Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior

Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating mea...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 121; no. 7; p. e2212887121
Main Authors Vahidi, Parsa, Sani, Omid G., Shanechi, Maryam M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
AbstractList Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Neural dynamics emerge either intrinsically within the recorded brain regions or due to inputs to those regions, such as sensory inputs or neural inputs from other regions. Further, recorded neural dynamics may or may not be related to a specific measured behavior of interest. We first show how intrinsic neural dynamics that underlie a behavior can be confounded by both measured inputs and other intrinsic neural dynamics. To address this challenge, we develop methods that dissociate the intrinsic neural dynamics related to specific behaviors from other intrinsic dynamics and measured input dynamics simultaneously. We show the success of these methods in simulations and real data from three subjects in two independent neural datasets recorded during two distinct motor tasks. Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Author Sani, Omid G.
Shanechi, Maryam M.
Vahidi, Parsa
Author_xml – sequence: 1
  givenname: Parsa
  orcidid: 0000-0003-0591-8382
  surname: Vahidi
  fullname: Vahidi, Parsa
  organization: Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
– sequence: 2
  givenname: Omid G.
  orcidid: 0000-0003-3032-5669
  surname: Sani
  fullname: Sani, Omid G.
  organization: Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
– sequence: 3
  givenname: Maryam M.
  orcidid: 0000-0002-0544-7720
  surname: Shanechi
  fullname: Shanechi, Maryam M.
  organization: Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, Thomas Lord Department of Computer Science and Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38335258$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFPXCEUhUmjqaPturvmJd108xQuMMCqaUxbm2jctGvCAE8xDLzCe5PMv5dxtLUmrki43zk5955jdJBy8gh9IPiUYEHPxmTqKQABKQUB8gYtCFakXzKFD9ACYxC9ZMCO0HGtdxhjxSV-i46opJQDlws0XGXnY0g3nUmuc6HWbIOZQk5dHrqQphJSDfZhGtI4T70rYeNTl_xcTOzGPM5xz7ttMutgazcn50vc7kxX_tZsQi7v0OFgYvXvH98T9Pv7t1_nF_3l9Y-f518ve8sApp4xDngpuaNcGqeY8IQ5MIMCAxSYMILByhPjLKYc85Xy1HlsOF2q9jUM9AR92fuO82rtnfVtARP1WMLalK3OJuj_Jync6pu80QRLQZcEmsPnR4eS_8y-TnodqvUxmuTzXDUoYEopELKhn16gd3kuqe23owSTQClp1Mfnkf5meeqgAXwP2JJrLX7QNkwPJ20JQ2zR9K5rveta_-u66c5e6J6sX1PcA_R3ris
CitedBy_id crossref_primary_10_1038_s41593_024_01731_2
crossref_primary_10_1088_1741_2552_ad5702
crossref_primary_10_1088_1741_2552_ad3678
crossref_primary_10_1016_j_compbiomed_2024_108700
crossref_primary_10_1016_j_isci_2025_111936
crossref_primary_10_1038_s44222_024_00177_2
crossref_primary_10_1088_1741_2552_ad1053
Cites_doi 10.1088/1741-2552/aad1a8
10.1016/j.neuron.2019.04.038
10.1109/TNSRE.2019.2913218
10.1109/TNSRE.2015.2470527
10.1088/1741-2552/aaeb1a
10.1523/ENEURO.0085-16.2016
10.1109/TAC.1976.1101375
10.1016/j.tics.2018.07.010
10.1126/science.aav7893
10.1073/pnas.2012658118
10.1038/nrn2558
10.1088/1741-2552/ab2214
10.1038/s41586-019-1869-9
10.1038/nn963
10.1146/annurev-neuro-062111-150509
10.1016/j.neuron.2018.05.015
10.1038/s41467-018-06560-z
10.1038/nature11129
10.1038/s41593-022-01088-4
10.7554/eLife.67256
10.1101/2021.09.03.458628
10.1038/s41593-020-00733-0
10.1155/2017/1504507
10.1038/s41551-020-0542-9
10.1038/s41586-023-06714-0
10.1038/nbt.4200
10.1152/jn.90941.2008
10.1038/s41467-020-20197-x
10.1016/j.neuron.2014.08.038
10.1088/1741-2552/abcefd
10.1101/2020.10.21.349282
10.1109/TNSRE.2016.2639501
10.7554/eLife.10989
10.1038/s41593-019-0555-4
10.1088/1741-2552/ab3dbc
10.1016/j.neuron.2011.07.029
10.1088/1741-2560/12/3/036009
10.1073/pnas.1812535116
10.1126/science.aav3932
10.1088/1741-2552/ab225b
10.1038/s41593-019-0488-y
10.1371/journal.pcbi.1006168
10.1007/978-1-4613-0465-4
10.1016/j.conb.2017.10.023
10.1007/s10827-018-0696-6
10.7554/eLife.40145
10.1038/ncomms13825
10.1038/s41467-020-20371-1
10.1371/journal.pone.0160851
10.1109/TNSRE.2009.2023307
10.1038/ncomms8759
10.1038/nn.3265
10.1088/1741-2552/ab0ea4
10.1371/journal.pcbi.1005164
10.1007/978-0-387-77064-2_12
10.1109/TNSRE.2019.2908156
10.1088/1741-2552/ac4e1c
10.1016/j.conb.2021.08.002
10.1371/journal.pcbi.1005175
10.1038/s41551-023-01117-y
10.1038/nn.4617
10.1038/s41592-022-01675-0
10.1038/nature12742
10.1109/JPROC.2014.2307357
10.1038/s41551-020-00666-w
10.1038/s41583-018-0088-y
10.1162/089976603765202622
10.1371/journal.pcbi.1004730
10.7554/eLife.07436
10.1073/pnas.2117234119
10.1146/annurev-neuro-092619-094115
10.1038/s41592-018-0109-9
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 13, 2024
Copyright © 2024 the Author(s). Published by PNAS. 2024
Copyright_xml – notice: Copyright National Academy of Sciences Feb 13, 2024
– notice: Copyright © 2024 the Author(s). Published by PNAS. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2212887121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC10873612
38335258
10_1073_pnas_2212887121
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH123770
– fundername: NIMH NIH HHS
  grantid: DP2 MH126378
– fundername: ;
  grantid: DP2MH126378
– fundername: ;
  grantid: R01MH123770
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c422t-44520685d358ad947e14d2af92a23247a742be1adc03505b9e3de0a5369dc0ff3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:52 EDT 2025
Fri Jul 11 00:32:38 EDT 2025
Mon Jun 30 09:57:32 EDT 2025
Mon Jul 21 06:01:13 EDT 2025
Thu Apr 24 22:53:29 EDT 2025
Tue Jul 01 02:37:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords dynamical systems
neural encoding
input dynamics
intrinsic dynamics
behavior
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-44520685d358ad947e14d2af92a23247a742be1adc03505b9e3de0a5369dc0ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
1P.V. and O.G.S. contributed equally to this work.
Edited by Terrence Sejnowski, Salk Institute for Biological Studies, La Jolla, CA; received July 28, 2022; accepted December 3, 2023
ORCID 0000-0003-3032-5669
0000-0003-0591-8382
0000-0002-0544-7720
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10873612
PMID 38335258
PQID 2927482331
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10873612
proquest_miscellaneous_2924999278
proquest_journals_2927482331
pubmed_primary_38335258
crossref_citationtrail_10_1073_pnas_2212887121
crossref_primary_10_1073_pnas_2212887121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-13
PublicationDateYYYYMMDD 2024-02-13
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
Wu A. (e_1_3_4_11_2) 2017; 30
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
Semedo J. (e_1_3_4_60_2) 2014
e_1_3_4_72_2
Perich M. G. (e_1_3_4_47_2) 2018
e_1_3_4_74_2
Linderman S. (e_1_3_4_10_2) 2017
e_1_3_4_30_2
e_1_3_4_51_2
Obinata G. (e_1_3_4_64_2) 2012
e_1_3_4_70_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
Schimel M. (e_1_3_4_56_2) 2022
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_66_2
e_1_3_4_28_2
Reimer J. (e_1_3_4_32_2) 2009
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
Ahmadipour P. (e_1_3_4_80_2) 2020; 18
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
Macke J. H. (e_1_3_4_4_2) 2011; 24
36993213 - bioRxiv. 2023 Mar 14:2023.03.14.532554. doi: 10.1101/2023.03.14.532554
References_xml – ident: e_1_3_4_63_2
  doi: 10.1088/1741-2552/aad1a8
– ident: e_1_3_4_31_2
  doi: 10.1016/j.neuron.2019.04.038
– ident: e_1_3_4_65_2
  doi: 10.1109/TNSRE.2019.2913218
– ident: e_1_3_4_8_2
  doi: 10.1109/TNSRE.2015.2470527
– ident: e_1_3_4_44_2
  doi: 10.1088/1741-2552/aaeb1a
– ident: e_1_3_4_34_2
  doi: 10.1523/ENEURO.0085-16.2016
– ident: e_1_3_4_58_2
  doi: 10.1109/TAC.1976.1101375
– ident: e_1_3_4_24_2
  doi: 10.1016/j.tics.2018.07.010
– ident: e_1_3_4_38_2
  doi: 10.1126/science.aav7893
– ident: e_1_3_4_52_2
  doi: 10.1073/pnas.2012658118
– ident: e_1_3_4_1_2
  doi: 10.1038/nrn2558
– ident: e_1_3_4_14_2
  doi: 10.1088/1741-2552/ab2214
– ident: e_1_3_4_27_2
  doi: 10.1038/s41586-019-1869-9
– ident: e_1_3_4_42_2
  doi: 10.1038/nn963
– ident: e_1_3_4_6_2
  doi: 10.1146/annurev-neuro-062111-150509
– ident: e_1_3_4_13_2
  doi: 10.1016/j.neuron.2018.05.015
– ident: e_1_3_4_49_2
  doi: 10.1038/s41467-018-06560-z
– ident: e_1_3_4_5_2
  doi: 10.1038/nature11129
– ident: e_1_3_4_22_2
  doi: 10.1038/s41593-022-01088-4
– ident: e_1_3_4_53_2
  doi: 10.7554/eLife.67256
– ident: e_1_3_4_20_2
  doi: 10.1101/2021.09.03.458628
– ident: e_1_3_4_83_2
– ident: e_1_3_4_19_2
  doi: 10.1038/s41593-020-00733-0
– ident: e_1_3_4_54_2
  doi: 10.1155/2017/1504507
– ident: e_1_3_4_76_2
  doi: 10.1038/s41551-020-0542-9
– ident: e_1_3_4_41_2
– ident: e_1_3_4_50_2
  doi: 10.1038/s41586-023-06714-0
– volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_3_4_60_2
– ident: e_1_3_4_61_2
  doi: 10.1038/nbt.4200
– ident: e_1_3_4_3_2
  doi: 10.1152/jn.90941.2008
– ident: e_1_3_4_16_2
  doi: 10.1038/s41467-020-20197-x
– volume: 18
  year: 2020
  ident: e_1_3_4_80_2
  article-title: Adaptive tracking of human ECoG network dynamics
  publication-title: J. Neural Eng.
– ident: e_1_3_4_79_2
  doi: 10.1016/j.neuron.2014.08.038
– ident: e_1_3_4_81_2
  doi: 10.1088/1741-2552/abcefd
– ident: e_1_3_4_59_2
  doi: 10.1101/2020.10.21.349282
– ident: e_1_3_4_67_2
  doi: 10.1109/TNSRE.2016.2639501
– ident: e_1_3_4_39_2
  doi: 10.7554/eLife.10989
– ident: e_1_3_4_48_2
  doi: 10.1038/s41593-019-0555-4
– ident: e_1_3_4_72_2
  doi: 10.1088/1741-2552/ab3dbc
– ident: e_1_3_4_51_2
  doi: 10.1016/j.neuron.2011.07.029
– volume-title: Model Reduction for Control System Design
  year: 2012
  ident: e_1_3_4_64_2
– start-page: 914
  volume-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
  year: 2017
  ident: e_1_3_4_10_2
– ident: e_1_3_4_66_2
  doi: 10.1088/1741-2560/12/3/036009
– ident: e_1_3_4_29_2
  doi: 10.1073/pnas.1812535116
– ident: e_1_3_4_37_2
  doi: 10.1126/science.aav3932
– ident: e_1_3_4_73_2
  doi: 10.1088/1741-2552/ab225b
– ident: e_1_3_4_84_2
– ident: e_1_3_4_62_2
  doi: 10.1038/s41593-019-0488-y
– ident: e_1_3_4_43_2
  doi: 10.1371/journal.pcbi.1006168
– ident: e_1_3_4_40_2
  doi: 10.1007/978-1-4613-0465-4
– ident: e_1_3_4_36_2
  doi: 10.1016/j.conb.2017.10.023
– ident: e_1_3_4_46_2
  doi: 10.1007/s10827-018-0696-6
– ident: e_1_3_4_30_2
  doi: 10.7554/eLife.40145
– ident: e_1_3_4_45_2
– ident: e_1_3_4_71_2
  doi: 10.1038/ncomms13825
– ident: e_1_3_4_18_2
  doi: 10.1038/s41467-020-20371-1
– ident: e_1_3_4_35_2
  doi: 10.1371/journal.pone.0160851
– ident: e_1_3_4_2_2
  doi: 10.1109/TNSRE.2009.2023307
– ident: e_1_3_4_7_2
  doi: 10.1038/ncomms8759
– ident: e_1_3_4_77_2
  doi: 10.1038/nn.3265
– year: 2018
  ident: e_1_3_4_47_2
  article-title: Extracellular neural recordings from macaque primary and dorsal premotor motor cortex during a sequential reaching task
  publication-title: CRCNS.org
– ident: e_1_3_4_82_2
  doi: 10.1088/1741-2552/ab0ea4
– ident: e_1_3_4_9_2
  doi: 10.1371/journal.pcbi.1005164
– volume: 30
  start-page: 3496
  year: 2017
  ident: e_1_3_4_11_2
  article-title: Gaussian process based nonlinear latent structure discovery in multivariate spike train data
  publication-title: Adv. Neural Inf. Process Syst.
– start-page: 243
  volume-title: Prog. Mot. Control Multidiscip. Perspect.
  year: 2009
  ident: e_1_3_4_32_2
  doi: 10.1007/978-0-387-77064-2_12
– ident: e_1_3_4_74_2
  doi: 10.1109/TNSRE.2019.2908156
– ident: e_1_3_4_75_2
  doi: 10.1088/1741-2552/ac4e1c
– ident: e_1_3_4_17_2
  doi: 10.1016/j.conb.2021.08.002
– ident: e_1_3_4_23_2
  doi: 10.1371/journal.pcbi.1005175
– ident: e_1_3_4_78_2
  doi: 10.1038/s41551-023-01117-y
– ident: e_1_3_4_25_2
  doi: 10.1038/nn.4617
– ident: e_1_3_4_57_2
  doi: 10.1038/s41592-022-01675-0
– volume: 24
  start-page: 1
  year: 2011
  ident: e_1_3_4_4_2
  article-title: Empirical models of spiking in neuronal populations
  publication-title: Adv. Neural Inf. Process. Syst. NIPS
– ident: e_1_3_4_33_2
  doi: 10.1038/nature12742
– ident: e_1_3_4_68_2
  doi: 10.1109/JPROC.2014.2307357
– ident: e_1_3_4_28_2
  doi: 10.1038/s41551-020-00666-w
– year: 2022
  ident: e_1_3_4_56_2
  article-title: “iLQR-VAE: Control-based learning of input-driven dynamics with applications to neural data”
  publication-title: International Conference on Learning Representations
– ident: e_1_3_4_55_2
  doi: 10.1038/s41583-018-0088-y
– ident: e_1_3_4_69_2
  doi: 10.1162/089976603765202622
– ident: e_1_3_4_70_2
  doi: 10.1371/journal.pcbi.1004730
– ident: e_1_3_4_26_2
  doi: 10.7554/eLife.07436
– ident: e_1_3_4_21_2
  doi: 10.1073/pnas.2117234119
– ident: e_1_3_4_15_2
  doi: 10.1146/annurev-neuro-092619-094115
– ident: e_1_3_4_12_2
  doi: 10.1038/s41592-018-0109-9
– reference: 36993213 - bioRxiv. 2023 Mar 14:2023.03.14.532554. doi: 10.1101/2023.03.14.532554
SSID ssj0009580
Score 2.4975724
Snippet Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting...
Neural dynamics emerge either intrinsically within the recorded brain regions or due to inputs to those regions, such as sensory inputs or neural inputs from...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2212887121
SubjectTerms Behavior
Biological Sciences
Brain
Dynamic models
Dynamics
Humans
Learning
Modelling
Models, Neurological
Neurons
Population dynamics
Title Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior
URI https://www.ncbi.nlm.nih.gov/pubmed/38335258
https://www.proquest.com/docview/2927482331
https://www.proquest.com/docview/2924999278
https://pubmed.ncbi.nlm.nih.gov/PMC10873612
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahg9GXse6arhsa7KHD2Isl-fZYyrYyaBZYO_oWZEkmhsQJcfKw_Z390R1ZluxkGWx9MUGyI-Pz6ejo8n0HoXdhonfLUuYrlVEf5hsjP8tD5YtYxkJIGCBkc8p3HF_dsi930d1g8Kt3amm7yQPx8yCv5D5WhTKwq2bJ_odl3Z9CAfwG-8IVLAzXf7KxTmQ2tyxDvbNuv3QrBLEuq7rVYy2r1Xbjy7V2bp4WsdQMLJe8y5MmMX3dpMVdzxvuk2Xw9-PXiRvvanu6YGyXEy86ckrrMWrP9ybjLtXxdz4rZWkC13XtBoRvJq-U93VRSu9z4IpnvFKiSTqsKUU_-MK7DvqrFITpg82GZNoX-T74Kn33TGDIZIZUHSjjkSGg8WNmcoo6l21Y1S02k4NDAfgunb-44nVAYHwGZ9o-1QPGatEggzbMMyMhv6e-Pbm-DEdpQmOdyfoBgbkItUtCTtk5NTyn9t2tflRCP-w1fowe2pZ2o6A_pjb7J3R7Ic_NY_SonavgCwO8EzRQ1RN0Yj8oPm8ly98_RYVFIgas4T4S8bLADolNbR-J2CARd0jEFom4QyK2SHyGbj99vLm88tsMHr5ghGyg70dkFKeRpFHKZcYSFTJJeJERriP5hCeM5CrkUugN7ijPFJVqxCMaZ1BUFPQ5OqqWlXqJcMJHmcrjgjFBmFAsT4UKRU4Z43EhCzlEgf2iU9HK2-ssK_Npc8wioVNtjWlnjSE6dw-sjLLL3289syaatt0fqjOSsJRQCtVvXTU4Z73jBv1juW3u0SsKJEmH6IWxqGvLQmGI0h1buxu08PtuTVXOGgF4i8jT-z_6Ch133fQMHW3WW_UawutN_qaB92_qkNYj
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+dissociation+of+intrinsic+and+input-driven+neural+population+dynamics+underlying+behavior&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vahidi%2C+Parsa&rft.au=Sani%2C+Omid+G.&rft.au=Shanechi%2C+Maryam+M.&rft.date=2024-02-13&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=121&rft.issue=7&rft_id=info:doi/10.1073%2Fpnas.2212887121&rft_id=info%3Apmid%2F38335258&rft.externalDocID=PMC10873612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon