Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene

Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe 3 O 4 ) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nan...

Full description

Saved in:
Bibliographic Details
Published inRussian physics journal Vol. 60; no. 9; pp. 1572 - 1576
Main Authors Maharramov, A. A., Ramazanov, M. A., Di Palma, Luca, Shirinova, H. A., Hajiyeva, F. V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe 3 O 4 ) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 10 2 –10 6 Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe 3 O 4 ) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe 3 O 4 nanoparticles increases.
AbstractList Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide ([Fe.sub.3][O.sub.4]) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of [10.sup.2]-[10.sup.6] Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity e, as well as the temperature dependence of log ([rho]) were constructed. It is shown that introduction of the magnetite ([Fe.sub.3][O.sub.4]) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the [Fe.sub.3][O.sub.4] nanoparticles increases. Keywords: nanocomposite materials, polypropylene, magnetic nanoparticles, dielectric permittivity, specific electric resistance.
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe{sub 3}O{sub 4}) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 10{sup 2}–10{sup 6} Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe{sub 3}O{sub 4}) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe{sub 3}O{sub 4} nanoparticles increases.
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe 3 O 4 ) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 10 2 –10 6 Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe 3 O 4 ) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe 3 O 4 nanoparticles increases.
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide ([Fe.sub.3][O.sub.4]) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of [10.sup.2]- [10.sup.6] Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity [epsilon], as well as the temperature dependence of log (p) were constructed. It is shown that introduction of the magnetite ([Fe.sub.3][O.sub.4]) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the [Fe.sub.3][O.sub.4] nanoparticles increases. Keywords: nanocomposite materials, polypropylene, magnetic nanoparticles, dielectric permittivity, specific electric resistance.
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102–106 Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases.
Audience Academic
Author Di Palma, Luca
Shirinova, H. A.
Ramazanov, M. A.
Maharramov, A. A.
Hajiyeva, F. V.
Author_xml – sequence: 1
  givenname: A. A.
  surname: Maharramov
  fullname: Maharramov, A. A.
  email: rector@bsu.az
  organization: Baku State University
– sequence: 2
  givenname: M. A.
  surname: Ramazanov
  fullname: Ramazanov, M. A.
  organization: Baku State University
– sequence: 3
  givenname: Luca
  surname: Di Palma
  fullname: Di Palma, Luca
  organization: Sapienza University of Rome
– sequence: 4
  givenname: H. A.
  surname: Shirinova
  fullname: Shirinova, H. A.
  organization: Baku State University
– sequence: 5
  givenname: F. V.
  surname: Hajiyeva
  fullname: Hajiyeva, F. V.
  organization: Baku State University
BackLink https://www.osti.gov/biblio/22863460$$D View this record in Osti.gov
BookMark eNqNkU9vFSEUxYmpie3TD-BuEtfTwsAMsKz1X5Nqu9A14TGXV5p5MAIv6dv42b3jmGhMNIYFhHt-h3s5Z-QkpgiEvGT0nFEqLwpjTHUtZaplXc_b_gk5Zb3kre46dYJnOohWKSWfkbNSHihFapCn5Nt19NMBooMm-eaj3UWooULzycY021yDm6A0KTb1Hpo3ASZwNQfX3OU0A5aXInJQ7dTcPoYRLu7SdNxD_uHg0n5OBf1K89oWGBejpT4jfZwgwnPy1NupwIuf-4Z8eff289WH9ub2_fXV5U3rRNfVdtASqB_0yJjjVg5euZHJcWspF0yNWg_Cuq22IMbBeamEHYWA7eg1Z1Zw4BvyavVNpQZTHLbk7l2KEccx-EMDFwP9pcL-vh6gVPOQDjliY4ZppTvOBNWoOl9VOzuBCdGnmq3DNcI-oCf4gPeXPVeS8R7D-F-g6yVVGkPbELkCLqdSMniDDdsaUkQwTIZRs4Ru1tANhm6W0M3yFPuDnHPY23z8J9OtTEFt3EH-beq_Qt8BG0rBmA
CitedBy_id crossref_primary_10_1177_0892705718796542
crossref_primary_10_3390_ma15134592
crossref_primary_10_1016_j_polymer_2021_124499
crossref_primary_10_1142_S0217979219503156
crossref_primary_10_4028_www_scientific_net_MSF_1048_15
crossref_primary_10_3389_fchem_2021_777079
crossref_primary_10_1515_polyeng_2023_0103
crossref_primary_10_1140_epjp_s13360_022_02518_9
crossref_primary_10_1142_S0217979219500838
crossref_primary_10_1007_s10904_017_0767_6
crossref_primary_10_1016_j_matchemphys_2020_123287
crossref_primary_10_1177_0892705720963159
crossref_primary_10_1016_j_est_2023_108930
Cites_doi 10.4236/jmmce.2010.94022
10.3390/ma3063468
10.1590/S1516-14392009000100002
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
COPYRIGHT 2018 Springer
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: COPYRIGHT 2018 Springer
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
OTOTI
DOI 10.1007/s11182-018-1253-5
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1573-9228
EndPage 1576
ExternalDocumentID 22863460
A538713525
A525708957
10_1007_s11182_018_1253_5
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VCL
VFIZW
VIT
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
AEIIB
ABRTQ
AAFGU
AAPBV
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OTOTI
UNUBA
Z7Y
Z8S
ID FETCH-LOGICAL-c422t-697e0f69d11c3a76f8cd17dba03418d9964acb9ae4d6cf784ad44ebdf931a43e3
IEDL.DBID U2A
ISSN 1064-8887
IngestDate Fri May 19 01:48:14 EDT 2023
Fri Jul 25 20:14:02 EDT 2025
Tue Jun 10 20:09:43 EDT 2025
Tue Jun 10 20:37:03 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
Tue Jul 01 02:04:28 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords dielectric permittivity
nanocomposite materials
polypropylene
specific electric resistance
magnetic nanoparticles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-697e0f69d11c3a76f8cd17dba03418d9964acb9ae4d6cf784ad44ebdf931a43e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1989231409
PQPubID 2043529
PageCount 5
ParticipantIDs osti_scitechconnect_22863460
proquest_journals_1989231409
gale_infotracacademiconefile_A538713525
gale_infotracacademiconefile_A525708957
crossref_citationtrail_10_1007_s11182_018_1253_5
crossref_primary_10_1007_s11182_018_1253_5
springer_journals_10_1007_s11182_018_1253_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Russian physics journal
PublicationTitleAbbrev Russ Phys J
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References ThabetAMobarakYABakryMJ. Eng. Sci.201139337
CamargoPHSatyanarayanaKGWypychFJ. Materi. Res.200912110.1590/S1516-14392009000100002
MaharramovAMRamazanovMAAlizadeRAAsilbeyliPBJ. Nanomater. Biostruct.201381447
MagerramovAMRamazanovMAHajiyevaFVJ. Am. Sci.20095695
HuaHOnyebuekeLAbatanAJ. Mineral. Mater. Characterizat. Eng.2010927510.4236/jmmce.2010.94022
ShirinovaHPalmaLDSarasiniFJ. Chem. Eng. Trans.201647103
MaharramovAMRamazanovMAAhmadovaABJ. Nanomater. Biostruct.201611365
MagerramovAMRamazanovMAHajiyevaFVJ. Optoelectron. Adv.2008211743
HanemannTSzabóDVJ. Mater.2010334682010Mate....3.3468H10.3390/ma3063468
AM Maharramov (1253_CR7) 2013; 8
AM Magerramov (1253_CR8) 2009; 5
PH Camargo (1253_CR1) 2009; 12
H Shirinova (1253_CR5) 2016; 47
T Hanemann (1253_CR2) 2010; 3
AM Magerramov (1253_CR9) 2008; 2
AM Maharramov (1253_CR6) 2016; 11
A Thabet (1253_CR4) 2011; 39
H Hua (1253_CR3) 2010; 9
References_xml – reference: MaharramovAMRamazanovMAAhmadovaABJ. Nanomater. Biostruct.201611365
– reference: HanemannTSzabóDVJ. Mater.2010334682010Mate....3.3468H10.3390/ma3063468
– reference: HuaHOnyebuekeLAbatanAJ. Mineral. Mater. Characterizat. Eng.2010927510.4236/jmmce.2010.94022
– reference: MaharramovAMRamazanovMAAlizadeRAAsilbeyliPBJ. Nanomater. Biostruct.201381447
– reference: CamargoPHSatyanarayanaKGWypychFJ. Materi. Res.200912110.1590/S1516-14392009000100002
– reference: ShirinovaHPalmaLDSarasiniFJ. Chem. Eng. Trans.201647103
– reference: MagerramovAMRamazanovMAHajiyevaFVJ. Am. Sci.20095695
– reference: ThabetAMobarakYABakryMJ. Eng. Sci.201139337
– reference: MagerramovAMRamazanovMAHajiyevaFVJ. Optoelectron. Adv.2008211743
– volume: 11
  start-page: 365
  year: 2016
  ident: 1253_CR6
  publication-title: J. Nanomater. Biostruct.
– volume: 9
  start-page: 275
  year: 2010
  ident: 1253_CR3
  publication-title: J. Mineral. Mater. Characterizat. Eng.
  doi: 10.4236/jmmce.2010.94022
– volume: 2
  start-page: 743
  issue: 11
  year: 2008
  ident: 1253_CR9
  publication-title: J. Optoelectron. Adv.
– volume: 8
  start-page: 1447
  year: 2013
  ident: 1253_CR7
  publication-title: J. Nanomater. Biostruct.
– volume: 3
  start-page: 3468
  year: 2010
  ident: 1253_CR2
  publication-title: J. Mater.
  doi: 10.3390/ma3063468
– volume: 39
  start-page: 337
  year: 2011
  ident: 1253_CR4
  publication-title: J. Eng. Sci.
– volume: 47
  start-page: 103
  year: 2016
  ident: 1253_CR5
  publication-title: J. Chem. Eng. Trans.
– volume: 12
  start-page: 1
  year: 2009
  ident: 1253_CR1
  publication-title: J. Materi. Res.
  doi: 10.1590/S1516-14392009000100002
– volume: 5
  start-page: 95
  issue: 6
  year: 2009
  ident: 1253_CR8
  publication-title: J. Am. Sci.
SSID ssj0010067
Score 2.1432412
Snippet Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe 3 O 4 ) nanoparticles are studied....
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide ([Fe.sub.3][O.sub.4]) nanoparticles are studied....
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution...
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe{sub 3}O{sub 4}) nanoparticles are studied....
SourceID osti
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1572
SubjectTerms Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DIELECTRIC MATERIALS
Dielectric properties
Electric properties
Electrical conductivity
Electron microscopy
Hadrons
Heavy Ions
HZ RANGE
Ion currents
IONIC CONDUCTIVITY
Iron compounds
IRON OXIDES
Isotacticity
Lasers
Magnetic properties
MAGNETITE
Mathematical and Computational Physics
NANOCOMPOSITES
NANOPARTICLES
NANOSCIENCE AND NANOTECHNOLOGY
Nuclear Physics
Optical Devices
Optics
PERMITTIVITY
Photonics
Physics
Physics and Astronomy
POLARIZATION
Polymers
POLYPROPYLENE
SCANNING ELECTRON MICROSCOPY
SPECTROMETERS
Temperature
TEMPERATURE DEPENDENCE
Theoretical
Title Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene
URI https://link.springer.com/article/10.1007/s11182-018-1253-5
https://www.proquest.com/docview/1989231409
https://www.osti.gov/biblio/22863460
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVkhcEC0gli6VD0hIoIjEdpz4uEu7LaBCD6xUTpafaKWSVLtbiV747cx4kz5QKeophzgjJ2N7vi_zIuS1sjmLDmiqclWeCe5jBnbGZt4CdnVFbYPCfOejL_JwJj6dlCddHveyj3bvXZLppL5KdkMsDNQXWA8reVY-IJslUHeM45qx8aXrAM_f5OKUIgN6V_WuzNtE3DBG3ZE8aGFv3cCbf7lIk-WZPiGPO8hIx2sdb5GN0GyThyl00y2fkt8f-z4jtI30yPxoMHEsUDg3gRB3cW-0bShAPbo3X_e9mTt6jL_hF1hPNT0XAIXTr7_mPrw_bk8vfoZFkoAh5xjXBaMmYPA8CsL7MO-zC7BY4RmZTfe_fTjMuq4KmROMrTKpqpBHqXxROG4qGWvni8pbk4NBqz3wH2GcVSYIL12samG8EMH6qHhhBA_8ORk0bRNeEGqjqqMquMSyc5WUxsnIFQ8eSV7p8yHJ-8-rXVdyHDtfnOqrYsmoEQ0a0agRXQ7J28tHztb1Nu4a_AZ1pnEvglxnupQCmB1WtdLj1KOvVmX1_5G8xmaFDGSOcAFoACBYRddhuJFbacZqyYWEVxr1C0N3u32pMe4McDJQ5SF51y-Wa7f_Nf-X9xq9Qx4xXLrp_8-IDFaL8_AKENHK7pLN8WRvMsXrwffP-7tpR_wBiMgFBg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXVF5iYQs-gJBAEYntOPGhh4VS7dJu6aEr9WbiF1qpJNXuItgLf4Y_2hlv0lLEQxx6jj1yMq9v4nkQ8kyZlAULYaqyRZoI7kICfsYkzgB2tVlpvMJ658mBHE3F--P8eIP86GphYrZ7dyUZLfVFsRtiYQh9IephOU-6TMo9v_oKcdpie7wDTH3O2O67o7ejpB0lkFjB2DKRqvBpkMplmeVVIUNpXVY4U6VgxUsHoF9U1qjKCydtKEpROSG8cUHxrBLcc6B7jVwH7FGi6kzZ8PyqAu19vFKVIoFwsuiuTn935EvOr3UBvQZ0-RK-_eVKNnq63U1yu4WodLiWqTtkw9d3yY2YKmoX98j3cTfXhDaBTqpPNRaqeQp2GgLwNs-ONjUFaEl3Zus5OzNLD_G3_xz7t8Z9HlA__fBt5vzrw-Zk9dnPIwVMccc8Mlj1BhysQ0L4HM59ugIP6e-T6ZV8-gekVze1f0ioCaoMKuMS29wVUlZWBq64dxhU5i7tk7T7vNq2Lc5x0saJvmjOjBzRwBGNHNF5n7w833K67u_xt8UvkGcadR_o2qotYYDTYRctPYwzAUuVF_9eyUscjsiA5gAFQAPgwa69FtOb7FIzVkouJLzSoBMM3VqXhcY8N8DlEJr3yatOWH56_KfzP_qv1U_JzdHRZF_vjw_2HpNbDMU4_nsakN5y_sVvARpbmidRGyj5eNXqdwYmmkBj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWIhAXxFNbtoAPICRQ1MR2nPjAoVCqLcsuPVBpbybxA1VakqrNCnrhL_EXmXGTXRbxEIc92xk5mfHMfJkXIU9UGTNvAKYqk8WR4NZHYGfKyJbgu5okL53CeufDI7k_F2-P0-Md8r2rhQnZ7l1IclvTgF2aqma4tH54XviGfjHAYEBALOVRl1V54DZfALOtX07HwOCnjE3efHi9H7VjBSIjGGsiqTIXe6lskhheZNLnxiaZLYsYNHpuAQCIwpSqcMJK47NcFFYIV1qveFII7jjQvUKuCiw-hgs0Z6OzsAXq_hBelSICaJl1YdTfHfmCIWzNQa-Ge33B1_0lPBus3uQWudm6q3S0la_bZMdVd8i1kDZq1nfJt2k344TWnh4WnyosWnMUdDaA8TbnjtYVBTeTjhfbmTsLQ2cYAlhhL9fwnAMEQN9_XVg3nNUnm89uFShgujvmlMGuV2BsLRLCdTj3cgPW0t0j80v59PdJr6ort0to6VXuVcIltrzLpCyM9FxxZxFgpjbuk7j7vNq07c5x6saJPm_UjBzRwBGNHNFpnzw_e2S57fXxt83PkGca9QDQNUVbzgCnw45aehTmA-Yqzf69k-c4KJEBzQEKgAbnBzv4Gkx1Mo1mLJdcSHilQScYutU0a405b-CjA0zvkxedsPy0_KfzP_iv3Y_J9dl4ot9Njw72yA2GUhx-Qw1Ir1mduofgmDXlo3AZKPl42bfvB3KCRJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Magnetite+Nanoparticles+on+the+Dielectric+Properties+of+Metal+Oxide%2FPolymer+Nanocomposites+Based+on+Polypropylene&rft.jtitle=Russian+physics+journal&rft.au=Maharramov%2C+A.+A.&rft.au=Ramazanov%2C+M.+A.&rft.au=Di+Palma%2C+Luca&rft.au=Shirinova%2C+H.+A.&rft.date=2018-01-01&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=60&rft.issue=9&rft.spage=1572&rft.epage=1576&rft_id=info:doi/10.1007%2Fs11182-018-1253-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11182_018_1253_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon