22 EDT 2025
Wed Aug 13 09:52:12 EDT 2025
Fri Mar 28 01:32:23 EDT 2025
Tue Aug 05 11:57:52 EDT 2025
Mon Mar 24 04:16:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-6f18b759d58b688d702bf551d5e6063b12da96f9e3523e979f162798dadd869e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-94411-5
PMID 40122933
PQID 3180461195
PQPubID 2041939
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_154d04744a1343348664e17c1d29c486
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11930945
proquest_miscellaneous_3180689828
proquest_journals_3180461195
pubmed_primary_40122933
crossref_primary_10_1038_s41598_025_94411_5
springer_journals_10_1038_s41598_025_94411_5
PublicationCentury 2000
PublicationDate 2025-03-23
PublicationDateYYYYMMDD 2025-03-23
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JH Arellano-Pérez (94411_CR37) 2018; 122
H Li (94411_CR26) 2020; 166
EH Houssein (94411_CR44) 2021; 9
C Mishra (94411_CR35) 2017; 103
Y Lei (94411_CR22) 2009; 23
Y Yin (94411_CR49) 2017; 88
J Cao (94411_CR23) 2019; 2019
J Li (94411_CR5) 2019; 126
BR Manju (94411_CR31) 2020; 171
V Gupta (94411_CR9) 2024; 70
Y Wang (94411_CR25) 2015; 60
P Lasch (94411_CR8) 2012; 117
Y Liu (94411_CR28) 2016; 125
Z Yang (94411_CR24) 2021; 92
T Qiao (94411_CR36) 2017; 110
W Zhao (94411_CR41) 2024; 238
T Liang (94411_CR30) 2020; 22
X Dong (94411_CR38) 2021; 149
K Liu (94411_CR7) 2003; 49
M Elhoseny (94411_CR32) 2019; 143
S Chen (94411_CR48) 2019; 515
XZ Shi (94411_CR50) 2011; 31
Z Zhang (94411_CR33) 2022; 171
HE Hurst (94411_CR42) 1956; 1
Y Gou (94411_CR52) 2019; 135
P Heraud (94411_CR6) 2006; 20
J Gilles (94411_CR14) 2013; 61
X Mo Hongyi (94411_CR45) 2023; 42
W Yang (94411_CR27) 2017; 11
C Fang (94411_CR40) 2023; 13
X Zhang (94411_CR34) 2018; 108
Z Liu (94411_CR21) 2016; 61
D Huang (94411_CR3) 2019; 117
K Dragomiretskiy (94411_CR17) 2014; 62
Y Zhang (94411_CR16) 2022; 354
C Peeters (94411_CR12) 2017; 91
N Zermi (94411_CR13) 2021; 320
94411_CR46
W Liu (94411_CR10) 2023; 184
A Saadatmand Hashemi (94411_CR1) 2020; 53
Z Li (94411_CR29) 2017; 85
ZW Wang (94411_CR4) 2015; 48
J Lian (94411_CR51) 2018; 107
T Chen (94411_CR43) 2017
J Gilles (94411_CR47) 2014; 12
P Li (94411_CR2) 2017; 94
Z Zhang (94411_CR39) 2022; 12
Å Rinnan (94411_CR11) 2009; 28
J Chen (94411_CR18) 2016; 89
A Bhattacharyya (94411_CR19) 2017; 64
Z Liu (94411_CR20) 2017; 95
NE Huang (94411_CR15) 1998; 454
References_xml – volume: 125
  start-page: 349
  year: 2016
  ident: 94411_CR28
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.02.011
– volume: 60
  start-page: 243
  year: 2015
  ident: 94411_CR25
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.02.020
– volume: 31
  start-page: 1154
  issue: 8
  year: 2011
  ident: 94411_CR50
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2011.04.004
– volume: 354
  start-page: 131724
  year: 2022
  ident: 94411_CR16
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131724
– volume: 1
  start-page: 13
  issue: 3
  year: 1956
  ident: 94411_CR42
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626665609493644
– volume: 166
  start-page: 108185
  year: 2020
  ident: 94411_CR26
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108185
– volume: 61
  start-page: 211
  year: 2016
  ident: 94411_CR21
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2015.12.009
– volume: 143
  start-page: 125
  year: 2019
  ident: 94411_CR32
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.072
– volume: 117
  start-page: 100
  year: 2012
  ident: 94411_CR8
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.03.011
– volume: 48
  start-page: 94
  year: 2015
  ident: 94411_CR4
  publication-title: Tunnell. Undergr. Space Technol.
  doi: 10.1016/j.tust.2015.02.004
– volume: 20
  start-page: 193
  issue: 5
  year: 2006
  ident: 94411_CR6
  publication-title: J. Chemometr. J. Chemometr. Soc.
  doi: 10.1002/cem.990
– volume: 122
  start-page: 73
  year: 2018
  ident: 94411_CR37
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.03.008
– volume: 53
  start-page: 2327
  year: 2020
  ident: 94411_CR1
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-019-02043-9
– volume: 94
  start-page: 116
  year: 2017
  ident: 94411_CR2
  publication-title: Soil. Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2017.01.007
– volume: 85
  start-page: 512
  year: 2017
  ident: 94411_CR29
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.08.042
– volume: 135
  start-page: 213
  year: 2019
  ident: 94411_CR52
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.11.050
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 94411_CR15
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 126
  start-page: 568
  year: 2019
  ident: 94411_CR5
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.02.056
– volume: 92
  start-page: 107070
  year: 2021
  ident: 94411_CR24
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107070
– volume: 108
  start-page: 58
  year: 2018
  ident: 94411_CR34
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.029
– volume: 28
  start-page: 1201
  issue: 10
  year: 2009
  ident: 94411_CR11
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– volume: 95
  start-page: 468
  year: 2017
  ident: 94411_CR20
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.035
– volume: 103
  start-page: 77
  year: 2017
  ident: 94411_CR35
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.02.033
– volume: 12
  start-page: 1450044
  issue: 06
  year: 2014
  ident: 94411_CR47
  publication-title: Int. J. Wavelets Multiresol. Inform. Process.
  doi: 10.1142/S0219691314500441
– year: 2017
  ident: 94411_CR43
  publication-title: IEEE
  doi: 10.1109/EMS.2017.16
– volume: 23
  start-page: 1327
  issue: 4
  year: 2009
  ident: 94411_CR22
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2008.11.005
– volume: 117
  start-page: 72
  year: 2019
  ident: 94411_CR3
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2018.11.025
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 94411_CR17
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 238
  start-page: 122200
  year: 2024
  ident: 94411_CR41
  publication-title: Expert Syst. Applic.
  doi: 10.1016/j.eswa.2023.122200
– volume: 107
  start-page: 53
  year: 2018
  ident: 94411_CR51
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.01.019
– volume: 13
  start-page: 1505
  issue: 1
  year: 2023
  ident: 94411_CR40
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28404-7
– volume: 9
  start-page: 86194
  year: 2021
  ident: 94411_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3088783
– volume: 320
  start-page: 110691
  year: 2021
  ident: 94411_CR13
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2021.110691
– volume: 12
  start-page: 22186
  issue: 1
  year: 2022
  ident: 94411_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-26576-2
– volume: 110
  start-page: 192
  year: 2017
  ident: 94411_CR36
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.06.032
– volume: 91
  start-page: 354
  year: 2017
  ident: 94411_CR12
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.12.036
– ident: 94411_CR46
– volume: 70
  start-page: 815
  issue: 1
  year: 2024
  ident: 94411_CR9
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2022.2135622
– volume: 88
  start-page: 1707
  year: 2017
  ident: 94411_CR49
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3340-5
– volume: 149
  start-page: 107202
  year: 2021
  ident: 94411_CR38
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107202
– volume: 49
  start-page: 1125
  issue: 7
  year: 2003
  ident: 94411_CR7
  publication-title: Clin. Chem.
  doi: 10.1373/49.7.1125
– volume: 171
  start-page: 108833
  year: 2022
  ident: 94411_CR33
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.108833
– volume: 184
  start-page: 109724
  year: 2023
  ident: 94411_CR10
  publication-title: Mechan. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109724
– volume: 42
  start-page: 304
  issue: 11
  year: 2023
  ident: 94411_CR45
  publication-title: Vib. Impact
  doi: 10.13465/j.cnki.jvs.2023.11.036
– volume: 515
  start-page: 217
  year: 2019
  ident: 94411_CR48
  publication-title: Phys. A: Stat. Mechan. Applic.
  doi: 10.1016/j.physa.2018.09.165
– volume: 64
  start-page: 2003
  issue: 9
  year: 2017
  ident: 94411_CR19
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2650259
– volume: 2019
  start-page: 127
  issue: 519
  year: 2019
  ident: 94411_CR23
  publication-title: Phys. A: Stat. Mechan. Applic.
  doi: 10.1016/j.physa.2018.11.061
– volume: 11
  start-page: 443
  issue: 4
  year: 2017
  ident: 94411_CR27
  publication-title: IET Renew. Power Gen.
  doi: 10.1049/iet-rpg.2016.0088
– volume: 89
  start-page: 80
  year: 2016
  ident: 94411_CR18
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.12.010
– volume: 22
  start-page: 995
  issue: 9
  year: 2020
  ident: 94411_CR30
  publication-title: Entropy
  doi: 10.3390/e22090995
– volume: 171
  start-page: 273
  year: 2020
  ident: 94411_CR31
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.04.029
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 94411_CR14
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2265222
SSID ssj0000529419
Score 2.4431584
Snippet Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders...
Abstract Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10035
SubjectTerms 639/166/986
639/166/988
Adaptability
Algorithms
Decomposition
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Signal processing
Termites
Vibration
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNOlr27So0FsrYj0tHdNkl1BIe2lKbsKyJLKH2CHrFPrvM2N5t9k-6KVHywINM6N5oJlvCHmnm4pnUBYWWshVVR00syYYFl0WuW1lyAKbk88-m9Nz9elCX9wb9YU1YQUeuDDuEFx8rFStVMOlwrZRY1TidcujcC18ofUFn3cvmSqo3sIp7qYumUrawxV4KuwmE5o5CAE401ueaATs_1OU-Xux5C8vpqMjWjwmj6YIkh4VyvfIg9Ttk90yU_LHE3J5RBHO-wrLXGgTm2u0Z3Q-X3yh385OaJkYTYeeXi1HeI1Eu365SrTpYBULZCkiSNxMbYC0zzRAgD3Q75hXoxQplnyA0j4l54v51-NTNo1TYK0SYmAmcxtq7aK2wVgb60qEDAFT1AmyGBm4iI0z2SWIyWRytcvciNrZCCbQGlh-Rna6vksvCI0giGxEk3WACCwmyxM3IXHRhMxjq2fk_Zq1_rqgZvjxtVtaXwThQRB-FISH3R-R-5udiHg9LoAe-EkP_L_0YEYO1rLz0zVceTBYCCjPHZzxdvMbLhC-ijRd6m_LHmMdZJ4z8ryIekOJwodHJ-WM2C0l2CJ1-0-3vBxBuuFQCakzHPxhrS8_6fo7L17-D168Ig8FKnolmZAHZGe4uU2vIXYawpvxmtwBLb0RwA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t1AQUbiBlbjZ-wTKrCrCqlwoWhvVhzbdA9Nlt0UiX_PTJLdankdY1uy45mxv_G8CHml65JnYBYWGtBVVRU0syYYFl0WuWlkyAKDk88-mdNz9XGhF9OD22Zyq9yeicNBHbsG38iPgfcwNzh3-u3qO8OqUWhdnUpo3CS3sAe5ulpUuzcWtGIp7qZYmVLa4w3cVxhTJjRzAAQ403v30ZC2_29Y80-Xyd_spsN1NL9H7k44kp6MhL9PbqT2Abk9Vpb8-ZBcnFBM6n2Jzi60jvUKTzU6m80_069nH-hYN5r2Hb1cDkk2Em275SbRuoVWdJOlmEdiPQUD0i7TADC7pz9Qu0ZaUnT8ANZ9RM7nsy_vT9lUVIE1SoiemcxtqLSL2gZjbaxKETLApqgT6DIycBFrZ7JLgMxkcpXL3IjK2QgHoTXQ_JgctF2bDgmNUqpsRJ11ABwWk-WJm5C4qEPmsdEFeb3dWr8ac2f4weYtrR8J4YEQfiCEh9HvcPd3IzHv9dDQrb_5SYw8AL5YqkqpmkuFQcTGqMSrhkfhGvgqyNGWdn4Sxo2_Zp2CvNx1gxihbaRuU3c1jjHWgf5ZkCcjqXcrUWh-dFIWxO4xwd5S93va5cWQqhsmlaBAw8Rvtvxyva5_78XT___GM3JHIAuXkgl5RA769VV6DtioDy8GAfgF72kLZg
  priority: 102
  providerName: ProQuest
Title A parameter adaptive EEFO VMD method to mitigate noise and trend interference of blast vibration signals
URI https://link.springer.com/article/10.1038/s41598-025-94411-5
https://www.ncbi.nlm.nih.gov/pubmed/40122933
https://www.proquest.com/docview/3180461195
https://www.proquest.com/docview/3180689828
https://pubmed.ncbi.nlm.nih.gov/PMC11930945
https://doaj.org/article/154d04744a1343348664e17c1d29c486
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISReEN8URmUk3iAi_oz92JVWU6UNBAz1zYpje-vDkqnNkPbf7-wkRYXxwFMU5yKffGf7znf3M0LvRZmTAMqS2Qp8VV5YkSlpZeZ0oKGqmA00FiefnsmTc75YiuUeokMtTEraT5CWaZkessM-bWCjicVgVGQadnCSiX10GKHaQbcPJ5PF98X2ZCXGrjjRfYVMztQ9P-_sQgms_z4L8-9EyT-ipWkTmj9Gj3rrEU86fp-gPV8_RQ-6-yRvn6HLCY5Q3lcxxQWXrryOaxmezeZf8M_Tz7i7LRq3Db5aJWgNj-tmtfG4rKE1JsfiiB6x7ksAcROwBeO6xb-iTx0liGO6Byjsc3Q-n_2YnmT9VQpZxSltMxmIsoXQTigrlXJFTm0AY8kJDx4Ms4S6UsugPdhjzOtCByJpoZWD5U9JaH6BDuqm9q8QdozxIGkZhAXry3lFPJHWE1raQFwlRujDMLTmukPMMCnSzZTpBGFAECYJwgD1cRz9LWVEu04NzfrC9NI3YOa5nBecl4TxWDosJfekqIijuoK3EToaZGf6KbgxsFhFMHmioY93288weWJEpKx9c9PRSKXB6xyhl52ot5zwGHTUjI2Q2lGCHVZ3v9SrywTQDZ0ycJuh44-Dvvzm699j8fr_yN-ghzSqdM4yyo7QQbu-8W_BQmrtGO0Xy2LcTwx4Hs_Ovn6D1qmcjtOpwx0ibw7w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFFjO3HsA0KF7mpLu-XSor25cWzTPTRZdreg_il-IzN5bLW8bj3GsWLHM2N_43kR8iorEhaAWWJbgq6a5jaLlbQydjrwUJbCBo7ByeNDOTpOP02yyQb52cfCoFtlvyc2G7WrS7wj3wbew9zgTGfvZ99irBqF1tW-hEbLFvv-4geobIt3e7tA39ecDwdHH0dxV1UgLlPOl7EMTNk80y5TVirl8oTbALjBZR7AvLCMu0LLoD1AE-F1rgOTPNfKwU6gJDTDd6-R63DwJqjs5ZN8daeDVrOU6S42JxFqewHnI8aw8SzWADxYnK2df02ZgL9h2z9dNH-z0zbH3_AOud3hVrrTMtpdsuGre-RGW8ny4j453aGYRPwMnWto4YoZ7qJ0MBh-pl_Gu7StU02XNT2bNkk9PK3q6cLTooJWdMulmLdi3gUf0jpQC7B-Sb-jNo-8Q9HRBETlATm-kuV-SDaruvKPCXVCpEHyImQWcJ_zinkmrWe8sIG5MovIm35pzazN1WEaG7tQpiWEAUKYhhAGen_A1V_1xDzbTUM9_2o6sTUAMF2S5mlaMJFi0LKUqWd5yRzXJTxFZKunnemEf2EuWTUiL1evQWzRFlNUvj5v-0ilQd-NyKOW1KuZpGju1EJERK0xwdpU199U09MmNTgMKkBhh4Hf9vxyOa9_r8WT___GC3JzdDQ-MAd7h_tPyS2O7JyImIstsrmcn_tngMuW9nkjDJScXLX0_QIN2EdH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuFAUaCJ4ga27FjPyC00VYbY2VCDO0txLHN-rCktB1of41fxzm5dCq3tz3GsRLH5-Lv5NwIeS7zmAVglsgWYKsmqZWRVlZFzgQeikLYwDE5-WCido-Sd8fyeIP87HJhMKyy04m1onZVgf_IB8B7WBucGTkIbVjE4XD8ZvYtwg5S6Gnt2mk0LLLvz3-A-bZ4vTcEWr_gfDz69HY3ajsMREXC-TJSgWmbSuOktkprl8bcBsAQTnoA9sIy7nKjgvEAU4Q3qQlM8dRoB1pBKxiG514hmylaRT2yuTOaHH5c_eFBH1rCTJupEws9WMBpiRltXEYGYAiL5NppWDcN-BvS_TNg8zevbX0Yjm-SGy2KpdsN290iG768Ta42fS3P75CTbYolxU8x1IbmLp-hTqWj0fgD_XwwpE3Xarqs6Om0LvHhaVlNF57mJYxikC7FKhbzNhWRVoFaAPlL-h1te-QkimEnIDh3ydGlbPg90iur0j8g1AmRBMXzIC2gQOc180xZz3huA3OF7JOX3dZms6ZyR1Z73IXOGkJkQIisJkQGs3dw91czsep2PVDNv2atEGcAN12cpEmSM5FgCrNSiWdpwRw3BVz1yVZHu6xVBYvsgnH75NnqNggxemby0ldnzRylDVi_fXK_IfVqJQk6P40QfaLXmGBtqet3yulJXSgcXirAfIcXv-r45WJd_96Lh___jKfkGkhe9n5vsv-IXOfIzbGIuNgiveX8zD8GkLa0T1ppoOTLZQvgLxGwTOI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parameter+adaptive+EEFO+VMD+method+to+mitigate+noise+and+trend+interference+of+blast+vibration+signals&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Zhenyang&rft.au=Zhang%2C+Zuofu&rft.au=Ren%2C+Fuqiang&rft.au=Wang%2C+Xuesong&rft.date=2025-03-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-94411-5&rft.externalDocID=10_1038_s41598_025_94411_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon