Characterizations and Quantitative Estimation of Alkali-Activated Binder Paste from Microstructures
Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed know...
Saved in:
Published in | International journal of concrete structures and materials Vol. 8; no. 3; pp. 213 - 228 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
한국콘크리트학회
01.09.2014
Korea Concrete Institute Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1976-0485 2234-1315 |
DOI | 10.1007/s40069-014-0069-0 |
Cover
Loading…
Abstract | Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N–A–S–H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N–A–S–H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N–A–S–H and CSH(S) were in close agreement with each other. The
R
2
values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders. |
---|---|
AbstractList | Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due toits low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In orderto comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties areimportant. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as thosecontaining fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectramicroanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodiumaluminosilicate (N–A–S–H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al andCa/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine theunique chemical compositions of the N–A–S–H and CSH(S) for ten different AAB at three different curing temperatures using aconstrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that thetheoretical and experimental quantities of N–A–S–H and CSH(S) were in close agreement with each other. The R2 values were0.99 for both alkali-activated fly ash and alkali-activated slag binders. KCI Citation Count: 6 Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N–A–S–H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N–A–S–H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N–A–S–H and CSH(S) were in close agreement with each other. The R 2 values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders. Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N-A-S-H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N-A-S-H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N-A-S-H and CSH(S) were in close agreement with each other. The R ^sup 2^ values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders. |
Author | Ben Dawson-Andoh Indrajit Ray Arkamitra Kar Udaya B. Halabe Avinash Unnikrishnan |
Author_xml | – sequence: 1 givenname: Arkamitra surname: Kar fullname: Kar, Arkamitra email: akar1@mix.wvu.edu, arkamitra1@gmail.com organization: Civil and Environmental Engineering, West Virginia University – sequence: 2 givenname: Indrajit surname: Ray fullname: Ray, Indrajit organization: Civil Engineering, Purdue University Calumet – sequence: 3 givenname: Udaya B. surname: Halabe fullname: Halabe, Udaya B. organization: Civil and Environmental Engineering, West Virginia University – sequence: 4 givenname: Avinash surname: Unnikrishnan fullname: Unnikrishnan, Avinash organization: Civil and Environmental Engineering, West Virginia University – sequence: 5 givenname: Ben surname: Dawson-Andoh fullname: Dawson-Andoh, Ben organization: Wood Science and Technology, Division of Forestry and Natural Resources, West Virginia University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001926934$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UU1vEzEQtVCRCKU_gJslhMRlYez1x_oYQiiVCgVUzpbjtYub1G5tLxL99TjZCiEOncuMZt6bjzfP0VFM0SH0ksBbAiDfFQYgVAeEdXPwBC0o7VlHesKP0IIoKTpgA3-GTkq5hmackwHEAtnVT5ONrS6He1NDigWbOOJvk4k11Jb55fC61HBzKOLk8XK3NbvQLW2rmepG_D7E0WX81ZTqsM_pBn8ONqdS82TrlF15gZ56syvu5MEfox8f15erT935xenZanneWUZp7ZigUllKLAHpjAK2gcEqxakUGyGV9APbGxUD456PI2ykoN7ZwRvFlGf9MXoz943Z660NOplw8FdJb7Nefr8804IzJqFBX83Q25zuJleqvk5Tjm07TaQkwBX0oqHkjNqfU7Lz2h40SbFmE3aagN7rr2f9ddNfz0Fjkv-Yt7lpmH8_yqEzpzRsvHL5n50eIb1-uHlqA9wYzN9JXy4-rIHy9mpG-z_a3aT1 |
CitedBy_id | crossref_primary_10_1007_s40069_015_0104_9 crossref_primary_10_1186_s40069_019_0389_1 crossref_primary_10_1007_s40996_023_01341_1 crossref_primary_10_1016_j_conbuildmat_2023_130773 crossref_primary_10_1007_s40891_021_00341_3 crossref_primary_10_1007_s10706_018_0662_0 crossref_primary_10_1007_s40069_016_0129_8 crossref_primary_10_1007_s40030_019_00418_3 crossref_primary_10_12989_cac_2016_17_4_523 crossref_primary_10_1520_JTE20210054 crossref_primary_10_1007_s41062_018_0183_y crossref_primary_10_1007_s41062_020_00336_5 crossref_primary_10_4236_ojcm_2016_64013 crossref_primary_10_1007_s40069_015_0111_x crossref_primary_10_1016_j_rineng_2024_102079 crossref_primary_10_1016_j_compositesb_2017_02_011 crossref_primary_10_1080_19386362_2018_1464272 crossref_primary_10_1007_s10706_020_01461_9 crossref_primary_10_1007_s40891_020_00200_7 crossref_primary_10_1016_j_conbuildmat_2017_09_058 crossref_primary_10_1007_s41062_020_00441_5 crossref_primary_10_1016_j_jenvman_2021_113140 crossref_primary_10_3390_pr11051550 crossref_primary_10_1016_j_jobe_2021_102776 crossref_primary_10_1016_j_cscm_2022_e00915 crossref_primary_10_1061__ASCE_GM_1943_5622_0001871 |
Cites_doi | 10.1016/S0008-8846(97)00040-9 10.1680/cc.25929 10.1007/s10853-011-5601-x 10.1007/BF01912193 10.1016/j.cemconres.2004.01.014 10.1016/j.cemconcomp.2011.09.008 10.1021/ie0494216 10.1016/S0008-8846(03)00064-4 10.1016/j.conbuildmat.2011.12.029 10.1007/s10853-008-3078-z 10.1021/ie0109410 10.1016/j.cemconres.2007.01.003 10.1007/s10853-006-0873-2 10.1002/0471787779 10.1016/S0167-577X(02)01009-1 10.1016/j.fuel.2006.04.006 10.4324/9780203390672 10.1533/9781845696382 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 |
Copyright_xml | – notice: The Author(s) 2014 |
DBID | DBRKI TDB C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ACYCR |
DOI | 10.1007/s40069-014-0069-0 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Korean Citation Index |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2234-1315 |
EndPage | 228 |
ExternalDocumentID | oai_kci_go_kr_ARTI_654470 3973506531 10_1007_s40069_014_0069_0 NODE02505542 |
GroupedDBID | 0R~ 2VQ 4.4 5VS 8FE 8FG 9ZL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABJCF ACACY ACGFS ACIWK ACULB ADBBV ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARCSS BAPOH BCNDV BENPR BGLVJ C24 C6C CCPQU D1I DBRKI EBLON EBS EJD GROUPED_DOAJ GW5 HCIFZ IAO ITC JDI KB. KQ8 KVFHK L6V M7S OK1 PDBOC PHGZT PIMPY PROAC PTHSS RNS SEG SOJ TDB TUS -A0 .UV ADINQ RSV AASML AAYXX CITATION PHGZM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACYCR |
ID | FETCH-LOGICAL-c422t-46279c21c107ea904b08c995276b6797f84444426845f5dd0b762fec8fa949f43 |
IEDL.DBID | C24 |
ISSN | 1976-0485 |
IngestDate | Sun Mar 09 07:50:58 EDT 2025 Fri Jul 25 11:07:38 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Tue Jul 01 03:51:18 EDT 2025 Fri Feb 21 02:35:15 EST 2025 Thu Mar 13 19:39:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | alkali-activated binder microstructure optimization characterization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-46279c21c107ea904b08c995276b6797f84444426845f5dd0b762fec8fa949f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 G704-SER000009553.2014.8.3.003 |
OpenAccessLink | https://link.springer.com/10.1007/s40069-014-0069-0 |
PQID | 1771059036 |
PQPubID | 2034740 |
PageCount | 16 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_654470 proquest_journals_1771059036 crossref_citationtrail_10_1007_s40069_014_0069_0 crossref_primary_10_1007_s40069_014_0069_0 springer_journals_10_1007_s40069_014_0069_0 nurimedia_primary_NODE02505542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | International journal of concrete structures and materials |
PublicationTitleAbbrev | Int J Concr Struct Mater |
PublicationYear | 2014 |
Publisher | 한국콘크리트학회 Korea Concrete Institute Springer Nature B.V |
Publisher_xml | – name: 한국콘크리트학회 – name: Korea Concrete Institute – name: Springer Nature B.V |
References | Davidovits, J. (1982). Mineral polymers and methods of making them. US Patent 4,349,386. Smith, J. W., & Comrie, D. C. (1988). Geopolymeric building materials in third world countries. In: J. Davidovits & J. Orlinski (Eds.), Proceedings of the 1st international conference of geopolymer’88, Vol. 1, Compiegne, France, 1–3 June, pp. 89–92. ChenWBrouwersHJHThe hydration of slag, part 1: Reaction models for alkali-activated slagJournal Materials Science20074242844310.1007/s10853-006-0873-210.1007/s10853-006-0873-2 ShiCKrivenkoPRoyMAlkali-activated cements and concretes2006LondonTaylor & Francis10.4324/978020339067210.4324/9780203390672 FengXGarbocziEJBentzDPStutzmanPEMasonTOEstimation of the degree of hydration of blended cement pastes by a scanning electron microscopy point-count procedureCement and Concrete Research200434101787179310.1016/j.cemconres.2004.01.01410.1016/j.cemconres.2004.01.014 Van Jaarsveld, J. G. S. (2000). The physical and chemical characterisation of fly ash based geopolymers. PhD Thesis, Department of Chemical Engineering, University of Melbourne, Australia. Kamhangrittirong, P., Suwanvitaya, P., Suwanvitaya, P., & Chindaprasirt, P. (2007). Green binder technology development using fly ash based geopolymer. JSPS-DOST international symposium on environmental engineering, symposium on harmonizing infrastructure development with the environment, Phillipines. Fernandez-JimenezAde la TorreAGPalomoALopez-OlmoGAlonsoMMArandaMAGQuantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reactionFuel2006851960196910.1016/j.fuel.2006.04.00610.1016/j.fuel.2006.04.006 BazaaraMSSheraliHDShettyCMNonlinear programming: Theory and algorithms2006Hoboken, NJWiley10.1002/047178777910.1002/0471787779 Sakulich, A. R. (2009). Characterization of environmentally-friendly alkali activated slag cements and ancient building materials. Ph.D. Thesis, Drexel University, Philadelphia, PA. Davidovits, J. (1983). Geopolymer chemistry and properties. Proceedings of geopolymer’88. Compiegne, France, 1–3, June 1988. Skvara, F., Kopecky, L., Nemecek, J., & Bittnar, Z. (2006). Microstructure of geopolymer materials based on fly ash. Cermaics—Silikaty, 50, 208–215. DuxsonPLukeyGCSeparovicFvan DeventerJSJEffect of alkali cations on aluminium incorporation in geopolymeric gelsIndustrial and Engineering Chemistry Research20054483283910.1021/ie049421610.1021/ie0494216 Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford. KarAHalabeUBRayIUnnikrishnanANondestructive characterizations of alkali activated fly ash and/or slag concreteEuropean Scientific Journal20139245274 Kupwade-Patil, K., & Allouche, E. (2011). Effect of alkali silica reaction (ASR) in Geopolymer Concrete. World of Coal Ash (WOCA) conference, May 9–12, Devnver, CO, USA. RosenthalREGAMS—A user guide2008Washington DCGams Development Corporation ASTM C989. (2013). Standard specification for slag cement for use in concrete and mortars. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. KarARayIUnnikrishnanADavalosJFMicroanalysis and optimization-based estimation of C-SH contents of cementitious systems containing fly ash and silica fumeCement & Concrete Composites20123441942910.1016/j.cemconcomp.2011.09.00810.1016/j.cemconcomp.2011.09.008 Breck, D. W. (1974). Zeolite molecular sieves, structure, chemistry and use. New York, NY: Wiley. FamyCBroughARTaylorHFWThe C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositionsCement and Concrete Research2003231389139810.1016/S0008-8846(03)00064-410.1016/S0008-8846(03)00064-4 Fernandez-JimenezAPuertasFAlkali-activated slag cements: Kinetic studiesCement and Concrete Research199727335936810.1016/S0008-8846(97)00040-910.1016/S0008-8846(97)00040-9 Provis, J. L., & van Deventer, J. S. J. (2009). Geopolymers: Structure, processing, properties and industrial applications. Oxford: Woodhead; Boca Raton, FL: CRC Press. DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Materials Education19941691139 Drud, A. (2010). CONOPT user guide. Bagsvaerd, Denmark: ARKI Consulting and Development A/S. http://www.gams.com/dd/docs/solvers/conopt.pdf. Last Accessed 14th August 2013. DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Thermal Analysis1991371633165610.1007/BF0191219310.1007/BF01912193 KarARayIUnnikrishnanADavalosJFEstimation of C-S-H and calcium hydroxide for cement pastes containing slag and silica fumeConstruction and Building Materials20123050551510.1016/j.conbuildmat.2011.12.02910.1016/j.conbuildmat.2011.12.029 MuzekMNZelicJJozicDMicrostructural characteristics of geopolymers based on alkali-activated fly ashChemical and Biochemical Engineering Quarterly20122628995 Rees, C., Lukey, G. C., & Van Deventer, J. S. J. (2004). The role of solid silicates on the formation of geopolymers derived from coal ash. International symposium of research students on material science and engineering, December 20–22, Chennai, India, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras. De SilvaPSagoe-CrenstilKSirivivatnanonVKinetics of geopolymerization: Role of Al2O3 and SiO2Cement and Concrete Research20073751251810.1016/j.cemconres.2007.01.00310.1016/j.cemconres.2007.01.003 LeeWKWvan DeventerJSJEffects of anions on the formation of aluminosilicate gel in geopolymersIndustrial and Engineering Chemistry Research200241184550455810.1021/ie010941010.1021/ie0109410 Lloyd, R. R., Provis, J. L., & van Deventer, J. S. J. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science,44(2), 620–631. ASTM C33 M-13. (2013). Standard specification for concrete aggregates. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. BarbosaVFFMackenzieKJDThaumaturgoCSynthesis and thermal behaviour of potassium sialate geopolymersMaterials Letters2000571477148210.1016/S0167-577X(02)01009-110.1016/S0167-577X(02)01009-1 Davidovits, J. (1988). Geopolymers of the first generation: SILIFACEProcess. In: J. Davidovits, & J. Orlinski (Eds.), Proceedings of the 1st international conference on geopolymer ’88, Vol. 1, Compiegne, France. Davidovits, J. (1999). Geopolymeric reactions in the economic future of cements and concretes: world-wide mitigation of carbon dioxide emission. In: J. Davidovits, R. Davidovits, & C. James (Eds.), Proceedings of the 2nd international conference on geopolymer’99. Saint Qunentin, France, June 30–July 2, pp. 111–121. Rees, C. A. (2007). Mechanisms and kinetics of gel formation in geopolymers. Ph.D. Thesis submitted to the Department of Chemical and Biomolecular Engineering, University of Melbourne. ASTM 7777C618. (2013). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. Talling, B., & Brandstetr, J. (1995). Clinker-free concrete based on alkali activated slag. In S. L. Sarkar & S. N. Ghosh (Eds.), Progress in cement and concrete: Mineral admixtures in cement and concrete. New Delhi, India: Akademia Books International. ASTM C494 Type F. (2013). Specification for chemical admixtures for concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. Smilauer, V., Hlavacek, P., Skvara, F., Sulc, R., Kopecky, L., & Nemecek, J. (2011). Micromechanical multiscale model for alkali activation of fly ash and metakaolin. Journal of Materials Science. doi:10.1007/s10853-011-5601-x. 69_CR25 X Feng (69_CR18) 2004; 34 69_CR21 69_CR41 69_CR40 69_CR2 69_CR1 C Famy (69_CR17) 2003; 23 A Fernandez-Jimenez (69_CR19) 2006; 85 P Duxson (69_CR16) 2005; 44 69_CR7 C Shi (69_CR33) 2006 69_CR9 69_CR4 P Silva De (69_CR14) 2007; 37 RE Rosenthal (69_CR31) 2008 69_CR3 69_CR29 69_CR28 69_CR15 69_CR37 69_CR36 69_CR13 69_CR35 69_CR34 69_CR10 69_CR32 69_CR30 MS Bazaara (69_CR6) 2006 A Kar (69_CR22) 2013; 9 A Kar (69_CR23) 2012; 30 VFF Barbosa (69_CR5) 2000; 57 J Davidovits (69_CR11) 1991; 37 MN Muzek (69_CR27) 2012; 26 WKW Lee (69_CR26) 2002; 41 W Chen (69_CR8) 2007; 42 J Davidovits (69_CR12) 1994; 16 A Kar (69_CR24) 2012; 34 69_CR39 A Fernandez-Jimenez (69_CR20) 1997; 27 69_CR38 |
References_xml | – reference: Davidovits, J. (1999). Geopolymeric reactions in the economic future of cements and concretes: world-wide mitigation of carbon dioxide emission. In: J. Davidovits, R. Davidovits, & C. James (Eds.), Proceedings of the 2nd international conference on geopolymer’99. Saint Qunentin, France, June 30–July 2, pp. 111–121. – reference: ChenWBrouwersHJHThe hydration of slag, part 1: Reaction models for alkali-activated slagJournal Materials Science20074242844310.1007/s10853-006-0873-210.1007/s10853-006-0873-2 – reference: DuxsonPLukeyGCSeparovicFvan DeventerJSJEffect of alkali cations on aluminium incorporation in geopolymeric gelsIndustrial and Engineering Chemistry Research20054483283910.1021/ie049421610.1021/ie0494216 – reference: ASTM C989. (2013). Standard specification for slag cement for use in concrete and mortars. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. – reference: Smilauer, V., Hlavacek, P., Skvara, F., Sulc, R., Kopecky, L., & Nemecek, J. (2011). Micromechanical multiscale model for alkali activation of fly ash and metakaolin. Journal of Materials Science. doi:10.1007/s10853-011-5601-x. – reference: ASTM C494 Type F. (2013). Specification for chemical admixtures for concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. – reference: KarARayIUnnikrishnanADavalosJFEstimation of C-S-H and calcium hydroxide for cement pastes containing slag and silica fumeConstruction and Building Materials20123050551510.1016/j.conbuildmat.2011.12.02910.1016/j.conbuildmat.2011.12.029 – reference: Talling, B., & Brandstetr, J. (1995). Clinker-free concrete based on alkali activated slag. In S. L. Sarkar & S. N. Ghosh (Eds.), Progress in cement and concrete: Mineral admixtures in cement and concrete. New Delhi, India: Akademia Books International. – reference: ASTM C33 M-13. (2013). Standard specification for concrete aggregates. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. – reference: Davidovits, J. (1983). Geopolymer chemistry and properties. Proceedings of geopolymer’88. Compiegne, France, 1–3, June 1988. – reference: Skvara, F., Kopecky, L., Nemecek, J., & Bittnar, Z. (2006). Microstructure of geopolymer materials based on fly ash. Cermaics—Silikaty, 50, 208–215. – reference: KarARayIUnnikrishnanADavalosJFMicroanalysis and optimization-based estimation of C-SH contents of cementitious systems containing fly ash and silica fumeCement & Concrete Composites20123441942910.1016/j.cemconcomp.2011.09.00810.1016/j.cemconcomp.2011.09.008 – reference: Rees, C., Lukey, G. C., & Van Deventer, J. S. J. (2004). The role of solid silicates on the formation of geopolymers derived from coal ash. International symposium of research students on material science and engineering, December 20–22, Chennai, India, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras. – reference: ShiCKrivenkoPRoyMAlkali-activated cements and concretes2006LondonTaylor & Francis10.4324/978020339067210.4324/9780203390672 – reference: DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Materials Education19941691139 – reference: DavidovitsJGeopolymers: Inorganic polymeric new materialsJournal of Thermal Analysis1991371633165610.1007/BF0191219310.1007/BF01912193 – reference: RosenthalREGAMS—A user guide2008Washington DCGams Development Corporation – reference: Sakulich, A. R. (2009). Characterization of environmentally-friendly alkali activated slag cements and ancient building materials. Ph.D. Thesis, Drexel University, Philadelphia, PA. – reference: Rees, C. A. (2007). Mechanisms and kinetics of gel formation in geopolymers. Ph.D. Thesis submitted to the Department of Chemical and Biomolecular Engineering, University of Melbourne. – reference: Van Jaarsveld, J. G. S. (2000). The physical and chemical characterisation of fly ash based geopolymers. PhD Thesis, Department of Chemical Engineering, University of Melbourne, Australia. – reference: ASTM 7777C618. (2013). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual book of ASTM standards, concrete and aggregates, 04.02. American Society for Testing and Materials. – reference: Davidovits, J. (1988). Geopolymers of the first generation: SILIFACEProcess. In: J. Davidovits, & J. Orlinski (Eds.), Proceedings of the 1st international conference on geopolymer ’88, Vol. 1, Compiegne, France. – reference: Drud, A. (2010). CONOPT user guide. Bagsvaerd, Denmark: ARKI Consulting and Development A/S. http://www.gams.com/dd/docs/solvers/conopt.pdf. Last Accessed 14th August 2013. – reference: Kupwade-Patil, K., & Allouche, E. (2011). Effect of alkali silica reaction (ASR) in Geopolymer Concrete. World of Coal Ash (WOCA) conference, May 9–12, Devnver, CO, USA. – reference: KarAHalabeUBRayIUnnikrishnanANondestructive characterizations of alkali activated fly ash and/or slag concreteEuropean Scientific Journal20139245274 – reference: Fernandez-JimenezAde la TorreAGPalomoALopez-OlmoGAlonsoMMArandaMAGQuantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reactionFuel2006851960196910.1016/j.fuel.2006.04.00610.1016/j.fuel.2006.04.006 – reference: FamyCBroughARTaylorHFWThe C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositionsCement and Concrete Research2003231389139810.1016/S0008-8846(03)00064-410.1016/S0008-8846(03)00064-4 – reference: De SilvaPSagoe-CrenstilKSirivivatnanonVKinetics of geopolymerization: Role of Al2O3 and SiO2Cement and Concrete Research20073751251810.1016/j.cemconres.2007.01.00310.1016/j.cemconres.2007.01.003 – reference: Lloyd, R. R., Provis, J. L., & van Deventer, J. S. J. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science,44(2), 620–631. – reference: Provis, J. L., & van Deventer, J. S. J. (2009). Geopolymers: Structure, processing, properties and industrial applications. Oxford: Woodhead; Boca Raton, FL: CRC Press. – reference: Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford. – reference: Breck, D. W. (1974). Zeolite molecular sieves, structure, chemistry and use. New York, NY: Wiley. – reference: FengXGarbocziEJBentzDPStutzmanPEMasonTOEstimation of the degree of hydration of blended cement pastes by a scanning electron microscopy point-count procedureCement and Concrete Research200434101787179310.1016/j.cemconres.2004.01.01410.1016/j.cemconres.2004.01.014 – reference: Smith, J. W., & Comrie, D. C. (1988). Geopolymeric building materials in third world countries. In: J. Davidovits & J. Orlinski (Eds.), Proceedings of the 1st international conference of geopolymer’88, Vol. 1, Compiegne, France, 1–3 June, pp. 89–92. – reference: Fernandez-JimenezAPuertasFAlkali-activated slag cements: Kinetic studiesCement and Concrete Research199727335936810.1016/S0008-8846(97)00040-910.1016/S0008-8846(97)00040-9 – reference: Kamhangrittirong, P., Suwanvitaya, P., Suwanvitaya, P., & Chindaprasirt, P. (2007). Green binder technology development using fly ash based geopolymer. JSPS-DOST international symposium on environmental engineering, symposium on harmonizing infrastructure development with the environment, Phillipines. – reference: LeeWKWvan DeventerJSJEffects of anions on the formation of aluminosilicate gel in geopolymersIndustrial and Engineering Chemistry Research200241184550455810.1021/ie010941010.1021/ie0109410 – reference: BarbosaVFFMackenzieKJDThaumaturgoCSynthesis and thermal behaviour of potassium sialate geopolymersMaterials Letters2000571477148210.1016/S0167-577X(02)01009-110.1016/S0167-577X(02)01009-1 – reference: MuzekMNZelicJJozicDMicrostructural characteristics of geopolymers based on alkali-activated fly ashChemical and Biochemical Engineering Quarterly20122628995 – reference: BazaaraMSSheraliHDShettyCMNonlinear programming: Theory and algorithms2006Hoboken, NJWiley10.1002/047178777910.1002/0471787779 – reference: Davidovits, J. (1982). Mineral polymers and methods of making them. US Patent 4,349,386. – ident: 69_CR37 – volume: 27 start-page: 359 issue: 3 year: 1997 ident: 69_CR20 publication-title: Cement and Concrete Research doi: 10.1016/S0008-8846(97)00040-9 – ident: 69_CR39 – ident: 69_CR38 doi: 10.1680/cc.25929 – ident: 69_CR35 doi: 10.1007/s10853-011-5601-x – volume: 37 start-page: 1633 year: 1991 ident: 69_CR11 publication-title: Journal of Thermal Analysis doi: 10.1007/BF01912193 – ident: 69_CR2 – ident: 69_CR10 – volume: 34 start-page: 1787 issue: 10 year: 2004 ident: 69_CR18 publication-title: Cement and Concrete Research doi: 10.1016/j.cemconres.2004.01.014 – ident: 69_CR4 – volume: 34 start-page: 419 year: 2012 ident: 69_CR24 publication-title: Cement & Concrete Composites doi: 10.1016/j.cemconcomp.2011.09.008 – volume: 44 start-page: 832 year: 2005 ident: 69_CR16 publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie0494216 – ident: 69_CR9 – volume: 16 start-page: 91 year: 1994 ident: 69_CR12 publication-title: Journal of Materials Education – volume: 23 start-page: 1389 year: 2003 ident: 69_CR17 publication-title: Cement and Concrete Research doi: 10.1016/S0008-8846(03)00064-4 – volume: 30 start-page: 505 year: 2012 ident: 69_CR23 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2011.12.029 – ident: 69_CR13 – ident: 69_CR36 – volume: 9 start-page: 52 issue: 24 year: 2013 ident: 69_CR22 publication-title: European Scientific Journal – ident: 69_CR41 doi: 10.1007/s10853-008-3078-z – volume: 41 start-page: 4550 issue: 18 year: 2002 ident: 69_CR26 publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie0109410 – ident: 69_CR7 – ident: 69_CR34 – ident: 69_CR1 – volume: 37 start-page: 512 year: 2007 ident: 69_CR14 publication-title: Cement and Concrete Research doi: 10.1016/j.cemconres.2007.01.003 – ident: 69_CR3 – volume: 42 start-page: 428 year: 2007 ident: 69_CR8 publication-title: Journal Materials Science doi: 10.1007/s10853-006-0873-2 – ident: 69_CR30 – ident: 69_CR15 – ident: 69_CR32 – ident: 69_CR25 – volume: 26 start-page: 89 issue: 2 year: 2012 ident: 69_CR27 publication-title: Chemical and Biochemical Engineering Quarterly – volume-title: Nonlinear programming: Theory and algorithms year: 2006 ident: 69_CR6 doi: 10.1002/0471787779 – volume: 57 start-page: 1477 year: 2000 ident: 69_CR5 publication-title: Materials Letters doi: 10.1016/S0167-577X(02)01009-1 – volume: 85 start-page: 1960 year: 2006 ident: 69_CR19 publication-title: Fuel doi: 10.1016/j.fuel.2006.04.006 – volume-title: GAMS—A user guide year: 2008 ident: 69_CR31 – volume-title: Alkali-activated cements and concretes year: 2006 ident: 69_CR33 doi: 10.4324/9780203390672 – ident: 69_CR29 – ident: 69_CR21 – ident: 69_CR28 doi: 10.1533/9781845696382 – ident: 69_CR40 |
SSID | ssj0000551806 |
Score | 2.0990522 |
Snippet | Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and... Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due toits low carbon dioxide emission and... |
SourceID | nrf proquest crossref springer nurimedia |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 213 |
SubjectTerms | Building Materials Engineering Solid Mechanics Structural Materials 토목공학 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7QE4ID7FllIZiRPIInHsOD6hbdmqIHUpiEq9WbFjV2irbNl2_39nEie0SDSHxFIcK_Ibj2dszxuA90qULhppeO5i4NI3BTeF1-iqOCfrKLQOFO98vCiPTuW3M3WWFtyu0rHKQSd2irpZeVoj_5RrTaYAKtzPl384ZY2i3dWUQmMLtlEFV2oC2_vzxcnPcZUlI8KxLsFmjvMuR3FVw9Ymxc9JIupFb1ryvnBnctpq13h_2G6IZx_BumOD_rNt2s1Gh0_hSTIj2azH_Rk8CO1zeHyLXPAF-IORizmFWrK6bdiPTd12gWWo5tgcB3gfu8hWkc0ulmiV85nvUp6Fhu0Tl-KandQoCowCUdgxnd_rOWc36Ki_hNPD-a-DI55SKnAvhbjmshTaeJF79PpCbTLpssobo4QuXamNjpWkiyhgVFRNkzlUljH4KtYIaJTFK5i0qza8BhZiWfqQ59opI70yLmDtvPKF9FkoXJhCNvSl9YlvnNJeXNiRKbnrfovdb_vCFD6Mn1z2ZBv3VX6HANml_22JIpue5yu7XFt0BL7aUkmpsc7eCN_Y4uL7l3ln-SkpprA7YGrT4L2yf0VtCh8HnG-9_t8f7dzf2Bt4JDpRI4nbhQliFd6iRXPt9pLY3gBZEfCc priority: 102 providerName: ProQuest |
Title | Characterizations and Quantitative Estimation of Alkali-Activated Binder Paste from Microstructures |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02505542 https://link.springer.com/article/10.1007/s40069-014-0069-0 https://www.proquest.com/docview/1771059036 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001926934 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Concrete Structures and Materials, 2014, 8(3), 24, pp.213-228 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6x7QE4VOUlFkpkJE4gS4njR3zcbncpSF0KolJvVuzYCG2VRdvu_2fsPNQiqEQOjqVMrMjf2J6JPd8AvBNM2qC5poUNnnLXlFSXTqGrYi2vA1PKx3jns5U8veCfL8VlH8d9PZx2H7Yk00w9BrvxyKqLri-nXWUC-wJd90iYP-9DHDpCb1FUKadmgUstRQ0Vw27m31q5sx5N2i2WD9tdpNZHfO6YnX_slKYFaHkIB73lSGYd1E_ggW-fwuNbfILPwM1H-uU-upLUbUO-7uo2xZLhzEYWOKa7cEWyCWR2tUZDnM5cynLmG3Ic6RO35LxG9EmMPSFn8cheRzO7Q9_8OVwsF9_np7TPokAdZ-yGcsmUdqxw6Oj5Wufc5pXTWjAlrVRahYrHK7K-iCCaJrc4PwbvqlAjhoGXL2Cv3bT-JRAfpHS-KJQVmjuhrUfponIld7kvrZ9CPvSlcT3FeMx0cWVGcuTU_Qa733SVKbwfX_nV8WvcJ_wWATJr99NEVux4_7Ex661B2_-TkYJzhTLZCN_Y4urLySIZe4KzKRwNmJp-vF6bQqloaOJyPoUPA863Hv_ri179l_RreMSS5kUFPII9hM6_QZvmxmYwqZYfM9g_XqzOv2VJo2Mp51n6S_AbqZzvzA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xONAeUOlDXaDUldpLK6uJY8frQ1UtsGi3sFtagcTNxI5dVYuysMuq6p_qb-w4rwJSuZFDYimOlXg-j2fszDcAbwVLjVdc0dh4R7nNE6oSK9FVMYZnnknpQrzzaJwOTvmXM3G2BH-aWJjwW2WjE0tFnU9tWCP_GEsZTAFUuJ8vr2jIGhV2V5sUGhUsDt3vX-iyzT8N91G-7xg76J_sDWidVYBaztg15SmTyrLYouPjMhVxE3WtUoLJ1KRSSd_l4QgsKMKLPI8M6gvvbNdn-E2eJ9juMqyimaFwFK3u9sfH39tVnSgQnJUJPWOc5ykOD9FspYZ4PR6IgdF757Qq3JoMl4sZnteKReD1R3DcsnnvbNOWs9_BE1ivzVbSq3C2AUuueAqPb5AZPgO713I_16GdJCty8m2RFWUgG6pV0keFUsVKkqknvYsJegG0Z8sUay4nu4G7cUaOM4QeCYEvZBT-F6w4bhczN38Opw_S2S9gpZgW7iUQ59PUujiWRihuhTIOa8ddm3AbucS4DkRNX2pb85uHNBsXumVmLrtfY_frqtCB9-0jlxW5x32V36CA9MT-1IGSO1x_TPVkptHxGOpUcC6xzk4rvrbF8df9fmlpCs46sN3IVNfKYq7_QbsDHxo537j9vzfavL-x17A2OBkd6aPh-HALHrESdgF927CCcnOv0Jq6Njs1hAmcP_So-QsWRCtq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tncTHA-JTFMYwEryArCWOHccPCHVrq5WxUhCT9mZix0aoUzraVYh_jb-Oc77YkNjb8pBEimMld-f7sH2_A3gpWGq84orGxjvKbZFQlViJoYoxPPdMShfynY-m6cExf38iTjbgd5sLE7ZVtjqxUtTFwoY58t1YyuAKoMLd9c22iNlw_O7sBw0VpMJKa1tOoxaRQ_frJ4Zvq7eTIfL6FWPj0Zf9A9pUGKCWM3ZOecqksiy2GAS5XEXcRJlVSjCZmlQq6TMejoCIIrwoisig7vDOZj7H__M8wX43YUuiVcx6sLU3ms4-dzM8UQA7q4p7xmjzKQ4V0S6rhtw9HkCCMZLntL65ZBg3yyWeb5brgPGPgnLJ__1nybayhOO7cKdxYcmglrl7sOHK-3D7ArDhA7D7HQ50k-ZJ8rIgn9Z5WSW1oYolI1Qudd4kWXgyOJ1jREAHtiq35gqyF3Acl2SWoxiSkARDjsLewRrvdr10q4dwfC3EfgS9clG6x0CcT1Pr4lgaobgVyjhsHWc24TZyiXF9iFpaattgnYeSG6e6Q2muyK-R_Lq-6cPr7pWzGujjqsYvkEF6br_rAM8drt8Wer7UGIRMdCo4l9hmp2Nf1-P043BUeZ2Csz5stzzVjeJY6b9i3oc3LZ8vPP7fFz25urPncANHi_4wmR4-hVuskrogfNvQQ7a5Z-hYnZudRoIJfL3uQfMHKsMvlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizations+and+Quantitative+Estimation+of+Alkali-Activated+Binder+Paste+from+Microstructures&rft.jtitle=International+journal+of+concrete+structures+and+materials&rft.au=Kar%2C+Arkamitra&rft.au=Ray%2C+Indrajit&rft.au=Halabe%2C+Udaya+B.&rft.au=Unnikrishnan%2C+Avinash&rft.date=2014-09-01&rft.pub=Korea+Concrete+Institute&rft.issn=1976-0485&rft.eissn=2234-1315&rft.volume=8&rft.issue=3&rft.spage=213&rft.epage=228&rft_id=info:doi/10.1007%2Fs40069-014-0069-0&rft.externalDocID=10_1007_s40069_014_0069_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-0485&client=summon |