SSAM: a span spatial attention model for recognizing named entities
Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial stru...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 10313 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at
https://github.com/Gzuwkj/SpatialAttentionForNer
. |
---|---|
AbstractList | Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer. Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer . Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer .Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer . Abstract Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity recognition. Existing approaches to recognizing named entities often classify each entity span independently, which ignores the spatial structures between neighboring spans. To address this issue, we propose a Span Spatial Attention Model (SSAM) that consists of a token encoder, a span generation module, and a 2D spatial attention network. The SSAM employs a two-channel span generation strategy to capture multi-granular features. Unlike traditional attention implemented on a sequential sentence representation, spatial attention is applied to a 2D sentence representation, enabling the model to learn the spatial structures of the sentence. This allows the SSAM to adaptively encode important features and suppress non-essential information in the 2D sentence representation. Experimental results on the GENIA, ACE2005, and ACE2004 datasets demonstrate that our proposed model achieves state-of-the-art performance, with F1-scores of 81.82%, 89.04%, and 89.24%, respectively. The code is available at https://github.com/Gzuwkj/SpatialAttentionForNer . |
ArticleNumber | 10313 |
Author | Qin, Yongbin Wang, Kai Chen, Yanping Wen, Kunjian |
Author_xml | – sequence: 1 givenname: Kai surname: Wang fullname: Wang, Kai organization: Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, College of Computer Science and Technology, Guizhou University, State Key Laboratory of Public Big Data, Guizhou University – sequence: 2 givenname: Kunjian surname: Wen fullname: Wen, Kunjian organization: ByteDance Ltd – sequence: 3 givenname: Yanping surname: Chen fullname: Chen, Yanping email: ypench@gmail.com organization: Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, College of Computer Science and Technology, Guizhou University, State Key Laboratory of Public Big Data, Guizhou University – sequence: 4 givenname: Yongbin surname: Qin fullname: Qin, Yongbin email: ybqin@gzu.edu.cn organization: Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, College of Computer Science and Technology, Guizhou University, State Key Laboratory of Public Big Data, Guizhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40133327$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v3CAQhlGVqEm3-QM9VJZ66cUNMGCglypa9SNSoh7SnhHG2GXlhS14I7W_vnid5qOHcgAEz7wzA-8LdBRicAi9IvgdwSDPMyNcyRpTXkshKK3xM3RKMeM1BUqPHu1P0FnOG1wGp4oR9RydMEwAgIpTtL65ubh-X5kq70yYp8mbsTLT5MLkY6i2sXNj1cdUJWfjEPxvH4YqmK3rqhmZvMsv0XFvxuzO7tYV-v7p47f1l_rq6-fL9cVVbRmlU10KFtxI20srbOckdNQyaGjP-6ZVPactazsMHHowXCnWCOEEt661lLOGAazQ5aLbRbPRu-S3Jv3S0Xh9OIhp0CZN3o5OY8w64aCzSoqSnClrSWlemU4CwyXtCn1YtHb7tvRiSy_JjE9En94E_0MP8VYTokBAMyu8vVNI8efe5UlvfbZuHE1wcZ81EEmgkYzOhb_5B93EfQrlrQ4UEbz8S6FePy7pvpa_n1UAugA2xZyT6-8RgvVsCr2YQhdT6IMpNC5BsATlAofBpYfc_4n6A6nstuY |
Cites_doi | 10.18653/v1/N18-1079 10.18653/v1/2020.emnlp-main.514 10.18653/v1/N19-1180 10.18653/v1/2022.findings-acl.250 10.1609/aaai.v35i14.17513 10.18653/v1/N16-1030 10.1038/nrn1411 10.1093/bioinformatics/btz682 10.18653/v1/2022.acl-long.67 10.1016/0010-0285(80)90005-5 10.1016/j.ipm.2024.103657 10.1109/TNNLS.2020.3019893 10.18653/v1/D18-1019 10.1080/09540091.2023.2181483 10.24963/ijcai.2021/542 10.3115/1119176.1119202 10.1093/bioinformatics/btg1023 10.1007/s41095-022-0271-y 10.1109/ICCV.2017.507 10.18653/v1/2020.acl-main.703 10.1609/aaai.v36i10.21344 10.3390/ijgi11120598 10.1038/s41598-024-67114-6 10.18653/v1/P19-1527 10.1016/j.eswa.2023.123000 10.1007/978-3-030-01234-2_1 10.1016/j.ipm.2023.103557 10.18653/v1/2022.acl-long.63 10.1007/978-981-97-8650-3_3 10.18653/v1/2020.acl-main.577 10.1016/j.neucom.2020.10.095 10.18653/v1/2023.acl-short.123 10.18653/v1/2021.acl-long.216 10.18653/v1/2021.emnlp-main.17 10.18653/v1/N16-1155 10.18653/v1/2022.acl-long.490 10.1145/3539618.3591662 10.1016/j.eswa.2024.125096 10.1016/j.knosys.2022.109129 10.1016/j.ipm.2023.103352 10.3115/1621787.1621800 10.1109/CVPR.2018.00745 10.18653/v1/D15-1102 10.1007/s12559-022-10058-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-87722-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_004d7e3dc98742249cc12949ad8340c4 PMC11937364 40133327 10_1038_s41598_025_87722_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key Technology R&D Program of Guizhou Province grantid: [2024]003 – fundername: National Key R&D Program of China grantid: 2023YFC3304500 – fundername: National Natural Science Foundation of China grantid: 62166007 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AAYXX CITATION PHGZM SNYQT NPM 3V. 7XB 88A 8FK AARCD K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c422t-41575a8cf8c7cde83d2c4362f5f6b9f52b4bd0353f3a5994677e75cebc2546433 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:55 EDT 2025 Thu Aug 21 18:39:40 EDT 2025 Fri Jul 11 18:57:21 EDT 2025 Wed Aug 13 03:26:44 EDT 2025 Sun Mar 30 01:29:56 EDT 2025 Tue Jul 01 05:17:01 EDT 2025 Wed Mar 26 01:23:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Spatial attention Natural language processing Named entity recognition |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-41575a8cf8c7cde83d2c4362f5f6b9f52b4bd0353f3a5994677e75cebc2546433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-87722-0 |
PMID | 40133327 |
PQID | 3181175941 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_004d7e3dc98742249cc12949ad8340c4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11937364 proquest_miscellaneous_3181368423 proquest_journals_3181175941 pubmed_primary_40133327 crossref_primary_10_1038_s41598_025_87722_0 springer_journals_10_1038_s41598_025_87722_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-25 |
PublicationDateYYYYMMDD | 2025-03-25 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | L Tao (87722_CR42) 2022; 11 87722_CR58 87722_CR57 87722_CR16 87722_CR15 87722_CR18 87722_CR50 87722_CR52 87722_CR10 87722_CR54 Y Li (87722_CR56) 2024; 14 Y Wu (87722_CR8) 2024; 245 87722_CR55 M-H Guo (87722_CR19) 2022; 8 R Tang (87722_CR7) 2022; 250 C Walker (87722_CR47) 2006; 57 J Lee (87722_CR51) 2020; 36 J Yu (87722_CR11) 2023; 35 M-H Guo (87722_CR23) 2022; 45 87722_CR25 87722_CR24 R Collobert (87722_CR26) 2011; 12 87722_CR2 87722_CR27 87722_CR29 87722_CR1 87722_CR28 87722_CR21 Z Yang (87722_CR4) 2024; 61 87722_CR20 87722_CR22 R Geng (87722_CR17) 2023; 60 87722_CR6 AM Treisman (87722_CR12) 1980; 12 87722_CR36 87722_CR35 87722_CR38 87722_CR37 87722_CR39 A Galassi (87722_CR14) 2020; 32 87722_CR30 87722_CR32 87722_CR31 87722_CR34 J Feng (87722_CR5) 2024; 61 87722_CR33 Y Chen (87722_CR53) 2023; 15 JM Wolfe (87722_CR13) 2004; 5 87722_CR49 87722_CR48 J-D Kim (87722_CR46) 2003; 19 87722_CR41 87722_CR40 87722_CR43 X Zheng (87722_CR9) 2021; 430 X Guo (87722_CR3) 2024; 257 87722_CR45 87722_CR44 |
References_xml | – ident: 87722_CR30 doi: 10.18653/v1/N18-1079 – ident: 87722_CR2 doi: 10.18653/v1/2020.emnlp-main.514 – ident: 87722_CR16 doi: 10.18653/v1/N19-1180 – ident: 87722_CR40 doi: 10.18653/v1/2022.findings-acl.250 – ident: 87722_CR34 doi: 10.1609/aaai.v35i14.17513 – ident: 87722_CR28 doi: 10.18653/v1/N16-1030 – volume: 5 start-page: 495 year: 2004 ident: 87722_CR13 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1411 – volume: 36 start-page: 1234 year: 2020 ident: 87722_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – ident: 87722_CR57 doi: 10.18653/v1/2022.acl-long.67 – volume: 12 start-page: 97 year: 1980 ident: 87722_CR12 publication-title: Cogn. Psychol. doi: 10.1016/0010-0285(80)90005-5 – volume: 61 start-page: 103657 year: 2024 ident: 87722_CR4 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2024.103657 – volume: 32 start-page: 4291 year: 2020 ident: 87722_CR14 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3019893 – ident: 87722_CR31 doi: 10.18653/v1/D18-1019 – volume: 45 start-page: 5436 year: 2022 ident: 87722_CR23 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 2181483 year: 2023 ident: 87722_CR11 publication-title: Connect. Sci. doi: 10.1080/09540091.2023.2181483 – ident: 87722_CR55 doi: 10.24963/ijcai.2021/542 – ident: 87722_CR25 doi: 10.3115/1119176.1119202 – volume: 19 start-page: i180 year: 2003 ident: 87722_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1023 – ident: 87722_CR37 – volume: 8 start-page: 331 year: 2022 ident: 87722_CR19 publication-title: Comput. Visual Media doi: 10.1007/s41095-022-0271-y – ident: 87722_CR22 doi: 10.1109/ICCV.2017.507 – ident: 87722_CR36 doi: 10.18653/v1/2020.acl-main.703 – volume: 57 start-page: 45 year: 2006 ident: 87722_CR47 publication-title: Linguist. Data Consort. Phila. – ident: 87722_CR18 doi: 10.1609/aaai.v36i10.21344 – volume: 11 start-page: 598 year: 2022 ident: 87722_CR42 publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi11120598 – ident: 87722_CR27 – volume: 14 start-page: 16106 year: 2024 ident: 87722_CR56 publication-title: Sci. Rep. doi: 10.1038/s41598-024-67114-6 – ident: 87722_CR33 doi: 10.18653/v1/P19-1527 – ident: 87722_CR50 – volume: 245 year: 2024 ident: 87722_CR8 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.123000 – ident: 87722_CR15 – ident: 87722_CR21 doi: 10.1007/978-3-030-01234-2_1 – volume: 61 year: 2024 ident: 87722_CR5 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2023.103557 – ident: 87722_CR38 doi: 10.18653/v1/2022.acl-long.63 – ident: 87722_CR58 doi: 10.1007/978-981-97-8650-3_3 – ident: 87722_CR1 doi: 10.18653/v1/2020.acl-main.577 – volume: 430 start-page: 104 year: 2021 ident: 87722_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.095 – ident: 87722_CR44 – ident: 87722_CR41 doi: 10.18653/v1/2023.acl-short.123 – ident: 87722_CR48 – ident: 87722_CR54 doi: 10.18653/v1/2021.acl-long.216 – ident: 87722_CR6 doi: 10.18653/v1/2021.emnlp-main.17 – volume: 12 start-page: 2493 year: 2011 ident: 87722_CR26 publication-title: J. Mach. Learn. Res. – ident: 87722_CR32 doi: 10.18653/v1/N16-1155 – ident: 87722_CR39 doi: 10.18653/v1/2022.acl-long.490 – ident: 87722_CR24 – ident: 87722_CR43 doi: 10.1145/3539618.3591662 – volume: 257 start-page: 125096 year: 2024 ident: 87722_CR3 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125096 – volume: 250 year: 2022 ident: 87722_CR7 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109129 – volume: 60 year: 2023 ident: 87722_CR17 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2023.103352 – ident: 87722_CR10 doi: 10.3115/1621787.1621800 – ident: 87722_CR45 – ident: 87722_CR49 – ident: 87722_CR52 – ident: 87722_CR20 doi: 10.1109/CVPR.2018.00745 – ident: 87722_CR29 doi: 10.18653/v1/D15-1102 – ident: 87722_CR35 – volume: 15 start-page: 534 year: 2023 ident: 87722_CR53 publication-title: Cogn. Comput. doi: 10.1007/s12559-022-10058-8 |
SSID | ssj0000529419 |
Score | 2.4432251 |
Snippet | Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in named entity... Abstract Mapping a sentence into a two-dimensional (2D) representation can flatten nested semantic structures and build multi-granular span dependencies in... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 10313 |
SubjectTerms | 639/166 639/705 Humanities and Social Sciences Labeling multidisciplinary Named entity recognition Natural language processing Science Science (multidisciplinary) Semantics Spatial attention |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB-KIPRSqvZj_SKCt3ZpXibZbLypKCLoxQreQjab0EJZS30e9K93kux7-mqLFy972AQy-5tMZrKT_AZgt-EeOY-qjkKbWuqG1873sW5S1ftEFWBi-g95dt6cXMrTK3X1pNRXOhNW6IELcIl8p9cBe0-bY0n-xnhPLkoa17couc9MoOTznmymCqs39ZmY8ZYMx_bbDXmqdJtMKFoANO3A-IInyoT9_4oynx-W_Ctjmh3R8Xt4N0aQbL9IvgJvwrAKy6Wm5N0aHF5c7J_tMcdoqRjSg0z4F0ssmvlcI8ulbxiFqmw8O3RPo7DB0dhsRrD6AS6Pj74fntRjpYTaEybTmr5NK9f62Hrt-9BiL7wk1xRVbDoTlehk13NUGNEpY2hx1EErHzqf6PAl4kdYGq6H8BkYmWE0ik-c10L26I0TDfI4CZKCh863FXyZoWZ_F0IMmxPZ2NqCsSWMbcbY8goOErDznonMOr8gFdtRxfYlFVewOVOLHS3sxtJalFhGScsV7MybyTZSwsMN4fq29MGUaMQKPhUtziVJ-0pEoStoF_S7IOpiy_DzR-bfnlDQq7Ehub7OpsKjXP_HYv01sNiAtyLNYY61UJuwNP1zG7YoLJp229kCHgAbuQR7 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxQxFA9aEbyU-j21SgRvOjSbl0ySXqQWSxHqpRb2FjLJRAWZrd3tof3rfS8zs2X9usxhEkjyvpOX_B5jbxoRQYis6yyNq5VpRB1iynVDVe8JKsBlOoc8_dycnKtPcz0fD9yW47XKySYWQ50Wkc7I91H2CFXSqdn7i581VY2i7OpYQuMuu0fQZSTVZm7WZyyUxVIzN76VEWD3l-iv6E2Z1GgGDO7DxIY_KrD9f4s1_7wy-VvetLij4x22PcaR_HBg_EN2p-sfsftDZcnrx-zo7Ozw9IAHjgajpw8q8g9OWJrldiMvBXA4Bqx8vEF0g6PwPuDYfIJZfcLOjz9-OTqpx3oJdVRSrmpcm9HBxmyjiamzkGRU6KCyzk3rspatapMADRmCdg5NpOmMjl0bCRRfATxlW_2i754zjsqYnRazEI1UCaILsgGRZ53CEKKNtmJvJ6r5iwEWw5d0Nlg_0NgjjX2hsRcV-0CEXfckSOvyY3H51Y8a4lFbk-kgRWdxu467whgxFlEuJAtKRFWxvYktftSzpb-Vioq9XjejhlDaI_Td4mroA5RuhIo9G7i4ngntLgGkqZjd4O_GVDdb-u_fCgo3ChwYaHBe7yZRuJ3Xv2mx-_9lvGAPJEmngFrqPba1urzqXmLYs2pfFdn-BT6W_O4 priority: 102 providerName: ProQuest |
Title | SSAM: a span spatial attention model for recognizing named entities |
URI | https://link.springer.com/article/10.1038/s41598-025-87722-0 https://www.ncbi.nlm.nih.gov/pubmed/40133327 https://www.proquest.com/docview/3181175941 https://www.proquest.com/docview/3181368423 https://pubmed.ncbi.nlm.nih.gov/PMC11937364 https://doaj.org/article/004d7e3dc98742249cc12949ad8340c4 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-O1qPSL4pou5TLLZ-HY9WspBi3gW7i1ks4kVZE_a64P-9U6yuyen9cGXXUiyZHYmk0wyk98AvKm4R86jKqPQppS64qXzbSyrlPU-QQWYmM4hz86r0wu5WKnVHojxLkwO2s-QlnmaHqPD3l_TQpMugwlF-qtpA0Xb9IME1U5j-2A2WywX25OV5LuSUzPckOFY3_LxziqUwfpvszD_DpT8w1uaF6GTB3B_sB7ZrKf3IeyF7hHc7fNJ_ngM8-VydvaBOUbTRJcepL7fWELQzDGNLKe9YWSmsiFu6Cf1wjpHfbMRXPUJXJwcf56flkOWhNJLITYl_ZtWrvax9tq3ocZWeEnLUlSxakxUopFNy1FhRKeMoYlRB618aHyCwpeIT2G_W3fhOTBSwWgUnzqvhWzRGycq5HEaJBkOja8LeDtyzX7vwTBsdmJjbXseW-KxzTy2vICjxNhtywRknQvWV1_sIFhLOtrqgK03JEwyJ4z3ZIFI49oaJfeygMNRLHbQrmtL81BCGCUpF_B6W016kZwdrgvrm74NJicjFvCsl-KWkrSnRBS6gHpHvjuk7tZ0Xy8z9vaUDF6NFdH1bhwKv-n6Ny9e_F_zl3BPpNHKsRTqEPY3VzfhFRk_m2YCd_RKT4YxT--j4_OPn6h0Xs0n-UDhF9UZAIc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQVIbgg3k0pYCQ4QVTHjzhGQqgUqi3t9tJW2ptJnBiQqmzpboXKR_GNzDjJVsvr1ksOsSXb8_bMeAbgec695DzoNAhjU2Vynpa-DmlOXe-pVIAN5IccH-SjY_Vxoicr8HN4C0NplYNMjIK6nnrykW8i7VFVSauyt6ffUuoaRdHVoYVGRxZ7zcV3vLLN3uy-R_y-EGLnw9H2KO27CqReCTFPUWMZXRY-FN74uilkLbxCMR50yCsbtKhUVXOpZZClttSB3jRG-6byVDpekQMURf41VLycLntmYhY-HYqaqcz2b3O4LDZnuBq9YRMaxY7Bex9f0n-xTcDfbNs_UzR_i9NG9bdzG271divb6gjtDqw07V243nWyvLgH24eHW-PXrGQooFr6oOA4YVS7M2ZTsthwh6GBzPqMpR-4CmtLXJsNZV3vw_GVQPIBrLbTtlkDhswfrOZZ6Y1QtfS2FLnkIWsUmiyVLxJ4OUDNnXZlOFwMn8vCdTB2CGMXYex4Au8IsIuZVEI7_piefXY9RzqUDrVpZO1tYfA4ynqPto-yZV1Ixb1KYGNAi-v5euYuqTCBZ4th5EgKs5RtMz3v5kgKb8oEHnZYXOyEbrNSCpNAsYTfpa0uj7Rfv8Sq3xma2kbmuK9XAylc7uvfsFj__zGewo3R0Xjf7e8e7D2Cm4IolctU6A1YnZ-dN4_R5JpXTyKdM_h01Yz1CyuiOWY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaqrUBcEG8GCgQJTjDabB6TCRJCfa1aSlcVpVJvYSaTABKaLd2tUPlp_DrseWy1vG69zGESKYljf3FsxwZ4lnEvOY86jcLYVJmMp4WvYppR1XtKFWAj2SH3J9nOkXp7rI9X4Gf_FobCKntMbIC6mnqykQ-R9yirpFWjYezCIg62xm9OvqVUQYo8rX05jZZF9sL5d7y-zV7vbuFePxdivP1hcyftKgykXgkxT_H0MrrIfcy98VXIZSW8QkiPOmaljVqUqqy41DLKQluqRm-C0T6UntLIKzKGIvyvGroVDWB1Y3ty8H5h4SEfmhrZ7qUOl_lwhuPRizahEYQM3gL50mnYFA34m6b7Z8Dmb17b5jAc34DrnRbL1lu2uwkrob4FV9q6lue3YfPwcH3_FSsYwlVNH4SRr4wyeTaxlawpv8NQXWZd_NIPHIXVBY7N-iSvd-DoUmh5Fwb1tA73gSEURKv5qPBGqEp6W4hM8jgKChWY0ucJvOip5k7apByucabL3LU0dkhj19DY8QQ2iLCLnpRQu_kxPf3kOvl0iBWVCbLyNje4HGW9R01I2aLKpeJeJbDWb4vrpHzmLngygaeLZpRPcroUdZietX0kOTtlAvfaXVzMhO62UgqTQL60v0tTXW6pv3xucoCPUPE2MsN5vexZ4WJe_6bFg_8v4wlcRaFy73Ynew_hmiBG5TIVeg0G89Oz8Aj1r3n5uGN0Bh8vW7Z-AU-sPwE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSAM%3A+a+span+spatial+attention+model+for+recognizing+named+entities&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Kai&rft.au=Wen%2C+Kunjian&rft.au=Chen%2C+Yanping&rft.au=Qin%2C+Yongbin&rft.date=2025-03-25&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=10313&rft_id=info:doi/10.1038%2Fs41598-025-87722-0&rft_id=info%3Apmid%2F40133327&rft.externalDocID=40133327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |