Characterizations and Quantitative Estimation of Alkali-Activated Binder Paste from Microstructures

Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed know...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of concrete structures and materials Vol. 8; no. 3; pp. 213 - 228
Main Authors Kar, Arkamitra, Ray, Indrajit, Halabe, Udaya B., Unnikrishnan, Avinash, Dawson-Andoh, Ben
Format Journal Article
LanguageEnglish
Published Seoul 한국콘크리트학회 01.09.2014
Korea Concrete Institute
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1976-0485
2234-1315
DOI10.1007/s40069-014-0069-0

Cover

Loading…
Abstract Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N–A–S–H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N–A–S–H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N–A–S–H and CSH(S) were in close agreement with each other. The R 2 values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders.
AbstractList Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due toits low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In orderto comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties areimportant. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as thosecontaining fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectramicroanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodiumaluminosilicate (N–A–S–H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al andCa/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine theunique chemical compositions of the N–A–S–H and CSH(S) for ten different AAB at three different curing temperatures using aconstrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that thetheoretical and experimental quantities of N–A–S–H and CSH(S) were in close agreement with each other. The R2 values were0.99 for both alkali-activated fly ash and alkali-activated slag binders. KCI Citation Count: 6
Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N–A–S–H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N–A–S–H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N–A–S–H and CSH(S) were in close agreement with each other. The R 2 values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders.
Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N-A-S-H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N-A-S-H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N-A-S-H and CSH(S) were in close agreement with each other. The R ^sup 2^ values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders.
Author Ben Dawson-Andoh
Indrajit Ray
Arkamitra Kar
Udaya B. Halabe
Avinash Unnikrishnan
Author_xml – sequence: 1
  givenname: Arkamitra
  surname: Kar
  fullname: Kar, Arkamitra
  email: akar1@mix.wvu.edu, arkamitra1@gmail.com
  organization: Civil and Environmental Engineering, West Virginia University
– sequence: 2
  givenname: Indrajit
  surname: Ray
  fullname: Ray, Indrajit
  organization: Civil Engineering, Purdue University Calumet
– sequence: 3
  givenname: Udaya B.
  surname: Halabe
  fullname: Halabe, Udaya B.
  organization: Civil and Environmental Engineering, West Virginia University
– sequence: 4
  givenname: Avinash
  surname: Unnikrishnan
  fullname: Unnikrishnan, Avinash
  organization: Civil and Environmental Engineering, West Virginia University
– sequence: 5
  givenname: Ben
  surname: Dawson-Andoh
  fullname: Dawson-Andoh, Ben
  organization: Wood Science and Technology, Division of Forestry and Natural Resources, West Virginia University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001926934$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UU1vEzEQtVCRCKU_gJslhMRlYez1x_oYQiiVCgVUzpbjtYub1G5tLxL99TjZCiEOncuMZt6bjzfP0VFM0SH0ksBbAiDfFQYgVAeEdXPwBC0o7VlHesKP0IIoKTpgA3-GTkq5hmackwHEAtnVT5ONrS6He1NDigWbOOJvk4k11Jb55fC61HBzKOLk8XK3NbvQLW2rmepG_D7E0WX81ZTqsM_pBn8ONqdS82TrlF15gZ56syvu5MEfox8f15erT935xenZanneWUZp7ZigUllKLAHpjAK2gcEqxakUGyGV9APbGxUD456PI2ykoN7ZwRvFlGf9MXoz943Z660NOplw8FdJb7Nefr8804IzJqFBX83Q25zuJleqvk5Tjm07TaQkwBX0oqHkjNqfU7Lz2h40SbFmE3aagN7rr2f9ddNfz0Fjkv-Yt7lpmH8_yqEzpzRsvHL5n50eIb1-uHlqA9wYzN9JXy4-rIHy9mpG-z_a3aT1
CitedBy_id crossref_primary_10_1007_s40069_015_0104_9
crossref_primary_10_1186_s40069_019_0389_1
crossref_primary_10_1007_s40996_023_01341_1
crossref_primary_10_1016_j_conbuildmat_2023_130773
crossref_primary_10_1007_s40891_021_00341_3
crossref_primary_10_1007_s10706_018_0662_0
crossref_primary_10_1007_s40069_016_0129_8
crossref_primary_10_1007_s40030_019_00418_3
crossref_primary_10_12989_cac_2016_17_4_523
crossref_primary_10_1520_JTE20210054
crossref_primary_10_1007_s41062_018_0183_y
crossref_primary_10_1007_s41062_020_00336_5
crossref_primary_10_4236_ojcm_2016_64013
crossref_primary_10_1007_s40069_015_0111_x
crossref_primary_10_1016_j_rineng_2024_102079
crossref_primary_10_1016_j_compositesb_2017_02_011
crossref_primary_10_1080_19386362_2018_1464272
crossref_primary_10_1007_s10706_020_01461_9
crossref_primary_10_1007_s40891_020_00200_7
crossref_primary_10_1016_j_conbuildmat_2017_09_058
crossref_primary_10_1007_s41062_020_00441_5
crossref_primary_10_1016_j_jenvman_2021_113140
crossref_primary_10_3390_pr11051550
crossref_primary_10_1016_j_jobe_2021_102776
crossref_primary_10_1016_j_cscm_2022_e00915
crossref_primary_10_1061__ASCE_GM_1943_5622_0001871
Cites_doi 10.1016/S0008-8846(97)00040-9
10.1680/cc.25929
10.1007/s10853-011-5601-x
10.1007/BF01912193
10.1016/j.cemconres.2004.01.014
10.1016/j.cemconcomp.2011.09.008
10.1021/ie0494216
10.1016/S0008-8846(03)00064-4
10.1016/j.conbuildmat.2011.12.029
10.1007/s10853-008-3078-z
10.1021/ie0109410
10.1016/j.cemconres.2007.01.003
10.1007/s10853-006-0873-2
10.1002/0471787779
10.1016/S0167-577X(02)01009-1
10.1016/j.fuel.2006.04.006
10.4324/9780203390672
10.1533/9781845696382
ContentType Journal Article
Copyright The Author(s) 2014
Copyright_xml – notice: The Author(s) 2014
DBID DBRKI
TDB
C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s40069-014-0069-0
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Korean Citation Index
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-1315
EndPage 228
ExternalDocumentID oai_kci_go_kr_ARTI_654470
3973506531
10_1007_s40069_014_0069_0
NODE02505542
GroupedDBID 0R~
2VQ
4.4
5VS
8FE
8FG
9ZL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABJCF
ACACY
ACGFS
ACIWK
ACULB
ADBBV
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARCSS
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
D1I
DBRKI
EBLON
EBS
EJD
GROUPED_DOAJ
GW5
HCIFZ
IAO
ITC
JDI
KB.
KQ8
KVFHK
L6V
M7S
OK1
PDBOC
PHGZT
PIMPY
PROAC
PTHSS
RNS
SEG
SOJ
TDB
TUS
-A0
.UV
ADINQ
RSV
AASML
AAYXX
CITATION
PHGZM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACYCR
ID FETCH-LOGICAL-c422t-46279c21c107ea904b08c995276b6797f84444426845f5dd0b762fec8fa949f43
IEDL.DBID C24
ISSN 1976-0485
IngestDate Sun Mar 09 07:50:58 EDT 2025
Fri Jul 25 11:07:38 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Tue Jul 01 03:51:18 EDT 2025
Fri Feb 21 02:35:15 EST 2025
Thu Mar 13 19:39:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords alkali-activated binder
microstructure
optimization
characterization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-46279c21c107ea904b08c995276b6797f84444426845f5dd0b762fec8fa949f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
G704-SER000009553.2014.8.3.003
OpenAccessLink https://link.springer.com/10.1007/s40069-014-0069-0
PQID 1771059036
PQPubID 2034740
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_654470
proquest_journals_1771059036
crossref_citationtrail_10_1007_s40069_014_0069_0
crossref_primary_10_1007_s40069_014_0069_0
springer_journals_10_1007_s40069_014_0069_0
nurimedia_primary_NODE02505542
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle International journal of concrete structures and materials
PublicationTitleAbbrev Int J Concr Struct Mater
PublicationYear 2014
Publisher 한국콘크리트학회
Korea Concrete Institute
Springer Nature B.V
Publisher_xml – name: 한국콘크리트학회
– name: Korea Concrete Institute
– name: Springer Nature B.V
References Davidovits, J. (1982). Mineral polymers and methods of making them. US Patent 4,349,386.
Smith, J. W., & Comrie, D. C. (1988). Geopolymeric building materials in third world countries. In: J. Davidovits & J. Orlinski (Eds.), Proceedings of the 1st international conference of geopolymer’88, Vol. 1, Compiegne, France, 1–3 June, pp. 89–92.
ChenWBrouwersHJHThe hydration of slag, part 1: Reaction models for alkali-activated slagJournal Materials Science20074242844310.1007/s10853-006-0873-210.1007/s10853-006-0873-2
ShiCKrivenkoPRoyMAlkali-activated cements and concretes2006LondonTaylor & Francis10.4324/978020339067210.4324/9780203390672
FengXGarbocziEJBentzDPStutzmanPEMasonTOEstimation of the degree of hydration of blended cement pastes by a scanning electron microscopy point-count procedureCement and Concrete Research200434101787179310.1016/j.cemconres.2004.01.01410.1016/j.cemconres.2004.01.014
Van Jaarsveld, J. G. S. (2000). The physical and chemical characterisation of fly ash based geopolymers. PhD Thesis, Department of Chemical Engineering, University of Melbourne, Australia.
Kamhangrittirong, P., Suwanvitaya, P., Suwanvitaya, P., & Chindaprasirt, P. (2007). Green binder technology development using fly ash based geopolymer. JSPS-DOST international symposium on environmental engineering, symposium on harmonizing infrastructure development with the environment, Phillipines.
Fernandez-JimenezAde la TorreAGPalomoALopez-OlmoGAlonsoMMArandaMAGQuantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reactionFuel2006851960196910.1016/j.fuel.2006.04.00610.1016/j.fuel.2006.04.006
BazaaraMSSheraliHDShettyCMNonlinear programming: Theory and algorithms2006Hoboken, NJWiley10.1002/047178777910.1002/0471787779
Sakulich, A. R. (2009). Characterization of environmentally-friendly alkali activated slag cements and ancient building materials. Ph.D. Thesis, Drexel University, Philadelphia, PA.
Davidovits, J. (1983). Geopolymer chemistry and properties. Proceedings of geopolymer’88. Compiegne, France, 1–3, June 1988.
Skvara, F., Kopecky, L., Nemecek, J., & Bittnar, Z. (2006). Microstructure of geopolymer materials based on fly ash. Cermaics—Silikaty, 50, 208–215.
DuxsonPLukeyGCSeparovicFvan DeventerJSJEffect of alkali cations on aluminium incorporation in geopolymeric gelsIndustrial and Engineering Chemistry Research20054483283910.1021/ie049421610.1021/ie0494216
Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford.
KarAHalabeUBRayIUnnikrishnanANondestructive characterizations of alkali activated fly ash and/or slag concreteEuropean Scientific Journal20139245274
Kupwade-Patil, K., & Allouche, E. (2011). Effect of alkali silica reaction (ASR) in Geopolymer Concrete. World of Coal Ash (WOCA) conference, May 9–12, Devnver, CO, USA.
RosenthalREGAMS—A user guide2008Washington DCGams Development Corporation
ASTM C989. (2013). Standard specification for slag cement for use in concrete and mortars. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
KarARayIUnnikrishnanADavalosJFMicroanalysis and optimization-based estimation of C-SH contents of cementitious systems containing fly ash and silica fumeCement & Concrete Composites20123441942910.1016/j.cemconcomp.2011.09.00810.1016/j.cemconcomp.2011.09.008
Breck, D. W. (1974). Zeolite molecular sieves, structure, chemistry and use. New York, NY: Wiley.
FamyCBroughARTaylorHFWThe C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositionsCement and Concrete Research2003231389139810.1016/S0008-8846(03)00064-410.1016/S0008-8846(03)00064-4
Fernandez-JimenezAPuertasFAlkali-activated slag cements: Kinetic studiesCement and Concrete Research199727335936810.1016/S0008-8846(97)00040-910.1016/S0008-8846(97)00040-9
Provis, J. L., & van Deventer, J. S. J. (2009). Geopolymers: Structure, processing, properties and industrial applications. Oxford: Woodhead; Boca Raton, FL: CRC Press.
DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Materials Education19941691139
Drud, A. (2010). CONOPT user guide. Bagsvaerd, Denmark: ARKI Consulting and Development A/S. http://www.gams.com/dd/docs/solvers/conopt.pdf. Last Accessed 14th August 2013.
DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Thermal Analysis1991371633165610.1007/BF0191219310.1007/BF01912193
KarARayIUnnikrishnanADavalosJFEstimation of C-S-H and calcium hydroxide for cement pastes containing slag and silica fumeConstruction and Building Materials20123050551510.1016/j.conbuildmat.2011.12.02910.1016/j.conbuildmat.2011.12.029
MuzekMNZelicJJozicDMicrostructural characteristics of geopolymers based on alkali-activated fly ashChemical and Biochemical Engineering Quarterly20122628995
Rees, C., Lukey, G. C., & Van Deventer, J. S. J. (2004). The role of solid silicates on the formation of geopolymers derived from coal ash. International symposium of research students on material science and engineering, December 20–22, Chennai, India, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras.
De SilvaPSagoe-CrenstilKSirivivatnanonVKinetics of geopolymerization: Role of Al2O3 and SiO2Cement and Concrete Research20073751251810.1016/j.cemconres.2007.01.00310.1016/j.cemconres.2007.01.003
LeeWKWvan DeventerJSJEffects of anions on the formation of aluminosilicate gel in geopolymersIndustrial and Engineering Chemistry Research200241184550455810.1021/ie010941010.1021/ie0109410
Lloyd, R. R., Provis, J. L., & van Deventer, J. S. J. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science,44(2), 620–631.
ASTM C33 M-13. (2013). Standard specification for concrete aggregates. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
BarbosaVFFMackenzieKJDThaumaturgoCSynthesis and thermal behaviour of potassium sialate geopolymersMaterials Letters2000571477148210.1016/S0167-577X(02)01009-110.1016/S0167-577X(02)01009-1
Davidovits, J. (1988). Geopolymers of the first generation: SILIFACEProcess. In: J. Davidovits, & J. Orlinski (Eds.), Proceedings of the 1st international conference on geopolymer ’88, Vol. 1, Compiegne, France.
Davidovits, J. (1999). Geopolymeric reactions in the economic future of cements and concretes: world-wide mitigation of carbon dioxide emission. In: J. Davidovits, R. Davidovits, & C. James (Eds.), Proceedings of the 2nd international conference on geopolymer’99. Saint Qunentin, France, June 30–July 2, pp. 111–121.
Rees, C. A. (2007). Mechanisms and kinetics of gel formation in geopolymers. Ph.D. Thesis submitted to the Department of Chemical and Biomolecular Engineering, University of Melbourne.
ASTM 7777C618. (2013). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
Talling, B., & Brandstetr, J. (1995). Clinker-free concrete based on alkali activated slag. In S. L. Sarkar & S. N. Ghosh (Eds.), Progress in cement and concrete: Mineral admixtures in cement and concrete. New Delhi, India: Akademia Books International.
ASTM C494 Type F. (2013). Specification for chemical admixtures for concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
Smilauer, V., Hlavacek, P., Skvara, F., Sulc, R., Kopecky, L., & Nemecek, J. (2011). Micromechanical multiscale model for alkali activation of fly ash and metakaolin. Journal of Materials Science. doi:10.1007/s10853-011-5601-x.
69_CR25
X Feng (69_CR18) 2004; 34
69_CR21
69_CR41
69_CR40
69_CR2
69_CR1
C Famy (69_CR17) 2003; 23
A Fernandez-Jimenez (69_CR19) 2006; 85
P Duxson (69_CR16) 2005; 44
69_CR7
C Shi (69_CR33) 2006
69_CR9
69_CR4
P Silva De (69_CR14) 2007; 37
RE Rosenthal (69_CR31) 2008
69_CR3
69_CR29
69_CR28
69_CR15
69_CR37
69_CR36
69_CR13
69_CR35
69_CR34
69_CR10
69_CR32
69_CR30
MS Bazaara (69_CR6) 2006
A Kar (69_CR22) 2013; 9
A Kar (69_CR23) 2012; 30
VFF Barbosa (69_CR5) 2000; 57
J Davidovits (69_CR11) 1991; 37
MN Muzek (69_CR27) 2012; 26
WKW Lee (69_CR26) 2002; 41
W Chen (69_CR8) 2007; 42
J Davidovits (69_CR12) 1994; 16
A Kar (69_CR24) 2012; 34
69_CR39
A Fernandez-Jimenez (69_CR20) 1997; 27
69_CR38
References_xml – reference: Davidovits, J. (1999). Geopolymeric reactions in the economic future of cements and concretes: world-wide mitigation of carbon dioxide emission. In: J. Davidovits, R. Davidovits, & C. James (Eds.), Proceedings of the 2nd international conference on geopolymer’99. Saint Qunentin, France, June 30–July 2, pp. 111–121.
– reference: ChenWBrouwersHJHThe hydration of slag, part 1: Reaction models for alkali-activated slagJournal Materials Science20074242844310.1007/s10853-006-0873-210.1007/s10853-006-0873-2
– reference: DuxsonPLukeyGCSeparovicFvan DeventerJSJEffect of alkali cations on aluminium incorporation in geopolymeric gelsIndustrial and Engineering Chemistry Research20054483283910.1021/ie049421610.1021/ie0494216
– reference: ASTM C989. (2013). Standard specification for slag cement for use in concrete and mortars. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
– reference: Smilauer, V., Hlavacek, P., Skvara, F., Sulc, R., Kopecky, L., & Nemecek, J. (2011). Micromechanical multiscale model for alkali activation of fly ash and metakaolin. Journal of Materials Science. doi:10.1007/s10853-011-5601-x.
– reference: ASTM C494 Type F. (2013). Specification for chemical admixtures for concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
– reference: KarARayIUnnikrishnanADavalosJFEstimation of C-S-H and calcium hydroxide for cement pastes containing slag and silica fumeConstruction and Building Materials20123050551510.1016/j.conbuildmat.2011.12.02910.1016/j.conbuildmat.2011.12.029
– reference: Talling, B., & Brandstetr, J. (1995). Clinker-free concrete based on alkali activated slag. In S. L. Sarkar & S. N. Ghosh (Eds.), Progress in cement and concrete: Mineral admixtures in cement and concrete. New Delhi, India: Akademia Books International.
– reference: ASTM C33 M-13. (2013). Standard specification for concrete aggregates. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
– reference: Davidovits, J. (1983). Geopolymer chemistry and properties. Proceedings of geopolymer’88. Compiegne, France, 1–3, June 1988.
– reference: Skvara, F., Kopecky, L., Nemecek, J., & Bittnar, Z. (2006). Microstructure of geopolymer materials based on fly ash. Cermaics—Silikaty, 50, 208–215.
– reference: KarARayIUnnikrishnanADavalosJFMicroanalysis and optimization-based estimation of C-SH contents of cementitious systems containing fly ash and silica fumeCement & Concrete Composites20123441942910.1016/j.cemconcomp.2011.09.00810.1016/j.cemconcomp.2011.09.008
– reference: Rees, C., Lukey, G. C., & Van Deventer, J. S. J. (2004). The role of solid silicates on the formation of geopolymers derived from coal ash. International symposium of research students on material science and engineering, December 20–22, Chennai, India, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras.
– reference: ShiCKrivenkoPRoyMAlkali-activated cements and concretes2006LondonTaylor & Francis10.4324/978020339067210.4324/9780203390672
– reference: DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Materials Education19941691139
– reference: DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Thermal Analysis1991371633165610.1007/BF0191219310.1007/BF01912193
– reference: RosenthalREGAMS—A user guide2008Washington DCGams Development Corporation
– reference: Sakulich, A. R. (2009). Characterization of environmentally-friendly alkali activated slag cements and ancient building materials. Ph.D. Thesis, Drexel University, Philadelphia, PA.
– reference: Rees, C. A. (2007). Mechanisms and kinetics of gel formation in geopolymers. Ph.D. Thesis submitted to the Department of Chemical and Biomolecular Engineering, University of Melbourne.
– reference: Van Jaarsveld, J. G. S. (2000). The physical and chemical characterisation of fly ash based geopolymers. PhD Thesis, Department of Chemical Engineering, University of Melbourne, Australia.
– reference: ASTM 7777C618. (2013). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials.
– reference: Davidovits, J. (1988). Geopolymers of the first generation: SILIFACEProcess. In: J. Davidovits, & J. Orlinski (Eds.), Proceedings of the 1st international conference on geopolymer ’88, Vol. 1, Compiegne, France.
– reference: Drud, A. (2010). CONOPT user guide. Bagsvaerd, Denmark: ARKI Consulting and Development A/S. http://www.gams.com/dd/docs/solvers/conopt.pdf. Last Accessed 14th August 2013.
– reference: Kupwade-Patil, K., & Allouche, E. (2011). Effect of alkali silica reaction (ASR) in Geopolymer Concrete. World of Coal Ash (WOCA) conference, May 9–12, Devnver, CO, USA.
– reference: KarAHalabeUBRayIUnnikrishnanANondestructive characterizations of alkali activated fly ash and/or slag concreteEuropean Scientific Journal20139245274
– reference: Fernandez-JimenezAde la TorreAGPalomoALopez-OlmoGAlonsoMMArandaMAGQuantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reactionFuel2006851960196910.1016/j.fuel.2006.04.00610.1016/j.fuel.2006.04.006
– reference: FamyCBroughARTaylorHFWThe C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositionsCement and Concrete Research2003231389139810.1016/S0008-8846(03)00064-410.1016/S0008-8846(03)00064-4
– reference: De SilvaPSagoe-CrenstilKSirivivatnanonVKinetics of geopolymerization: Role of Al2O3 and SiO2Cement and Concrete Research20073751251810.1016/j.cemconres.2007.01.00310.1016/j.cemconres.2007.01.003
– reference: Lloyd, R. R., Provis, J. L., & van Deventer, J. S. J. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science,44(2), 620–631.
– reference: Provis, J. L., & van Deventer, J. S. J. (2009). Geopolymers: Structure, processing, properties and industrial applications. Oxford: Woodhead; Boca Raton, FL: CRC Press.
– reference: Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford.
– reference: Breck, D. W. (1974). Zeolite molecular sieves, structure, chemistry and use. New York, NY: Wiley.
– reference: FengXGarbocziEJBentzDPStutzmanPEMasonTOEstimation of the degree of hydration of blended cement pastes by a scanning electron microscopy point-count procedureCement and Concrete Research200434101787179310.1016/j.cemconres.2004.01.01410.1016/j.cemconres.2004.01.014
– reference: Smith, J. W., & Comrie, D. C. (1988). Geopolymeric building materials in third world countries. In: J. Davidovits & J. Orlinski (Eds.), Proceedings of the 1st international conference of geopolymer’88, Vol. 1, Compiegne, France, 1–3 June, pp. 89–92.
– reference: Fernandez-JimenezAPuertasFAlkali-activated slag cements: Kinetic studiesCement and Concrete Research199727335936810.1016/S0008-8846(97)00040-910.1016/S0008-8846(97)00040-9
– reference: Kamhangrittirong, P., Suwanvitaya, P., Suwanvitaya, P., & Chindaprasirt, P. (2007). Green binder technology development using fly ash based geopolymer. JSPS-DOST international symposium on environmental engineering, symposium on harmonizing infrastructure development with the environment, Phillipines.
– reference: LeeWKWvan DeventerJSJEffects of anions on the formation of aluminosilicate gel in geopolymersIndustrial and Engineering Chemistry Research200241184550455810.1021/ie010941010.1021/ie0109410
– reference: BarbosaVFFMackenzieKJDThaumaturgoCSynthesis and thermal behaviour of potassium sialate geopolymersMaterials Letters2000571477148210.1016/S0167-577X(02)01009-110.1016/S0167-577X(02)01009-1
– reference: MuzekMNZelicJJozicDMicrostructural characteristics of geopolymers based on alkali-activated fly ashChemical and Biochemical Engineering Quarterly20122628995
– reference: BazaaraMSSheraliHDShettyCMNonlinear programming: Theory and algorithms2006Hoboken, NJWiley10.1002/047178777910.1002/0471787779
– reference: Davidovits, J. (1982). Mineral polymers and methods of making them. US Patent 4,349,386.
– ident: 69_CR37
– volume: 27
  start-page: 359
  issue: 3
  year: 1997
  ident: 69_CR20
  publication-title: Cement and Concrete Research
  doi: 10.1016/S0008-8846(97)00040-9
– ident: 69_CR39
– ident: 69_CR38
  doi: 10.1680/cc.25929
– ident: 69_CR35
  doi: 10.1007/s10853-011-5601-x
– volume: 37
  start-page: 1633
  year: 1991
  ident: 69_CR11
  publication-title: Journal of Thermal Analysis
  doi: 10.1007/BF01912193
– ident: 69_CR2
– ident: 69_CR10
– volume: 34
  start-page: 1787
  issue: 10
  year: 2004
  ident: 69_CR18
  publication-title: Cement and Concrete Research
  doi: 10.1016/j.cemconres.2004.01.014
– ident: 69_CR4
– volume: 34
  start-page: 419
  year: 2012
  ident: 69_CR24
  publication-title: Cement & Concrete Composites
  doi: 10.1016/j.cemconcomp.2011.09.008
– volume: 44
  start-page: 832
  year: 2005
  ident: 69_CR16
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie0494216
– ident: 69_CR9
– volume: 16
  start-page: 91
  year: 1994
  ident: 69_CR12
  publication-title: Journal of Materials Education
– volume: 23
  start-page: 1389
  year: 2003
  ident: 69_CR17
  publication-title: Cement and Concrete Research
  doi: 10.1016/S0008-8846(03)00064-4
– volume: 30
  start-page: 505
  year: 2012
  ident: 69_CR23
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2011.12.029
– ident: 69_CR13
– ident: 69_CR36
– volume: 9
  start-page: 52
  issue: 24
  year: 2013
  ident: 69_CR22
  publication-title: European Scientific Journal
– ident: 69_CR41
  doi: 10.1007/s10853-008-3078-z
– volume: 41
  start-page: 4550
  issue: 18
  year: 2002
  ident: 69_CR26
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie0109410
– ident: 69_CR7
– ident: 69_CR34
– ident: 69_CR1
– volume: 37
  start-page: 512
  year: 2007
  ident: 69_CR14
  publication-title: Cement and Concrete Research
  doi: 10.1016/j.cemconres.2007.01.003
– ident: 69_CR3
– volume: 42
  start-page: 428
  year: 2007
  ident: 69_CR8
  publication-title: Journal Materials Science
  doi: 10.1007/s10853-006-0873-2
– ident: 69_CR30
– ident: 69_CR15
– ident: 69_CR32
– ident: 69_CR25
– volume: 26
  start-page: 89
  issue: 2
  year: 2012
  ident: 69_CR27
  publication-title: Chemical and Biochemical Engineering Quarterly
– volume-title: Nonlinear programming: Theory and algorithms
  year: 2006
  ident: 69_CR6
  doi: 10.1002/0471787779
– volume: 57
  start-page: 1477
  year: 2000
  ident: 69_CR5
  publication-title: Materials Letters
  doi: 10.1016/S0167-577X(02)01009-1
– volume: 85
  start-page: 1960
  year: 2006
  ident: 69_CR19
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.04.006
– volume-title: GAMS—A user guide
  year: 2008
  ident: 69_CR31
– volume-title: Alkali-activated cements and concretes
  year: 2006
  ident: 69_CR33
  doi: 10.4324/9780203390672
– ident: 69_CR29
– ident: 69_CR21
– ident: 69_CR28
  doi: 10.1533/9781845696382
– ident: 69_CR40
SSID ssj0000551806
Score 2.0990522
Snippet Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and...
Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due toits low carbon dioxide emission and...
SourceID nrf
proquest
crossref
springer
nurimedia
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 213
SubjectTerms Building Materials
Engineering
Solid Mechanics
Structural Materials
토목공학
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7QE4ID7FllIZiRPIInHsOD6hbdmqIHUpiEq9WbFjV2irbNl2_39nEie0SDSHxFIcK_Ibj2dszxuA90qULhppeO5i4NI3BTeF1-iqOCfrKLQOFO98vCiPTuW3M3WWFtyu0rHKQSd2irpZeVoj_5RrTaYAKtzPl384ZY2i3dWUQmMLtlEFV2oC2_vzxcnPcZUlI8KxLsFmjvMuR3FVw9Ymxc9JIupFb1ryvnBnctpq13h_2G6IZx_BumOD_rNt2s1Gh0_hSTIj2azH_Rk8CO1zeHyLXPAF-IORizmFWrK6bdiPTd12gWWo5tgcB3gfu8hWkc0ulmiV85nvUp6Fhu0Tl-KandQoCowCUdgxnd_rOWc36Ki_hNPD-a-DI55SKnAvhbjmshTaeJF79PpCbTLpssobo4QuXamNjpWkiyhgVFRNkzlUljH4KtYIaJTFK5i0qza8BhZiWfqQ59opI70yLmDtvPKF9FkoXJhCNvSl9YlvnNJeXNiRKbnrfovdb_vCFD6Mn1z2ZBv3VX6HANml_22JIpue5yu7XFt0BL7aUkmpsc7eCN_Y4uL7l3ln-SkpprA7YGrT4L2yf0VtCh8HnG-9_t8f7dzf2Bt4JDpRI4nbhQliFd6iRXPt9pLY3gBZEfCc
  priority: 102
  providerName: ProQuest
Title Characterizations and Quantitative Estimation of Alkali-Activated Binder Paste from Microstructures
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02505542
https://link.springer.com/article/10.1007/s40069-014-0069-0
https://www.proquest.com/docview/1771059036
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001926934
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Concrete Structures and Materials, 2014, 8(3), 24, pp.213-228
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6x7QE4VOUlFkpkJE4gS4njR3zcbncpSF0KolJvVuzYCG2VRdvu_2fsPNQiqEQOjqVMrMjf2J6JPd8AvBNM2qC5poUNnnLXlFSXTqGrYi2vA1PKx3jns5U8veCfL8VlH8d9PZx2H7Yk00w9BrvxyKqLri-nXWUC-wJd90iYP-9DHDpCb1FUKadmgUstRQ0Vw27m31q5sx5N2i2WD9tdpNZHfO6YnX_slKYFaHkIB73lSGYd1E_ggW-fwuNbfILPwM1H-uU-upLUbUO-7uo2xZLhzEYWOKa7cEWyCWR2tUZDnM5cynLmG3Ic6RO35LxG9EmMPSFn8cheRzO7Q9_8OVwsF9_np7TPokAdZ-yGcsmUdqxw6Oj5Wufc5pXTWjAlrVRahYrHK7K-iCCaJrc4PwbvqlAjhoGXL2Cv3bT-JRAfpHS-KJQVmjuhrUfponIld7kvrZ9CPvSlcT3FeMx0cWVGcuTU_Qa733SVKbwfX_nV8WvcJ_wWATJr99NEVux4_7Ex661B2_-TkYJzhTLZCN_Y4urLySIZe4KzKRwNmJp-vF6bQqloaOJyPoUPA863Hv_ri179l_RreMSS5kUFPII9hM6_QZvmxmYwqZYfM9g_XqzOv2VJo2Mp51n6S_AbqZzvzA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xONAeUOlDXaDUldpLK6uJY8frQ1UtsGi3sFtagcTNxI5dVYuysMuq6p_qb-w4rwJSuZFDYimOlXg-j2fszDcAbwVLjVdc0dh4R7nNE6oSK9FVMYZnnknpQrzzaJwOTvmXM3G2BH-aWJjwW2WjE0tFnU9tWCP_GEsZTAFUuJ8vr2jIGhV2V5sUGhUsDt3vX-iyzT8N91G-7xg76J_sDWidVYBaztg15SmTyrLYouPjMhVxE3WtUoLJ1KRSSd_l4QgsKMKLPI8M6gvvbNdn-E2eJ9juMqyimaFwFK3u9sfH39tVnSgQnJUJPWOc5ykOD9FspYZ4PR6IgdF757Qq3JoMl4sZnteKReD1R3DcsnnvbNOWs9_BE1ivzVbSq3C2AUuueAqPb5AZPgO713I_16GdJCty8m2RFWUgG6pV0keFUsVKkqknvYsJegG0Z8sUay4nu4G7cUaOM4QeCYEvZBT-F6w4bhczN38Opw_S2S9gpZgW7iUQ59PUujiWRihuhTIOa8ddm3AbucS4DkRNX2pb85uHNBsXumVmLrtfY_frqtCB9-0jlxW5x32V36CA9MT-1IGSO1x_TPVkptHxGOpUcC6xzk4rvrbF8df9fmlpCs46sN3IVNfKYq7_QbsDHxo537j9vzfavL-x17A2OBkd6aPh-HALHrESdgF927CCcnOv0Jq6Njs1hAmcP_So-QsWRCtq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tncTHA-JTFMYwEryArCWOHccPCHVrq5WxUhCT9mZix0aoUzraVYh_jb-Oc77YkNjb8pBEimMld-f7sH2_A3gpWGq84orGxjvKbZFQlViJoYoxPPdMShfynY-m6cExf38iTjbgd5sLE7ZVtjqxUtTFwoY58t1YyuAKoMLd9c22iNlw_O7sBw0VpMJKa1tOoxaRQ_frJ4Zvq7eTIfL6FWPj0Zf9A9pUGKCWM3ZOecqksiy2GAS5XEXcRJlVSjCZmlQq6TMejoCIIrwoisig7vDOZj7H__M8wX43YUuiVcx6sLU3ms4-dzM8UQA7q4p7xmjzKQ4V0S6rhtw9HkCCMZLntL65ZBg3yyWeb5brgPGPgnLJ__1nybayhOO7cKdxYcmglrl7sOHK-3D7ArDhA7D7HQ50k-ZJ8rIgn9Z5WSW1oYolI1Qudd4kWXgyOJ1jREAHtiq35gqyF3Acl2SWoxiSkARDjsLewRrvdr10q4dwfC3EfgS9clG6x0CcT1Pr4lgaobgVyjhsHWc24TZyiXF9iFpaattgnYeSG6e6Q2muyK-R_Lq-6cPr7pWzGujjqsYvkEF6br_rAM8drt8Wer7UGIRMdCo4l9hmp2Nf1-P043BUeZ2Csz5stzzVjeJY6b9i3oc3LZ8vPP7fFz25urPncANHi_4wmR4-hVuskrogfNvQQ7a5Z-hYnZudRoIJfL3uQfMHKsMvlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizations+and+Quantitative+Estimation+of+Alkali-Activated+Binder+Paste+from+Microstructures&rft.jtitle=International+journal+of+concrete+structures+and+materials&rft.au=Kar%2C+Arkamitra&rft.au=Ray%2C+Indrajit&rft.au=Halabe%2C+Udaya+B.&rft.au=Unnikrishnan%2C+Avinash&rft.date=2014-09-01&rft.pub=Korea+Concrete+Institute&rft.issn=1976-0485&rft.eissn=2234-1315&rft.volume=8&rft.issue=3&rft.spage=213&rft.epage=228&rft_id=info:doi/10.1007%2Fs40069-014-0069-0&rft.externalDocID=10_1007_s40069_014_0069_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-0485&client=summon