Selective retrieval of antibody-secreting hybridomas in cell arrays based on the dielectrophoresis

A cascade of the formation of cell arrays, the discrimination of cells secreting specific molecules, and the selective retrieval of cells has been developed to harvest antibody-secreting hybridomas in heterogeneous cell populations simply and rapidly. The microwell array device consisted of three-di...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 209; p. 114250
Main Authors Hata, Misaki, Suzuki, Masato, Yasukawa, Tomoyuki
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A cascade of the formation of cell arrays, the discrimination of cells secreting specific molecules, and the selective retrieval of cells has been developed to harvest antibody-secreting hybridomas in heterogeneous cell populations simply and rapidly. The microwell array device consisted of three-dimensional microband electrodes by assembling both upper and lower substrates perpendicularly. Arrays of hybridomas secreting specific antibodies were prepared by aligning hybridomas in each microwell based on the attractive force of positive dielectrophoresis (p-DEP). Antibody secreted by the hybridomas in the microwells was recognized by the antigen immobilized on the microwells or the membrane surfaces of hybridomas to discriminate hybridomas with the secretion ability. Thereafter, a repulsive force of negative dielectrophoresis (n-DEP) was applied to release the target hybridomas from the microwell array. To harvest the target hybridoma, AC signals could be modulated in the n-DEP frequency region and applied to a pair of microband electrodes located above and below each microwell containing target hybridoma. Thus, the cell-based array system described in this study allowed selective retrieval of single target hybridomas by merely switching from p-DEP to n-DEP after selecting the antibody-secreting hybridomas trapped in each microwell. The development of this high-affinity device could be useful to recover hybridomas producing antibodies in large populations of cells rapidly and effectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2022.114250