SSAM: a span spatial attention model for recognizing named entities

Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial stru...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 10313 - 13
Main Authors Wang, Kai, Wen, Kunjian, Chen, Yanping, Qin, Yongbin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer .
AbstractList Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer.
Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer .
Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer .Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer .
Abstract Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer .
ArticleNumber 10313
Author Qin, Yongbin
Wang, Kai
Chen, Yanping
Wen, Kunjian
Author_xml – sequence: 1
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, College of Computer Science and Technology, Guizhou University, State Key Laboratory of Public Big Data, Guizhou University
– sequence: 2
  givenname: Kunjian
  surname: Wen
  fullname: Wen, Kunjian
  organization: ByteDance Ltd
– sequence: 3
  givenname: Yanping
  surname: Chen
  fullname: Chen, Yanping
  email: ypench@gmail.com
  organization: Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, College of Computer Science and Technology, Guizhou University, State Key Laboratory of Public Big Data, Guizhou University
– sequence: 4
  givenname: Yongbin
  surname: Qin
  fullname: Qin, Yongbin
  email: ybqin@gzu.edu.cn
  organization: Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, College of Computer Science and Technology, Guizhou University, State Key Laboratory of Public Big Data, Guizhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40133327$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v3CAQhlGVqEm3-QM9VJZ66cUNMGCglypa9SNSoh7SnhHG2GXlhS14I7W_vnid5qOHcgAEz7wzA-8LdBRicAi9IvgdwSDPMyNcyRpTXkshKK3xM3RKMeM1BUqPHu1P0FnOG1wGp4oR9RydMEwAgIpTtL65ubh-X5kq70yYp8mbsTLT5MLkY6i2sXNj1cdUJWfjEPxvH4YqmK3rqhmZvMsv0XFvxuzO7tYV-v7p47f1l_rq6-fL9cVVbRmlU10KFtxI20srbOckdNQyaGjP-6ZVPactazsMHHowXCnWCOEEt661lLOGAazQ5aLbRbPRu-S3Jv3S0Xh9OIhp0CZN3o5OY8w64aCzSoqSnClrSWlemU4CwyXtCn1YtHb7tvRiSy_JjE9En94E_0MP8VYTokBAMyu8vVNI8efe5UlvfbZuHE1wcZ81EEmgkYzOhb_5B93EfQrlrQ4UEbz8S6FePy7pvpa_n1UAugA2xZyT6-8RgvVsCr2YQhdT6IMpNC5BsATlAofBpYfc_4n6A6nstuY
Cites_doi 10.18653/v1/N18-1079
10.18653/v1/2020.emnlp-main.514
10.18653/v1/N19-1180
10.18653/v1/2022.findings-acl.250
10.1609/aaai.v35i14.17513
10.18653/v1/N16-1030
10.1038/nrn1411
10.1093/bioinformatics/btz682
10.18653/v1/2022.acl-long.67
10.1016/0010-0285(80)90005-5
10.1016/j.ipm.2024.103657
10.1109/TNNLS.2020.3019893
10.18653/v1/D18-1019
10.1080/09540091.2023.2181483
10.24963/ijcai.2021/542
10.3115/1119176.1119202
10.1093/bioinformatics/btg1023
10.1007/s41095-022-0271-y
10.1109/ICCV.2017.507
10.18653/v1/2020.acl-main.703
10.1609/aaai.v36i10.21344
10.3390/ijgi11120598
10.1038/s41598-024-67114-6
10.18653/v1/P19-1527
10.1016/j.eswa.2023.123000
10.1007/978-3-030-01234-2_1
10.1016/j.ipm.2023.103557
10.18653/v1/2022.acl-long.63
10.1007/978-981-97-8650-3_3
10.18653/v1/2020.acl-main.577
10.1016/j.neucom.2020.10.095
10.18653/v1/2023.acl-short.123
10.18653/v1/2021.acl-long.216
10.18653/v1/2021.emnlp-main.17
10.18653/v1/N16-1155
10.18653/v1/2022.acl-long.490
10.1145/3539618.3591662
10.1016/j.eswa.2024.125096
10.1016/j.knosys.2022.109129
10.1016/j.ipm.2023.103352
10.3115/1621787.1621800
10.1109/CVPR.2018.00745
10.18653/v1/D15-1102
10.1007/s12559-022-10058-8
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-87722-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_004d7e3dc98742249cc12949ad8340c4
PMC11937364
40133327
10_1038_s41598_025_87722_0
Genre Journal Article
GrantInformation_xml – fundername: Key Technology R&D Program of Guizhou Province
  grantid: [2024]003
– fundername: National Key R&D Program of China
  grantid: 2023YFC3304500
– fundername: National Natural Science Foundation of China
  grantid: 62166007
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AAYXX
CITATION
PHGZM
SNYQT
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c422t-41575a8cf8c7cde83d2c4362f5f6b9f52b4bd0353f3a5994677e75cebc2546433
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:55 EDT 2025
Thu Aug 21 18:39:40 EDT 2025
Fri Jul 11 18:57:21 EDT 2025
Wed Aug 13 03:26:44 EDT 2025
Sun Mar 30 01:29:56 EDT 2025
Tue Jul 01 05:17:01 EDT 2025
Wed Mar 26 01:23:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Spatial attention
Natural language processing
Named entity recognition
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-41575a8cf8c7cde83d2c4362f5f6b9f52b4bd0353f3a5994677e75cebc2546433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-87722-0
PMID 40133327
PQID 3181175941
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_004d7e3dc98742249cc12949ad8340c4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11937364
proquest_miscellaneous_3181368423
proquest_journals_3181175941
pubmed_primary_40133327
crossref_primary_10_1038_s41598_025_87722_0
springer_journals_10_1038_s41598_025_87722_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-25
PublicationDateYYYYMMDD 2025-03-25
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References L Tao (87722_CR42) 2022; 11
87722_CR58
87722_CR57
87722_CR16
87722_CR15
87722_CR18
87722_CR50
87722_CR52
87722_CR10
87722_CR54
Y Li (87722_CR56) 2024; 14
Y Wu (87722_CR8) 2024; 245
87722_CR55
M-H Guo (87722_CR19) 2022; 8
R Tang (87722_CR7) 2022; 250
C Walker (87722_CR47) 2006; 57
J Lee (87722_CR51) 2020; 36
J Yu (87722_CR11) 2023; 35
M-H Guo (87722_CR23) 2022; 45
87722_CR25
87722_CR24
R Collobert (87722_CR26) 2011; 12
87722_CR2
87722_CR27
87722_CR29
87722_CR1
87722_CR28
87722_CR21
Z Yang (87722_CR4) 2024; 61
87722_CR20
87722_CR22
R Geng (87722_CR17) 2023; 60
87722_CR6
AM Treisman (87722_CR12) 1980; 12
87722_CR36
87722_CR35
87722_CR38
87722_CR37
87722_CR39
A Galassi (87722_CR14) 2020; 32
87722_CR30
87722_CR32
87722_CR31
87722_CR34
J Feng (87722_CR5) 2024; 61
87722_CR33
Y Chen (87722_CR53) 2023; 15
JM Wolfe (87722_CR13) 2004; 5
87722_CR49
87722_CR48
J-D Kim (87722_CR46) 2003; 19
87722_CR41
87722_CR40
87722_CR43
X Zheng (87722_CR9) 2021; 430
X Guo (87722_CR3) 2024; 257
87722_CR45
87722_CR44
References_xml – ident: 87722_CR30
  doi: 10.18653/v1/N18-1079
– ident: 87722_CR2
  doi: 10.18653/v1/2020.emnlp-main.514
– ident: 87722_CR16
  doi: 10.18653/v1/N19-1180
– ident: 87722_CR40
  doi: 10.18653/v1/2022.findings-acl.250
– ident: 87722_CR34
  doi: 10.1609/aaai.v35i14.17513
– ident: 87722_CR28
  doi: 10.18653/v1/N16-1030
– volume: 5
  start-page: 495
  year: 2004
  ident: 87722_CR13
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1411
– volume: 36
  start-page: 1234
  year: 2020
  ident: 87722_CR51
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– ident: 87722_CR57
  doi: 10.18653/v1/2022.acl-long.67
– volume: 12
  start-page: 97
  year: 1980
  ident: 87722_CR12
  publication-title: Cogn. Psychol.
  doi: 10.1016/0010-0285(80)90005-5
– volume: 61
  start-page: 103657
  year: 2024
  ident: 87722_CR4
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2024.103657
– volume: 32
  start-page: 4291
  year: 2020
  ident: 87722_CR14
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3019893
– ident: 87722_CR31
  doi: 10.18653/v1/D18-1019
– volume: 45
  start-page: 5436
  year: 2022
  ident: 87722_CR23
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 2181483
  year: 2023
  ident: 87722_CR11
  publication-title: Connect. Sci.
  doi: 10.1080/09540091.2023.2181483
– ident: 87722_CR55
  doi: 10.24963/ijcai.2021/542
– ident: 87722_CR25
  doi: 10.3115/1119176.1119202
– volume: 19
  start-page: i180
  year: 2003
  ident: 87722_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1023
– ident: 87722_CR37
– volume: 8
  start-page: 331
  year: 2022
  ident: 87722_CR19
  publication-title: Comput. Visual Media
  doi: 10.1007/s41095-022-0271-y
– ident: 87722_CR22
  doi: 10.1109/ICCV.2017.507
– ident: 87722_CR36
  doi: 10.18653/v1/2020.acl-main.703
– volume: 57
  start-page: 45
  year: 2006
  ident: 87722_CR47
  publication-title: Linguist. Data Consort. Phila.
– ident: 87722_CR18
  doi: 10.1609/aaai.v36i10.21344
– volume: 11
  start-page: 598
  year: 2022
  ident: 87722_CR42
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi11120598
– ident: 87722_CR27
– volume: 14
  start-page: 16106
  year: 2024
  ident: 87722_CR56
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-67114-6
– ident: 87722_CR33
  doi: 10.18653/v1/P19-1527
– ident: 87722_CR50
– volume: 245
  year: 2024
  ident: 87722_CR8
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.123000
– ident: 87722_CR15
– ident: 87722_CR21
  doi: 10.1007/978-3-030-01234-2_1
– volume: 61
  year: 2024
  ident: 87722_CR5
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2023.103557
– ident: 87722_CR38
  doi: 10.18653/v1/2022.acl-long.63
– ident: 87722_CR58
  doi: 10.1007/978-981-97-8650-3_3
– ident: 87722_CR1
  doi: 10.18653/v1/2020.acl-main.577
– volume: 430
  start-page: 104
  year: 2021
  ident: 87722_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.095
– ident: 87722_CR44
– ident: 87722_CR41
  doi: 10.18653/v1/2023.acl-short.123
– ident: 87722_CR48
– ident: 87722_CR54
  doi: 10.18653/v1/2021.acl-long.216
– ident: 87722_CR6
  doi: 10.18653/v1/2021.emnlp-main.17
– volume: 12
  start-page: 2493
  year: 2011
  ident: 87722_CR26
  publication-title: J. Mach. Learn. Res.
– ident: 87722_CR32
  doi: 10.18653/v1/N16-1155
– ident: 87722_CR39
  doi: 10.18653/v1/2022.acl-long.490
– ident: 87722_CR24
– ident: 87722_CR43
  doi: 10.1145/3539618.3591662
– volume: 257
  start-page: 125096
  year: 2024
  ident: 87722_CR3
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125096
– volume: 250
  year: 2022
  ident: 87722_CR7
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109129
– volume: 60
  year: 2023
  ident: 87722_CR17
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2023.103352
– ident: 87722_CR10
  doi: 10.3115/1621787.1621800
– ident: 87722_CR45
– ident: 87722_CR49
– ident: 87722_CR52
– ident: 87722_CR20
  doi: 10.1109/CVPR.2018.00745
– ident: 87722_CR29
  doi: 10.18653/v1/D15-1102
– ident: 87722_CR35
– volume: 15
  start-page: 534
  year: 2023
  ident: 87722_CR53
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-022-10058-8
SSID ssj0000529419
Score 2.4432251
Snippet Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity...
Abstract Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10313
SubjectTerms 639/166
639/705
Humanities and Social Sciences
Labeling
multidisciplinary
Named entity recognition
Natural language processing
Science
Science (multidisciplinary)
Semantics
Spatial attention
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB-KIPRSqvZj_SKCt3ZpXibZbLypKCLoxQreQjab0EJZS30e9K93kux7-mqLFy972AQy-5tMZrKT_AZgt-EeOY-qjkKbWuqG1873sW5S1ftEFWBi-g95dt6cXMrTK3X1pNRXOhNW6IELcIl8p9cBe0-bY0n-xnhPLkoa17couc9MoOTznmymCqs39ZmY8ZYMx_bbDXmqdJtMKFoANO3A-IInyoT9_4oynx-W_Ctjmh3R8Xt4N0aQbL9IvgJvwrAKy6Wm5N0aHF5c7J_tMcdoqRjSg0z4F0ssmvlcI8ulbxiFqmw8O3RPo7DB0dhsRrD6AS6Pj74fntRjpYTaEybTmr5NK9f62Hrt-9BiL7wk1xRVbDoTlehk13NUGNEpY2hx1EErHzqf6PAl4kdYGq6H8BkYmWE0ik-c10L26I0TDfI4CZKCh863FXyZoWZ_F0IMmxPZ2NqCsSWMbcbY8goOErDznonMOr8gFdtRxfYlFVewOVOLHS3sxtJalFhGScsV7MybyTZSwsMN4fq29MGUaMQKPhUtziVJ-0pEoStoF_S7IOpiy_DzR-bfnlDQq7Ehub7OpsKjXP_HYv01sNiAtyLNYY61UJuwNP1zG7YoLJp229kCHgAbuQR7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxQxFA9aEbyU-j21SgRvOjSbl0ySXqQWSxHqpRb2FjLJRAWZrd3tof3rfS8zs2X9usxhEkjyvpOX_B5jbxoRQYis6yyNq5VpRB1iynVDVe8JKsBlOoc8_dycnKtPcz0fD9yW47XKySYWQ50Wkc7I91H2CFXSqdn7i581VY2i7OpYQuMuu0fQZSTVZm7WZyyUxVIzN76VEWD3l-iv6E2Z1GgGDO7DxIY_KrD9f4s1_7wy-VvetLij4x22PcaR_HBg_EN2p-sfsftDZcnrx-zo7Ozw9IAHjgajpw8q8g9OWJrldiMvBXA4Bqx8vEF0g6PwPuDYfIJZfcLOjz9-OTqpx3oJdVRSrmpcm9HBxmyjiamzkGRU6KCyzk3rspatapMADRmCdg5NpOmMjl0bCRRfATxlW_2i754zjsqYnRazEI1UCaILsgGRZ53CEKKNtmJvJ6r5iwEWw5d0Nlg_0NgjjX2hsRcV-0CEXfckSOvyY3H51Y8a4lFbk-kgRWdxu467whgxFlEuJAtKRFWxvYktftSzpb-Vioq9XjejhlDaI_Td4mroA5RuhIo9G7i4ngntLgGkqZjd4O_GVDdb-u_fCgo3ChwYaHBe7yZRuJ3Xv2mx-_9lvGAPJEmngFrqPba1urzqXmLYs2pfFdn-BT6W_O4
  priority: 102
  providerName: ProQuest
Title SSAM: a span spatial attention model for recognizing named entities
URI https://link.springer.com/article/10.1038/s41598-025-87722-0
https://www.ncbi.nlm.nih.gov/pubmed/40133327
https://www.proquest.com/docview/3181175941
https://www.proquest.com/docview/3181368423
https://pubmed.ncbi.nlm.nih.gov/PMC11937364
https://doaj.org/article/004d7e3dc98742249cc12949ad8340c4
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-O1qPSL4pou5TLLZ-HY9WspBi3gW7i1ks4kVZE_a64P-9U6yuyen9cGXXUiyZHYmk0wyk98AvKm4R86jKqPQppS64qXzbSyrlPU-QQWYmM4hz86r0wu5WKnVHojxLkwO2s-QlnmaHqPD3l_TQpMugwlF-qtpA0Xb9IME1U5j-2A2WywX25OV5LuSUzPckOFY3_LxziqUwfpvszD_DpT8w1uaF6GTB3B_sB7ZrKf3IeyF7hHc7fNJ_ngM8-VydvaBOUbTRJcepL7fWELQzDGNLKe9YWSmsiFu6Cf1wjpHfbMRXPUJXJwcf56flkOWhNJLITYl_ZtWrvax9tq3ocZWeEnLUlSxakxUopFNy1FhRKeMoYlRB618aHyCwpeIT2G_W3fhOTBSwWgUnzqvhWzRGycq5HEaJBkOja8LeDtyzX7vwTBsdmJjbXseW-KxzTy2vICjxNhtywRknQvWV1_sIFhLOtrqgK03JEwyJ4z3ZIFI49oaJfeygMNRLHbQrmtL81BCGCUpF_B6W016kZwdrgvrm74NJicjFvCsl-KWkrSnRBS6gHpHvjuk7tZ0Xy8z9vaUDF6NFdH1bhwKv-n6Ny9e_F_zl3BPpNHKsRTqEPY3VzfhFRk_m2YCd_RKT4YxT--j4_OPn6h0Xs0n-UDhF9UZAIc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVIbgg3k0pYCQ4QVTHjzhGQqgUqi3t9tJW2ptJnBiQqmzpboXKR_GNzDjJVsvr1ksOsSXb8_bMeAbgec695DzoNAhjU2Vynpa-DmlOXe-pVIAN5IccH-SjY_Vxoicr8HN4C0NplYNMjIK6nnrykW8i7VFVSauyt6ffUuoaRdHVoYVGRxZ7zcV3vLLN3uy-R_y-EGLnw9H2KO27CqReCTFPUWMZXRY-FN74uilkLbxCMR50yCsbtKhUVXOpZZClttSB3jRG-6byVDpekQMURf41VLycLntmYhY-HYqaqcz2b3O4LDZnuBq9YRMaxY7Bex9f0n-xTcDfbNs_UzR_i9NG9bdzG271divb6gjtDqw07V243nWyvLgH24eHW-PXrGQooFr6oOA4YVS7M2ZTsthwh6GBzPqMpR-4CmtLXJsNZV3vw_GVQPIBrLbTtlkDhswfrOZZ6Y1QtfS2FLnkIWsUmiyVLxJ4OUDNnXZlOFwMn8vCdTB2CGMXYex4Au8IsIuZVEI7_piefXY9RzqUDrVpZO1tYfA4ynqPto-yZV1Ixb1KYGNAi-v5euYuqTCBZ4th5EgKs5RtMz3v5kgKb8oEHnZYXOyEbrNSCpNAsYTfpa0uj7Rfv8Sq3xma2kbmuK9XAylc7uvfsFj__zGewo3R0Xjf7e8e7D2Cm4IolctU6A1YnZ-dN4_R5JpXTyKdM_h01Yz1CyuiOWY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaqrUBcEG8GCgQJTjDabB6TCRJCfa1aSlcVpVJvYSaTABKaLd2tUPlp_DrseWy1vG69zGESKYljf3FsxwZ4lnEvOY86jcLYVJmMp4WvYppR1XtKFWAj2SH3J9nOkXp7rI9X4Gf_FobCKntMbIC6mnqykQ-R9yirpFWjYezCIg62xm9OvqVUQYo8rX05jZZF9sL5d7y-zV7vbuFePxdivP1hcyftKgykXgkxT_H0MrrIfcy98VXIZSW8QkiPOmaljVqUqqy41DLKQluqRm-C0T6UntLIKzKGIvyvGroVDWB1Y3ty8H5h4SEfmhrZ7qUOl_lwhuPRizahEYQM3gL50mnYFA34m6b7Z8Dmb17b5jAc34DrnRbL1lu2uwkrob4FV9q6lue3YfPwcH3_FSsYwlVNH4SRr4wyeTaxlawpv8NQXWZd_NIPHIXVBY7N-iSvd-DoUmh5Fwb1tA73gSEURKv5qPBGqEp6W4hM8jgKChWY0ucJvOip5k7apByucabL3LU0dkhj19DY8QQ2iLCLnpRQu_kxPf3kOvl0iBWVCbLyNje4HGW9R01I2aLKpeJeJbDWb4vrpHzmLngygaeLZpRPcroUdZietX0kOTtlAvfaXVzMhO62UgqTQL60v0tTXW6pv3xucoCPUPE2MsN5vexZ4WJe_6bFg_8v4wlcRaFy73Ynew_hmiBG5TIVeg0G89Oz8Aj1r3n5uGN0Bh8vW7Z-AU-sPwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSAM%3A+a+span+spatial+attention+model+for+recognizing+named+entities&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Kai&rft.au=Wen%2C+Kunjian&rft.au=Chen%2C+Yanping&rft.au=Qin%2C+Yongbin&rft.date=2025-03-25&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=10313&rft_id=info:doi/10.1038%2Fs41598-025-87722-0&rft_id=info%3Apmid%2F40133327&rft.externalDocID=40133327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon