Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene
Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe 3 O 4 ) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nan...
Saved in:
Published in | Russian physics journal Vol. 60; no. 9; pp. 1572 - 1576 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe
3
O
4
) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 10
2
–10
6
Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe
3
O
4
) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe
3
O
4
nanoparticles increases. |
---|---|
AbstractList | Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide ([Fe.sub.3][O.sub.4]) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of [10.sup.2]-[10.sup.6] Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity e, as well as the temperature dependence of log ([rho]) were constructed. It is shown that introduction of the magnetite ([Fe.sub.3][O.sub.4]) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the [Fe.sub.3][O.sub.4] nanoparticles increases. Keywords: nanocomposite materials, polypropylene, magnetic nanoparticles, dielectric permittivity, specific electric resistance. Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe{sub 3}O{sub 4}) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 10{sup 2}–10{sup 6} Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe{sub 3}O{sub 4}) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe{sub 3}O{sub 4} nanoparticles increases. Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe 3 O 4 ) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 10 2 –10 6 Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe 3 O 4 ) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe 3 O 4 nanoparticles increases. Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide ([Fe.sub.3][O.sub.4]) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of [10.sup.2]- [10.sup.6] Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity [epsilon], as well as the temperature dependence of log (p) were constructed. It is shown that introduction of the magnetite ([Fe.sub.3][O.sub.4]) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the [Fe.sub.3][O.sub.4] nanoparticles increases. Keywords: nanocomposite materials, polypropylene, magnetic nanoparticles, dielectric permittivity, specific electric resistance. Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102–106 Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases. |
Audience | Academic |
Author | Di Palma, Luca Shirinova, H. A. Ramazanov, M. A. Maharramov, A. A. Hajiyeva, F. V. |
Author_xml | – sequence: 1 givenname: A. A. surname: Maharramov fullname: Maharramov, A. A. email: rector@bsu.az organization: Baku State University – sequence: 2 givenname: M. A. surname: Ramazanov fullname: Ramazanov, M. A. organization: Baku State University – sequence: 3 givenname: Luca surname: Di Palma fullname: Di Palma, Luca organization: Sapienza University of Rome – sequence: 4 givenname: H. A. surname: Shirinova fullname: Shirinova, H. A. organization: Baku State University – sequence: 5 givenname: F. V. surname: Hajiyeva fullname: Hajiyeva, F. V. organization: Baku State University |
BackLink | https://www.osti.gov/biblio/22863460$$D View this record in Osti.gov |
BookMark | eNqNkU9vFSEUxYmpie3TD-BuEtfTwsAMsKz1X5Nqu9A14TGXV5p5MAIv6dv42b3jmGhMNIYFhHt-h3s5Z-QkpgiEvGT0nFEqLwpjTHUtZaplXc_b_gk5Zb3kre46dYJnOohWKSWfkbNSHihFapCn5Nt19NMBooMm-eaj3UWooULzycY021yDm6A0KTb1Hpo3ASZwNQfX3OU0A5aXInJQ7dTcPoYRLu7SdNxD_uHg0n5OBf1K89oWGBejpT4jfZwgwnPy1NupwIuf-4Z8eff289WH9ub2_fXV5U3rRNfVdtASqB_0yJjjVg5euZHJcWspF0yNWg_Cuq22IMbBeamEHYWA7eg1Z1Zw4BvyavVNpQZTHLbk7l2KEccx-EMDFwP9pcL-vh6gVPOQDjliY4ZppTvOBNWoOl9VOzuBCdGnmq3DNcI-oCf4gPeXPVeS8R7D-F-g6yVVGkPbELkCLqdSMniDDdsaUkQwTIZRs4Ru1tANhm6W0M3yFPuDnHPY23z8J9OtTEFt3EH-beq_Qt8BG0rBmA |
CitedBy_id | crossref_primary_10_1177_0892705718796542 crossref_primary_10_3390_ma15134592 crossref_primary_10_1016_j_polymer_2021_124499 crossref_primary_10_1142_S0217979219503156 crossref_primary_10_4028_www_scientific_net_MSF_1048_15 crossref_primary_10_3389_fchem_2021_777079 crossref_primary_10_1515_polyeng_2023_0103 crossref_primary_10_1140_epjp_s13360_022_02518_9 crossref_primary_10_1142_S0217979219500838 crossref_primary_10_1007_s10904_017_0767_6 crossref_primary_10_1016_j_matchemphys_2020_123287 crossref_primary_10_1177_0892705720963159 crossref_primary_10_1016_j_est_2023_108930 |
Cites_doi | 10.4236/jmmce.2010.94022 10.3390/ma3063468 10.1590/S1516-14392009000100002 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 COPYRIGHT 2018 Springer Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: COPYRIGHT 2018 Springer – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1007/s11182-018-1253-5 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1573-9228 |
EndPage | 1576 |
ExternalDocumentID | 22863460 A538713525 A525708957 10_1007_s11182_018_1253_5 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VCL VFIZW VIT W23 W48 WK8 XU3 YLTOR Z7R Z7X Z7Z Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION AEIIB ABRTQ AAFGU AAPBV ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OTOTI UNUBA Z7Y Z8S |
ID | FETCH-LOGICAL-c422t-697e0f69d11c3a76f8cd17dba03418d9964acb9ae4d6cf784ad44ebdf931a43e3 |
IEDL.DBID | U2A |
ISSN | 1064-8887 |
IngestDate | Fri May 19 01:48:14 EDT 2023 Fri Jul 25 20:14:02 EDT 2025 Tue Jun 10 20:09:43 EDT 2025 Tue Jun 10 20:37:03 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Tue Jul 01 02:04:28 EDT 2025 Fri Feb 21 02:37:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | dielectric permittivity nanocomposite materials polypropylene specific electric resistance magnetic nanoparticles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-697e0f69d11c3a76f8cd17dba03418d9964acb9ae4d6cf784ad44ebdf931a43e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1989231409 |
PQPubID | 2043529 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_22863460 proquest_journals_1989231409 gale_infotracacademiconefile_A538713525 gale_infotracacademiconefile_A525708957 crossref_citationtrail_10_1007_s11182_018_1253_5 crossref_primary_10_1007_s11182_018_1253_5 springer_journals_10_1007_s11182_018_1253_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Russian physics journal |
PublicationTitleAbbrev | Russ Phys J |
PublicationYear | 2018 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | ThabetAMobarakYABakryMJ. Eng. Sci.201139337 CamargoPHSatyanarayanaKGWypychFJ. Materi. Res.200912110.1590/S1516-14392009000100002 MaharramovAMRamazanovMAAlizadeRAAsilbeyliPBJ. Nanomater. Biostruct.201381447 MagerramovAMRamazanovMAHajiyevaFVJ. Am. Sci.20095695 HuaHOnyebuekeLAbatanAJ. Mineral. Mater. Characterizat. Eng.2010927510.4236/jmmce.2010.94022 ShirinovaHPalmaLDSarasiniFJ. Chem. Eng. Trans.201647103 MaharramovAMRamazanovMAAhmadovaABJ. Nanomater. Biostruct.201611365 MagerramovAMRamazanovMAHajiyevaFVJ. Optoelectron. Adv.2008211743 HanemannTSzabóDVJ. Mater.2010334682010Mate....3.3468H10.3390/ma3063468 AM Maharramov (1253_CR7) 2013; 8 AM Magerramov (1253_CR8) 2009; 5 PH Camargo (1253_CR1) 2009; 12 H Shirinova (1253_CR5) 2016; 47 T Hanemann (1253_CR2) 2010; 3 AM Magerramov (1253_CR9) 2008; 2 AM Maharramov (1253_CR6) 2016; 11 A Thabet (1253_CR4) 2011; 39 H Hua (1253_CR3) 2010; 9 |
References_xml | – reference: MaharramovAMRamazanovMAAhmadovaABJ. Nanomater. Biostruct.201611365 – reference: HanemannTSzabóDVJ. Mater.2010334682010Mate....3.3468H10.3390/ma3063468 – reference: HuaHOnyebuekeLAbatanAJ. Mineral. Mater. Characterizat. Eng.2010927510.4236/jmmce.2010.94022 – reference: MaharramovAMRamazanovMAAlizadeRAAsilbeyliPBJ. Nanomater. Biostruct.201381447 – reference: CamargoPHSatyanarayanaKGWypychFJ. Materi. Res.200912110.1590/S1516-14392009000100002 – reference: ShirinovaHPalmaLDSarasiniFJ. Chem. Eng. Trans.201647103 – reference: MagerramovAMRamazanovMAHajiyevaFVJ. Am. Sci.20095695 – reference: ThabetAMobarakYABakryMJ. Eng. Sci.201139337 – reference: MagerramovAMRamazanovMAHajiyevaFVJ. Optoelectron. Adv.2008211743 – volume: 11 start-page: 365 year: 2016 ident: 1253_CR6 publication-title: J. Nanomater. Biostruct. – volume: 9 start-page: 275 year: 2010 ident: 1253_CR3 publication-title: J. Mineral. Mater. Characterizat. Eng. doi: 10.4236/jmmce.2010.94022 – volume: 2 start-page: 743 issue: 11 year: 2008 ident: 1253_CR9 publication-title: J. Optoelectron. Adv. – volume: 8 start-page: 1447 year: 2013 ident: 1253_CR7 publication-title: J. Nanomater. Biostruct. – volume: 3 start-page: 3468 year: 2010 ident: 1253_CR2 publication-title: J. Mater. doi: 10.3390/ma3063468 – volume: 39 start-page: 337 year: 2011 ident: 1253_CR4 publication-title: J. Eng. Sci. – volume: 47 start-page: 103 year: 2016 ident: 1253_CR5 publication-title: J. Chem. Eng. Trans. – volume: 12 start-page: 1 year: 2009 ident: 1253_CR1 publication-title: J. Materi. Res. doi: 10.1590/S1516-14392009000100002 – volume: 5 start-page: 95 issue: 6 year: 2009 ident: 1253_CR8 publication-title: J. Am. Sci. |
SSID | ssj0010067 |
Score | 2.1432412 |
Snippet | Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe
3
O
4
) nanoparticles are studied.... Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide ([Fe.sub.3][O.sub.4]) nanoparticles are studied.... Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution... Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe{sub 3}O{sub 4}) nanoparticles are studied.... |
SourceID | osti proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1572 |
SubjectTerms | Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIELECTRIC MATERIALS Dielectric properties Electric properties Electrical conductivity Electron microscopy Hadrons Heavy Ions HZ RANGE Ion currents IONIC CONDUCTIVITY Iron compounds IRON OXIDES Isotacticity Lasers Magnetic properties MAGNETITE Mathematical and Computational Physics NANOCOMPOSITES NANOPARTICLES NANOSCIENCE AND NANOTECHNOLOGY Nuclear Physics Optical Devices Optics PERMITTIVITY Photonics Physics Physics and Astronomy POLARIZATION Polymers POLYPROPYLENE SCANNING ELECTRON MICROSCOPY SPECTROMETERS Temperature TEMPERATURE DEPENDENCE Theoretical |
Title | Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene |
URI | https://link.springer.com/article/10.1007/s11182-018-1253-5 https://www.proquest.com/docview/1989231409 https://www.osti.gov/biblio/22863460 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVkhcEC0gli6VD0hIoIjEdpz4uEu7LaBCD6xUTpafaKWSVLtbiV747cx4kz5QKeophzgjJ2N7vi_zIuS1sjmLDmiqclWeCe5jBnbGZt4CdnVFbYPCfOejL_JwJj6dlCddHveyj3bvXZLppL5KdkMsDNQXWA8reVY-IJslUHeM45qx8aXrAM_f5OKUIgN6V_WuzNtE3DBG3ZE8aGFv3cCbf7lIk-WZPiGPO8hIx2sdb5GN0GyThyl00y2fkt8f-z4jtI30yPxoMHEsUDg3gRB3cW-0bShAPbo3X_e9mTt6jL_hF1hPNT0XAIXTr7_mPrw_bk8vfoZFkoAh5xjXBaMmYPA8CsL7MO-zC7BY4RmZTfe_fTjMuq4KmROMrTKpqpBHqXxROG4qGWvni8pbk4NBqz3wH2GcVSYIL12samG8EMH6qHhhBA_8ORk0bRNeEGqjqqMquMSyc5WUxsnIFQ8eSV7p8yHJ-8-rXVdyHDtfnOqrYsmoEQ0a0agRXQ7J28tHztb1Nu4a_AZ1pnEvglxnupQCmB1WtdLj1KOvVmX1_5G8xmaFDGSOcAFoACBYRddhuJFbacZqyYWEVxr1C0N3u32pMe4McDJQ5SF51y-Wa7f_Nf-X9xq9Qx4xXLrp_8-IDFaL8_AKENHK7pLN8WRvMsXrwffP-7tpR_wBiMgFBg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXVF5iYQs-gJBAEYntOPGhh4VS7dJu6aEr9WbiF1qpJNXuItgLf4Y_2hlv0lLEQxx6jj1yMq9v4nkQ8kyZlAULYaqyRZoI7kICfsYkzgB2tVlpvMJ658mBHE3F--P8eIP86GphYrZ7dyUZLfVFsRtiYQh9IephOU-6TMo9v_oKcdpie7wDTH3O2O67o7ejpB0lkFjB2DKRqvBpkMplmeVVIUNpXVY4U6VgxUsHoF9U1qjKCydtKEpROSG8cUHxrBLcc6B7jVwH7FGi6kzZ8PyqAu19vFKVIoFwsuiuTn935EvOr3UBvQZ0-RK-_eVKNnq63U1yu4WodLiWqTtkw9d3yY2YKmoX98j3cTfXhDaBTqpPNRaqeQp2GgLwNs-ONjUFaEl3Zus5OzNLD_G3_xz7t8Z9HlA__fBt5vzrw-Zk9dnPIwVMccc8Mlj1BhysQ0L4HM59ugIP6e-T6ZV8-gekVze1f0ioCaoMKuMS29wVUlZWBq64dxhU5i7tk7T7vNq2Lc5x0saJvmjOjBzRwBGNHNF5n7w833K67u_xt8UvkGcadR_o2qotYYDTYRctPYwzAUuVF_9eyUscjsiA5gAFQAPgwa69FtOb7FIzVkouJLzSoBMM3VqXhcY8N8DlEJr3yatOWH56_KfzP_qv1U_JzdHRZF_vjw_2HpNbDMU4_nsakN5y_sVvARpbmidRGyj5eNXqdwYmmkBj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWIhAXxFNbtoAPICRQ1MR2nPjAoVCqLcsuPVBpbybxA1VakqrNCnrhL_EXmXGTXRbxEIc92xk5mfHMfJkXIU9UGTNvAKYqk8WR4NZHYGfKyJbgu5okL53CeufDI7k_F2-P0-Md8r2rhQnZ7l1IclvTgF2aqma4tH54XviGfjHAYEBALOVRl1V54DZfALOtX07HwOCnjE3efHi9H7VjBSIjGGsiqTIXe6lskhheZNLnxiaZLYsYNHpuAQCIwpSqcMJK47NcFFYIV1qveFII7jjQvUKuCiw-hgs0Z6OzsAXq_hBelSICaJl1YdTfHfmCIWzNQa-Ge33B1_0lPBus3uQWudm6q3S0la_bZMdVd8i1kDZq1nfJt2k344TWnh4WnyosWnMUdDaA8TbnjtYVBTeTjhfbmTsLQ2cYAlhhL9fwnAMEQN9_XVg3nNUnm89uFShgujvmlMGuV2BsLRLCdTj3cgPW0t0j80v59PdJr6ort0to6VXuVcIltrzLpCyM9FxxZxFgpjbuk7j7vNq07c5x6saJPm_UjBzRwBGNHNFpnzw_e2S57fXxt83PkGca9QDQNUVbzgCnw45aehTmA-Yqzf69k-c4KJEBzQEKgAbnBzv4Gkx1Mo1mLJdcSHilQScYutU0a405b-CjA0zvkxedsPy0_KfzP_iv3Y_J9dl4ot9Njw72yA2GUhx-Qw1Ir1mduofgmDXlo3AZKPl42bfvB3KCRJY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Magnetite+Nanoparticles+on+the+Dielectric+Properties+of+Metal+Oxide%2FPolymer+Nanocomposites+Based+on+Polypropylene&rft.jtitle=Russian+physics+journal&rft.au=Maharramov%2C+A.+A.&rft.au=Ramazanov%2C+M.+A.&rft.au=Di+Palma%2C+Luca&rft.au=Shirinova%2C+H.+A.&rft.date=2018-01-01&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=60&rft.issue=9&rft.spage=1572&rft.epage=1576&rft_id=info:doi/10.1007%2Fs11182-018-1253-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11182_018_1253_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon |