Model-Driven Domain Adaptation on Product Manifolds for Unconstrained Face Recognition
Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testi...
Saved in:
Published in | International journal of computer vision Vol. 109; no. 1-2; pp. 110 - 125 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.08.2014
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0920-5691 1573-1405 |
DOI | 10.1007/s11263-014-0720-x |
Cover
Loading…
Abstract | Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos. |
---|---|
AbstractList | Issue Title: Special Issue : Domain Adaptation for Vision Applications Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos.[PUBLICATION ABSTRACT] Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos. Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos. Keywords Domain adaptation * Unconstrained face recognition * Manifold learning * Tensor computation |
Audience | Academic |
Author | Gopalan, Raghuraman Ho, Huy Tho |
Author_xml | – sequence: 1 givenname: Huy Tho surname: Ho fullname: Ho, Huy Tho email: huytho@umd.edu organization: Department of Electrical and Computer Engineering and the Center for Automation Research, UMIACS, University of Maryland – sequence: 2 givenname: Raghuraman surname: Gopalan fullname: Gopalan, Raghuraman organization: Department of Video and Multimedia Technologies Research, AT&T Labs - Research |
BookMark | eNp9kV1rHCEUhqWk0E2aH9C7gdwkF5N4dBxnLpd8tIGEljTprRg9LoZZ3ehM2P77ukwvmkCKwoHD86jHd5_shRiQkC9AT4FSeZYBWMtrCk1NJaP19gNZgJC8hoaKPbKgfWmKtodPZD_nJ0op6xhfkF-30eJQXyT_gqG6iGvtQ7W0ejPq0cdQlf0jRTuZsbrVwbs42Fy5mKqHYGLIYyo82upKG6zu0MRV8DvvM_no9JDx8G89IA9Xl_fn3-qb71-vz5c3tWkYG2vRgOFcNJK2BpBZlKBb5xg8GlOKdZxbyR87wbCVrGVAnbOi58JIrqFn_IAcz-duUnyeMI9q7bPBYdAB45QVCAFU9B2XBT16gz7FKYXyukJx6LoOOijU6Uyt9IDKBxfLiKYsi2tfJkbnS3_JZd82lLV9EU5eCYUZcTuu9JSzuv5595qFmTUp5pzQqU3ya51-K6BqF6OaY1QlRrWLUW2LI984xs_Z7P5--K_JZjOXW8IK0z8Dvyv9Adepsbg |
CitedBy_id | crossref_primary_10_1007_s11263_022_01712_7 crossref_primary_10_3390_technologies8020035 crossref_primary_10_1088_1742_6596_1820_1_012189 crossref_primary_10_1049_iet_cvi_2014_0084 crossref_primary_10_1109_TCYB_2015_2502483 crossref_primary_10_1007_s11263_021_01463_x crossref_primary_10_1016_j_patcog_2015_12_006 crossref_primary_10_3390_s150204326 crossref_primary_10_1016_j_imavis_2016_09_001 crossref_primary_10_1109_MSP_2014_2347059 crossref_primary_10_1109_TPAMI_2024_3361978 crossref_primary_10_1177_1550147719845276 crossref_primary_10_1007_s11042_024_19917_y crossref_primary_10_1364_JOSAA_33_001887 crossref_primary_10_1016_j_patcog_2015_10_007 crossref_primary_10_1109_ACCESS_2021_3123470 |
Cites_doi | 10.1007/978-3-642-15561-1_16 10.1109/TPAMI.2012.15 10.1109/CVPR.2001.990517 10.1109/CVPR.2009.5206605 10.1145/1291233.1291276 10.1613/jair.1872 10.1109/CVPR.2011.5995500 10.1109/CVPR.2011.5995397 10.1007/3-540-47977-5_56 10.1109/TIP.2012.2228498 10.1007/978-3-540-88688-4_4 10.1109/TPAMI.2003.1251154 10.1109/CVPR.2009.5206862 10.1109/CVPR.2010.5539965 10.1109/ICCV.2011.6126344 10.1109/TPAMI.2003.1177153 10.1007/978-3-642-33765-9_45 10.1145/1390156.1390204 10.1016/j.imavis.2011.08.002 10.1007/978-3-540-75690-3_16 10.1109/CVPR.2009.5206850 10.1109/FG.2011.5771443 10.1109/ICCV.2007.4409067 10.1109/TPAMI.2002.1008382 10.1109/CVPR.2013.53 10.1137/S0895479895290954 10.1109/CVPR.2006.50 10.2307/2005662 10.1109/TPAMI.2002.1017623 10.1007/978-3-540-69905-7_27 10.1007/978-3-642-33709-3_50 10.1109/CVPR.2010.5540131 10.1109/TPAMI.2007.1037 10.1145/1553374.1553411 10.1109/AFGR.2008.4813410 10.1109/ICCV.2007.4408858 10.1109/TPAMI.2008.135 10.1109/TPAMI.2005.92 10.1023/B:VISI.0000029664.99615.94 10.1007/978-1-4757-1904-8 10.1126/science.290.5500.2319 10.1007/s10994-009-5152-4 10.1109/CVPR.2007.382969 10.1007/978-3-642-33783-3_55 10.1109/CVPR.2005.151 10.1126/science.290.5500.2323 10.1109/CVPR.2010.5539980 10.1109/ICCV.2011.6126464 10.1007/978-3-642-01793-3_21 10.1109/CVPR.2011.5995702 10.1109/CVPR.2013.95 10.1145/311535.311556 10.1109/TPAMI.2011.114 10.1109/TPAMI.2010.203 10.1145/954339.954342 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 COPYRIGHT 2014 Springer |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: COPYRIGHT 2014 Springer |
DBID | AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1007/s11263-014-0720-x |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 125 |
ExternalDocumentID | 3323617211 A379640269 10_1007_s11263_014_0720_x |
Genre | Feature |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c422t-541c3354706c1e2de71a6ff21bccff2df33d73b852e6726210ffd5935c73a1923 |
IEDL.DBID | AGYKE |
ISSN | 0920-5691 |
IngestDate | Fri Sep 05 04:01:37 EDT 2025 Fri Jul 25 23:20:45 EDT 2025 Tue Jun 10 20:26:24 EDT 2025 Fri Jun 27 03:49:30 EDT 2025 Tue Jul 01 04:30:54 EDT 2025 Thu Apr 24 22:53:22 EDT 2025 Fri Feb 21 02:26:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Domain adaptation Tensor computation Unconstrained face recognition Manifold learning |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-541c3354706c1e2de71a6ff21bccff2df33d73b852e6726210ffd5935c73a1923 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1531888181 |
PQPubID | 1456341 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1551059837 proquest_journals_1531888181 gale_infotracacademiconefile_A379640269 gale_incontextgauss_ISR_A379640269 crossref_primary_10_1007_s11263_014_0720_x crossref_citationtrail_10_1007_s11263_014_0720_x springer_journals_10_1007_s11263_014_0720_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2014 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | BasriRJacobsDWLambertian reflectance and linear subspacesThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325221823310.1109/TPAMI.2003.1177153 Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles. In Proc. ECCV (pp. 447–460). Li, H., Hua, G., Lin, Z., Brandt, J., & Yang, J. (2013). Probabilistic elastic matching for pose invariant face recognition. In Proc. CVPR. Kulis, B., Saenko, K., & Darrell, T. (2011). What you saw is not what you get: Domain adaptation using asymmetric Kernel transforms. In Proc. CVPR (pp. 1785–1792). Jia, H., & Martinez, A. M. (2009). Support vector machines in face recognition with occlusions. In Proc. CVPR (pp. 136–141). Park, S. W., & Savvides, M. (2011a). Multifactor analysis based on factor-dependent geometry. In Proc. CVPR (pp. 2817–2824). SimTBakerSBsatMThe CMU pose, illumination, and expression databaseThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325121615161810.1109/TPAMI.2003.1251154 MartinezAMRecognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per classThe IEEE Transactions on Pattern Analysis and Machine Intelligence200924674876310.1109/TPAMI.2002.1008382 Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. In Proc. ECCV (pp. 213–226). Duan, L., Tsang, I., Xu, D., & Chua, T.-S. (2009). Domain adaptation from multiple sources via auxiliary classifiers. In Proc. ICML (pp. 289–296). Martinez, A. M., & Benavente, R. (1998). The AR Face Database. CVC Technical Report, 24. RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002902323232610.1126/science.290.5500.2323 Qiu, Q., Patel, V., Turaga, P., & Chellappa, R. (2012). Domain adaptive dictionary learning. In Proc. ECCV (pp. 631–645). Shi, Y., & Sha, F. (2012). Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In Proc. ICML. Huang, G. B., Jain, V., & Learned-Miller, E. (2007). Unsupervised joint alignment of complex images. In Proc. ICCV. Li, Y., Du, Y., & Lin, X. (2005). Kernel-based multifactor analysis for image synthesis and recognition. In Proc. ICCV (pp. 114–119). ZhaoWChellappaRPhillipsPJRosenfeldAFace recognition: A literature surveyACM Computing Surveys200335439945810.1145/954339.954342 Nowak, E., & Jurie, F. (2007). Learning visual similarities measures for comparing never seen objects. In Proc. CVPR. GopalanRTaheriSTuragaPChellappaRA blur-robust descriptor with applications to face recognitionThe IEEE Transactions on Pattern Analysis and Machine Intelligence20123461220122610.1109/TPAMI.2012.15 Park, S. W., & Savvides, M. (2010). An extension of multifactor analysis for face recognition based on submanifold learning. In Proc. CVPR (pp. 2645–2652). BiswasSAggarwalGChellappaRRobust estimation of albedo for illumination-invariant matching and shape recoveryThe IEEE Transactions on Pattern Analysis and Machine Intelligence200931588489910.1109/TPAMI.2008.135 NishiyamaMHadidATakeshimaHShottonJKozakayaTYamaguchiOFacial deblur inference using subspace analysis for recognition of blurred facesThe IEEE Transactions on Pattern Analysis and Machine Intelligence201133483884510.1109/TPAMI.2010.203 Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In Proc. ICCV (pp. 999–1006). Wolf, L., Hassner, T., & Taigman, Y. (2008). Descriptor based methods in the wild. In Faces in real-life images workshop in ECCV. Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proc. CVPR (pp. 511–518). Ojansivu, V., & Heikkilä, J. (2008). Blur insensitive texture classification using local phase quantization. In Proc. ICISP (pp. 236–243). Lu, J., Tan, Y.P., & Wang, G. (2011). Discriminative multi-manifold analysis for face recognition from a single training sample per person. In Proc. ICCV (pp. 1943–1950). BjörckAGolubGHNumerical methods for computing angles between linear subspacesMathematics of Computations19732757959410.2307/20056620282.65031 Lui, Y. M., Beveridge, J. R., & Kirby, M. (2010). Action classifications on product manifolds. In Proc. CVPR (pp. 833–839). DauméHIIIMarcuDDomain adaptation for statistical classifiersJournal of Artificial Intelligence Research20062611011261161.687242306416 KimTKKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsThe IEEE Transactions on Pattern Analysis and Machine Intelligence20072961005101810.1109/TPAMI.2007.1037 Shekhar, S., Patel, V., Nguyen, H., & Chellappa, R. (2013). Generalized domain-adaptive dictionaries. In Proc. CVPR. LuiYMAdvances in matrix manifolds for computer visionImage and Vision Computing20123038038810.1016/j.imavis.2011.08.002 Wang, R., & Chen, X. (2009). Manifold discriminant analysis. In Proc. CVPR (pp. 429–436). Liu, J., Chen, S., Zhou, Z., & Tan, X. (2007). Single image subspace for face recognition. In Proc. AMFG (pp. 205–219). Hamm, J., & Lee, D. (2008). Grassmann discriminant analysis: A unifying view on subspace-based learning. In Proc. ICML (pp. 376–383). Shakhnarovich, G., Fisher, J. W., & Darell, T. (2002). Face recognition from long term observations. In Proc. ECCV (pp. 851–868). LeeJMIntroduction to topological manifolds20102BerlinSpringer Brooks, M. J., & Horn, B. K. P. (1985). Shape and source from shading. In Proc. IJAI (pp. 932–936). VapnikVNStatistical Learning Theory1998New YorkWiley0935.62007 Vasilescu, M. A. O., & Terzopoulos, D. (2007). Multilinear projection for appearance-based recognition in the tensor framework. In Proc. ICCV (pp. 1–8). VageeswaranPMitraKChellappaRBlur and illumination robust face recognition via set-theoretic characterizationIEEE Transactions on Image Processing20132241362137210.1109/TIP.2012.22284983062316 JoliffeITPrincipal component analysis1986BerlinSpringer10.1007/978-1-4757-1904-8 Ben-DavidSBlitzerJCrammerKKuleszaAPereiraFVaughanJWA theory of learning from different domainsMachine Learning201079115117510.1007/s10994-009-5152-43108150 Ni, J., Qiu, Q., & Chellappa, R. (2013). Subspace interpolation via dictionary learning for unsupervised domain adaptation. In Proc. CVPR. DuanLTsangIXuDChuaT-SDomain transfer multiple Kernel learningThe IEEE Transactions on Pattern Analysis and Machine Intelligence201234346547910.1109/TPAMI.2011.114 EdelmanAAriasTASmithSTThe geometry of algorithms with orthogonality constraintsThe SIAM Journal on Matrix Analysis and Applications19992030335310.1137/S08954798952909541646856 Arandjelović, O., Shakhnarovich, G., Fisher, J., Cipolla, R., & Darrell, T. (2005). Face recognition with image sets using manifold density divergence. In Proc. CVPR (pp. 581–588). Begelfor, E., & Werman, M. (2006). Affine invariance revisited. In Proc. CVPR (pp 2087–2094). Hu, Y., Mian, A. S., & Owens, R. (2011). Sparse approximated nearest points for image set classification. In Proc. CVPR (pp. 27–40). OjalaTPietikäinenMMäenpääTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsThe IEEE Transactions on Pattern Analysis and Machine Intelligence200224797198710.1109/TPAMI.2002.1017623 Arandjelović, O. (2009). Unfolding a face: From singular to manifold. In Proc. ACCV (pp. 203–213). TenenbaumJBde SilvaVLangfordJCA global geometric framework for non-linear dimensionality reductionScience20002902319232310.1126/science.290.5500.2319 Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In SIGGRAPH (pp. 187–194). Yang, J., Yan, R., & Hauptmann, A. (2007). Cross-domain video concept detection using adaptive SVMs. In Proc. ACM MM (pp. 188–197). Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst. Hoffman, J., Kulis, B., Darrell, T., & Saenko, K. (2012). Discovering latent domains for multisource domain adaptation. In Proc. ECCV (pp. 702–715). LeeKCHoJYangMHKriegmanDJVisual tracking and recognition using probabilistic appearance manifoldsCVIU2005993303331 LeeKCHoJKriegmanDJAcquiring linear subspaces for face recognition under variable lightingThe IEEE Transactions on Pattern Analysis and Machine Intelligence200527568469810.1109/TPAMI.2005.92 Sanderson, C., & Lovell, B. C. (2009). Multi-region probabilistic histograms for robust and scalable identity inference. In Proc. ICB (pp. 199–208). Zheng, J., Liu, M.-Y., Chellappa, R., & Phillips, J. (2012). A grassmann manifold-based domain adaptation approach. In Proc. ICPR (pp. 2095–2099). Park, S. W., & Savvides, M. (2011b). The multifactor extension of grassmann manifolds for face recognition. In Proc. FG (pp. 464–469). Pinto, N., Dicarlo, J. J., & Cox, D. D. (2009). How far can you get with a modern face recognition test set using only simple features. In Proc. CVPR. Cevikalp, H., & Triggs, B. (2010). Face recognition based on image sets. In Proc. CVPR (pp. 2567–2573). Jhuo, I.-H., Liu, D., Lee, D., & Chang, S.-F. (2012). Robust visual domain adaptation with low-rank reconstruction. In Proc. CVPR (pp. 2168–2175). LoweDJDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94 Lui, Y. M., & Beveridge, J. R. (2008). Grassmann registration manifolds for face recognition. In Proc. ECCV (vol. 2, pp. 44–57). Jia, H., & Martinez, A. M. (2008). Face recognition with occlusions in the training and testing sets. In Proc. FG (pp. 1–6). Chen, Y., Patel, V. M., Phillips, P. J., & Chellappa, R. (2012). Dictionary-based face recognition from video. In Proc. ECCV (pp. 766–779). Gong, B., Shi, Y., Sha, F., & Grauman, K. (2012). Geodesic flow Kernel for unsupervised domain adaptation. In Proc. CVPR (pp. 2066–2073). 720_CR2 720_CR13 720_CR57 JB Tenenbaum (720_CR60) 2000; 290 720_CR1 720_CR56 720_CR4 S Ben-David (720_CR5) 2010; 79 720_CR11 720_CR55 720_CR10 720_CR54 720_CR17 720_CR16 720_CR8 DJ Lowe (720_CR36) 2004; 60 720_CR58 A Edelman (720_CR15) 1999; 20 720_CR52 720_CR51 720_CR50 JM Lee (720_CR30) 2010 720_CR24 720_CR68 720_CR23 720_CR67 720_CR22 AM Martinez (720_CR41) 2009; 24 720_CR66 720_CR21 720_CR65 720_CR26 720_CR25 R Gopalan (720_CR18) 2012; 34 720_CR20 720_CR64 720_CR63 M Nishiyama (720_CR44) 2011; 33 TK Kim (720_CR28) 2007; 29 720_CR9 720_CR19 720_CR35 720_CR34 720_CR33 720_CR39 W Zhao (720_CR69) 2003; 35 720_CR37 720_CR70 IT Joliffe (720_CR27) 1986 R Basri (720_CR3) 2003; 25 YM Lui (720_CR38) 2012; 30 T Sim (720_CR59) 2003; 25 VN Vapnik (720_CR62) 1998 S Biswas (720_CR6) 2009; 31 720_CR29 720_CR45 720_CR43 T Ojala (720_CR46) 2002; 24 L Duan (720_CR14) 2012; 34 720_CR49 720_CR48 720_CR47 KC Lee (720_CR31) 2005; 27 720_CR42 720_CR40 H Daumé III (720_CR12) 2006; 26 KC Lee (720_CR32) 2005; 99 A Björck (720_CR7) 1973; 27 ST Roweis (720_CR53) 2000; 290 P Vageeswaran (720_CR61) 2013; 22 |
References_xml | – reference: Vasilescu, M. A. O., & Terzopoulos, D. (2007). Multilinear projection for appearance-based recognition in the tensor framework. In Proc. ICCV (pp. 1–8). – reference: Park, S. W., & Savvides, M. (2010). An extension of multifactor analysis for face recognition based on submanifold learning. In Proc. CVPR (pp. 2645–2652). – reference: Sanderson, C., & Lovell, B. C. (2009). Multi-region probabilistic histograms for robust and scalable identity inference. In Proc. ICB (pp. 199–208). – reference: Nowak, E., & Jurie, F. (2007). Learning visual similarities measures for comparing never seen objects. In Proc. CVPR. – reference: Kulis, B., Saenko, K., & Darrell, T. (2011). What you saw is not what you get: Domain adaptation using asymmetric Kernel transforms. In Proc. CVPR (pp. 1785–1792). – reference: Hu, Y., Mian, A. S., & Owens, R. (2011). Sparse approximated nearest points for image set classification. In Proc. CVPR (pp. 27–40). – reference: LeeKCHoJYangMHKriegmanDJVisual tracking and recognition using probabilistic appearance manifoldsCVIU2005993303331 – reference: Pinto, N., Dicarlo, J. J., & Cox, D. D. (2009). How far can you get with a modern face recognition test set using only simple features. In Proc. CVPR. – reference: LoweDJDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94 – reference: OjalaTPietikäinenMMäenpääTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsThe IEEE Transactions on Pattern Analysis and Machine Intelligence200224797198710.1109/TPAMI.2002.1017623 – reference: Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In Proc. ICCV (pp. 999–1006). – reference: Jia, H., & Martinez, A. M. (2008). Face recognition with occlusions in the training and testing sets. In Proc. FG (pp. 1–6). – reference: Lui, Y. M., & Beveridge, J. R. (2008). Grassmann registration manifolds for face recognition. In Proc. ECCV (vol. 2, pp. 44–57). – reference: Park, S. W., & Savvides, M. (2011b). The multifactor extension of grassmann manifolds for face recognition. In Proc. FG (pp. 464–469). – reference: VapnikVNStatistical Learning Theory1998New YorkWiley0935.62007 – reference: Lu, J., Tan, Y.P., & Wang, G. (2011). Discriminative multi-manifold analysis for face recognition from a single training sample per person. In Proc. ICCV (pp. 1943–1950). – reference: Brooks, M. J., & Horn, B. K. P. (1985). Shape and source from shading. In Proc. IJAI (pp. 932–936). – reference: Duan, L., Tsang, I., Xu, D., & Chua, T.-S. (2009). Domain adaptation from multiple sources via auxiliary classifiers. In Proc. ICML (pp. 289–296). – reference: Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles. In Proc. ECCV (pp. 447–460). – reference: KimTKKittlerJCipollaRDiscriminative learning and recognition of image set classes using canonical correlationsThe IEEE Transactions on Pattern Analysis and Machine Intelligence20072961005101810.1109/TPAMI.2007.1037 – reference: Ni, J., Qiu, Q., & Chellappa, R. (2013). Subspace interpolation via dictionary learning for unsupervised domain adaptation. In Proc. CVPR. – reference: SimTBakerSBsatMThe CMU pose, illumination, and expression databaseThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325121615161810.1109/TPAMI.2003.1251154 – reference: Hamm, J., & Lee, D. (2008). Grassmann discriminant analysis: A unifying view on subspace-based learning. In Proc. ICML (pp. 376–383). – reference: Hoffman, J., Kulis, B., Darrell, T., & Saenko, K. (2012). Discovering latent domains for multisource domain adaptation. In Proc. ECCV (pp. 702–715). – reference: Jhuo, I.-H., Liu, D., Lee, D., & Chang, S.-F. (2012). Robust visual domain adaptation with low-rank reconstruction. In Proc. CVPR (pp. 2168–2175). – reference: Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In SIGGRAPH (pp. 187–194). – reference: Ojansivu, V., & Heikkilä, J. (2008). Blur insensitive texture classification using local phase quantization. In Proc. ICISP (pp. 236–243). – reference: Wang, R., & Chen, X. (2009). Manifold discriminant analysis. In Proc. CVPR (pp. 429–436). – reference: Cevikalp, H., & Triggs, B. (2010). Face recognition based on image sets. In Proc. CVPR (pp. 2567–2573). – reference: EdelmanAAriasTASmithSTThe geometry of algorithms with orthogonality constraintsThe SIAM Journal on Matrix Analysis and Applications19992030335310.1137/S08954798952909541646856 – reference: LuiYMAdvances in matrix manifolds for computer visionImage and Vision Computing20123038038810.1016/j.imavis.2011.08.002 – reference: Wolf, L., Hassner, T., & Taigman, Y. (2008). Descriptor based methods in the wild. In Faces in real-life images workshop in ECCV. – reference: Yang, J., Yan, R., & Hauptmann, A. (2007). Cross-domain video concept detection using adaptive SVMs. In Proc. ACM MM (pp. 188–197). – reference: Jia, H., & Martinez, A. M. (2009). Support vector machines in face recognition with occlusions. In Proc. CVPR (pp. 136–141). – reference: Lui, Y. M., Beveridge, J. R., & Kirby, M. (2010). Action classifications on product manifolds. In Proc. CVPR (pp. 833–839). – reference: Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proc. CVPR (pp. 511–518). – reference: DuanLTsangIXuDChuaT-SDomain transfer multiple Kernel learningThe IEEE Transactions on Pattern Analysis and Machine Intelligence201234346547910.1109/TPAMI.2011.114 – reference: VageeswaranPMitraKChellappaRBlur and illumination robust face recognition via set-theoretic characterizationIEEE Transactions on Image Processing20132241362137210.1109/TIP.2012.22284983062316 – reference: BiswasSAggarwalGChellappaRRobust estimation of albedo for illumination-invariant matching and shape recoveryThe IEEE Transactions on Pattern Analysis and Machine Intelligence200931588489910.1109/TPAMI.2008.135 – reference: NishiyamaMHadidATakeshimaHShottonJKozakayaTYamaguchiOFacial deblur inference using subspace analysis for recognition of blurred facesThe IEEE Transactions on Pattern Analysis and Machine Intelligence201133483884510.1109/TPAMI.2010.203 – reference: GopalanRTaheriSTuragaPChellappaRA blur-robust descriptor with applications to face recognitionThe IEEE Transactions on Pattern Analysis and Machine Intelligence20123461220122610.1109/TPAMI.2012.15 – reference: Park, S. W., & Savvides, M. (2011a). Multifactor analysis based on factor-dependent geometry. In Proc. CVPR (pp. 2817–2824). – reference: Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. In Proc. ECCV (pp. 213–226). – reference: TenenbaumJBde SilvaVLangfordJCA global geometric framework for non-linear dimensionality reductionScience20002902319232310.1126/science.290.5500.2319 – reference: Li, Y., Du, Y., & Lin, X. (2005). Kernel-based multifactor analysis for image synthesis and recognition. In Proc. ICCV (pp. 114–119). – reference: Liu, J., Chen, S., Zhou, Z., & Tan, X. (2007). Single image subspace for face recognition. In Proc. AMFG (pp. 205–219). – reference: Huang, G. B., Jain, V., & Learned-Miller, E. (2007). Unsupervised joint alignment of complex images. In Proc. ICCV. – reference: MartinezAMRecognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per classThe IEEE Transactions on Pattern Analysis and Machine Intelligence200924674876310.1109/TPAMI.2002.1008382 – reference: ZhaoWChellappaRPhillipsPJRosenfeldAFace recognition: A literature surveyACM Computing Surveys200335439945810.1145/954339.954342 – reference: DauméHIIIMarcuDDomain adaptation for statistical classifiersJournal of Artificial Intelligence Research20062611011261161.687242306416 – reference: Arandjelović, O., Shakhnarovich, G., Fisher, J., Cipolla, R., & Darrell, T. (2005). Face recognition with image sets using manifold density divergence. In Proc. CVPR (pp. 581–588). – reference: LeeKCHoJKriegmanDJAcquiring linear subspaces for face recognition under variable lightingThe IEEE Transactions on Pattern Analysis and Machine Intelligence200527568469810.1109/TPAMI.2005.92 – reference: Ben-DavidSBlitzerJCrammerKKuleszaAPereiraFVaughanJWA theory of learning from different domainsMachine Learning201079115117510.1007/s10994-009-5152-43108150 – reference: Shakhnarovich, G., Fisher, J. W., & Darell, T. (2002). Face recognition from long term observations. In Proc. ECCV (pp. 851–868). – reference: Shekhar, S., Patel, V., Nguyen, H., & Chellappa, R. (2013). Generalized domain-adaptive dictionaries. In Proc. CVPR. – reference: LeeJMIntroduction to topological manifolds20102BerlinSpringer – reference: Qiu, Q., Patel, V., Turaga, P., & Chellappa, R. (2012). Domain adaptive dictionary learning. In Proc. ECCV (pp. 631–645). – reference: Chen, Y., Patel, V. M., Phillips, P. J., & Chellappa, R. (2012). Dictionary-based face recognition from video. In Proc. ECCV (pp. 766–779). – reference: Gong, B., Shi, Y., Sha, F., & Grauman, K. (2012). Geodesic flow Kernel for unsupervised domain adaptation. In Proc. CVPR (pp. 2066–2073). – reference: Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst. – reference: JoliffeITPrincipal component analysis1986BerlinSpringer10.1007/978-1-4757-1904-8 – reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002902323232610.1126/science.290.5500.2323 – reference: Zheng, J., Liu, M.-Y., Chellappa, R., & Phillips, J. (2012). A grassmann manifold-based domain adaptation approach. In Proc. ICPR (pp. 2095–2099). – reference: BasriRJacobsDWLambertian reflectance and linear subspacesThe IEEE Transactions on Pattern Analysis and Machine Intelligence200325221823310.1109/TPAMI.2003.1177153 – reference: BjörckAGolubGHNumerical methods for computing angles between linear subspacesMathematics of Computations19732757959410.2307/20056620282.65031 – reference: Arandjelović, O. (2009). Unfolding a face: From singular to manifold. In Proc. ACCV (pp. 203–213). – reference: Li, H., Hua, G., Lin, Z., Brandt, J., & Yang, J. (2013). Probabilistic elastic matching for pose invariant face recognition. In Proc. CVPR. – reference: Martinez, A. M., & Benavente, R. (1998). The AR Face Database. CVC Technical Report, 24. – reference: Shi, Y., & Sha, F. (2012). Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In Proc. ICML. – reference: Begelfor, E., & Werman, M. (2006). Affine invariance revisited. In Proc. CVPR (pp 2087–2094). – ident: 720_CR23 – ident: 720_CR54 doi: 10.1007/978-3-642-15561-1_16 – volume: 34 start-page: 1220 issue: 6 year: 2012 ident: 720_CR18 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.15 – ident: 720_CR65 doi: 10.1109/CVPR.2001.990517 – ident: 720_CR51 doi: 10.1109/CVPR.2009.5206605 – ident: 720_CR68 doi: 10.1145/1291233.1291276 – volume: 26 start-page: 101 issue: 1 year: 2006 ident: 720_CR12 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1872 – volume-title: Introduction to topological manifolds year: 2010 ident: 720_CR30 – ident: 720_CR21 doi: 10.1109/CVPR.2011.5995500 – ident: 720_CR33 – ident: 720_CR49 doi: 10.1109/CVPR.2011.5995397 – ident: 720_CR56 doi: 10.1007/3-540-47977-5_56 – volume: 22 start-page: 1362 issue: 4 year: 2013 ident: 720_CR61 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2228498 – ident: 720_CR39 doi: 10.1007/978-3-540-88688-4_4 – volume: 25 start-page: 1615 issue: 12 year: 2003 ident: 720_CR59 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1251154 – ident: 720_CR26 doi: 10.1109/CVPR.2009.5206862 – ident: 720_CR42 – ident: 720_CR10 doi: 10.1109/CVPR.2010.5539965 – ident: 720_CR17 doi: 10.1109/ICCV.2011.6126344 – ident: 720_CR24 – volume: 25 start-page: 218 issue: 2 year: 2003 ident: 720_CR3 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1177153 – ident: 720_CR52 doi: 10.1007/978-3-642-33765-9_45 – ident: 720_CR19 doi: 10.1145/1390156.1390204 – volume: 30 start-page: 380 year: 2012 ident: 720_CR38 publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2011.08.002 – ident: 720_CR34 – ident: 720_CR35 doi: 10.1007/978-3-540-75690-3_16 – ident: 720_CR66 doi: 10.1109/CVPR.2009.5206850 – ident: 720_CR50 doi: 10.1109/FG.2011.5771443 – ident: 720_CR64 doi: 10.1109/ICCV.2007.4409067 – volume: 24 start-page: 748 issue: 6 year: 2009 ident: 720_CR41 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2002.1008382 – ident: 720_CR57 doi: 10.1109/CVPR.2013.53 – volume: 20 start-page: 303 year: 1999 ident: 720_CR15 publication-title: The SIAM Journal on Matrix Analysis and Applications doi: 10.1137/S0895479895290954 – ident: 720_CR4 doi: 10.1109/CVPR.2006.50 – volume: 27 start-page: 579 year: 1973 ident: 720_CR7 publication-title: Mathematics of Computations doi: 10.2307/2005662 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 720_CR46 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2002.1017623 – ident: 720_CR47 doi: 10.1007/978-3-540-69905-7_27 – ident: 720_CR20 doi: 10.1007/978-3-642-33709-3_50 – ident: 720_CR40 doi: 10.1109/CVPR.2010.5540131 – volume: 29 start-page: 1005 issue: 6 year: 2007 ident: 720_CR28 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.1037 – ident: 720_CR13 doi: 10.1145/1553374.1553411 – ident: 720_CR58 – ident: 720_CR25 doi: 10.1109/AFGR.2008.4813410 – ident: 720_CR22 doi: 10.1109/ICCV.2007.4408858 – ident: 720_CR67 – volume: 31 start-page: 884 issue: 5 year: 2009 ident: 720_CR6 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.135 – volume: 27 start-page: 684 issue: 5 year: 2005 ident: 720_CR31 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.92 – volume: 99 start-page: 303 issue: 3 year: 2005 ident: 720_CR32 publication-title: CVIU – volume-title: Statistical Learning Theory year: 1998 ident: 720_CR62 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 720_CR36 publication-title: IJCV doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 720_CR63 – volume-title: Principal component analysis year: 1986 ident: 720_CR27 doi: 10.1007/978-1-4757-1904-8 – volume: 290 start-page: 2319 year: 2000 ident: 720_CR60 publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 79 start-page: 151 issue: 1 year: 2010 ident: 720_CR5 publication-title: Machine Learning doi: 10.1007/s10994-009-5152-4 – ident: 720_CR45 doi: 10.1109/CVPR.2007.382969 – ident: 720_CR11 doi: 10.1007/978-3-642-33783-3_55 – ident: 720_CR16 – ident: 720_CR2 doi: 10.1109/CVPR.2005.151 – volume: 290 start-page: 2323 year: 2000 ident: 720_CR53 publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: 720_CR48 doi: 10.1109/CVPR.2010.5539980 – ident: 720_CR70 – ident: 720_CR37 doi: 10.1109/ICCV.2011.6126464 – ident: 720_CR9 – ident: 720_CR55 doi: 10.1007/978-3-642-01793-3_21 – ident: 720_CR29 doi: 10.1109/CVPR.2011.5995702 – ident: 720_CR43 doi: 10.1109/CVPR.2013.95 – ident: 720_CR1 – ident: 720_CR8 doi: 10.1145/311535.311556 – volume: 34 start-page: 465 issue: 3 year: 2012 ident: 720_CR14 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.114 – volume: 33 start-page: 838 issue: 4 year: 2011 ident: 720_CR44 publication-title: The IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.203 – volume: 35 start-page: 399 issue: 4 year: 2003 ident: 720_CR69 publication-title: ACM Computing Surveys doi: 10.1145/954339.954342 |
SSID | ssj0002823 |
Score | 2.2792673 |
Snippet | Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises... Issue Title: Special Issue : Domain Adaptation for Vision Applications Many classification algorithms see a reduction in performance when tested on data with... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110 |
SubjectTerms | Adaptation Algorithms Analysis Artificial Intelligence Biometry Classification Computational linguistics Computer Imaging Computer Science Discriminant analysis Facial recognition technology Geometry Illumination Image Processing and Computer Vision Language processing Manifolds Mathematical analysis Mathematical models Natural language interfaces Pattern Recognition Pattern Recognition and Graphics Studies Tensors Training Vision |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1raxQxMGj94hetL1xbJYogKMHbJPv6VA7rWYWKVE_6LeRZCmf27N5Bf35ndrPXh1hYWNg8N5lnZjJDyFtT80Z63jDP_YTJ2hnAOW2YBOQyZa2t6EMKHX4vD-by23FxnA7cuuRWOdLEnlC71uIZ-UfAzBy0NWBIe8u_DLNGoXU1pdC4S-7lwGkQzuvZlw0lBnViSCUPKlJRNvlo1eyvzkED9CSSbFJB8fk1vnSTOv9jJu25z2ybPEhiI50O-_yI3PHxMXmYREiaELSDT2OWhvHbE_Ib050t2P4Z0jW63_7Rp5FOnV4ORngKz48h7Cs91PE0tAvXURBl6TxaFB4xhwSMMdPW06PR3aiNT8l89vnXpwOWsikwKzlfsULmVohCVpPS5p47X-W6DIHnxlp4uSCEq4SpC-7LipegCobgikYUthIa5cBnZCu20T8nFLQsDnKuq4WrpZbB5L6qgm6E1NC1NxmZjGupbAo1jrNdqMsgybj8CpZf4fKr84y83zRZDnE2bqv8BjdIYfyKiA4yJ3rdderrzyM1FXi3FhTLJiPvUqXQwuBWp_sG8AsY8upazd1xo1XC4E5dwltGXm-KAffQoKKjb9dYpxdPQcfPyIcRQK508b_5v7h9wB1yn_eAiW6Gu2Rrdbb2L0H0WZlXPXxfAHKh_gA priority: 102 providerName: ProQuest |
Title | Model-Driven Domain Adaptation on Product Manifolds for Unconstrained Face Recognition |
URI | https://link.springer.com/article/10.1007/s11263-014-0720-x https://www.proquest.com/docview/1531888181 https://www.proquest.com/docview/1551059837 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_0-sUv1idGa1lFEJSU20eSzcdo71qVlnL2pH5a9pVSPJPS3IH41zub7F5tfUAhsLCZ7Cs7s79hZmcQeqUFLbmjZeqoG6dcWA08p3TKgbl0LpRhfUihg8N8f84_nmQn4R53F73do0myl9SXl90I9TZHwtNxAToPAMeNjIhSjNBGtff102QtgEGLGDLIA1WWlyQaM__WyJXj6LpQ_sM62h860010HIc7-Jp821kt9Y75eS2S4w3ncw_dDSAUV8OuuY9uueYB2gyAFAd276Aq5nyIdQ_RF588bZHuXngpiXfb7-qswZVV54NJH8NzNASRxQeqOavbhe0wAGM8b4yHoj4jBfQxVcbhWXReaptHaD6dHL_fT0NuhtRwSpdpxolhLOPFODfEUesKovK6pkQbA4WtGbMF0yKjLi9oDoplXdusZJkpmPKo8jEaNW3jniAMOhsF1GwFs4IrXmviiqJWJeMKmnY6QeP4i6QJgcv9aBfyMuSyX0oJSyn9UsofCXqz_uR8iNrxP-KX_r9LHw2j8e42p2rVdfLD55msmL-pC2pqmaDXgahuoXOjwu0FmIIPoHWFcivuHxnkQSfhXCFCADgiCXqxfg2c7M0zqnHtytP0YFewIkFv45b5rYl_jf_pjaifoTu033Peh3ELjZYXK_cccNVSb6PbYrq3HbgJyneTw6MZ1M5p9Qvi3ht3 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DS6B3jhG1EYYBAICRTR2M7XA0KFrmrZWk1lRXszju2gSSUpSyvGn-I3cpePjoHY26RIkWLHds73mfPdATxPY55IxxPPcdfzZGxTpDmdehKJKw1jbUSVUmgyDUdz-fEoONqCX20sDB2rbHlixahtYegf-RukTB-tNRRI75bfPaoaRd7VtoRGjRZ77ucPNNnKt-MB7u8Lzoe7hx9GXlNVwDOS85UXSN8IEcioFxrfcesiX4dZxv3UGLzZTAgbiTQOuAsjHqJJlGU2SERgIqFJH8Jxr8C2pIjWDmy_350ezDa8Hw2Yung9GmVBmPitH7UK1vM5-Ux96fUibD49Jwn_lgf_OGYreTe8CdcbRZX1a8y6BVsuvw03GqWVNSyhxEdtXYj22R34TAXWFt7ghDgpGxTf9HHO-lYva7c_w-ugTjTLJjo_zoqFLRkqz2yeG1JXqWoFzjHUxrFZe8CpyO_C_FIgfQ86eZG7-8DQruOoWdtY2FhqmaW-i6JMJ0JqHNqlXei1sFSmSW5Oq12os7TMBH6F4FcEfnXahVebV5Z1Zo-LOj-jDVKUMSOnIzlf9bos1fjTTPUFRfOiKZt04WXTKStwcqObCAf8BEqyda7nTrvRquEZpTrD8C483TQjtZMLR-euWFOfSiGORdSF1y2C_DHE_9b_4OIJn8DV0eFkX-2Pp3sP4RqvkJQOOe5AZ3Wydo9Q8VqljxtsZ_DlsgnsN8GzO7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDQrzwjQgMMAiEBIrW2E6cPCBUUcrK2DQNOu3NOP5Ak0pSllaMv8av4y6JOwZib5MiRXIcOz7fZ-58R8izMmeFcKyIHXODWOS2BJrTZSyAuMos14a3KYV2drOtqfhwmB6ukV_hLAyGVQae2DJqWxv8R74JlJmAtQYCadP3YRF7o_Gb-fcYK0ihpzWU0-hQZNv9_AHmW_N6MoK9fs7Y-N3nt1txX2EgNoKxRZyKxHCeCjnITOKYdTLRmfcsKY2Bm_WcW8nLPGUukywD88h7mxY8NZJr1I1g3EvksoQFoeGXj9-vpACYMl0ZezDP0qxIgke1PbaXMPSeJiIeSHh8ckYm_i0Z_nHRtpJvfINc61VWOuxw7CZZc9Utcr1XX2nPHBpoChUiQtttcoCl1mbx6Bh5Kh3V3_RRRYdWz7sAAArXXpdylu7o6sjXM9tQUKPptDKouGL9CphjrI2j-yHUqa7ukOmFwPkuWa_qyt0jFCw8Bjq2zbnNhRa-TJyUXhdcaBjalREZBFgq06c5x6-dqdMEzQh-BeBXCH51EpGXq1fmXY6P8zo_xQ1SmDujQiz8qpdNoyaf9tWQ47leMGqLiLzoO_kaJje6P-sAS8B0W2d6boSNVj33aNQprkfkyeox0D06c3Tl6iX2aVXjnMuIvAoI8scQ__v---dP-JhcAbJSHye72w_IVdbiKEY7bpD1xfHSPQQNbFE-alGdki8XTVu_ATN4PoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Driven+Domain+Adaptation+on+Product+Manifolds+for+Unconstrained+Face+Recognition&rft.jtitle=International+journal+of+computer+vision&rft.au=Ho%2C+Huy+Tho&rft.au=Gopalan%2C+Raghuraman&rft.date=2014-08-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=109&rft.issue=1-2&rft.spage=110&rft.epage=125&rft_id=info:doi/10.1007%2Fs11263-014-0720-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_014_0720_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |