Model-Driven Domain Adaptation on Product Manifolds for Unconstrained Face Recognition

Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 109; no. 1-2; pp. 110 - 125
Main Authors Ho, Huy Tho, Gopalan, Raghuraman
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.08.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-5691
1573-1405
DOI10.1007/s11263-014-0720-x

Cover

Loading…
Abstract Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos.
AbstractList Issue Title: Special Issue : Domain Adaptation for Vision Applications Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos.[PUBLICATION ABSTRACT]
Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos.
Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos. Keywords Domain adaptation * Unconstrained face recognition * Manifold learning * Tensor computation
Audience Academic
Author Gopalan, Raghuraman
Ho, Huy Tho
Author_xml – sequence: 1
  givenname: Huy Tho
  surname: Ho
  fullname: Ho, Huy Tho
  email: huytho@umd.edu
  organization: Department of Electrical and Computer Engineering and the Center for Automation Research, UMIACS, University of Maryland
– sequence: 2
  givenname: Raghuraman
  surname: Gopalan
  fullname: Gopalan, Raghuraman
  organization: Department of Video and Multimedia Technologies Research, AT&T Labs - Research
BookMark eNp9kV1rHCEUhqWk0E2aH9C7gdwkF5N4dBxnLpd8tIGEljTprRg9LoZZ3ehM2P77ukwvmkCKwoHD86jHd5_shRiQkC9AT4FSeZYBWMtrCk1NJaP19gNZgJC8hoaKPbKgfWmKtodPZD_nJ0op6xhfkF-30eJQXyT_gqG6iGvtQ7W0ejPq0cdQlf0jRTuZsbrVwbs42Fy5mKqHYGLIYyo82upKG6zu0MRV8DvvM_no9JDx8G89IA9Xl_fn3-qb71-vz5c3tWkYG2vRgOFcNJK2BpBZlKBb5xg8GlOKdZxbyR87wbCVrGVAnbOi58JIrqFn_IAcz-duUnyeMI9q7bPBYdAB45QVCAFU9B2XBT16gz7FKYXyukJx6LoOOijU6Uyt9IDKBxfLiKYsi2tfJkbnS3_JZd82lLV9EU5eCYUZcTuu9JSzuv5595qFmTUp5pzQqU3ya51-K6BqF6OaY1QlRrWLUW2LI984xs_Z7P5--K_JZjOXW8IK0z8Dvyv9Adepsbg
CitedBy_id crossref_primary_10_1007_s11263_022_01712_7
crossref_primary_10_3390_technologies8020035
crossref_primary_10_1088_1742_6596_1820_1_012189
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1109_TCYB_2015_2502483
crossref_primary_10_1007_s11263_021_01463_x
crossref_primary_10_1016_j_patcog_2015_12_006
crossref_primary_10_3390_s150204326
crossref_primary_10_1016_j_imavis_2016_09_001
crossref_primary_10_1109_MSP_2014_2347059
crossref_primary_10_1109_TPAMI_2024_3361978
crossref_primary_10_1177_1550147719845276
crossref_primary_10_1007_s11042_024_19917_y
crossref_primary_10_1364_JOSAA_33_001887
crossref_primary_10_1016_j_patcog_2015_10_007
crossref_primary_10_1109_ACCESS_2021_3123470
Cites_doi 10.1007/978-3-642-15561-1_16
10.1109/TPAMI.2012.15
10.1109/CVPR.2001.990517
10.1109/CVPR.2009.5206605
10.1145/1291233.1291276
10.1613/jair.1872
10.1109/CVPR.2011.5995500
10.1109/CVPR.2011.5995397
10.1007/3-540-47977-5_56
10.1109/TIP.2012.2228498
10.1007/978-3-540-88688-4_4
10.1109/TPAMI.2003.1251154
10.1109/CVPR.2009.5206862
10.1109/CVPR.2010.5539965
10.1109/ICCV.2011.6126344
10.1109/TPAMI.2003.1177153
10.1007/978-3-642-33765-9_45
10.1145/1390156.1390204
10.1016/j.imavis.2011.08.002
10.1007/978-3-540-75690-3_16
10.1109/CVPR.2009.5206850
10.1109/FG.2011.5771443
10.1109/ICCV.2007.4409067
10.1109/TPAMI.2002.1008382
10.1109/CVPR.2013.53
10.1137/S0895479895290954
10.1109/CVPR.2006.50
10.2307/2005662
10.1109/TPAMI.2002.1017623
10.1007/978-3-540-69905-7_27
10.1007/978-3-642-33709-3_50
10.1109/CVPR.2010.5540131
10.1109/TPAMI.2007.1037
10.1145/1553374.1553411
10.1109/AFGR.2008.4813410
10.1109/ICCV.2007.4408858
10.1109/TPAMI.2008.135
10.1109/TPAMI.2005.92
10.1023/B:VISI.0000029664.99615.94
10.1007/978-1-4757-1904-8
10.1126/science.290.5500.2319
10.1007/s10994-009-5152-4
10.1109/CVPR.2007.382969
10.1007/978-3-642-33783-3_55
10.1109/CVPR.2005.151
10.1126/science.290.5500.2323
10.1109/CVPR.2010.5539980
10.1109/ICCV.2011.6126464
10.1007/978-3-642-01793-3_21
10.1109/CVPR.2011.5995702
10.1109/CVPR.2013.95
10.1145/311535.311556
10.1109/TPAMI.2011.114
10.1109/TPAMI.2010.203
10.1145/954339.954342
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
COPYRIGHT 2014 Springer
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: COPYRIGHT 2014 Springer
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-014-0720-x
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 125
ExternalDocumentID 3323617211
A379640269
10_1007_s11263_014_0720_x
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c422t-541c3354706c1e2de71a6ff21bccff2df33d73b852e6726210ffd5935c73a1923
IEDL.DBID AGYKE
ISSN 0920-5691
IngestDate Fri Sep 05 04:01:37 EDT 2025
Fri Jul 25 23:20:45 EDT 2025
Tue Jun 10 20:26:24 EDT 2025
Fri Jun 27 03:49:30 EDT 2025
Tue Jul 01 04:30:54 EDT 2025
Thu Apr 24 22:53:22 EDT 2025
Fri Feb 21 02:26:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Domain adaptation
Tensor computation
Unconstrained face recognition
Manifold learning
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-541c3354706c1e2de71a6ff21bccff2df33d73b852e6726210ffd5935c73a1923
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1531888181
PQPubID 1456341
PageCount 16
ParticipantIDs proquest_miscellaneous_1551059837
proquest_journals_1531888181
gale_infotracacademiconefile_A379640269
gale_incontextgauss_ISR_A379640269
crossref_primary_10_1007_s11263_014_0720_x
crossref_citationtrail_10_1007_s11263_014_0720_x
springer_journals_10_1007_s11263_014_0720_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2014
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BasriRJacobsDWLambertian reflectance and linear subspacesThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325221823310.1109/TPAMI.2003.1177153
Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles. In Proc. ECCV (pp. 447–460).
Li, H., Hua, G., Lin, Z., Brandt, J., & Yang, J. (2013). Probabilistic elastic matching for pose invariant face recognition. In Proc. CVPR.
Kulis, B., Saenko, K., & Darrell, T. (2011). What you saw is not what you get: Domain adaptation using asymmetric Kernel transforms. In Proc. CVPR (pp. 1785–1792).
Jia, H., & Martinez, A. M. (2009). Support vector machines in face recognition with occlusions. In Proc. CVPR (pp. 136–141).
Park, S. W., & Savvides, M. (2011a). Multifactor analysis based on factor-dependent geometry. In Proc. CVPR (pp. 2817–2824).
SimTBakerSBsatMThe CMU pose, illumination, and expression databaseThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325121615161810.1109/TPAMI.2003.1251154
MartinezAMRecognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per classThe IEEE Transactions on Pattern Analysis and Machine Intelligence200924674876310.1109/TPAMI.2002.1008382
Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. In Proc. ECCV (pp. 213–226).
Duan, L., Tsang, I., Xu, D., & Chua, T.-S. (2009). Domain adaptation from multiple sources via auxiliary classifiers. In Proc. ICML (pp. 289–296).
Martinez, A. M., & Benavente, R. (1998). The AR Face Database. CVC Technical Report, 24.
RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002902323232610.1126/science.290.5500.2323
Qiu, Q., Patel, V., Turaga, P., & Chellappa, R. (2012). Domain adaptive dictionary learning. In Proc. ECCV (pp. 631–645).
Shi, Y., & Sha, F. (2012). Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In Proc. ICML.
Huang, G. B., Jain, V., & Learned-Miller, E. (2007). Unsupervised joint alignment of complex images. In Proc. ICCV.
Li, Y., Du, Y., & Lin, X. (2005). Kernel-based multifactor analysis for image synthesis and recognition. In Proc. ICCV (pp. 114–119).
ZhaoWChellappaRPhillipsPJRosenfeldAFace recognition: A literature surveyACM Computing Surveys200335439945810.1145/954339.954342
Nowak, E., & Jurie, F. (2007). Learning visual similarities measures for comparing never seen objects. In Proc. CVPR.
GopalanRTaheriSTuragaPChellappaRA blur-robust descriptor with applications to face recognitionThe IEEE Transactions on Pattern Analysis and Machine Intelligence20123461220122610.1109/TPAMI.2012.15
Park, S. W., & Savvides, M. (2010). An extension of multifactor analysis for face recognition based on submanifold learning. In Proc. CVPR (pp. 2645–2652).
BiswasSAggarwalGChellappaRRobust estimation of albedo for illumination-invariant matching and shape recoveryThe IEEE Transactions on Pattern Analysis and Machine Intelligence200931588489910.1109/TPAMI.2008.135
NishiyamaMHadidATakeshimaHShottonJKozakayaTYamaguchiOFacial deblur inference using subspace analysis for recognition of blurred facesThe IEEE Transactions on Pattern Analysis and Machine Intelligence201133483884510.1109/TPAMI.2010.203
Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In Proc. ICCV (pp. 999–1006).
Wolf, L., Hassner, T., & Taigman, Y. (2008). Descriptor based methods in the wild. In Faces in real-life images workshop in ECCV.
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proc. CVPR (pp. 511–518).
Ojansivu, V., & Heikkilä, J. (2008). Blur insensitive texture classification using local phase quantization. In Proc. ICISP (pp. 236–243).
Lu, J., Tan, Y.P., & Wang, G. (2011). Discriminative multi-manifold analysis for face recognition from a single training sample per person. In Proc. ICCV (pp. 1943–1950).
BjörckAGolubGHNumerical methods for computing angles between linear subspacesMathematics of Computations19732757959410.2307/20056620282.65031
Lui, Y. M., Beveridge, J. R., & Kirby, M. (2010). Action classifications on product manifolds. In Proc. CVPR (pp. 833–839).
DauméHIIIMarcuDDomain adaptation for statistical classifiersJournal of Artificial Intelligence Research20062611011261161.687242306416
KimTKKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsThe IEEE Transactions on Pattern Analysis and Machine Intelligence20072961005101810.1109/TPAMI.2007.1037
Shekhar, S., Patel, V., Nguyen, H., & Chellappa, R. (2013). Generalized domain-adaptive dictionaries. In Proc. CVPR.
LuiYMAdvances in matrix manifolds for computer visionImage and Vision Computing20123038038810.1016/j.imavis.2011.08.002
Wang, R., & Chen, X. (2009). Manifold discriminant analysis. In Proc. CVPR (pp. 429–436).
Liu, J., Chen, S., Zhou, Z., & Tan, X. (2007). Single image subspace for face recognition. In Proc. AMFG (pp. 205–219).
Hamm, J., & Lee, D. (2008). Grassmann discriminant analysis: A unifying view on subspace-based learning. In Proc. ICML (pp. 376–383).
Shakhnarovich, G., Fisher, J. W., & Darell, T. (2002). Face recognition from long term observations. In Proc. ECCV (pp. 851–868).
LeeJMIntroduction to topological manifolds20102BerlinSpringer
Brooks, M. J., & Horn, B. K. P. (1985). Shape and source from shading. In Proc. IJAI (pp. 932–936).
VapnikVNStatistical Learning Theory1998New YorkWiley0935.62007
Vasilescu, M. A. O., & Terzopoulos, D. (2007). Multilinear projection for appearance-based recognition in the tensor framework. In Proc. ICCV (pp. 1–8).
VageeswaranPMitraKChellappaRBlur and illumination robust face recognition via set-theoretic characterizationIEEE Transactions on Image Processing20132241362137210.1109/TIP.2012.22284983062316
JoliffeITPrincipal component analysis1986BerlinSpringer10.1007/978-1-4757-1904-8
Ben-DavidSBlitzerJCrammerKKuleszaAPereiraFVaughanJWA theory of learning from different domainsMachine Learning201079115117510.1007/s10994-009-5152-43108150
Ni, J., Qiu, Q., & Chellappa, R. (2013). Subspace interpolation via dictionary learning for unsupervised domain adaptation. In Proc. CVPR.
DuanLTsangIXuDChuaT-SDomain transfer multiple Kernel learningThe IEEE Transactions on Pattern Analysis and Machine Intelligence201234346547910.1109/TPAMI.2011.114
EdelmanAAriasTASmithSTThe geometry of algorithms with orthogonality constraintsThe SIAM Journal on Matrix Analysis and Applications19992030335310.1137/S08954798952909541646856
Arandjelović, O., Shakhnarovich, G., Fisher, J., Cipolla, R., & Darrell, T. (2005). Face recognition with image sets using manifold density divergence. In Proc. CVPR (pp. 581–588).
Begelfor, E., & Werman, M. (2006). Affine invariance revisited. In Proc. CVPR (pp 2087–2094).
Hu, Y., Mian, A. S., & Owens, R. (2011). Sparse approximated nearest points for image set classification. In Proc. CVPR (pp. 27–40).
OjalaTPietikäinenMMäenpääTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsThe IEEE Transactions on Pattern Analysis and Machine Intelligence200224797198710.1109/TPAMI.2002.1017623
Arandjelović, O. (2009). Unfolding a face: From singular to manifold. In Proc. ACCV (pp. 203–213).
TenenbaumJBde SilvaVLangfordJCA global geometric framework for non-linear dimensionality reductionScience20002902319232310.1126/science.290.5500.2319
Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In SIGGRAPH (pp. 187–194).
Yang, J., Yan, R., & Hauptmann, A. (2007). Cross-domain video concept detection using adaptive SVMs. In Proc. ACM MM (pp. 188–197).
Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst.
Hoffman, J., Kulis, B., Darrell, T., & Saenko, K. (2012). Discovering latent domains for multisource domain adaptation. In Proc. ECCV (pp. 702–715).
LeeKCHoJYangMHKriegmanDJVisual tracking and recognition using probabilistic appearance manifoldsCVIU2005993303331
LeeKCHoJKriegmanDJAcquiring linear subspaces for face recognition under variable lightingThe IEEE Transactions on Pattern Analysis and Machine Intelligence200527568469810.1109/TPAMI.2005.92
Sanderson, C., & Lovell, B. C. (2009). Multi-region probabilistic histograms for robust and scalable identity inference. In Proc. ICB (pp. 199–208).
Zheng, J., Liu, M.-Y., Chellappa, R., & Phillips, J. (2012). A grassmann manifold-based domain adaptation approach. In Proc. ICPR (pp. 2095–2099).
Park, S. W., & Savvides, M. (2011b). The multifactor extension of grassmann manifolds for face recognition. In Proc. FG (pp. 464–469).
Pinto, N., Dicarlo, J. J., & Cox, D. D. (2009). How far can you get with a modern face recognition test set using only simple features. In Proc. CVPR.
Cevikalp, H., & Triggs, B. (2010). Face recognition based on image sets. In Proc. CVPR (pp. 2567–2573).
Jhuo, I.-H., Liu, D., Lee, D., & Chang, S.-F. (2012). Robust visual domain adaptation with low-rank reconstruction. In Proc. CVPR (pp. 2168–2175).
LoweDJDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94
Lui, Y. M., & Beveridge, J. R. (2008). Grassmann registration manifolds for face recognition. In Proc. ECCV (vol. 2, pp. 44–57).
Jia, H., & Martinez, A. M. (2008). Face recognition with occlusions in the training and testing sets. In Proc. FG (pp. 1–6).
Chen, Y., Patel, V. M., Phillips, P. J., & Chellappa, R. (2012). Dictionary-based face recognition from video. In Proc. ECCV (pp. 766–779).
Gong, B., Shi, Y., Sha, F., & Grauman, K. (2012). Geodesic flow Kernel for unsupervised domain adaptation. In Proc. CVPR (pp. 2066–2073).
720_CR2
720_CR13
720_CR57
JB Tenenbaum (720_CR60) 2000; 290
720_CR1
720_CR56
720_CR4
S Ben-David (720_CR5) 2010; 79
720_CR11
720_CR55
720_CR10
720_CR54
720_CR17
720_CR16
720_CR8
DJ Lowe (720_CR36) 2004; 60
720_CR58
A Edelman (720_CR15) 1999; 20
720_CR52
720_CR51
720_CR50
JM Lee (720_CR30) 2010
720_CR24
720_CR68
720_CR23
720_CR67
720_CR22
AM Martinez (720_CR41) 2009; 24
720_CR66
720_CR21
720_CR65
720_CR26
720_CR25
R Gopalan (720_CR18) 2012; 34
720_CR20
720_CR64
720_CR63
M Nishiyama (720_CR44) 2011; 33
TK Kim (720_CR28) 2007; 29
720_CR9
720_CR19
720_CR35
720_CR34
720_CR33
720_CR39
W Zhao (720_CR69) 2003; 35
720_CR37
720_CR70
IT Joliffe (720_CR27) 1986
R Basri (720_CR3) 2003; 25
YM Lui (720_CR38) 2012; 30
T Sim (720_CR59) 2003; 25
VN Vapnik (720_CR62) 1998
S Biswas (720_CR6) 2009; 31
720_CR29
720_CR45
720_CR43
T Ojala (720_CR46) 2002; 24
L Duan (720_CR14) 2012; 34
720_CR49
720_CR48
720_CR47
KC Lee (720_CR31) 2005; 27
720_CR42
720_CR40
H Daumé III (720_CR12) 2006; 26
KC Lee (720_CR32) 2005; 99
A Björck (720_CR7) 1973; 27
ST Roweis (720_CR53) 2000; 290
P Vageeswaran (720_CR61) 2013; 22
References_xml – reference: Vasilescu, M. A. O., & Terzopoulos, D. (2007). Multilinear projection for appearance-based recognition in the tensor framework. In Proc. ICCV (pp. 1–8).
– reference: Park, S. W., & Savvides, M. (2010). An extension of multifactor analysis for face recognition based on submanifold learning. In Proc. CVPR (pp. 2645–2652).
– reference: Sanderson, C., & Lovell, B. C. (2009). Multi-region probabilistic histograms for robust and scalable identity inference. In Proc. ICB (pp. 199–208).
– reference: Nowak, E., & Jurie, F. (2007). Learning visual similarities measures for comparing never seen objects. In Proc. CVPR.
– reference: Kulis, B., Saenko, K., & Darrell, T. (2011). What you saw is not what you get: Domain adaptation using asymmetric Kernel transforms. In Proc. CVPR (pp. 1785–1792).
– reference: Hu, Y., Mian, A. S., & Owens, R. (2011). Sparse approximated nearest points for image set classification. In Proc. CVPR (pp. 27–40).
– reference: LeeKCHoJYangMHKriegmanDJVisual tracking and recognition using probabilistic appearance manifoldsCVIU2005993303331
– reference: Pinto, N., Dicarlo, J. J., & Cox, D. D. (2009). How far can you get with a modern face recognition test set using only simple features. In Proc. CVPR.
– reference: LoweDJDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94
– reference: OjalaTPietikäinenMMäenpääTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsThe IEEE Transactions on Pattern Analysis and Machine Intelligence200224797198710.1109/TPAMI.2002.1017623
– reference: Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In Proc. ICCV (pp. 999–1006).
– reference: Jia, H., & Martinez, A. M. (2008). Face recognition with occlusions in the training and testing sets. In Proc. FG (pp. 1–6).
– reference: Lui, Y. M., & Beveridge, J. R. (2008). Grassmann registration manifolds for face recognition. In Proc. ECCV (vol. 2, pp. 44–57).
– reference: Park, S. W., & Savvides, M. (2011b). The multifactor extension of grassmann manifolds for face recognition. In Proc. FG (pp. 464–469).
– reference: VapnikVNStatistical Learning Theory1998New YorkWiley0935.62007
– reference: Lu, J., Tan, Y.P., & Wang, G. (2011). Discriminative multi-manifold analysis for face recognition from a single training sample per person. In Proc. ICCV (pp. 1943–1950).
– reference: Brooks, M. J., & Horn, B. K. P. (1985). Shape and source from shading. In Proc. IJAI (pp. 932–936).
– reference: Duan, L., Tsang, I., Xu, D., & Chua, T.-S. (2009). Domain adaptation from multiple sources via auxiliary classifiers. In Proc. ICML (pp. 289–296).
– reference: Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles. In Proc. ECCV (pp. 447–460).
– reference: KimTKKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsThe IEEE Transactions on Pattern Analysis and Machine Intelligence20072961005101810.1109/TPAMI.2007.1037
– reference: Ni, J., Qiu, Q., & Chellappa, R. (2013). Subspace interpolation via dictionary learning for unsupervised domain adaptation. In Proc. CVPR.
– reference: SimTBakerSBsatMThe CMU pose, illumination, and expression databaseThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325121615161810.1109/TPAMI.2003.1251154
– reference: Hamm, J., & Lee, D. (2008). Grassmann discriminant analysis: A unifying view on subspace-based learning. In Proc. ICML (pp. 376–383).
– reference: Hoffman, J., Kulis, B., Darrell, T., & Saenko, K. (2012). Discovering latent domains for multisource domain adaptation. In Proc. ECCV (pp. 702–715).
– reference: Jhuo, I.-H., Liu, D., Lee, D., & Chang, S.-F. (2012). Robust visual domain adaptation with low-rank reconstruction. In Proc. CVPR (pp. 2168–2175).
– reference: Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In SIGGRAPH (pp. 187–194).
– reference: Ojansivu, V., & Heikkilä, J. (2008). Blur insensitive texture classification using local phase quantization. In Proc. ICISP (pp. 236–243).
– reference: Wang, R., & Chen, X. (2009). Manifold discriminant analysis. In Proc. CVPR (pp. 429–436).
– reference: Cevikalp, H., & Triggs, B. (2010). Face recognition based on image sets. In Proc. CVPR (pp. 2567–2573).
– reference: EdelmanAAriasTASmithSTThe geometry of algorithms with orthogonality constraintsThe SIAM Journal on Matrix Analysis and Applications19992030335310.1137/S08954798952909541646856
– reference: LuiYMAdvances in matrix manifolds for computer visionImage and Vision Computing20123038038810.1016/j.imavis.2011.08.002
– reference: Wolf, L., Hassner, T., & Taigman, Y. (2008). Descriptor based methods in the wild. In Faces in real-life images workshop in ECCV.
– reference: Yang, J., Yan, R., & Hauptmann, A. (2007). Cross-domain video concept detection using adaptive SVMs. In Proc. ACM MM (pp. 188–197).
– reference: Jia, H., & Martinez, A. M. (2009). Support vector machines in face recognition with occlusions. In Proc. CVPR (pp. 136–141).
– reference: Lui, Y. M., Beveridge, J. R., & Kirby, M. (2010). Action classifications on product manifolds. In Proc. CVPR (pp. 833–839).
– reference: Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proc. CVPR (pp. 511–518).
– reference: DuanLTsangIXuDChuaT-SDomain transfer multiple Kernel learningThe IEEE Transactions on Pattern Analysis and Machine Intelligence201234346547910.1109/TPAMI.2011.114
– reference: VageeswaranPMitraKChellappaRBlur and illumination robust face recognition via set-theoretic characterizationIEEE Transactions on Image Processing20132241362137210.1109/TIP.2012.22284983062316
– reference: BiswasSAggarwalGChellappaRRobust estimation of albedo for illumination-invariant matching and shape recoveryThe IEEE Transactions on Pattern Analysis and Machine Intelligence200931588489910.1109/TPAMI.2008.135
– reference: NishiyamaMHadidATakeshimaHShottonJKozakayaTYamaguchiOFacial deblur inference using subspace analysis for recognition of blurred facesThe IEEE Transactions on Pattern Analysis and Machine Intelligence201133483884510.1109/TPAMI.2010.203
– reference: GopalanRTaheriSTuragaPChellappaRA blur-robust descriptor with applications to face recognitionThe IEEE Transactions on Pattern Analysis and Machine Intelligence20123461220122610.1109/TPAMI.2012.15
– reference: Park, S. W., & Savvides, M. (2011a). Multifactor analysis based on factor-dependent geometry. In Proc. CVPR (pp. 2817–2824).
– reference: Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. In Proc. ECCV (pp. 213–226).
– reference: TenenbaumJBde SilvaVLangfordJCA global geometric framework for non-linear dimensionality reductionScience20002902319232310.1126/science.290.5500.2319
– reference: Li, Y., Du, Y., & Lin, X. (2005). Kernel-based multifactor analysis for image synthesis and recognition. In Proc. ICCV (pp. 114–119).
– reference: Liu, J., Chen, S., Zhou, Z., & Tan, X. (2007). Single image subspace for face recognition. In Proc. AMFG (pp. 205–219).
– reference: Huang, G. B., Jain, V., & Learned-Miller, E. (2007). Unsupervised joint alignment of complex images. In Proc. ICCV.
– reference: MartinezAMRecognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per classThe IEEE Transactions on Pattern Analysis and Machine Intelligence200924674876310.1109/TPAMI.2002.1008382
– reference: ZhaoWChellappaRPhillipsPJRosenfeldAFace recognition: A literature surveyACM Computing Surveys200335439945810.1145/954339.954342
– reference: DauméHIIIMarcuDDomain adaptation for statistical classifiersJournal of Artificial Intelligence Research20062611011261161.687242306416
– reference: Arandjelović, O., Shakhnarovich, G., Fisher, J., Cipolla, R., & Darrell, T. (2005). Face recognition with image sets using manifold density divergence. In Proc. CVPR (pp. 581–588).
– reference: LeeKCHoJKriegmanDJAcquiring linear subspaces for face recognition under variable lightingThe IEEE Transactions on Pattern Analysis and Machine Intelligence200527568469810.1109/TPAMI.2005.92
– reference: Ben-DavidSBlitzerJCrammerKKuleszaAPereiraFVaughanJWA theory of learning from different domainsMachine Learning201079115117510.1007/s10994-009-5152-43108150
– reference: Shakhnarovich, G., Fisher, J. W., & Darell, T. (2002). Face recognition from long term observations. In Proc. ECCV (pp. 851–868).
– reference: Shekhar, S., Patel, V., Nguyen, H., & Chellappa, R. (2013). Generalized domain-adaptive dictionaries. In Proc. CVPR.
– reference: LeeJMIntroduction to topological manifolds20102BerlinSpringer
– reference: Qiu, Q., Patel, V., Turaga, P., & Chellappa, R. (2012). Domain adaptive dictionary learning. In Proc. ECCV (pp. 631–645).
– reference: Chen, Y., Patel, V. M., Phillips, P. J., & Chellappa, R. (2012). Dictionary-based face recognition from video. In Proc. ECCV (pp. 766–779).
– reference: Gong, B., Shi, Y., Sha, F., & Grauman, K. (2012). Geodesic flow Kernel for unsupervised domain adaptation. In Proc. CVPR (pp. 2066–2073).
– reference: Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst.
– reference: JoliffeITPrincipal component analysis1986BerlinSpringer10.1007/978-1-4757-1904-8
– reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002902323232610.1126/science.290.5500.2323
– reference: Zheng, J., Liu, M.-Y., Chellappa, R., & Phillips, J. (2012). A grassmann manifold-based domain adaptation approach. In Proc. ICPR (pp. 2095–2099).
– reference: BasriRJacobsDWLambertian reflectance and linear subspacesThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325221823310.1109/TPAMI.2003.1177153
– reference: BjörckAGolubGHNumerical methods for computing angles between linear subspacesMathematics of Computations19732757959410.2307/20056620282.65031
– reference: Arandjelović, O. (2009). Unfolding a face: From singular to manifold. In Proc. ACCV (pp. 203–213).
– reference: Li, H., Hua, G., Lin, Z., Brandt, J., & Yang, J. (2013). Probabilistic elastic matching for pose invariant face recognition. In Proc. CVPR.
– reference: Martinez, A. M., & Benavente, R. (1998). The AR Face Database. CVC Technical Report, 24.
– reference: Shi, Y., & Sha, F. (2012). Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In Proc. ICML.
– reference: Begelfor, E., & Werman, M. (2006). Affine invariance revisited. In Proc. CVPR (pp 2087–2094).
– ident: 720_CR23
– ident: 720_CR54
  doi: 10.1007/978-3-642-15561-1_16
– volume: 34
  start-page: 1220
  issue: 6
  year: 2012
  ident: 720_CR18
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.15
– ident: 720_CR65
  doi: 10.1109/CVPR.2001.990517
– ident: 720_CR51
  doi: 10.1109/CVPR.2009.5206605
– ident: 720_CR68
  doi: 10.1145/1291233.1291276
– volume: 26
  start-page: 101
  issue: 1
  year: 2006
  ident: 720_CR12
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1872
– volume-title: Introduction to topological manifolds
  year: 2010
  ident: 720_CR30
– ident: 720_CR21
  doi: 10.1109/CVPR.2011.5995500
– ident: 720_CR33
– ident: 720_CR49
  doi: 10.1109/CVPR.2011.5995397
– ident: 720_CR56
  doi: 10.1007/3-540-47977-5_56
– volume: 22
  start-page: 1362
  issue: 4
  year: 2013
  ident: 720_CR61
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2228498
– ident: 720_CR39
  doi: 10.1007/978-3-540-88688-4_4
– volume: 25
  start-page: 1615
  issue: 12
  year: 2003
  ident: 720_CR59
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1251154
– ident: 720_CR26
  doi: 10.1109/CVPR.2009.5206862
– ident: 720_CR42
– ident: 720_CR10
  doi: 10.1109/CVPR.2010.5539965
– ident: 720_CR17
  doi: 10.1109/ICCV.2011.6126344
– ident: 720_CR24
– volume: 25
  start-page: 218
  issue: 2
  year: 2003
  ident: 720_CR3
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1177153
– ident: 720_CR52
  doi: 10.1007/978-3-642-33765-9_45
– ident: 720_CR19
  doi: 10.1145/1390156.1390204
– volume: 30
  start-page: 380
  year: 2012
  ident: 720_CR38
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2011.08.002
– ident: 720_CR34
– ident: 720_CR35
  doi: 10.1007/978-3-540-75690-3_16
– ident: 720_CR66
  doi: 10.1109/CVPR.2009.5206850
– ident: 720_CR50
  doi: 10.1109/FG.2011.5771443
– ident: 720_CR64
  doi: 10.1109/ICCV.2007.4409067
– volume: 24
  start-page: 748
  issue: 6
  year: 2009
  ident: 720_CR41
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1008382
– ident: 720_CR57
  doi: 10.1109/CVPR.2013.53
– volume: 20
  start-page: 303
  year: 1999
  ident: 720_CR15
  publication-title: The SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/S0895479895290954
– ident: 720_CR4
  doi: 10.1109/CVPR.2006.50
– volume: 27
  start-page: 579
  year: 1973
  ident: 720_CR7
  publication-title: Mathematics of Computations
  doi: 10.2307/2005662
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 720_CR46
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1017623
– ident: 720_CR47
  doi: 10.1007/978-3-540-69905-7_27
– ident: 720_CR20
  doi: 10.1007/978-3-642-33709-3_50
– ident: 720_CR40
  doi: 10.1109/CVPR.2010.5540131
– volume: 29
  start-page: 1005
  issue: 6
  year: 2007
  ident: 720_CR28
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1037
– ident: 720_CR13
  doi: 10.1145/1553374.1553411
– ident: 720_CR58
– ident: 720_CR25
  doi: 10.1109/AFGR.2008.4813410
– ident: 720_CR22
  doi: 10.1109/ICCV.2007.4408858
– ident: 720_CR67
– volume: 31
  start-page: 884
  issue: 5
  year: 2009
  ident: 720_CR6
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.135
– volume: 27
  start-page: 684
  issue: 5
  year: 2005
  ident: 720_CR31
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.92
– volume: 99
  start-page: 303
  issue: 3
  year: 2005
  ident: 720_CR32
  publication-title: CVIU
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 720_CR62
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 720_CR36
  publication-title: IJCV
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 720_CR63
– volume-title: Principal component analysis
  year: 1986
  ident: 720_CR27
  doi: 10.1007/978-1-4757-1904-8
– volume: 290
  start-page: 2319
  year: 2000
  ident: 720_CR60
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 79
  start-page: 151
  issue: 1
  year: 2010
  ident: 720_CR5
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5152-4
– ident: 720_CR45
  doi: 10.1109/CVPR.2007.382969
– ident: 720_CR11
  doi: 10.1007/978-3-642-33783-3_55
– ident: 720_CR16
– ident: 720_CR2
  doi: 10.1109/CVPR.2005.151
– volume: 290
  start-page: 2323
  year: 2000
  ident: 720_CR53
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: 720_CR48
  doi: 10.1109/CVPR.2010.5539980
– ident: 720_CR70
– ident: 720_CR37
  doi: 10.1109/ICCV.2011.6126464
– ident: 720_CR9
– ident: 720_CR55
  doi: 10.1007/978-3-642-01793-3_21
– ident: 720_CR29
  doi: 10.1109/CVPR.2011.5995702
– ident: 720_CR43
  doi: 10.1109/CVPR.2013.95
– ident: 720_CR1
– ident: 720_CR8
  doi: 10.1145/311535.311556
– volume: 34
  start-page: 465
  issue: 3
  year: 2012
  ident: 720_CR14
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.114
– volume: 33
  start-page: 838
  issue: 4
  year: 2011
  ident: 720_CR44
  publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.203
– volume: 35
  start-page: 399
  issue: 4
  year: 2003
  ident: 720_CR69
  publication-title: ACM Computing Surveys
  doi: 10.1145/954339.954342
SSID ssj0002823
Score 2.2792673
Snippet Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises...
Issue Title: Special Issue : Domain Adaptation for Vision Applications Many classification algorithms see a reduction in performance when tested on data with...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Adaptation
Algorithms
Analysis
Artificial Intelligence
Biometry
Classification
Computational linguistics
Computer Imaging
Computer Science
Discriminant analysis
Facial recognition technology
Geometry
Illumination
Image Processing and Computer Vision
Language processing
Manifolds
Mathematical analysis
Mathematical models
Natural language interfaces
Pattern Recognition
Pattern Recognition and Graphics
Studies
Tensors
Training
Vision
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1raxQxMGj94hetL1xbJYogKMHbJPv6VA7rWYWKVE_6LeRZCmf27N5Bf35ndrPXh1hYWNg8N5lnZjJDyFtT80Z63jDP_YTJ2hnAOW2YBOQyZa2t6EMKHX4vD-by23FxnA7cuuRWOdLEnlC71uIZ-UfAzBy0NWBIe8u_DLNGoXU1pdC4S-7lwGkQzuvZlw0lBnViSCUPKlJRNvlo1eyvzkED9CSSbFJB8fk1vnSTOv9jJu25z2ybPEhiI50O-_yI3PHxMXmYREiaELSDT2OWhvHbE_Ib050t2P4Z0jW63_7Rp5FOnV4ORngKz48h7Cs91PE0tAvXURBl6TxaFB4xhwSMMdPW06PR3aiNT8l89vnXpwOWsikwKzlfsULmVohCVpPS5p47X-W6DIHnxlp4uSCEq4SpC-7LipegCobgikYUthIa5cBnZCu20T8nFLQsDnKuq4WrpZbB5L6qgm6E1NC1NxmZjGupbAo1jrNdqMsgybj8CpZf4fKr84y83zRZDnE2bqv8BjdIYfyKiA4yJ3rdderrzyM1FXi3FhTLJiPvUqXQwuBWp_sG8AsY8upazd1xo1XC4E5dwltGXm-KAffQoKKjb9dYpxdPQcfPyIcRQK508b_5v7h9wB1yn_eAiW6Gu2Rrdbb2L0H0WZlXPXxfAHKh_gA
  priority: 102
  providerName: ProQuest
Title Model-Driven Domain Adaptation on Product Manifolds for Unconstrained Face Recognition
URI https://link.springer.com/article/10.1007/s11263-014-0720-x
https://www.proquest.com/docview/1531888181
https://www.proquest.com/docview/1551059837
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_0-sUv1idGa1lFEJSU20eSzcdo71qVlnL2pH5a9pVSPJPS3IH41zub7F5tfUAhsLCZ7Cs7s79hZmcQeqUFLbmjZeqoG6dcWA08p3TKgbl0LpRhfUihg8N8f84_nmQn4R53F73do0myl9SXl90I9TZHwtNxAToPAMeNjIhSjNBGtff102QtgEGLGDLIA1WWlyQaM__WyJXj6LpQ_sM62h860010HIc7-Jp821kt9Y75eS2S4w3ncw_dDSAUV8OuuY9uueYB2gyAFAd276Aq5nyIdQ_RF588bZHuXngpiXfb7-qswZVV54NJH8NzNASRxQeqOavbhe0wAGM8b4yHoj4jBfQxVcbhWXReaptHaD6dHL_fT0NuhtRwSpdpxolhLOPFODfEUesKovK6pkQbA4WtGbMF0yKjLi9oDoplXdusZJkpmPKo8jEaNW3jniAMOhsF1GwFs4IrXmviiqJWJeMKmnY6QeP4i6QJgcv9aBfyMuSyX0oJSyn9UsofCXqz_uR8iNrxP-KX_r9LHw2j8e42p2rVdfLD55msmL-pC2pqmaDXgahuoXOjwu0FmIIPoHWFcivuHxnkQSfhXCFCADgiCXqxfg2c7M0zqnHtytP0YFewIkFv45b5rYl_jf_pjaifoTu033Peh3ELjZYXK_cccNVSb6PbYrq3HbgJyneTw6MZ1M5p9Qvi3ht3
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DS6B3jhG1EYYBAICRTR2M7XA0KFrmrZWk1lRXszju2gSSUpSyvGn-I3cpePjoHY26RIkWLHds73mfPdATxPY55IxxPPcdfzZGxTpDmdehKJKw1jbUSVUmgyDUdz-fEoONqCX20sDB2rbHlixahtYegf-RukTB-tNRRI75bfPaoaRd7VtoRGjRZ77ucPNNnKt-MB7u8Lzoe7hx9GXlNVwDOS85UXSN8IEcioFxrfcesiX4dZxv3UGLzZTAgbiTQOuAsjHqJJlGU2SERgIqFJH8Jxr8C2pIjWDmy_350ezDa8Hw2Yung9GmVBmPitH7UK1vM5-Ux96fUibD49Jwn_lgf_OGYreTe8CdcbRZX1a8y6BVsuvw03GqWVNSyhxEdtXYj22R34TAXWFt7ghDgpGxTf9HHO-lYva7c_w-ugTjTLJjo_zoqFLRkqz2yeG1JXqWoFzjHUxrFZe8CpyO_C_FIgfQ86eZG7-8DQruOoWdtY2FhqmaW-i6JMJ0JqHNqlXei1sFSmSW5Oq12os7TMBH6F4FcEfnXahVebV5Z1Zo-LOj-jDVKUMSOnIzlf9bos1fjTTPUFRfOiKZt04WXTKStwcqObCAf8BEqyda7nTrvRquEZpTrD8C483TQjtZMLR-euWFOfSiGORdSF1y2C_DHE_9b_4OIJn8DV0eFkX-2Pp3sP4RqvkJQOOe5AZ3Wydo9Q8VqljxtsZ_DlsgnsN8GzO7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDQrzwjQgMMAiEBIrW2E6cPCBUUcrK2DQNOu3NOP5Ak0pSllaMv8av4y6JOwZib5MiRXIcOz7fZ-58R8izMmeFcKyIHXODWOS2BJrTZSyAuMos14a3KYV2drOtqfhwmB6ukV_hLAyGVQae2DJqWxv8R74JlJmAtQYCadP3YRF7o_Gb-fcYK0ihpzWU0-hQZNv9_AHmW_N6MoK9fs7Y-N3nt1txX2EgNoKxRZyKxHCeCjnITOKYdTLRmfcsKY2Bm_WcW8nLPGUukywD88h7mxY8NZJr1I1g3EvksoQFoeGXj9-vpACYMl0ZezDP0qxIgke1PbaXMPSeJiIeSHh8ckYm_i0Z_nHRtpJvfINc61VWOuxw7CZZc9Utcr1XX2nPHBpoChUiQtttcoCl1mbx6Bh5Kh3V3_RRRYdWz7sAAArXXpdylu7o6sjXM9tQUKPptDKouGL9CphjrI2j-yHUqa7ukOmFwPkuWa_qyt0jFCw8Bjq2zbnNhRa-TJyUXhdcaBjalREZBFgq06c5x6-dqdMEzQh-BeBXCH51EpGXq1fmXY6P8zo_xQ1SmDujQiz8qpdNoyaf9tWQ47leMGqLiLzoO_kaJje6P-sAS8B0W2d6boSNVj33aNQprkfkyeox0D06c3Tl6iX2aVXjnMuIvAoI8scQ__v---dP-JhcAbJSHye72w_IVdbiKEY7bpD1xfHSPQQNbFE-alGdki8XTVu_ATN4PoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Driven+Domain+Adaptation+on+Product+Manifolds+for+Unconstrained+Face+Recognition&rft.jtitle=International+journal+of+computer+vision&rft.au=Ho%2C+Huy+Tho&rft.au=Gopalan%2C+Raghuraman&rft.date=2014-08-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=109&rft.issue=1-2&rft.spage=110&rft.epage=125&rft_id=info:doi/10.1007%2Fs11263-014-0720-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_014_0720_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon