A parameter adaptive EEFO VMD method to mitigate noise and trend interference of blast vibration signals
Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) m...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 10035 - 27 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes
K
and the secondary penalty factor
α
. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals. |
---|---|
AbstractList | Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes
K
and the secondary penalty factor
α
. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals. Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals. Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals.Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals. Abstract Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders subsequent signal processing and analysis. To obtain a pure blasting vibration signal, a parameter-adaptive variational mode decomposition (VMD) method based on the improved electric eel foraging optimization (EEFO) algorithm is proposed for preprocessing the blasting vibration signal. This method removes high-frequency noise and low-frequency trend components from the signal. Combining the abrupt and related characteristics of blasting vibration signals, a weighted multi-scale permutation entropy is constructed as the fitness function for parameter optimization. The EEFO algorithm, with strong global and local search capabilities, is employed to optimize the VMD decomposition parameters. This approach adaptively determines the optimal combination of decomposition modes K and the secondary penalty factor α. The analysis results of simulated vibration signals with different interference components and actual measured blasting vibration signals using this method show that, compared to traditional VMD, empirical wavelet transform, and empirical mode decomposition methods, EEFO-VMD has superior adaptability and anti-aliasing capabilities. Even in complex interference components, it can adaptively determine the optimal decomposition parameter combination, effectively removing interference components from the vibration signals. This method is suitable for preprocessing blasting vibration signals. |
ArticleNumber | 10035 |
Author | Guo, Lianjun Ren, Fuqiang Zhang, Zuofu Liu, Aobo Xu, Zhenyang Wang, Xuesong |
Author_xml | – sequence: 1 givenname: Zhenyang surname: Xu fullname: Xu, Zhenyang organization: School of Mining Engineering, University of Science and Technology LiaoNing – sequence: 2 givenname: Zuofu surname: Zhang fullname: Zhang, Zuofu organization: School of Mining Engineering, University of Science and Technology LiaoNing – sequence: 3 givenname: Fuqiang surname: Ren fullname: Ren, Fuqiang email: renfuqiang@ustl.edu.cn organization: School of Civil Engineering, University of Science and Technology LiaoNing – sequence: 4 givenname: Xuesong surname: Wang fullname: Wang, Xuesong organization: School of Mining Engineering, University of Science and Technology LiaoNing – sequence: 5 givenname: Aobo surname: Liu fullname: Liu, Aobo organization: School of Mining Engineering, University of Science and Technology LiaoNing – sequence: 6 givenname: Lianjun surname: Guo fullname: Guo, Lianjun organization: School of Mining Engineering, University of Science and Technology LiaoNing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40122933$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9vFCEUxyemxtbaf8CDIfHiZZTfAyfT1K02qelFvRJmeLPLZhZWYDfxv5fdqbX1IAd4fPm-Dy_wXjYnIQZomtcEvyeYqQ-ZE6FVi6loNeeEtOJZc0YxFy1llJ48ik-bi5zXuA5BNSf6RXPKMaFUM3bWrC7R1ia7gQIJWWe3xe8BLRbXd-jH10-o6qvoUIlo44tf2gIoRJ8B2VDVBHX2oaaOUOMBUBxRP9lc0N73yRYfA8p-GeyUXzXPx7rAxf163ny_Xny7-tLe3n2-ubq8bQdOaWnlSFTfCe2E6qVSrsO0H4UgToDEkvWEOqvlqIEJykB3eiSSdlo565ySVT5vbmaui3ZttslvbPplovXmKMS0NDYVP0xgiOAO845zSxhnjCspOZBuII7qoe4q6-PM2u76DbgBQkl2egJ9ehL8yizj3hCiGdZcVMK7e0KKP3eQi9n4PMA02QBxlw0jCkulFVXV-vYf6zru0uHpji4uK_QAfPO4pIda_vxoNdDZMKSYc4LxwUKwOXSOmTvH1M4xx84xByqbk3I1hyWkv3f_J-s3uXTDcw |
Cites_doi | 10.1016/j.sigpro.2016.02.011 10.1016/j.ymssp.2015.02.020 10.1016/j.soildyn.2011.04.004 10.1016/j.jclepro.2022.131724 10.1080/02626665609493644 10.1016/j.measurement.2020.108185 10.1016/j.isatra.2015.12.009 10.1016/j.measurement.2019.04.072 10.1016/j.chemolab.2012.03.011 10.1016/j.tust.2015.02.004 10.1002/cem.990 10.1016/j.measurement.2018.03.008 10.1007/s00603-019-02043-9 10.1016/j.soildyn.2017.01.007 10.1016/j.ymssp.2016.08.042 10.1016/j.measurement.2018.11.050 10.1098/rspa.1998.0193 10.1016/j.ymssp.2019.02.056 10.1016/j.compeleceng.2021.107070 10.1016/j.ymssp.2017.11.029 10.1016/j.trac.2009.07.007 10.1016/j.ymssp.2017.03.035 10.1016/j.measurement.2017.02.033 10.1142/S0219691314500441 10.1109/EMS.2017.16 10.1016/j.ymssp.2008.11.005 10.1016/j.soildyn.2018.11.025 10.1109/TSP.2013.2288675 10.1016/j.eswa.2023.122200 10.1016/j.ymssp.2018.01.019 10.1038/s41598-023-28404-7 10.1109/ACCESS.2021.3088783 10.1016/j.forsciint.2021.110691 10.1038/s41598-022-26576-2 10.1016/j.measurement.2017.06.032 10.1016/j.ymssp.2016.12.036 10.1080/03772063.2022.2135622 10.1007/s11071-017-3340-5 10.1016/j.ymssp.2020.107202 10.1373/49.7.1125 10.1016/j.ymssp.2022.108833 10.1016/j.ymssp.2022.109724 10.13465/j.cnki.jvs.2023.11.036 10.1016/j.physa.2018.09.165 10.1109/TBME.2017.2650259 10.1016/j.physa.2018.11.061 10.1049/iet-rpg.2016.0088 10.1016/j.renene.2015.12.010 10.3390/e22090995 10.1016/j.procs.2020.04.029 10.1109/TSP.2013.2265222 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-94411-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 27 |
ExternalDocumentID | oai_doaj_org_article_154d04744a1343348664e17c1d29c486 PMC11930945 40122933 10_1038_s41598_025_94411_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Financial support from the National Natural Science Foundation of China grantid: Grant No. 51974187 – fundername: The Liaoning XingLiao Talent Plan grantid: Grant No. XLYC2203173 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AARCD AAYXX CITATION PHGZM PJZUB PPXIY PQGLB SNYQT NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c422t-6f18b759d58b688d702bf551d5e6063b12da96f9e3523e979f162798dadd869e3 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Thu Aug 21 18:40:02 EDT 2025 Mon Jul 21 10:09:22 EDT 2025 Wed Aug 13 09:52:12 EDT 2025 Fri Mar 28 01:32:23 EDT 2025 Tue Aug 05 11:57:52 EDT 2025 Mon Mar 24 04:16:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-6f18b759d58b688d702bf551d5e6063b12da96f9e3523e979f162798dadd869e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-94411-5 |
PMID | 40122933 |
PQID | 3180461195 |
PQPubID | 2041939 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_154d04744a1343348664e17c1d29c486 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11930945 proquest_miscellaneous_3180689828 proquest_journals_3180461195 pubmed_primary_40122933 crossref_primary_10_1038_s41598_025_94411_5 springer_journals_10_1038_s41598_025_94411_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-23 |
PublicationDateYYYYMMDD | 2025-03-23 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JH Arellano-Pérez (94411_CR37) 2018; 122 H Li (94411_CR26) 2020; 166 EH Houssein (94411_CR44) 2021; 9 C Mishra (94411_CR35) 2017; 103 Y Lei (94411_CR22) 2009; 23 Y Yin (94411_CR49) 2017; 88 J Cao (94411_CR23) 2019; 2019 J Li (94411_CR5) 2019; 126 BR Manju (94411_CR31) 2020; 171 V Gupta (94411_CR9) 2024; 70 Y Wang (94411_CR25) 2015; 60 P Lasch (94411_CR8) 2012; 117 Y Liu (94411_CR28) 2016; 125 Z Yang (94411_CR24) 2021; 92 T Qiao (94411_CR36) 2017; 110 W Zhao (94411_CR41) 2024; 238 T Liang (94411_CR30) 2020; 22 X Dong (94411_CR38) 2021; 149 K Liu (94411_CR7) 2003; 49 M Elhoseny (94411_CR32) 2019; 143 S Chen (94411_CR48) 2019; 515 XZ Shi (94411_CR50) 2011; 31 Z Zhang (94411_CR33) 2022; 171 HE Hurst (94411_CR42) 1956; 1 Y Gou (94411_CR52) 2019; 135 P Heraud (94411_CR6) 2006; 20 J Gilles (94411_CR14) 2013; 61 X Mo Hongyi (94411_CR45) 2023; 42 W Yang (94411_CR27) 2017; 11 C Fang (94411_CR40) 2023; 13 X Zhang (94411_CR34) 2018; 108 Z Liu (94411_CR21) 2016; 61 D Huang (94411_CR3) 2019; 117 K Dragomiretskiy (94411_CR17) 2014; 62 Y Zhang (94411_CR16) 2022; 354 C Peeters (94411_CR12) 2017; 91 N Zermi (94411_CR13) 2021; 320 94411_CR46 W Liu (94411_CR10) 2023; 184 A Saadatmand Hashemi (94411_CR1) 2020; 53 Z Li (94411_CR29) 2017; 85 ZW Wang (94411_CR4) 2015; 48 J Lian (94411_CR51) 2018; 107 T Chen (94411_CR43) 2017 J Gilles (94411_CR47) 2014; 12 P Li (94411_CR2) 2017; 94 Z Zhang (94411_CR39) 2022; 12 Å Rinnan (94411_CR11) 2009; 28 J Chen (94411_CR18) 2016; 89 A Bhattacharyya (94411_CR19) 2017; 64 Z Liu (94411_CR20) 2017; 95 NE Huang (94411_CR15) 1998; 454 |
References_xml | – volume: 125 start-page: 349 year: 2016 ident: 94411_CR28 publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.02.011 – volume: 60 start-page: 243 year: 2015 ident: 94411_CR25 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.02.020 – volume: 31 start-page: 1154 issue: 8 year: 2011 ident: 94411_CR50 publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2011.04.004 – volume: 354 start-page: 131724 year: 2022 ident: 94411_CR16 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131724 – volume: 1 start-page: 13 issue: 3 year: 1956 ident: 94411_CR42 publication-title: Hydrol. Sci. J. doi: 10.1080/02626665609493644 – volume: 166 start-page: 108185 year: 2020 ident: 94411_CR26 publication-title: Measurement doi: 10.1016/j.measurement.2020.108185 – volume: 61 start-page: 211 year: 2016 ident: 94411_CR21 publication-title: ISA Trans. doi: 10.1016/j.isatra.2015.12.009 – volume: 143 start-page: 125 year: 2019 ident: 94411_CR32 publication-title: Measurement doi: 10.1016/j.measurement.2019.04.072 – volume: 117 start-page: 100 year: 2012 ident: 94411_CR8 publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.03.011 – volume: 48 start-page: 94 year: 2015 ident: 94411_CR4 publication-title: Tunnell. Undergr. Space Technol. doi: 10.1016/j.tust.2015.02.004 – volume: 20 start-page: 193 issue: 5 year: 2006 ident: 94411_CR6 publication-title: J. Chemometr. J. Chemometr. Soc. doi: 10.1002/cem.990 – volume: 122 start-page: 73 year: 2018 ident: 94411_CR37 publication-title: Measurement doi: 10.1016/j.measurement.2018.03.008 – volume: 53 start-page: 2327 year: 2020 ident: 94411_CR1 publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-019-02043-9 – volume: 94 start-page: 116 year: 2017 ident: 94411_CR2 publication-title: Soil. Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2017.01.007 – volume: 85 start-page: 512 year: 2017 ident: 94411_CR29 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.08.042 – volume: 135 start-page: 213 year: 2019 ident: 94411_CR52 publication-title: Measurement doi: 10.1016/j.measurement.2018.11.050 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 94411_CR15 publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 126 start-page: 568 year: 2019 ident: 94411_CR5 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.02.056 – volume: 92 start-page: 107070 year: 2021 ident: 94411_CR24 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107070 – volume: 108 start-page: 58 year: 2018 ident: 94411_CR34 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.11.029 – volume: 28 start-page: 1201 issue: 10 year: 2009 ident: 94411_CR11 publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 – volume: 95 start-page: 468 year: 2017 ident: 94411_CR20 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.03.035 – volume: 103 start-page: 77 year: 2017 ident: 94411_CR35 publication-title: Measurement doi: 10.1016/j.measurement.2017.02.033 – volume: 12 start-page: 1450044 issue: 06 year: 2014 ident: 94411_CR47 publication-title: Int. J. Wavelets Multiresol. Inform. Process. doi: 10.1142/S0219691314500441 – year: 2017 ident: 94411_CR43 publication-title: IEEE doi: 10.1109/EMS.2017.16 – volume: 23 start-page: 1327 issue: 4 year: 2009 ident: 94411_CR22 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.11.005 – volume: 117 start-page: 72 year: 2019 ident: 94411_CR3 publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2018.11.025 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 94411_CR17 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 238 start-page: 122200 year: 2024 ident: 94411_CR41 publication-title: Expert Syst. Applic. doi: 10.1016/j.eswa.2023.122200 – volume: 107 start-page: 53 year: 2018 ident: 94411_CR51 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.01.019 – volume: 13 start-page: 1505 issue: 1 year: 2023 ident: 94411_CR40 publication-title: Sci. Rep. doi: 10.1038/s41598-023-28404-7 – volume: 9 start-page: 86194 year: 2021 ident: 94411_CR44 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088783 – volume: 320 start-page: 110691 year: 2021 ident: 94411_CR13 publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2021.110691 – volume: 12 start-page: 22186 issue: 1 year: 2022 ident: 94411_CR39 publication-title: Sci. Rep. doi: 10.1038/s41598-022-26576-2 – volume: 110 start-page: 192 year: 2017 ident: 94411_CR36 publication-title: Measurement doi: 10.1016/j.measurement.2017.06.032 – volume: 91 start-page: 354 year: 2017 ident: 94411_CR12 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.12.036 – ident: 94411_CR46 – volume: 70 start-page: 815 issue: 1 year: 2024 ident: 94411_CR9 publication-title: IETE J. Res. doi: 10.1080/03772063.2022.2135622 – volume: 88 start-page: 1707 year: 2017 ident: 94411_CR49 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3340-5 – volume: 149 start-page: 107202 year: 2021 ident: 94411_CR38 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107202 – volume: 49 start-page: 1125 issue: 7 year: 2003 ident: 94411_CR7 publication-title: Clin. Chem. doi: 10.1373/49.7.1125 – volume: 171 start-page: 108833 year: 2022 ident: 94411_CR33 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.108833 – volume: 184 start-page: 109724 year: 2023 ident: 94411_CR10 publication-title: Mechan. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109724 – volume: 42 start-page: 304 issue: 11 year: 2023 ident: 94411_CR45 publication-title: Vib. Impact doi: 10.13465/j.cnki.jvs.2023.11.036 – volume: 515 start-page: 217 year: 2019 ident: 94411_CR48 publication-title: Phys. A: Stat. Mechan. Applic. doi: 10.1016/j.physa.2018.09.165 – volume: 64 start-page: 2003 issue: 9 year: 2017 ident: 94411_CR19 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2650259 – volume: 2019 start-page: 127 issue: 519 year: 2019 ident: 94411_CR23 publication-title: Phys. A: Stat. Mechan. Applic. doi: 10.1016/j.physa.2018.11.061 – volume: 11 start-page: 443 issue: 4 year: 2017 ident: 94411_CR27 publication-title: IET Renew. Power Gen. doi: 10.1049/iet-rpg.2016.0088 – volume: 89 start-page: 80 year: 2016 ident: 94411_CR18 publication-title: Renew. Energy doi: 10.1016/j.renene.2015.12.010 – volume: 22 start-page: 995 issue: 9 year: 2020 ident: 94411_CR30 publication-title: Entropy doi: 10.3390/e22090995 – volume: 171 start-page: 273 year: 2020 ident: 94411_CR31 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.04.029 – volume: 61 start-page: 3999 issue: 16 year: 2013 ident: 94411_CR14 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2265222 |
SSID | ssj0000529419 |
Score | 2.4431584 |
Snippet | Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination hinders... Abstract Blasting vibration signals are often contaminated by trend terms and noise, stemming from environments, and instrument errors. This contamination... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 10035 |
SubjectTerms | 639/166/986 639/166/988 Adaptability Algorithms Decomposition Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Signal processing Termites Vibration Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNOlr27So0FsrYj0tHdNkl1BIe2lKbsKyJLKH2CHrFPrvM2N5t9k-6KVHywINM6N5oJlvCHmnm4pnUBYWWshVVR00syYYFl0WuW1lyAKbk88-m9Nz9elCX9wb9YU1YQUeuDDuEFx8rFStVMOlwrZRY1TidcujcC18ofUFn3cvmSqo3sIp7qYumUrawxV4KuwmE5o5CAE401ueaATs_1OU-Xux5C8vpqMjWjwmj6YIkh4VyvfIg9Ttk90yU_LHE3J5RBHO-wrLXGgTm2u0Z3Q-X3yh385OaJkYTYeeXi1HeI1Eu365SrTpYBULZCkiSNxMbYC0zzRAgD3Q75hXoxQplnyA0j4l54v51-NTNo1TYK0SYmAmcxtq7aK2wVgb60qEDAFT1AmyGBm4iI0z2SWIyWRytcvciNrZCCbQGlh-Rna6vksvCI0giGxEk3WACCwmyxM3IXHRhMxjq2fk_Zq1_rqgZvjxtVtaXwThQRB-FISH3R-R-5udiHg9LoAe-EkP_L_0YEYO1rLz0zVceTBYCCjPHZzxdvMbLhC-ijRd6m_LHmMdZJ4z8ryIekOJwodHJ-WM2C0l2CJ1-0-3vBxBuuFQCakzHPxhrS8_6fo7L17-D168Ig8FKnolmZAHZGe4uU2vIXYawpvxmtwBLb0RwA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t1AQUbiBlbjZ-wTKrCrCqlwoWhvVhzbdA9Nlt0UiX_PTJLdankdY1uy45mxv_G8CHml65JnYBYWGtBVVRU0syYYFl0WuWlkyAKDk88-mdNz9XGhF9OD22Zyq9yeicNBHbsG38iPgfcwNzh3-u3qO8OqUWhdnUpo3CS3sAe5ulpUuzcWtGIp7qZYmVLa4w3cVxhTJjRzAAQ403v30ZC2_29Y80-Xyd_spsN1NL9H7k44kp6MhL9PbqT2Abk9Vpb8-ZBcnFBM6n2Jzi60jvUKTzU6m80_069nH-hYN5r2Hb1cDkk2Em275SbRuoVWdJOlmEdiPQUD0i7TADC7pz9Qu0ZaUnT8ANZ9RM7nsy_vT9lUVIE1SoiemcxtqLSL2gZjbaxKETLApqgT6DIycBFrZ7JLgMxkcpXL3IjK2QgHoTXQ_JgctF2bDgmNUqpsRJ11ABwWk-WJm5C4qEPmsdEFeb3dWr8ac2f4weYtrR8J4YEQfiCEh9HvcPd3IzHv9dDQrb_5SYw8AL5YqkqpmkuFQcTGqMSrhkfhGvgqyNGWdn4Sxo2_Zp2CvNx1gxihbaRuU3c1jjHWgf5ZkCcjqXcrUWh-dFIWxO4xwd5S93va5cWQqhsmlaBAw8Rvtvxyva5_78XT___GM3JHIAuXkgl5RA769VV6DtioDy8GAfgF72kLZg priority: 102 providerName: ProQuest |
Title | A parameter adaptive EEFO VMD method to mitigate noise and trend interference of blast vibration signals |
URI | https://link.springer.com/article/10.1038/s41598-025-94411-5 https://www.ncbi.nlm.nih.gov/pubmed/40122933 https://www.proquest.com/docview/3180461195 https://www.proquest.com/docview/3180689828 https://pubmed.ncbi.nlm.nih.gov/PMC11930945 https://doaj.org/article/154d04744a1343348664e17c1d29c486 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISReEN8URmUk3iAi_oz92JVWU6UNBAz1zYpje-vDkqnNkPbf7-wkRYXxwFMU5yKffGf7znf3M0LvRZmTAMqS2Qp8VV5YkSlpZeZ0oKGqmA00FiefnsmTc75YiuUeokMtTEraT5CWaZkessM-bWCjicVgVGQadnCSiX10GKHaQbcPJ5PF98X2ZCXGrjjRfYVMztQ9P-_sQgms_z4L8-9EyT-ipWkTmj9Gj3rrEU86fp-gPV8_RQ-6-yRvn6HLCY5Q3lcxxQWXrryOaxmezeZf8M_Tz7i7LRq3Db5aJWgNj-tmtfG4rKE1JsfiiB6x7ksAcROwBeO6xb-iTx0liGO6Byjsc3Q-n_2YnmT9VQpZxSltMxmIsoXQTigrlXJFTm0AY8kJDx4Ms4S6UsugPdhjzOtCByJpoZWD5U9JaH6BDuqm9q8QdozxIGkZhAXry3lFPJHWE1raQFwlRujDMLTmukPMMCnSzZTpBGFAECYJwgD1cRz9LWVEu04NzfrC9NI3YOa5nBecl4TxWDosJfekqIijuoK3EToaZGf6KbgxsFhFMHmioY93288weWJEpKx9c9PRSKXB6xyhl52ot5zwGHTUjI2Q2lGCHVZ3v9SrywTQDZ0ycJuh44-Dvvzm699j8fr_yN-ghzSqdM4yyo7QQbu-8W_BQmrtGO0Xy2LcTwx4Hs_Ovn6D1qmcjtOpwx0ibw7w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFFjO3HsA0KF7mpLu-XSor25cWzTPTRZdreg_il-IzN5bLW8bj3GsWLHM2N_43kR8iorEhaAWWJbgq6a5jaLlbQydjrwUJbCBo7ByeNDOTpOP02yyQb52cfCoFtlvyc2G7WrS7wj3wbew9zgTGfvZ99irBqF1tW-hEbLFvv-4geobIt3e7tA39ecDwdHH0dxV1UgLlPOl7EMTNk80y5TVirl8oTbALjBZR7AvLCMu0LLoD1AE-F1rgOTPNfKwU6gJDTDd6-R63DwJqjs5ZN8daeDVrOU6S42JxFqewHnI8aw8SzWADxYnK2df02ZgL9h2z9dNH-z0zbH3_AOud3hVrrTMtpdsuGre-RGW8ny4j453aGYRPwMnWto4YoZ7qJ0MBh-pl_Gu7StU02XNT2bNkk9PK3q6cLTooJWdMulmLdi3gUf0jpQC7B-Sb-jNo-8Q9HRBETlATm-kuV-SDaruvKPCXVCpEHyImQWcJ_zinkmrWe8sIG5MovIm35pzazN1WEaG7tQpiWEAUKYhhAGen_A1V_1xDzbTUM9_2o6sTUAMF2S5mlaMJFi0LKUqWd5yRzXJTxFZKunnemEf2EuWTUiL1evQWzRFlNUvj5v-0ilQd-NyKOW1KuZpGju1EJERK0xwdpU199U09MmNTgMKkBhh4Hf9vxyOa9_r8WT___GC3JzdDQ-MAd7h_tPyS2O7JyImIstsrmcn_tngMuW9nkjDJScXLX0_QIN2EdH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuFAUaCJ4ga27FjPyC00VYbY2VCDO0txLHN-rCktB1of41fxzm5dCq3tz3GsRLH5-Lv5NwIeS7zmAVglsgWYKsmqZWRVlZFzgQeikLYwDE5-WCido-Sd8fyeIP87HJhMKyy04m1onZVgf_IB8B7WBucGTkIbVjE4XD8ZvYtwg5S6Gnt2mk0LLLvz3-A-bZ4vTcEWr_gfDz69HY3ajsMREXC-TJSgWmbSuOktkprl8bcBsAQTnoA9sIy7nKjgvEAU4Q3qQlM8dRoB1pBKxiG514hmylaRT2yuTOaHH5c_eFBH1rCTJupEws9WMBpiRltXEYGYAiL5NppWDcN-BvS_TNg8zevbX0Yjm-SGy2KpdsN290iG768Ta42fS3P75CTbYolxU8x1IbmLp-hTqWj0fgD_XwwpE3Xarqs6Om0LvHhaVlNF57mJYxikC7FKhbzNhWRVoFaAPlL-h1te-QkimEnIDh3ydGlbPg90iur0j8g1AmRBMXzIC2gQOc180xZz3huA3OF7JOX3dZms6ZyR1Z73IXOGkJkQIisJkQGs3dw91czsep2PVDNv2atEGcAN12cpEmSM5FgCrNSiWdpwRw3BVz1yVZHu6xVBYvsgnH75NnqNggxemby0ldnzRylDVi_fXK_IfVqJQk6P40QfaLXmGBtqet3yulJXSgcXirAfIcXv-r45WJd_96Lh___jKfkGkhe9n5vsv-IXOfIzbGIuNgiveX8zD8GkLa0T1ppoOTLZQvgLxGwTOI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parameter+adaptive+EEFO+VMD+method+to+mitigate+noise+and+trend+interference+of+blast+vibration+signals&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Zhenyang&rft.au=Zhang%2C+Zuofu&rft.au=Ren%2C+Fuqiang&rft.au=Wang%2C+Xuesong&rft.date=2025-03-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-94411-5&rft.externalDocID=10_1038_s41598_025_94411_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |