Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating mea...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 7; p. e2212887121 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed. |
---|---|
AbstractList | Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed. Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed. Neural dynamics emerge either intrinsically within the recorded brain regions or due to inputs to those regions, such as sensory inputs or neural inputs from other regions. Further, recorded neural dynamics may or may not be related to a specific measured behavior of interest. We first show how intrinsic neural dynamics that underlie a behavior can be confounded by both measured inputs and other intrinsic neural dynamics. To address this challenge, we develop methods that dissociate the intrinsic neural dynamics related to specific behaviors from other intrinsic dynamics and measured input dynamics simultaneously. We show the success of these methods in simulations and real data from three subjects in two independent neural datasets recorded during two distinct motor tasks. Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed. |
Author | Sani, Omid G. Shanechi, Maryam M. Vahidi, Parsa |
Author_xml | – sequence: 1 givenname: Parsa orcidid: 0000-0003-0591-8382 surname: Vahidi fullname: Vahidi, Parsa organization: Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 – sequence: 2 givenname: Omid G. orcidid: 0000-0003-3032-5669 surname: Sani fullname: Sani, Omid G. organization: Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 – sequence: 3 givenname: Maryam M. orcidid: 0000-0002-0544-7720 surname: Shanechi fullname: Shanechi, Maryam M. organization: Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, Thomas Lord Department of Computer Science and Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38335258$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFPXCEUhUmjqaPturvmJd108xQuMMCqaUxbm2jctGvCAE8xDLzCe5PMv5dxtLUmrki43zk5955jdJBy8gh9IPiUYEHPxmTqKQABKQUB8gYtCFakXzKFD9ACYxC9ZMCO0HGtdxhjxSV-i46opJQDlws0XGXnY0g3nUmuc6HWbIOZQk5dHrqQphJSDfZhGtI4T70rYeNTl_xcTOzGPM5xz7ttMutgazcn50vc7kxX_tZsQi7v0OFgYvXvH98T9Pv7t1_nF_3l9Y-f518ve8sApp4xDngpuaNcGqeY8IQ5MIMCAxSYMILByhPjLKYc85Xy1HlsOF2q9jUM9AR92fuO82rtnfVtARP1WMLalK3OJuj_Jync6pu80QRLQZcEmsPnR4eS_8y-TnodqvUxmuTzXDUoYEopELKhn16gd3kuqe23owSTQClp1Mfnkf5meeqgAXwP2JJrLX7QNkwPJ20JQ2zR9K5rveta_-u66c5e6J6sX1PcA_R3ris |
CitedBy_id | crossref_primary_10_1038_s41593_024_01731_2 crossref_primary_10_1088_1741_2552_ad5702 crossref_primary_10_1088_1741_2552_ad3678 crossref_primary_10_1016_j_compbiomed_2024_108700 crossref_primary_10_1016_j_isci_2025_111936 crossref_primary_10_1038_s44222_024_00177_2 crossref_primary_10_1088_1741_2552_ad1053 |
Cites_doi | 10.1088/1741-2552/aad1a8 10.1016/j.neuron.2019.04.038 10.1109/TNSRE.2019.2913218 10.1109/TNSRE.2015.2470527 10.1088/1741-2552/aaeb1a 10.1523/ENEURO.0085-16.2016 10.1109/TAC.1976.1101375 10.1016/j.tics.2018.07.010 10.1126/science.aav7893 10.1073/pnas.2012658118 10.1038/nrn2558 10.1088/1741-2552/ab2214 10.1038/s41586-019-1869-9 10.1038/nn963 10.1146/annurev-neuro-062111-150509 10.1016/j.neuron.2018.05.015 10.1038/s41467-018-06560-z 10.1038/nature11129 10.1038/s41593-022-01088-4 10.7554/eLife.67256 10.1101/2021.09.03.458628 10.1038/s41593-020-00733-0 10.1155/2017/1504507 10.1038/s41551-020-0542-9 10.1038/s41586-023-06714-0 10.1038/nbt.4200 10.1152/jn.90941.2008 10.1038/s41467-020-20197-x 10.1016/j.neuron.2014.08.038 10.1088/1741-2552/abcefd 10.1101/2020.10.21.349282 10.1109/TNSRE.2016.2639501 10.7554/eLife.10989 10.1038/s41593-019-0555-4 10.1088/1741-2552/ab3dbc 10.1016/j.neuron.2011.07.029 10.1088/1741-2560/12/3/036009 10.1073/pnas.1812535116 10.1126/science.aav3932 10.1088/1741-2552/ab225b 10.1038/s41593-019-0488-y 10.1371/journal.pcbi.1006168 10.1007/978-1-4613-0465-4 10.1016/j.conb.2017.10.023 10.1007/s10827-018-0696-6 10.7554/eLife.40145 10.1038/ncomms13825 10.1038/s41467-020-20371-1 10.1371/journal.pone.0160851 10.1109/TNSRE.2009.2023307 10.1038/ncomms8759 10.1038/nn.3265 10.1088/1741-2552/ab0ea4 10.1371/journal.pcbi.1005164 10.1007/978-0-387-77064-2_12 10.1109/TNSRE.2019.2908156 10.1088/1741-2552/ac4e1c 10.1016/j.conb.2021.08.002 10.1371/journal.pcbi.1005175 10.1038/s41551-023-01117-y 10.1038/nn.4617 10.1038/s41592-022-01675-0 10.1038/nature12742 10.1109/JPROC.2014.2307357 10.1038/s41551-020-00666-w 10.1038/s41583-018-0088-y 10.1162/089976603765202622 10.1371/journal.pcbi.1004730 10.7554/eLife.07436 10.1073/pnas.2117234119 10.1146/annurev-neuro-092619-094115 10.1038/s41592-018-0109-9 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 13, 2024 Copyright © 2024 the Author(s). Published by PNAS. 2024 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 13, 2024 – notice: Copyright © 2024 the Author(s). Published by PNAS. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2212887121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC10873612 38335258 10_1073_pnas_2212887121 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH123770 – fundername: NIMH NIH HHS grantid: DP2 MH126378 – fundername: ; grantid: DP2MH126378 – fundername: ; grantid: R01MH123770 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c422t-44520685d358ad947e14d2af92a23247a742be1adc03505b9e3de0a5369dc0ff3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:52 EDT 2025 Fri Jul 11 00:32:38 EDT 2025 Mon Jun 30 09:57:32 EDT 2025 Mon Jul 21 06:01:13 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Tue Jul 01 02:37:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | dynamical systems neural encoding input dynamics intrinsic dynamics behavior |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-44520685d358ad947e14d2af92a23247a742be1adc03505b9e3de0a5369dc0ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 1P.V. and O.G.S. contributed equally to this work. Edited by Terrence Sejnowski, Salk Institute for Biological Studies, La Jolla, CA; received July 28, 2022; accepted December 3, 2023 |
ORCID | 0000-0003-3032-5669 0000-0003-0591-8382 0000-0002-0544-7720 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10873612 |
PMID | 38335258 |
PQID | 2927482331 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10873612 proquest_miscellaneous_2924999278 proquest_journals_2927482331 pubmed_primary_38335258 crossref_citationtrail_10_1073_pnas_2212887121 crossref_primary_10_1073_pnas_2212887121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-13 |
PublicationDateYYYYMMDD | 2024-02-13 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2024 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 Wu A. (e_1_3_4_11_2) 2017; 30 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 Semedo J. (e_1_3_4_60_2) 2014 e_1_3_4_72_2 Perich M. G. (e_1_3_4_47_2) 2018 e_1_3_4_74_2 Linderman S. (e_1_3_4_10_2) 2017 e_1_3_4_30_2 e_1_3_4_51_2 Obinata G. (e_1_3_4_64_2) 2012 e_1_3_4_70_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 Schimel M. (e_1_3_4_56_2) 2022 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_66_2 e_1_3_4_28_2 Reimer J. (e_1_3_4_32_2) 2009 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 Ahmadipour P. (e_1_3_4_80_2) 2020; 18 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 Macke J. H. (e_1_3_4_4_2) 2011; 24 36993213 - bioRxiv. 2023 Mar 14:2023.03.14.532554. doi: 10.1101/2023.03.14.532554 |
References_xml | – ident: e_1_3_4_63_2 doi: 10.1088/1741-2552/aad1a8 – ident: e_1_3_4_31_2 doi: 10.1016/j.neuron.2019.04.038 – ident: e_1_3_4_65_2 doi: 10.1109/TNSRE.2019.2913218 – ident: e_1_3_4_8_2 doi: 10.1109/TNSRE.2015.2470527 – ident: e_1_3_4_44_2 doi: 10.1088/1741-2552/aaeb1a – ident: e_1_3_4_34_2 doi: 10.1523/ENEURO.0085-16.2016 – ident: e_1_3_4_58_2 doi: 10.1109/TAC.1976.1101375 – ident: e_1_3_4_24_2 doi: 10.1016/j.tics.2018.07.010 – ident: e_1_3_4_38_2 doi: 10.1126/science.aav7893 – ident: e_1_3_4_52_2 doi: 10.1073/pnas.2012658118 – ident: e_1_3_4_1_2 doi: 10.1038/nrn2558 – ident: e_1_3_4_14_2 doi: 10.1088/1741-2552/ab2214 – ident: e_1_3_4_27_2 doi: 10.1038/s41586-019-1869-9 – ident: e_1_3_4_42_2 doi: 10.1038/nn963 – ident: e_1_3_4_6_2 doi: 10.1146/annurev-neuro-062111-150509 – ident: e_1_3_4_13_2 doi: 10.1016/j.neuron.2018.05.015 – ident: e_1_3_4_49_2 doi: 10.1038/s41467-018-06560-z – ident: e_1_3_4_5_2 doi: 10.1038/nature11129 – ident: e_1_3_4_22_2 doi: 10.1038/s41593-022-01088-4 – ident: e_1_3_4_53_2 doi: 10.7554/eLife.67256 – ident: e_1_3_4_20_2 doi: 10.1101/2021.09.03.458628 – ident: e_1_3_4_83_2 – ident: e_1_3_4_19_2 doi: 10.1038/s41593-020-00733-0 – ident: e_1_3_4_54_2 doi: 10.1155/2017/1504507 – ident: e_1_3_4_76_2 doi: 10.1038/s41551-020-0542-9 – ident: e_1_3_4_41_2 – ident: e_1_3_4_50_2 doi: 10.1038/s41586-023-06714-0 – volume-title: Advances in Neural Information Processing Systems year: 2014 ident: e_1_3_4_60_2 – ident: e_1_3_4_61_2 doi: 10.1038/nbt.4200 – ident: e_1_3_4_3_2 doi: 10.1152/jn.90941.2008 – ident: e_1_3_4_16_2 doi: 10.1038/s41467-020-20197-x – volume: 18 year: 2020 ident: e_1_3_4_80_2 article-title: Adaptive tracking of human ECoG network dynamics publication-title: J. Neural Eng. – ident: e_1_3_4_79_2 doi: 10.1016/j.neuron.2014.08.038 – ident: e_1_3_4_81_2 doi: 10.1088/1741-2552/abcefd – ident: e_1_3_4_59_2 doi: 10.1101/2020.10.21.349282 – ident: e_1_3_4_67_2 doi: 10.1109/TNSRE.2016.2639501 – ident: e_1_3_4_39_2 doi: 10.7554/eLife.10989 – ident: e_1_3_4_48_2 doi: 10.1038/s41593-019-0555-4 – ident: e_1_3_4_72_2 doi: 10.1088/1741-2552/ab3dbc – ident: e_1_3_4_51_2 doi: 10.1016/j.neuron.2011.07.029 – volume-title: Model Reduction for Control System Design year: 2012 ident: e_1_3_4_64_2 – start-page: 914 volume-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics year: 2017 ident: e_1_3_4_10_2 – ident: e_1_3_4_66_2 doi: 10.1088/1741-2560/12/3/036009 – ident: e_1_3_4_29_2 doi: 10.1073/pnas.1812535116 – ident: e_1_3_4_37_2 doi: 10.1126/science.aav3932 – ident: e_1_3_4_73_2 doi: 10.1088/1741-2552/ab225b – ident: e_1_3_4_84_2 – ident: e_1_3_4_62_2 doi: 10.1038/s41593-019-0488-y – ident: e_1_3_4_43_2 doi: 10.1371/journal.pcbi.1006168 – ident: e_1_3_4_40_2 doi: 10.1007/978-1-4613-0465-4 – ident: e_1_3_4_36_2 doi: 10.1016/j.conb.2017.10.023 – ident: e_1_3_4_46_2 doi: 10.1007/s10827-018-0696-6 – ident: e_1_3_4_30_2 doi: 10.7554/eLife.40145 – ident: e_1_3_4_45_2 – ident: e_1_3_4_71_2 doi: 10.1038/ncomms13825 – ident: e_1_3_4_18_2 doi: 10.1038/s41467-020-20371-1 – ident: e_1_3_4_35_2 doi: 10.1371/journal.pone.0160851 – ident: e_1_3_4_2_2 doi: 10.1109/TNSRE.2009.2023307 – ident: e_1_3_4_7_2 doi: 10.1038/ncomms8759 – ident: e_1_3_4_77_2 doi: 10.1038/nn.3265 – year: 2018 ident: e_1_3_4_47_2 article-title: Extracellular neural recordings from macaque primary and dorsal premotor motor cortex during a sequential reaching task publication-title: CRCNS.org – ident: e_1_3_4_82_2 doi: 10.1088/1741-2552/ab0ea4 – ident: e_1_3_4_9_2 doi: 10.1371/journal.pcbi.1005164 – volume: 30 start-page: 3496 year: 2017 ident: e_1_3_4_11_2 article-title: Gaussian process based nonlinear latent structure discovery in multivariate spike train data publication-title: Adv. Neural Inf. Process Syst. – start-page: 243 volume-title: Prog. Mot. Control Multidiscip. Perspect. year: 2009 ident: e_1_3_4_32_2 doi: 10.1007/978-0-387-77064-2_12 – ident: e_1_3_4_74_2 doi: 10.1109/TNSRE.2019.2908156 – ident: e_1_3_4_75_2 doi: 10.1088/1741-2552/ac4e1c – ident: e_1_3_4_17_2 doi: 10.1016/j.conb.2021.08.002 – ident: e_1_3_4_23_2 doi: 10.1371/journal.pcbi.1005175 – ident: e_1_3_4_78_2 doi: 10.1038/s41551-023-01117-y – ident: e_1_3_4_25_2 doi: 10.1038/nn.4617 – ident: e_1_3_4_57_2 doi: 10.1038/s41592-022-01675-0 – volume: 24 start-page: 1 year: 2011 ident: e_1_3_4_4_2 article-title: Empirical models of spiking in neuronal populations publication-title: Adv. Neural Inf. Process. Syst. NIPS – ident: e_1_3_4_33_2 doi: 10.1038/nature12742 – ident: e_1_3_4_68_2 doi: 10.1109/JPROC.2014.2307357 – ident: e_1_3_4_28_2 doi: 10.1038/s41551-020-00666-w – year: 2022 ident: e_1_3_4_56_2 article-title: “iLQR-VAE: Control-based learning of input-driven dynamics with applications to neural data” publication-title: International Conference on Learning Representations – ident: e_1_3_4_55_2 doi: 10.1038/s41583-018-0088-y – ident: e_1_3_4_69_2 doi: 10.1162/089976603765202622 – ident: e_1_3_4_70_2 doi: 10.1371/journal.pcbi.1004730 – ident: e_1_3_4_26_2 doi: 10.7554/eLife.07436 – ident: e_1_3_4_21_2 doi: 10.1073/pnas.2117234119 – ident: e_1_3_4_15_2 doi: 10.1146/annurev-neuro-092619-094115 – ident: e_1_3_4_12_2 doi: 10.1038/s41592-018-0109-9 – reference: 36993213 - bioRxiv. 2023 Mar 14:2023.03.14.532554. doi: 10.1101/2023.03.14.532554 |
SSID | ssj0009580 |
Score | 2.4975724 |
Snippet | Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting... Neural dynamics emerge either intrinsically within the recorded brain regions or due to inputs to those regions, such as sensory inputs or neural inputs from... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2212887121 |
SubjectTerms | Behavior Biological Sciences Brain Dynamic models Dynamics Humans Learning Modelling Models, Neurological Neurons Population dynamics |
Title | Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38335258 https://www.proquest.com/docview/2927482331 https://www.proquest.com/docview/2924999278 https://pubmed.ncbi.nlm.nih.gov/PMC10873612 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahg9GXse6arhsa7KHD2Isl-fZYyrYyaBZYO_oWZEkmhsQJcfKw_Z390R1ZluxkGWx9MUGyI-Pz6ejo8n0HoXdhonfLUuYrlVEf5hsjP8tD5YtYxkJIGCBkc8p3HF_dsi930d1g8Kt3amm7yQPx8yCv5D5WhTKwq2bJ_odl3Z9CAfwG-8IVLAzXf7KxTmQ2tyxDvbNuv3QrBLEuq7rVYy2r1Xbjy7V2bp4WsdQMLJe8y5MmMX3dpMVdzxvuk2Xw9-PXiRvvanu6YGyXEy86ckrrMWrP9ybjLtXxdz4rZWkC13XtBoRvJq-U93VRSu9z4IpnvFKiSTqsKUU_-MK7DvqrFITpg82GZNoX-T74Kn33TGDIZIZUHSjjkSGg8WNmcoo6l21Y1S02k4NDAfgunb-44nVAYHwGZ9o-1QPGatEggzbMMyMhv6e-Pbm-DEdpQmOdyfoBgbkItUtCTtk5NTyn9t2tflRCP-w1fowe2pZ2o6A_pjb7J3R7Ic_NY_SonavgCwO8EzRQ1RN0Yj8oPm8ly98_RYVFIgas4T4S8bLADolNbR-J2CARd0jEFom4QyK2SHyGbj99vLm88tsMHr5ghGyg70dkFKeRpFHKZcYSFTJJeJERriP5hCeM5CrkUugN7ijPFJVqxCMaZ1BUFPQ5OqqWlXqJcMJHmcrjgjFBmFAsT4UKRU4Z43EhCzlEgf2iU9HK2-ssK_Npc8wioVNtjWlnjSE6dw-sjLLL3289syaatt0fqjOSsJRQCtVvXTU4Z73jBv1juW3u0SsKJEmH6IWxqGvLQmGI0h1buxu08PtuTVXOGgF4i8jT-z_6Ch133fQMHW3WW_UawutN_qaB92_qkNYj |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+dissociation+of+intrinsic+and+input-driven+neural+population+dynamics+underlying+behavior&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vahidi%2C+Parsa&rft.au=Sani%2C+Omid+G.&rft.au=Shanechi%2C+Maryam+M.&rft.date=2024-02-13&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=121&rft.issue=7&rft_id=info:doi/10.1073%2Fpnas.2212887121&rft_id=info%3Apmid%2F38335258&rft.externalDocID=PMC10873612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |