Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice
Transgenic mice have been generated that express the E. coli beta-galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68. Sequences from â664 to +113 relative to the start of transcription of the hsp68 gene were sufficient to direct stress-induced expression of...
Saved in:
Published in | Development (Cambridge) Vol. 105; no. 4; pp. 707 - 714 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Limited
01.04.1989
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transgenic mice have been generated that express the E. coli beta-galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68. Sequences from â664 to +113 relative to the start of transcription of the hsp68 gene were sufficient to direct stress-induced expression of the beta-galactosidase gene in adult tail tissue and various tissues of fetal stages of development. Expression was detected in situ by staining with the chromogenic substrate, X-gal. The hybrid gene was refractory to induction in preimplantation embryos until the blastocyst stage of development, as reported for the endogenous hsp68 gene. No constitutive expression was observed by in situ staining or Northern analysis at any stage of development, even in tissues that constitutively express the endogenous hsp68 gene. We conclude that the hsp68 promoter region included in the construct contains sufficient sequence information for heat and arsenite inducibility, but it does not contain sequences controlling tissue-specific expression during development. This tightly regulated inducible promoter may provide a useful tool for short-term inducible gene expression in transgenic mice. |
---|---|
AbstractList | Transgenic mice have been generated that express the E. coli beta-galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68. Sequences from â664 to +113 relative to the start of transcription of the hsp68 gene were sufficient to direct stress-induced expression of the beta-galactosidase gene in adult tail tissue and various tissues of fetal stages of development. Expression was detected in situ by staining with the chromogenic substrate, X-gal. The hybrid gene was refractory to induction in preimplantation embryos until the blastocyst stage of development, as reported for the endogenous hsp68 gene. No constitutive expression was observed by in situ staining or Northern analysis at any stage of development, even in tissues that constitutively express the endogenous hsp68 gene. We conclude that the hsp68 promoter region included in the construct contains sufficient sequence information for heat and arsenite inducibility, but it does not contain sequences controlling tissue-specific expression during development. This tightly regulated inducible promoter may provide a useful tool for short-term inducible gene expression in transgenic mice. ABSTRACT Transgenic mice have been generated that express the E. coli β-galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68. Sequences from -664 to +113 relative to the start of transcription of the hsp68 gene were sufficient to direct stress-induced expression of the β-galactosidase gene in adult tail tissue and various tissues of fetal stages of development. Expression was detected in situ by staining with the chromogenic substrate, X-gal. The hybrid gene was refractory to induction in preimplantation embryos until the blastocyst stage of development, as reported for the endogenous hsp68 gene. No constitutive expression was observed by in situ staining or Northern analysis at any stage of development, even in tissues that constitutively express the endogenous hsp68 gene. We conclude that the hsp68 promoter region included in the construct contains sufficient sequence information for heat and arsenite inducibility, but it does not contain sequences controlling tissue-specific expression during development. This tightly regulated inducible promoter may provide a useful tool for short-term inducible gene expression in transgenic mice. Transgenic mice have been generated than express the E. coli beta -galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68 . Sequences from -664 to +113 relative to the start of transcription of the hsp68 gene were sufficient to direct stress-induced expression of the beta -galactosidase gene in adult tail tissue and various tissues of fetal stages of development. Expression was detected in situ by staining with the chromogenic substrate, X-gal. The hybrid gene was refractory to induction in preimplantation embryos until the blastocyst stage of development, as reported for the endogenous hsp68 gene. The authors conclude that the hsp68 promoter region included in the construct contains sufficient sequence information for heat and arsenite inducibility, but it does not contain sequences controlling tissue-specific expression during development. This tightly regulated inducible promoter may provide a useful tool for short-term inducible gene expression in transgenic mice. Transgenic mice have been generated that express the E. coli beta-galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68. Sequences from -664 to +113 relative to the start of transcription of the hsp68 gene were sufficient to direct stress-induced expression of the beta-galactosidase gene in adult tail tissue and various tissues of fetal stages of development. Expression was detected in situ by staining with the chromogenic substrate, X-gal. The hybrid gene was refractory to induction in preimplantation embryos until the blastocyst stage of development, as reported for the endogenous hsp68 gene. No constitutive expression was observed by in situ staining or Northern analysis at any stage of development, even in tissues that constitutively express the endogenous hsp68 gene. We conclude that the hsp68 promoter region included in the construct contains sufficient sequence information for heat and arsenite inducibility, but it does not contain sequences controlling tissue-specific expression during development. This tightly regulated inducible promoter may provide a useful tool for short-term inducible gene expression in transgenic mice. |
Author | J. Rossant S. Clapoff R. Kothary M.D. Perry L.A. Moran S. Darling |
Author_xml | – sequence: 1 givenname: R surname: Kothary fullname: Kothary, R organization: Division of Molecular and Developmental Biology, Mt. Sinai Hospital Research Institute, Toronto, Ontario, Canada – sequence: 2 givenname: S surname: Clapoff fullname: Clapoff, S – sequence: 3 givenname: S surname: Darling fullname: Darling, S – sequence: 4 givenname: M D surname: Perry fullname: Perry, M D – sequence: 5 givenname: L A surname: Moran fullname: Moran, L A – sequence: 6 givenname: J surname: Rossant fullname: Rossant, J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/2557196$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkDtPwzAQgC1UBC0wMiJ5YiLFr8TxiMpTQmKBhcVynHNrlNrBbnn8e1K1QmxMd6f79A3fBI1CDIDQKSVTygS7bOFjSkk5FVNJ5B4aUyFloShTIzQmqiQFVYoeoknOb4QQXkl5gA5YWUqqqjG6fgjt2vqmAwxffYKcfQw4OmwCXuS-qovO2Fe8-G6Sb_EcAmAf8CqZkIfDW7z0Fo7RvjNdhpPdPEIvtzfPs_vi8enuYXb1WFjB2KooK3CGy5qbklDOLHGqqqu6oVJYRwUwaVzLeG2VcoRYaARXhispGmddCzU_Qudbb5_i-xrySi99ttB1JkBcZy0Vr4cI_4O0ZDVRUg5gsQVtijkncLpPfmnSt6ZEb_LqIe-wl1rowTzwZzvxullC-0vveg7_i-1_4eeLT59ANz52ce7zKm9U0MX-j-4HG96GoA |
CitedBy_id | crossref_primary_10_1006_dbio_1998_8873 crossref_primary_10_1016_S1097_2765_00_80401_3 crossref_primary_10_1172_JCI62617 crossref_primary_10_1128_MCB_00222_06 crossref_primary_10_1172_JCI62613 crossref_primary_10_1074_jbc_M411406200 crossref_primary_10_1128_mcb_13_5_2919_2928_1993 crossref_primary_10_1074_jbc_272_5_2640 crossref_primary_10_1080_19491034_2022_2160551 crossref_primary_10_1242_dev_127_7_1541 crossref_primary_10_1016_j_tig_2016_01_003 crossref_primary_10_1242_dev_117_3_905 crossref_primary_10_1016_0955_0674_90_90085_S crossref_primary_10_1016_j_gep_2011_06_003 crossref_primary_10_1128_MCB_17_2_778 crossref_primary_10_1016_j_ydbio_2009_06_041 crossref_primary_10_1002_wsbm_70 crossref_primary_10_1242_dev_085886 crossref_primary_10_1016_j_neuron_2014_11_011 crossref_primary_10_1126_science_1260943 crossref_primary_10_1002_dvdy_646 crossref_primary_10_1016_j_ydbio_2003_09_011 crossref_primary_10_1152_ajpheart_00789_2004 crossref_primary_10_1016_j_devcel_2022_11_011 crossref_primary_10_1016_j_ydbio_2019_11_015 crossref_primary_10_1111_j_1574_6968_1998_tb12834_x crossref_primary_10_1002__SICI_1097_010X_19980101_280_1_73__AID_JEZ9_3_0_CO_2_E crossref_primary_10_1038_ncomms16034 crossref_primary_10_1128_MCB_05463_11 crossref_primary_10_1006_dbio_1999_9561 crossref_primary_10_1242_dev_126_2_281 crossref_primary_10_1242_dev_138487 crossref_primary_10_1371_journal_pgen_1005093 crossref_primary_10_1101_gad_5_8_1333 crossref_primary_10_1038_nmeth_2886 crossref_primary_10_1242_dev_01913 crossref_primary_10_1016_S0925_4773_03_00178_3 crossref_primary_10_1074_jbc_M010983200 crossref_primary_10_1002_mrd_1080300203 crossref_primary_10_1093_nar_gkm727 crossref_primary_10_1242_dev_121_1_113 crossref_primary_10_1371_journal_pgen_1003907 crossref_primary_10_1016_j_ygeno_2005_03_003 crossref_primary_10_1093_genetics_148_1_401 crossref_primary_10_1371_journal_pone_0076642 crossref_primary_10_1523_JNEUROSCI_19_23_10318_1999 crossref_primary_10_1016_j_ydbio_2012_10_017 crossref_primary_10_1080_15622975_2017_1395072 crossref_primary_10_1242_dev_01256 crossref_primary_10_1016_j_mod_2003_08_003 crossref_primary_10_1073_pnas_1618353114 crossref_primary_10_1002_dvdy_22091 crossref_primary_10_1002_jez_1402570117 crossref_primary_10_1038_ncomms12923 crossref_primary_10_1038_ng_3605 crossref_primary_10_7554_eLife_90025 crossref_primary_10_1074_jbc_M112_356394 crossref_primary_10_1016_0012_1606_91_90443_7 crossref_primary_10_1101_gad_1249504 crossref_primary_10_1242_dev_127_24_5331 crossref_primary_10_1002_glia_23521 crossref_primary_10_1128_MCB_00353_09 crossref_primary_10_1038_s41586_020_2093_3 crossref_primary_10_1128_MCB_17_8_4644 crossref_primary_10_1006_dbio_1999_9544 crossref_primary_10_1016_j_bbrc_2009_02_016 crossref_primary_10_1002_mrd_1080340206 crossref_primary_10_1242_bio_20136296 crossref_primary_10_1210_me_2011_1252 crossref_primary_10_1038_nature25461 crossref_primary_10_1242_dev_110965 crossref_primary_10_1111_dgd_12901 crossref_primary_10_1242_dev_01390 crossref_primary_10_1161_CIRCRESAHA_119_315313 crossref_primary_10_1242_dev_009688 crossref_primary_10_1242_dev_129_2_527 crossref_primary_10_1242_dev_01399 crossref_primary_10_1038_s41592_020_0907_8 crossref_primary_10_1242_dev_109_3_577 crossref_primary_10_1186_1471_213X_8_86 crossref_primary_10_7554_eLife_90025_3 crossref_primary_10_1101_gad_1084703 crossref_primary_10_1242_dev_01827 crossref_primary_10_1006_dbio_2000_9697 crossref_primary_10_1006_dbio_1999_9480 crossref_primary_10_1016_j_cell_2010_09_004 crossref_primary_10_1038_nature03022 crossref_primary_10_1016_j_ygeno_2009_02_002 crossref_primary_10_1139_o95_066 crossref_primary_10_1093_genetics_165_1_235 crossref_primary_10_1371_journal_pone_0011536 crossref_primary_10_1016_j_ydbio_2020_07_003 crossref_primary_10_1371_journal_pgen_1009008 crossref_primary_10_1016_S0925_4773_97_00116_0 crossref_primary_10_1101_gad_1620408 crossref_primary_10_1242_dev_125_22_4461 crossref_primary_10_1016_0378_1119_94_90305_0 crossref_primary_10_1371_journal_pcbi_1005720 crossref_primary_10_1002_dvg_1020140202 crossref_primary_10_1002_dvg_1020140203 crossref_primary_10_1242_dev_103416 crossref_primary_10_1242_dev_00877 crossref_primary_10_1016_j_ydbio_2004_08_016 crossref_primary_10_1038_s41586_022_05650_9 crossref_primary_10_1242_dev_01849 crossref_primary_10_1242_dev_01727 crossref_primary_10_1002_mrd_1080320305 crossref_primary_10_1073_pnas_94_12_6255 crossref_primary_10_1002_ar_a_20105 crossref_primary_10_1002_mrd_1080330206 crossref_primary_10_1016_S0006_291X_02_00321_2 crossref_primary_10_1242_dev_126_10_2103 crossref_primary_10_1002_mrd_1080330203 crossref_primary_10_1038_nature17644 crossref_primary_10_1002__SICI_1097_0177_199808_212_4_540__AID_AJA7_3_0_CO_2_H crossref_primary_10_1186_s13059_019_1750_z crossref_primary_10_1371_journal_pone_0170576 crossref_primary_10_1242_dev_147322 crossref_primary_10_1016_S0925_4773_01_00489_0 crossref_primary_10_1016_j_devcel_2008_07_002 crossref_primary_10_1002_dvg_20346 crossref_primary_10_1016_0925_4773_91_90038_8 crossref_primary_10_1371_journal_pgen_1004604 crossref_primary_10_1016_S0925_4773_01_00646_3 crossref_primary_10_1016_j_semcdb_2006_12_014 crossref_primary_10_1016_j_ajhg_2018_10_018 crossref_primary_10_1101_gad_310367_117 crossref_primary_10_1242_dev_121_12_4339 crossref_primary_10_1096_fj_202100421RR crossref_primary_10_1242_dev_056804 crossref_primary_10_1242_dev_126_10_2045 crossref_primary_10_1073_pnas_1603718113 crossref_primary_10_1101_gr_105361_110 crossref_primary_10_1002__SICI_1520_6408_1998_22_2_160__AID_DVG5_3_0_CO_2_4 crossref_primary_10_1016_j_ydbio_2011_10_023 crossref_primary_10_1242_dmm_026773 crossref_primary_10_1073_pnas_0609445104 crossref_primary_10_1128_MCB_16_7_3909 crossref_primary_10_1016_j_ydbio_2007_04_041 crossref_primary_10_1111_j_1600_0749_2007_00368_x crossref_primary_10_1016_j_ydbio_2010_07_032 crossref_primary_10_1128_MCB_24_9_3757_3768_2004 crossref_primary_10_1016_S0361_9230_01_00602_5 crossref_primary_10_1152_ajpheart_00292_2004 crossref_primary_10_1161_CIRCRESAHA_115_303591 crossref_primary_10_1242_dev_127_17_3777 crossref_primary_10_1242_dev_122_2_627 crossref_primary_10_1006_dbio_2001_0199 crossref_primary_10_1016_j_ygeno_2015_06_008 crossref_primary_10_1016_j_ygeno_2015_06_007 crossref_primary_10_1242_dev_127_11_2503 crossref_primary_10_1016_j_cell_2013_11_033 crossref_primary_10_1002_dvdy_20192 crossref_primary_10_1242_dev_120_8_2213 crossref_primary_10_1242_dev_125_11_2135 crossref_primary_10_1016_j_devcel_2022_08_009 crossref_primary_10_1074_jbc_M703622200 crossref_primary_10_1016_j_ydbio_2015_02_022 crossref_primary_10_1016_j_cell_2016_09_028 crossref_primary_10_1016_S1044_7431_03_00246_X crossref_primary_10_1002_aja_1001960208 crossref_primary_10_1242_dev_120_9_2431 crossref_primary_10_1016_S0896_6273_01_00358_0 crossref_primary_10_1002_gene_20177 crossref_primary_10_1172_JCI3265 crossref_primary_10_1146_annurev_neuro_21_1_377 crossref_primary_10_1016_S0093_691X_97_84079_4 crossref_primary_10_1073_pnas_151258098 crossref_primary_10_1242_dev_126_1_75 crossref_primary_10_1038_s41576_021_00424_x crossref_primary_10_1073_pnas_0710558105 crossref_primary_10_1093_hmg_ddq019 crossref_primary_10_1016_j_celrep_2022_111400 crossref_primary_10_1128_MCB_15_1_476 crossref_primary_10_1242_dev_128_22_4623 crossref_primary_10_1101_gr_4717506 crossref_primary_10_1007_BF01976028 crossref_primary_10_1152_ajpheart_00085_2005 crossref_primary_10_1016_j_bbrc_2004_04_076 crossref_primary_10_1016_j_stem_2019_03_022 crossref_primary_10_1073_pnas_0807583106 crossref_primary_10_1016_j_cell_2020_02_031 crossref_primary_10_1016_S1097_2765_01_00162_9 crossref_primary_10_1016_j_cell_2017_12_017 crossref_primary_10_1016_j_celrep_2019_07_022 crossref_primary_10_1101_gad_1048903 crossref_primary_10_1007_BF02736727 crossref_primary_10_1101_gad_4_7_1094 crossref_primary_10_1073_pnas_97_4_1612 crossref_primary_10_1002__SICI_1098_2795_199812_51_4_373__AID_MRD3_3_0_CO_2_E crossref_primary_10_1152_ajprenal_1998_274_2_F405 crossref_primary_10_1242_dev_043257 crossref_primary_10_1074_jbc_M106924200 crossref_primary_10_1172_JCI80115 crossref_primary_10_1371_journal_pone_0028497 crossref_primary_10_1002__SICI_1097_0177_199902_214_2_127__AID_AJA3_3_0_CO_2_F crossref_primary_10_1016_0165_3806_95_00182_4 crossref_primary_10_1016_S0925_4773_01_00500_7 crossref_primary_10_1038_nature05295 crossref_primary_10_1126_science_1159974 crossref_primary_10_1038_s41598_017_06964_9 crossref_primary_10_1002_dvg_20644 crossref_primary_10_1038_s41467_021_24402_3 crossref_primary_10_1371_journal_pone_0212992 crossref_primary_10_1242_dev_02422 crossref_primary_10_1371_journal_pone_0020088 crossref_primary_10_1074_jbc_M110_108498 crossref_primary_10_1073_pnas_96_23_13270 crossref_primary_10_1016_j_ydbio_2003_10_036 crossref_primary_10_1016_j_ydbio_2004_11_006 crossref_primary_10_1111_j_1525_142X_2004_04050_x crossref_primary_10_1073_pnas_2119850119 crossref_primary_10_1002__SICI_1098_2795_199708_47_4_404__AID_MRD6_3_0_CO_2_O crossref_primary_10_1126_sciadv_adc9507 crossref_primary_10_1128_MCB_21_24_8575_8591_2001 crossref_primary_10_1002_ar_25295 crossref_primary_10_1523_JNEUROSCI_3109_11_2011 crossref_primary_10_1016_j_ygeno_2006_09_005 crossref_primary_10_1038_ng_397 crossref_primary_10_1016_0167_4781_90_90118_L crossref_primary_10_1038_s41467_023_39443_z crossref_primary_10_1006_excr_2000_4805 crossref_primary_10_1242_dev_01344 crossref_primary_10_1128_mcb_11_9_4796_4803_1991 crossref_primary_10_1089_hum_1996_7_15_1883 crossref_primary_10_1111_j_1440_169X_1994_00521_x crossref_primary_10_1002_gene_1015 crossref_primary_10_3390_biology2010064 crossref_primary_10_1242_dev_122_12_3991 crossref_primary_10_1523_JNEUROSCI_19_14_05802_1999 crossref_primary_10_1016_j_ydbio_2006_11_038 |
Cites_doi | 10.1016/0378-1119(87)90311-8 10.1016/0012-1606(83)90187-2 10.1016/S0021-9258(17)35903-3 10.1016/B978-0-12-044220-1.50047-7 10.1016/0092-8674(84)90323-4 10.1002/j.1460-2075.1987.tb04850.x 10.1002/jez.1402140203 10.1073/pnas.84.1.156 10.1002/j.1460-2075.1986.tb04620.x 10.1002/tcm.1770060610 10.1016/0092-8674(86)90532-5 10.1038/311081a0 10.1073/pnas.81.8.2317 10.1016/0092-8674(86)90746-4 10.1016/0012-1606(87)90170-9 10.1038/306387a0 10.1007/BF01535207 10.1073/pnas.81.10.3138 10.1016/0092-8674(84)90494-X 10.1016/0092-8674(82)90249-5 10.3109/02656738509029277 10.1002/j.1460-2075.1982.tb01340.x 10.1126/science.3099390 10.1002/tcm.1770060609 10.1016/0012-1606(85)90329-X 10.1016/S0021-9258(17)43091-2 10.1002/j.1460-2075.1982.tb00025.x 10.1073/pnas.83.3.629 10.1530/jrf.0.0300071 10.1016/0003-2697(83)90418-9 10.1002/tcm.1770060603 10.1128/mr.47.1.1-45.1983 10.1002/j.1460-2075.1985.tb04094.x |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 |
DOI | 10.1242/dev.105.4.707 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 714 |
ExternalDocumentID | 10_1242_dev_105_4_707 2557196 develop_105_4_707 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 0R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS 85S 9M8 AAIKC ABFLS ABSGY ABZEH ACGFS ACPRK ADACO ADBBV ADBIT AENEX AETEA AFDAS AFFNX AFMIJ AHERT ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 DZ E3Z EBS ET F20 F5P GJ GX1 H13 HZ H~9 INIJC KQ8 MVM O0- O9- OHT OK1 P2P R.V RCB RHF RHI SJN TWZ UPT VH1 WH7 WOQ X X7M XJT ZA5 ZCG ZGI ZHY ZXP --- -DZ -ET -~X .55 .GJ 0R~ 186 18M 4.4 AAFWJ ABTAH ACREN ADFRT AGCDD AGGIJ AI. AMTXH BTFSW CGR CUY CVF ECM EIF EJD F9R HZ~ NPM TR2 UQL W8F XOL XSW ZY4 AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c422t-56efa3783a50132c0f96868b174cf14e27afd238c99f00ceb439a3974bfcfde83 |
ISSN | 0950-1991 |
IngestDate | Fri Oct 25 12:23:42 EDT 2024 Fri Oct 25 11:21:06 EDT 2024 Thu Sep 26 18:33:44 EDT 2024 Sat Sep 28 08:29:20 EDT 2024 Fri Jan 15 20:24:28 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-56efa3783a50132c0f96868b174cf14e27afd238c99f00ceb439a3974bfcfde83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 2557196 |
PQID | 15280977 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_79387078 proquest_miscellaneous_15280977 crossref_primary_10_1242_dev_105_4_707 pubmed_primary_2557196 highwire_biologists_develop_105_4_707 |
PublicationCentury | 1900 |
PublicationDate | 1989-04-01 |
PublicationDateYYYYMMDD | 1989-04-01 |
PublicationDate_xml | – month: 04 year: 1989 text: 1989-04-01 day: 01 |
PublicationDecade | 1980 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 1989 |
Publisher | The Company of Biologists Limited |
Publisher_xml | – name: The Company of Biologists Limited |
References | MacGregor (2023050311230351700_DEVELOP_105_4_707C22) 1987; 13 Hall (2023050311230351700_DEVELOP_105_4_707C13) 1983; 2 Kozak (2023050311230351700_DEVELOP_105_4_707C17) 1983; 47 Dannenberg (2023050311230351700_DEVELOP_105_4_707C4) 1981 Chappell (2023050311230351700_DEVELOP_105_4_707C3) 1986; 45 Lowe (2023050311230351700_DEVELOP_105_4_707C19) 1983; 3 Bellve (2023050311230351700_DEVELOP_105_4_707C1) 1972; 30 Sorger (2023050311230351700_DEVELOP_105_4_707C35) 1987; 6 Graziosi (2023050311230351700_DEVELOP_105_4_707C9) 1980; 214 Edwards (2023050311230351700_DEVELOP_105_4_707C6) 1986; 6 Haas (2023050311230351700_DEVELOP_105_4_707C11) 1983; 306 Lowe (2023050311230351700_DEVELOP_105_4_707C20) 1984; 81 Sanes (2023050311230351700_DEVELOP_105_4_707C33) 1986; 5 Morange (2023050311230351700_DEVELOP_105_4_707C24) 1984; 4 German (2023050311230351700_DEVELOP_105_4_707C8) 1986; 6 Dudler (2023050311230351700_DEVELOP_105_4_707C5) 1984; 38 Perry (2023050311230351700_DEVELOP_105_4_707C31) 1987; 51 Price (2023050311230351700_DEVELOP_105_4_707C32) 1987; 84 Kothary (2023050311230351700_DEVELOP_105_4_707C16) 1987; 121 Feinberg (2023050311230351700_DEVELOP_105_4_707C7) 1983; 132 Goring (2023050311230351700_DEVELOP_105_4_707C10) 1987; 235 Heikkila (2023050311230351700_DEVELOP_105_4_707C14) 1985; 107 Mirault (2023050311230351700_DEVELOP_105_4_707C23) 1982; 1 Parker (2023050311230351700_DEVELOP_105_4_707C28) 1984; 31 O’Malley (2023050311230351700_DEVELOP_105_4_707C27) 1985; 5 Ungewickell (2023050311230351700_DEVELOP_105_4_707C37) 1985; 4 Lee (2023050311230351700_DEVELOP_105_4_707C18) 1984; 259 Slater (2023050311230351700_DEVELOP_105_4_707C34) 1987; 7 Bienz (2023050311230351700_DEVELOP_105_4_707C2) 1984; 81 Pelham (2023050311230351700_DEVELOP_105_4_707C30) 1982; 1 Wu (2023050311230351700_DEVELOP_105_4_707C39) 1984; 311 Lowe (2023050311230351700_DEVELOP_105_4_707C21) 1986; 261 Wittig (2023050311230351700_DEVELOP_105_4_707C38) 1983; 96 Hahnel (2023050311230351700_DEVELOP_105_4_707C12) 1986; 6 Munro (2023050311230351700_DEVELOP_105_4_707C26) 1986; 46 Muller (2023050311230351700_DEVELOP_105_4_707C25) 1985; 1 Kay (2023050311230351700_DEVELOP_105_4_707C15) 1986; 6 Ting (2023050311230351700_DEVELOP_105_4_707C36) 1987; 55 Pelham (2023050311230351700_DEVELOP_105_4_707C29) 1982; 30 Wu (2023050311230351700_DEVELOP_105_4_707C40) 1986; 83 |
References_xml | – volume: 51 start-page: 227 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C31 article-title: Isolation of a mouse heat shock gene (hsp68) by recombinational screening publication-title: Gene doi: 10.1016/0378-1119(87)90311-8 contributor: fullname: Perry – volume: 96 start-page: 507 year: 1983 ident: 2023050311230351700_DEVELOP_105_4_707C38 article-title: Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development publication-title: Devi Biol doi: 10.1016/0012-1606(83)90187-2 contributor: fullname: Wittig – volume: 261 start-page: 2102 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C21 article-title: Molecular cloning and analysis of DNA complementary to three mouse Mr =68, (0) heat shock protein mRNAs publication-title: J. biol. Chem doi: 10.1016/S0021-9258(17)35903-3 contributor: fullname: Lowe – start-page: 375 volume-title: In Methods for Studying Mononuclear Phagocytes year: 1981 ident: 2023050311230351700_DEVELOP_105_4_707C4 article-title: Histochemical stains for macrophages in cell smears and tissue sections:,’j-galactosidase, acid phosphatase, nonspecific esterase, succinic dehydrogenase, and cytochrome oxidase doi: 10.1016/B978-0-12-044220-1.50047-7 contributor: fullname: Dannenberg – volume: 55 start-page: 147 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C36 article-title: The nucleotide sequence encoding the hamster 79 kDa glucose-regulated protein (GRP78) and its conservation between hamster and rat publication-title: Gem: contributor: fullname: Ting – volume: 7 start-page: 1906 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C34 article-title: Transcriptional regulation of a heat shock gene in the yeast Saccharomyas cerevisiae publication-title: Mol. Cell. Biol contributor: fullname: Slater – volume: 31 start-page: 273 year: 1984 ident: 2023050311230351700_DEVELOP_105_4_707C28 article-title: A Drosophila RNA poIII transcription factor binds to the regulatory site of an hsp70 gene publication-title: Cell doi: 10.1016/0092-8674(84)90323-4 contributor: fullname: Parker – volume: 6 start-page: 993 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C35 article-title: Cloning and expression of a gene encoding hsc73, the major hsp70-like protein in unstressed rat cells publication-title: EMBO J doi: 10.1002/j.1460-2075.1987.tb04850.x contributor: fullname: Sorger – volume: 214 start-page: 141 year: 1980 ident: 2023050311230351700_DEVELOP_105_4_707C9 article-title: Variability of response of early Drosophila embryos to heat shock publication-title: J. exp. Zool doi: 10.1002/jez.1402140203 contributor: fullname: Graziosi – volume: 84 start-page: 156 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C32 article-title: Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer publication-title: Proc. natn. Acad. Sci. U.S.A doi: 10.1073/pnas.84.1.156 contributor: fullname: Price – volume: 2 start-page: 101 year: 1983 ident: 2023050311230351700_DEVELOP_105_4_707C13 article-title: Expression and regulation of Eschtirichia coli lacZ gene hybrids in mammalian cells publication-title: J. Mol. Appl. Gen contributor: fullname: Hall – volume: 5 start-page: 3133 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C33 article-title: Use of a recombinant retrovirus to study postimplantation cell lineage in mouse embryos publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04620.x contributor: fullname: Sanes – volume: 6 start-page: 563 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C6 article-title: Hyperthermia as a teratogen: A review of experimental studies and their clinical significance publication-title: Ttiratogenis, Carcinogenesis, and Mutagenesis doi: 10.1002/tcm.1770060610 contributor: fullname: Edwards – volume: 45 start-page: 3 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C3 article-title: Uncoating ATPase is a member of the 70 kilodalton family of stress protein publication-title: Cell doi: 10.1016/0092-8674(86)90532-5 contributor: fullname: Chappell – volume: 311 start-page: 81 year: 1984 ident: 2023050311230351700_DEVELOP_105_4_707C39 article-title: Aclivating protein factor binds in vitro to upstream control sequences in heat-shock gene chromatin publication-title: Nature, Lond doi: 10.1038/311081a0 contributor: fullname: Wu – volume: 3 start-page: 1540 year: 1983 ident: 2023050311230351700_DEVELOP_105_4_707C19 article-title: Mouse and Drosophila genes encoding the major heat shock protein (hsp70) are highly conserved publication-title: Mol. Cell. Biol contributor: fullname: Lowe – volume: 81 start-page: 2317 year: 1984 ident: 2023050311230351700_DEVELOP_105_4_707C20 article-title: Proteins related to the major heat shock protein are synthesized in unstressed mouse L cells publication-title: Proc. natn. Acad. Sci. U.S.A doi: 10.1073/pnas.81.8.2317 contributor: fullname: Lowe – volume: 46 start-page: 291 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C26 article-title: An hsp70-like protein m the ER: identity with the 78Kd glucose-regulated protein and immunoglobulin heavy chain binding protein publication-title: Cell doi: 10.1016/0092-8674(86)90746-4 contributor: fullname: Munro – volume: 121 start-page: 342 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C16 article-title: Cell-lineage specific expression of the mouse hsp68 gene during embryogenesis publication-title: Devi Boil doi: 10.1016/0012-1606(87)90170-9 contributor: fullname: Kothary – volume: 306 start-page: 387 year: 1983 ident: 2023050311230351700_DEVELOP_105_4_707C11 article-title: Immunoglobulin heavy chain binding protein publication-title: Nature, Lond doi: 10.1038/306387a0 contributor: fullname: Haas – volume: 13 start-page: 253 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C22 article-title: Histochemical staining of clonal mammalian cell lines expressing E. coli, β-galactosidase indicates heterogeneous expression of the bacterial gene publication-title: Som. Cell and Mol. Gen doi: 10.1007/BF01535207 contributor: fullname: MacGregor – volume: 81 start-page: 3138 year: 1984 ident: 2023050311230351700_DEVELOP_105_4_707C2 article-title: Developmental control of the heat-shock response in Xenopus publication-title: Proc. natn. Acad. Sci. U.S.A doi: 10.1073/pnas.81.10.3138 contributor: fullname: Bienz – volume: 38 start-page: 391 year: 1984 ident: 2023050311230351700_DEVELOP_105_4_707C5 article-title: Upstream elements necessary for optimal function of the hsp70 promoter in transformed flies publication-title: Cell doi: 10.1016/0092-8674(84)90494-X contributor: fullname: Dudler – volume: 4 start-page: 730 year: 1984 ident: 2023050311230351700_DEVELOP_105_4_707C24 article-title: Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells publication-title: Mol. Cell. Biol contributor: fullname: Morange – volume: 30 start-page: 517 year: 1982 ident: 2023050311230351700_DEVELOP_105_4_707C29 article-title: A regulatory upstream promoter element in the Drosophila hsp70 heat shock gene publication-title: Cell doi: 10.1016/0092-8674(82)90249-5 contributor: fullname: Pelham – volume: 1 start-page: 97 year: 1985 ident: 2023050311230351700_DEVELOP_105_4_707C25 article-title: Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stages of mouse embryo development publication-title: Int. J. Hypmhermia doi: 10.3109/02656738509029277 contributor: fullname: Muller – volume: 1 start-page: 1473 year: 1982 ident: 2023050311230351700_DEVELOP_105_4_707C30 article-title: A synthetic heat shock promoter element confers heat-inducibility on the herpes simplex virus tk gene publication-title: EMBO J doi: 10.1002/j.1460-2075.1982.tb01340.x contributor: fullname: Pelham – volume: 235 start-page: 456 year: 1987 ident: 2023050311230351700_DEVELOP_105_4_707C10 article-title: In situ detection of,’j-galactosidase in lenses of transgenic mice with a y-crystallinllacZ gene publication-title: Science doi: 10.1126/science.3099390 contributor: fullname: Goring – volume: 6 start-page: 555 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C8 article-title: The heat shock response in vivo: Experimental induction during mammalian organogenesis publication-title: Tt!ratogenesis, Carcinogenesis and Mutagenesis doi: 10.1002/tcm.1770060609 contributor: fullname: German – volume: 107 start-page: 483 year: 1985 ident: 2023050311230351700_DEVELOP_105_4_707C14 article-title: Acquisition of the heat shock response and thermotolerance during early development of Xenopus laevis publication-title: Devi Biol doi: 10.1016/0012-1606(85)90329-X contributor: fullname: Heikkila – volume: 5 start-page: 3476 year: 1985 ident: 2023050311230351700_DEVELOP_105_4_707C27 article-title: Constitutively expressed rat mRNA encoding a 70-kilodalton heat shock like protein publication-title: Mol. Cell. Biol contributor: fullname: O’Malley – volume: 259 start-page: 4616 year: 1984 ident: 2023050311230351700_DEVELOP_105_4_707C18 article-title: Biochemical characterization of the 94- and 78-kd glucose-regulated proteins in hamster fibroblasts publication-title: J. biol. Chem doi: 10.1016/S0021-9258(17)43091-2 contributor: fullname: Lee – volume: 1 start-page: 1279 year: 1982 ident: 2023050311230351700_DEVELOP_105_4_707C23 article-title: Regulation of heat shock genes: a DNA sequence upstream of the Drosophila hsp70 gene is essential for their induction in monkey cells publication-title: EMBO J doi: 10.1002/j.1460-2075.1982.tb00025.x contributor: fullname: Mirault – volume: 83 start-page: 629 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C40 article-title: Human hsp79 promoter contains at least two distinct regulatory domains publication-title: Proc. natn. Acad. Sci. U.S.A doi: 10.1073/pnas.83.3.629 contributor: fullname: Wu – volume: 30 start-page: 71 year: 1972 ident: 2023050311230351700_DEVELOP_105_4_707C1 article-title: Viabihty and survival of mouse embryos following parental exposures to high temperatures publication-title: J. Reprod. Fertil doi: 10.1530/jrf.0.0300071 contributor: fullname: Bellve – volume: 132 start-page: 6 year: 1983 ident: 2023050311230351700_DEVELOP_105_4_707C7 article-title: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity publication-title: Anal. Biochem doi: 10.1016/0003-2697(83)90418-9 contributor: fullname: Feinberg – volume: 6 start-page: 493 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C12 article-title: Express10n of the major heat shock protein (hsp70) family during early mouse development publication-title: Teratogenis, Carcinogenis and Mutagmesis doi: 10.1002/tcm.1770060603 contributor: fullname: Hahnel – volume: 47 start-page: 1 year: 1983 ident: 2023050311230351700_DEVELOP_105_4_707C17 article-title: Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles publication-title: Micro. Rev doi: 10.1128/mr.47.1.1-45.1983 contributor: fullname: Kozak – volume: 4 start-page: 3385 year: 1985 ident: 2023050311230351700_DEVELOP_105_4_707C37 article-title: The 70-Kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb04094.x contributor: fullname: Ungewickell – volume: 6 start-page: 3134 year: 1986 ident: 2023050311230351700_DEVELOP_105_4_707C15 article-title: Efficient transcription of a Caenorhabditis elegans heat shock gene pair in mouse fibroblasts is dependent on multiple promoter elements which can function bidirectionally publication-title: Mol. Cell. Biol contributor: fullname: Kay |
SSID | ssj0003677 |
Score | 1.8102927 |
Snippet | Transgenic mice have been generated that express the E. coli beta-galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68.... ABSTRACT Transgenic mice have been generated that express the E. coli β-galactosidase gene under the control of the promoter from the mouse heat-shock gene,... Transgenic mice have been generated than express the E. coli beta -galactosidase gene under the control of the promoter from the mouse heat-shock gene, hsp68 .... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 707 |
SubjectTerms | Animals Bacterial Proteins beta-Galactosidase - genetics Blastocyst - physiology Blotting, Northern Escherichia coli - genetics Galactosidases - genetics Gene Expression Regulation Lac Operon Mice Mice, Transgenic |
Title | Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice |
URI | http://dev.biologists.org/content/105/4/707.abstract https://www.ncbi.nlm.nih.gov/pubmed/2557196 https://search.proquest.com/docview/15280977 https://search.proquest.com/docview/79387078 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9RAFJ4oBsMLUZS4ojgP6gvpOttOp-2jAQyRYDSBhPAymZnOwCbQbthCwF_vmUsvi26ivjTdabdtzvl65judc0HoPVBQJct0EpUwP0S0zJJImiKLUkIzSqSEOdhFW3xjByf062l62je6dNkljRyrn3_MK_kfrcIY6NVmyf6DZruLwgDsg35hCxqG7V_p2PbdUFOb-6TvQkCrY3_wzl7MZyyPLoU627m4t1lZtleyKxDS2NkJfkzVzlUIfGvZ6SCCyK3utvlcg88Fh6BZ4ZfeuzWi3Usxq311x45a7glbRut8Yey7vvb_PApxxqXowqm6IJX2syGxwSmTBQtK0gFU6MAeZr6l7W92GogBCLfUt7bP8JiOH5wHYp5dOaWBx5NNigfFst30G448Rk9isDHWuB3-6AvFJ8w13eweN5RXhft-WrjrGloNF1okJm2x6OWOhyMgx8_QevAc8GcPg-foka420KrvJXq_gZ4ehSgJGDyr3eALtNchBPcIwbXBosI9QrBHCLYIwdMK9wjBFiEv0cmX_ePdgyj0zYgUjeMmSpk2IsnyRKR2JU0RU7Cc5RKcT2UmVMeZMCVQNVUUhhClJZBSAbyUSqNMqfNkE61UdaVfISxKJrNSKpoQQ-HtlYLlRLOEUCHABsUj9LEVGp_58ijcupUgZw5yhv2UUw5yHqEPrUi5Ly8GVmzOQ2bg8Lx3rbw5GDq7eiUqXd_MORDNnIC3svwMgEFui1eN0KZXVPdIQcWvlx3YQms92N-gleb6Rr8FstnIbQerX6Vrejs |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inducible+expression+of+an+hsp68-lacZ+hybrid+gene+in+transgenic+mice&rft.jtitle=Development+%28Cambridge%29&rft.au=Kothary%2C+R&rft.au=Clapoff%2C+S&rft.au=Darling%2C+S&rft.au=Perry%2C+M+D&rft.date=1989-04-01&rft.issn=0950-1991&rft.volume=105&rft.issue=4&rft.spage=707&rft_id=info:doi/10.1242%2Fdev.105.4.707&rft_id=info%3Apmid%2F2557196&rft.externalDocID=2557196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |