Nonlinearities investigation and experimental validation insights into mechanical model of yoke-type inerter for enhanced vibration suppression
Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control application...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 10122 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device’s nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter’s the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering. |
---|---|
AbstractList | Abstract Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device’s nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter’s the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering. Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device’s nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter’s the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering. Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device's nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter's the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering.Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device's nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter's the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering. |
ArticleNumber | 10122 |
Author | Tao, Qian Hao, Linfei Zhang, Ruifu Zhang, Li Xue, Songtao |
Author_xml | – sequence: 1 givenname: Ruifu surname: Zhang fullname: Zhang, Ruifu organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Department of Disaster Mitigation for Structures, Tongji University – sequence: 2 givenname: Qian surname: Tao fullname: Tao, Qian organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Department of Disaster Mitigation for Structures, Tongji University – sequence: 3 givenname: Li orcidid: 0000-0001-7339-8863 surname: Zhang fullname: Zhang, Li email: zhangli24@tongji.edu.cn organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Department of Disaster Mitigation for Structures, Tongji University – sequence: 4 givenname: Linfei surname: Hao fullname: Hao, Linfei organization: Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology, Guangzhou University – sequence: 5 givenname: Songtao surname: Xue fullname: Xue, Songtao organization: Department of Disaster Mitigation for Structures, Tongji University, Department of Architecture, Tohoku Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40128253$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAQxyNUREvpC3BAkbhwCfgrG_uEUEWhUgUXOFuOPc56ydrBdrbsU_DKdTeltBzwxSPPb_4z45nn1ZEPHqrqJUZvMaL8XWK4FbxBpG0EFR1urp9UJwSxtiGUkKMH9nF1ltIGldMSwbB4Vh0zhAknLT2pfn8JfnQeVHTZQaqd30HKblDZBV8rb2r4NUF0W_BZjfVOjc4sPueTG9b5NiSHegt6rbzThdkGA2MdbL0PP6DJ-wkKAjFDrG2INfgCajD1zvVxkUrzNEVIqdgvqqdWjQnO7u7T6vvFx2_nn5urr58uzz9cNZoRkhva8RURiBMF0HemNaY0akynCLWtLZ1ZwTtjlABreg3K9AxWFLDQ3IqOKnpaXS66JqiNnEqDKu5lUE4eHkIcpIrZ6RGkBko118ZoQKxkVSCs6hAzYFsu-KpovV-0prnfQsF8jmp8JPrY491aDmEnMRaU0lYUhTd3CjH8nMsA5NYlDeOoPIQ5SYo5EpytECvo63_QTZijL391oLpOYEwK9ephSfe1_Bl8AcgC6BhSimDvEYzk7YLJZcFkWTB5WDB5XYLoEpQK7AeIf3P_J-oGmzzZKg |
Cites_doi | 10.1016/j.soildyn.2020.106463 10.1137/0111030 10.1016/j.jfranklin.2018.11.012 10.16385/j.cnki.issn.1004-4523.2024.11.006 10.1016/j.jsv.2022.117018 10.1016/j.jsv.2021.116121 10.1007/s42417-024-01387-z 10.1080/00423110701519031 10.1007/s13369-024-08960-4 10.1002/eqe.2356 10.1016/j.engstruct.2022.115265 10.1016/j.jobe.2021.103259 10.3130/aijs.76.1271 10.1016/j.jfranklin.2019.02.040 10.1016/j.engstruct.2020.111169 10.1002/stc.1879 10.1016/j.ymssp.2023.110903 10.1016/j.compstruc.2005.09.018 10.1002/stc.2082 10.1016/j.cnsns.2020.105654 10.1002/eqe.2256 10.1088/1361-665X/ab785a 10.1007/s11071-024-10532-y 10.1038/s41598-023-31482-2 10.1002/stc.3000 10.1016/j.ymssp.2018.01.018 10.1016/j.ymssp.2019.04.047 10.1007/s10518-021-01279-7 10.1061/(ASCE)SC.1943-5576.0000661 10.1002/eqe.2390 10.1016/j.engstruct.2022.114308 10.1016/j.oceaneng.2025.120679 10.1137/0806023 10.1002/stc.2523 10.1007/s00707-023-03556-9 10.1016/j.ijmecsci.2020.106087 10.1016/j.istruc.2023.105253 10.1061/(ASCE)BE.1943-5592.0001941 10.1002/eqe.3147 10.1016/j.mechmachtheory.2019.03.010 10.1016/j.jfranklin.2019.01.036 10.1007/s12239-016-0041-x 10.1016/j.ijmecsci.2020.105845 10.1007/978-3-319-70939-0 10.1016/j.tws.2024.112347 10.1007/s41062-022-00904-x 10.1016/j.engstruct.2016.07.045 10.1016/j.soildyn.2019.03.016 10.1016/j.ijimpeng.2024.105076 10.1016/j.oceaneng.2024.117172 10.3130/jaabe.11.375 10.1002/eqe.3011 10.1002/eqe.1138 10.12989/sss.2020.26.4.481 10.1007/s11071-018-4262-6 10.1016/j.engstruct.2018.11.020 10.1016/j.ymssp.2021.108520 10.1016/j.ijmecsci.2023.108447 10.1115/1.3023120 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-93971-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_ce33c8cddce04629ae9fa704def58986 PMC11933359 40128253 10_1038_s41598_025_93971_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Postdoctoral Fellowship Program of CPSF grantid: GZC20241247 – fundername: National Key Research and Development Program of China grantid: 2021YFE0112200 funderid: https://doi.org/10.13039/501100012166 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 23200714300 – fundername: Fundamental Research Funds for the Central Universities grantid: 2023-2-YB-05 – fundername: National Key Research and Development Program of China grantid: 2021YFE0112200 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION AJTQC NPM 3V. 7XB 88A 8FK AARCD K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c422t-378629082aeeb7d5dd322dd7a23f5f253f987dda9efdbceadb4e63e19c8f973a3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Thu Aug 21 18:39:57 EDT 2025 Fri Jul 11 02:10:58 EDT 2025 Wed Aug 13 09:18:24 EDT 2025 Fri Mar 28 01:32:26 EDT 2025 Tue Jul 01 05:17:24 EDT 2025 Mon Jul 21 06:10:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Constitutive model Dynamic negative stiffness Multi-body simulation Yoke-type inerter Apparent mass |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-378629082aeeb7d5dd322dd7a23f5f253f987dda9efdbceadb4e63e19c8f973a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7339-8863 |
OpenAccessLink | https://doaj.org/article/ce33c8cddce04629ae9fa704def58986 |
PMID | 40128253 |
PQID | 3180779112 |
PQPubID | 2041939 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ce33c8cddce04629ae9fa704def58986 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11933359 proquest_miscellaneous_3180984604 proquest_journals_3180779112 pubmed_primary_40128253 crossref_primary_10_1038_s41598_025_93971_w springer_journals_10_1038_s41598_025_93971_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-24 |
PublicationDateYYYYMMDD | 2025-03-24 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | C Málaga-Chuquitaype (93971_CR38) 2019; 121 K Ikago (93971_CR3) 2012; 41 X Liu (93971_CR47) 2019; 137 MC Xu (93971_CR64) 2024; 205 A Javidialesaadi (93971_CR17) 2021; 140 EDA John (93971_CR35) 2019; 356 G Alotta (93971_CR49) 2021; 192 R Mirza Hessabi (93971_CR34) 2016; 126 KK Kiran (93971_CR40) 2025; 50 RF Zhang (93971_CR15) 2020; 27 J Song (93971_CR44) 2024; 206 A Pirrotta (93971_CR50) 2024 T Wei (93971_CR63) 2024; 194 H He (93971_CR14) 2022; 534 93971_CR30 RS Jangid (93971_CR36) 2022; 29 DW Marquardt (93971_CR58) 1963; 11 A Javidialesaadi (93971_CR19) 2019; 129 B Zhu (93971_CR23) 2024; 298 T Chen (93971_CR65) 2025; 324 KK Kiran (93971_CR25) 2022; 7 X Shi (93971_CR12) 2019; 356 L Zhang (93971_CR51) 2023; 254 R Thiers-Moggia (93971_CR33) 2019; 48 FC Wang (93971_CR45) 2008; 46 X Liu (93971_CR32) 2018; 106 93971_CR46 H Kida (93971_CR1) 2011; 76 E Bozdag (93971_CR56) 2006; 84 S Djerouni (93971_CR18) 2021; 44 CR Liu (93971_CR21) 2021; 95 YH Li (93971_CR29) 2022; 167 Q Wang (93971_CR10) 2020; 223 K Ikago (93971_CR2) 2012; 11 TF Coleman (93971_CR59) 1996; 6 Y Li (93971_CR61) 2021; 504 RF Zhang (93971_CR7) 2019; 180 ZP Zhao (93971_CR13) 2020; 184 K Rajana (93971_CR16) 2023; 234 RF Zhang (93971_CR4) 2024; 37 IF Lazar (93971_CR8) 2014; 43 93971_CR52 K Ye (93971_CR24) 2023; 21 LQ Zhang (93971_CR5) 2023; 275 L Zhang (93971_CR41) 2022; 262 XQ Sun (93971_CR60) 2016; 17 KK Kiran (93971_CR39) 2024; 12 D De Domenico (93971_CR31) 2019; 356 C Papageorgiou (93971_CR48) 2009; 131 RS Jangid (93971_CR37) 2022; 27 93971_CR6 93971_CR26 TC Pan (93971_CR55) 2014; 43 93971_CR28 93971_CR27 ZP Zhao (93971_CR11) 2020; 26 KK Kiran (93971_CR20) 2023; 57 A Gonzalez-Buelga (93971_CR42) 2017; 24 KK Kiran (93971_CR9) 2023; 13 D De Domenico (93971_CR22) 2018; 47 J Shan (93971_CR54) 2013; 42 93971_CR62 FD Moraes (93971_CR53) 2018; 93 Q Wang (93971_CR57) 2020; 29 ZC Li (93971_CR43) 2022; 27 |
References_xml | – volume: 140 start-page: 106463 year: 2021 ident: 93971_CR17 publication-title: Soil. Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2020.106463 – volume: 11 start-page: 431 year: 1963 ident: 93971_CR58 publication-title: J. Soc. Indust Appl. Math. doi: 10.1137/0111030 – volume: 356 start-page: 7626 year: 2019 ident: 93971_CR31 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.11.012 – volume: 37 start-page: 1848 year: 2024 ident: 93971_CR4 publication-title: J. Vib. Eng. doi: 10.16385/j.cnki.issn.1004-4523.2024.11.006 – volume: 534 start-page: 117018 year: 2022 ident: 93971_CR14 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2022.117018 – ident: 93971_CR26 – volume: 504 start-page: 116121 year: 2021 ident: 93971_CR61 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116121 – volume: 12 start-page: 8737 year: 2024 ident: 93971_CR39 publication-title: J. Vib. Eng. Technol. doi: 10.1007/s42417-024-01387-z – volume: 46 start-page: 575 year: 2008 ident: 93971_CR45 publication-title: Veh. Syst. Dyn. doi: 10.1080/00423110701519031 – volume: 50 start-page: 1753 year: 2025 ident: 93971_CR40 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-024-08960-4 – volume: 43 start-page: 449 year: 2014 ident: 93971_CR55 publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.2356 – volume: 275 start-page: 115265 year: 2023 ident: 93971_CR5 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115265 – volume: 44 start-page: 103259 year: 2021 ident: 93971_CR18 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103259 – volume: 76 start-page: 1271 year: 2011 ident: 93971_CR1 publication-title: J. Struct. Constr. Eng. doi: 10.3130/aijs.76.1271 – volume: 356 start-page: 7922 year: 2019 ident: 93971_CR12 publication-title: J. Frankl. Inst- Eng. Appl. Math. doi: 10.1016/j.jfranklin.2019.02.040 – volume: 223 start-page: 111169 year: 2020 ident: 93971_CR10 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111169 – volume: 24 start-page: e1879 year: 2017 ident: 93971_CR42 publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1879 – volume: 206 start-page: 110903 year: 2024 ident: 93971_CR44 publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2023.110903 – volume: 84 start-page: 283 year: 2006 ident: 93971_CR56 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2005.09.018 – ident: 93971_CR6 doi: 10.1002/stc.2082 – volume: 95 start-page: 105654 year: 2021 ident: 93971_CR21 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105654 – volume: 42 start-page: 1013 year: 2013 ident: 93971_CR54 publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.2256 – volume: 29 start-page: 045034 year: 2020 ident: 93971_CR57 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab785a – year: 2024 ident: 93971_CR50 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-10532-y – volume: 13 start-page: 4980 year: 2023 ident: 93971_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-023-31482-2 – volume: 29 start-page: e3000 year: 2022 ident: 93971_CR36 publication-title: Struct. Control Health Monit. doi: 10.1002/stc.3000 – ident: 93971_CR52 – volume: 106 start-page: 479 year: 2018 ident: 93971_CR32 publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2018.01.018 – volume: 129 start-page: 449 year: 2019 ident: 93971_CR19 publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2019.04.047 – volume: 21 start-page: 1651 year: 2023 ident: 93971_CR24 publication-title: Bull. Earthq. Eng. doi: 10.1007/s10518-021-01279-7 – volume: 27 start-page: 04021078 year: 2022 ident: 93971_CR37 publication-title: Pract. Period Struct. Des. Constr. doi: 10.1061/(ASCE)SC.1943-5576.0000661 – volume: 43 start-page: 1129 year: 2014 ident: 93971_CR8 publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.2390 – volume: 262 start-page: 114308 year: 2022 ident: 93971_CR41 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114308 – volume: 324 start-page: 120679 year: 2025 ident: 93971_CR65 publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2025.120679 – volume: 6 start-page: 418 year: 1996 ident: 93971_CR59 publication-title: SIAM J. Optim. doi: 10.1137/0806023 – volume: 27 start-page: e2523 year: 2020 ident: 93971_CR15 publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2523 – volume: 234 start-page: 3751 year: 2023 ident: 93971_CR16 publication-title: Acta Mech. doi: 10.1007/s00707-023-03556-9 – ident: 93971_CR46 – volume: 192 start-page: 106087 year: 2021 ident: 93971_CR49 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106087 – ident: 93971_CR28 – volume: 57 start-page: 105253 year: 2023 ident: 93971_CR20 publication-title: Structures doi: 10.1016/j.istruc.2023.105253 – ident: 93971_CR30 – volume: 27 start-page: 04022101 year: 2022 ident: 93971_CR43 publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001941 – volume: 48 start-page: 528 year: 2019 ident: 93971_CR33 publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.3147 – volume: 137 start-page: 1 year: 2019 ident: 93971_CR47 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.03.010 – volume: 356 start-page: 7650 year: 2019 ident: 93971_CR35 publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.01.036 – volume: 17 start-page: 399 year: 2016 ident: 93971_CR60 publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-016-0041-x – volume: 184 start-page: 105845 year: 2020 ident: 93971_CR13 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105845 – ident: 93971_CR62 doi: 10.1007/978-3-319-70939-0 – volume: 205 start-page: 112347 year: 2024 ident: 93971_CR64 publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2024.112347 – ident: 93971_CR27 – volume: 7 start-page: 310 year: 2022 ident: 93971_CR25 publication-title: Innovative Infrastructure Solutions doi: 10.1007/s41062-022-00904-x – volume: 126 start-page: 174 year: 2016 ident: 93971_CR34 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.07.045 – volume: 121 start-page: 200 year: 2019 ident: 93971_CR38 publication-title: Soil. Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2019.03.016 – volume: 194 start-page: 105076 year: 2024 ident: 93971_CR63 publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2024.105076 – volume: 298 start-page: 117172 year: 2024 ident: 93971_CR23 publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.117172 – volume: 11 start-page: 375 year: 2012 ident: 93971_CR2 publication-title: J. Asian Archit. Build. Eng. doi: 10.3130/jaabe.11.375 – volume: 47 start-page: 1169 year: 2018 ident: 93971_CR22 publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.3011 – volume: 41 start-page: 453 year: 2012 ident: 93971_CR3 publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.1138 – volume: 26 start-page: 481 year: 2020 ident: 93971_CR11 publication-title: Smart Struct. Syst. doi: 10.12989/sss.2020.26.4.481 – volume: 93 start-page: 1325 year: 2018 ident: 93971_CR53 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4262-6 – volume: 180 start-page: 29 year: 2019 ident: 93971_CR7 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.11.020 – volume: 167 start-page: 108520 year: 2022 ident: 93971_CR29 publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2021.108520 – volume: 254 start-page: 108447 year: 2023 ident: 93971_CR51 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108447 – volume: 131 start-page: 011001 year: 2009 ident: 93971_CR48 publication-title: J. Dyn. Syst. Meas. Contr doi: 10.1115/1.3023120 |
SSID | ssj0000529419 |
Score | 2.4435043 |
Snippet | Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish... Abstract Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 10122 |
SubjectTerms | 639/166 639/166/986 639/166/988 Apparent mass Civil engineering Comparative analysis Constitutive model Dynamic negative stiffness Friction Humanities and Social Sciences Inertia Multi-body simulation multidisciplinary Science Science (multidisciplinary) Simulation Vibration Yoke-type inerter |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaxN_IidEwLEaoXEnlipN8vxg63QJqVpWe2v4C8z46Qt5XVN3Mrx941n_JhvCHkpQu2MqRwLvvZMtrFisFZRTAjBva5CGVtMTv50Wp-cyY8zNZs23IbpWuVmTswTdeg97pEfAfdKrcE0-ZvFN4ZVo_B0dSqhcZ3cQOkyZLWe6e0eC55iyaqZcmVKYY4G8FeYU8YVa8ATV-xyzx9l2f6_xZp_Xpn87dw0u6PjO-T2FEfStyPwd8m12N0jN8fKklf3yY_TUQLDLbNiKp3v5DT6jrou0F-l_SnQbT4WV4KWA67X8Sernl5EzAxGIGmumUP7RK_6r5Hh1i3FxEHAhULgS2N3ni8T0O-4AM9_NawX0zXb7gE5O_7w-f0Jm2ovMC85X8G8A0sdLIfuYmx1UCGA5YegHRdJJa5EaowOwTUxhdYDHVsZaxGrxpvUaOHEQ3LQ9V18TKjzptbeoXAMlwECUpOi5EkrFcsAAUlBXm0QsItRYsPmo3Fh7IiXBbxsxsteFuQdgrRtifLY-UG__GIna7M-CuGNDwAXJt-iAHlyupQhJmUaUxfkcAOxnWx2sDuGFeTF9jVYGx6huC7267FNAyFbKQvyaGTEticSfT2MTEHMHlf2urr_ppufZ0VvIC8Yh4KheL2h1a5f_x6LJ___jKfkFkeml4JxeUgOVst1fAYh1Kp9nu3kJ-BnIDI priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDeBgozEDSwSP2LnuCCqaiV6gUq9WY4fdIVIqn1Q9Vfwl5lxki0L5cA1tiPL39gz9sx8Q8hrEWpnTOVY8LVnso0Vg7uKYkII7nUVythicvKnk_r4VM7P1Nke4VMuTA7az5SW-ZieosPerUDRYDIYV6wBFVqxy1vkAKnaQbYPZrP55_n2ZQV9V7JqxgyZUpgbBu9ooUzWf5OF-Xeg5B_e0qyEju6Ru6P1SGfDfO-Tvdg9ILeHepJXD8nPk4H4wi0zTypdXJNo9B11XaC_E_pTELLFUFIJeq7wlo5D1j39HjEfGOGjuVIO7RO96r9Fhg-2FNMFAQ0K5i6N3XkOIaA_8Nqdf7XaXIzBtd0jcnr08cuHYzZWXGBecr6G0wYuOFgE3cXY6qBCgP0egnZcJJW4EqkxOgTXxBRaD0LYyliLWDXepEYLJx6T_a7v4lNCnTe19g7pYrgMYIaaFCVPWqlYBjBDCvJmQsBeDMQaNjvEhbEDXhbwshkve1mQ9wjStieSYucP_fKrHYXE-iiENz4AXJhyi7TjyelShpiUaUxdkMMJYjvu1JWFM63UGo58XpBX22bYY-g4cV3sN0OfBgy1UhbkySAR25lI1PCwMgUxO7KyM9Xdlm5xnnm8KzCehVCwFG8nsbqe17_X4tn_dX9O7nCU_FIwLg_J_nq5iS_AkFq3L8ed8wtlMR__ priority: 102 providerName: Springer Nature |
Title | Nonlinearities investigation and experimental validation insights into mechanical model of yoke-type inerter for enhanced vibration suppression |
URI | https://link.springer.com/article/10.1038/s41598-025-93971-w https://www.ncbi.nlm.nih.gov/pubmed/40128253 https://www.proquest.com/docview/3180779112 https://www.proquest.com/docview/3180984604 https://pubmed.ncbi.nlm.nih.gov/PMC11933359 https://doaj.org/article/ce33c8cddce04629ae9fa704def58986 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0nfdposKvbUith6WfNwsCWGhS2kb2JuQ9SAh1A7Z3Yb8iv7ljiTvZrcPeunJIMlGzEMzY818g9A75mqjVGWIs7UlvPUVgVhFEMYYtbJypW9jcfLHWX1yyqdzMd9q9RVzwjI8cCbcgfWMWWWdsz7WUUYs6WBkyZ0PQjUqgW2DzdsKpjKqN2141QxVMiVTBwuwVLGajArSgA2uyPWOJUqA_X_yMn9PlvzlxjQZouNH6OHgQeJx3vljdMd3T9D93FPy5in6McvgF-YqYaXi81sgjb7DpnN4G9Qfg6Cd57ZKsHIRI_X4yrLH33ysCY4sxKlbDu4DvukvPIk_bXEsGQSOYHB5se_OUhoB_h5D7_SpxepySLDtnqHT46OvkxMydF0gllO6hBMHgpzYCN1430onnAOdd04ayoIIVLDQKOmcaXxwrQVBbLmvma8aq0IjmWHP0V7Xd_4lwsaqWloTIWMod-CKquA5DVIIXzpwRQr0fs0BfZnBNXS6FGdKZ35p4JdO_NLXBTqMTNqsjMDYaQDERQ_iov8lLgXaX7NYD9q60HCulVLCsU8L9HYzDXoWL09M5_tVXtOAs1byAr3IErHZCY9WHihTILUjKztb3Z3pzs8SlncFDjRjAkjxYS1Wt_v6Oy1e_Q9avEYPaNSHkhHK99He8mrl34CLtWxH6K6cyxG6Nx5Pv0zheXg0-_QZRif1ZJQ07SeotS78 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ7Ca2E7sHBDiVW1pu6dW6i04tkNXiGTZB6v9FfwTfiMzTrLL8rr1unEir-cbzzcezwwhT4XLjNaJYc5mlsnSJwx8lZQJIbhViYt9icnJx8NscCo_nKVnW-RHnwuD1yr7PTFs1K6xeEa-B9iLlQLV5K_GXxl2jcLoat9Co4XFoV8uwGWbvjx4B_J9xvn--5O3A9Z1FWBWcj4DjQISj42-jfelcqlzgGnnlOGiSiueigrccOdM7itXWljoUvpM-CS3usqVMAK-e4lcBsMbo7OnztTqTAejZjLJu9ycWOi9KdhHzGHjKcvB8idssWH_QpuAv3HbP69o_hanDeZv_wa53vFW-roF2k2y5etb5ErbyXJ5m3wftiU3zCRUaKWjdfmOpqamdvTXVgIU4D1qmznByCmeD-Ars4Z-8ZiJjMChoUcPbSq6bD57hkfFFBMVAQcUiDb19Xm4vEC_ocMfPjWdj7trvfUdcnohUrlLtuum9vcINVZnyhosVMOlAwKsKy95pdLUxw4IUESe9xIoxm1JjyKE4oUuWnkVIK8iyKtYROQNCmk1Estxhx-ayaei0-7CeiGstg7Ehcm-WPC8MiqWzlepznUWkd1exEW3R0yLNaIj8mT1GLQbQzam9s28HZMDRYxlRHZaRKxmIpFbwMpERG9gZWOqm0_q0XmoIJ4AbRcihaV40cNqPa9_r8X9__-Nx-Tq4OT4qDg6GB4-INc4oj4WjMtdsj2bzP1DoG-z8lHQGUo-XrSS_gTgqV89 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VVCBeEDcLBYwET2Bl197zASFKG7UUogpRqW9brw8aIXZDDqL8Cv4Pv46ZPRLC9dbXrHfleL6xv_FcAE-liVWaBoobHWseFjbgaKtEXEopdBIY3xaUnPx-GB-chG9Po9Mt-NHlwlBYZbcn1hu1qTTdkfcRe36SoGqKvmvDIo73Bq_GXzl1kCJPa9dOo4HIkV0u0HybvjzcQ1k_E2Kw__HNAW87DHAdCjFD7UJCT02_lbVFYiJjEN_GJEpIFzkRSYcmuTEqs84UGhe9CG0sbZDp1GWJVBK_ewm2E7KKerC9uz88_rC64SEfWhhkbaaOL9P-FE9LymgTEc-QBwR8sXEa1k0D_sZ0_wzY_M1rWx-Gg-twrWWx7HUDuxuwZcubcLnpa7m8Bd-HTQEONanrtbLRuphHVTJVGvZrYwGGYB81rZ1w5JRuC-iVWcW-WMpLJhixumMPqxxbVp8tp4tjRmmLiAqGtJvZ8rwOZWDfyPyvPzWdj9sg3_I2nFyIXO5Ar6xKew-Y0mmcaEVla0RokA6nzobCJVFkfYN0yIPnnQTycVPgI68d8zLNG3nlKK-8lle-8GCXhLQaScW56x-qyae81fVcWyl1qg2Ki1J_qfy5U4kfGuuiNEtjD3Y6EeftjjHN1_j24MnqMeo6OXBUaat5MyZDwuiHHtxtELGaSUhMA1fGg3QDKxtT3XxSjs7reuIBkngpI1yKFx2s1vP691rc___feAxXUEHzd4fDowdwVRDofclFuAO92WRuHyKXmxWPWqVhcHbRevoTyZxk2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearities+investigation+and+experimental+validation+insights+into+mechanical+model+of+yoke-type+inerter+for+enhanced+vibration+suppression&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Ruifu&rft.au=Tao%2C+Qian&rft.au=Zhang%2C+Li&rft.au=Hao%2C+Linfei&rft.date=2025-03-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=10122&rft_id=info:doi/10.1038%2Fs41598-025-93971-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |