Nonlinearities investigation and experimental validation insights into mechanical model of yoke-type inerter for enhanced vibration suppression

Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control application...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 10122 - 23
Main Authors Zhang, Ruifu, Tao, Qian, Zhang, Li, Hao, Linfei, Xue, Songtao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device’s nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter’s the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering.
AbstractList Abstract Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device’s nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter’s the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering.
Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device’s nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter’s the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering.
Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device's nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter's the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering.Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish an engineering-applicable mechanical constitutive model, thereby constraining their implementation in structural vibration control applications. This study proposes a multi-body dynamics-derived constitutive model that considers backlash-induced collision effects in yoke-type inerters, accompanied by experimental validation. Building upon established theoretical frameworks, a constitutive model is first formulated to incorporate inertial forces, Coulomb friction, and backlash nonlinearities. Subsequently, experiments are conducted on a prototype yoke-type inerter. To rigorously characterize the device's nonlinear behaviors arising from backlash and collision, a multi-body dynamics simulation is implemented, which facilitates the development of an enhanced constitutive model integrating collision. The enhanced model is then employed to quantitatively assess the influence of the backlash and collision on vibration isolator response. Experimental findings confirm the yoke-type inerter's the adaptive apparent mass effect and dynamic negative stiffness characteristics, suggesting its potential as a viable mechanism for advanced vibration mitigation systems. Comparative analysis reveals that simulation results obtained through the proposed multi-body dynamics model demonstrate strong concordance with experimental trends, thereby verifying both model validity and predictive accuracy. Parametric studies further establish that backlash-induced collision effects exert influence on isolator dynamic responses. The developed modeling framework provides critical theoretical foundations for optimized design of yoke-type inerter-enhanced structures, advancing practical applications in high-performance vibration suppression engineering.
ArticleNumber 10122
Author Tao, Qian
Hao, Linfei
Zhang, Ruifu
Zhang, Li
Xue, Songtao
Author_xml – sequence: 1
  givenname: Ruifu
  surname: Zhang
  fullname: Zhang, Ruifu
  organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Department of Disaster Mitigation for Structures, Tongji University
– sequence: 2
  givenname: Qian
  surname: Tao
  fullname: Tao, Qian
  organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Department of Disaster Mitigation for Structures, Tongji University
– sequence: 3
  givenname: Li
  orcidid: 0000-0001-7339-8863
  surname: Zhang
  fullname: Zhang, Li
  email: zhangli24@tongji.edu.cn
  organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Department of Disaster Mitigation for Structures, Tongji University
– sequence: 4
  givenname: Linfei
  surname: Hao
  fullname: Hao, Linfei
  organization: Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology, Guangzhou University
– sequence: 5
  givenname: Songtao
  surname: Xue
  fullname: Xue, Songtao
  organization: Department of Disaster Mitigation for Structures, Tongji University, Department of Architecture, Tohoku Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40128253$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxyNUREvpC3BAkbhwCfgrG_uEUEWhUgUXOFuOPc56ydrBdrbsU_DKdTeltBzwxSPPb_4z45nn1ZEPHqrqJUZvMaL8XWK4FbxBpG0EFR1urp9UJwSxtiGUkKMH9nF1ltIGldMSwbB4Vh0zhAknLT2pfn8JfnQeVHTZQaqd30HKblDZBV8rb2r4NUF0W_BZjfVOjc4sPueTG9b5NiSHegt6rbzThdkGA2MdbL0PP6DJ-wkKAjFDrG2INfgCajD1zvVxkUrzNEVIqdgvqqdWjQnO7u7T6vvFx2_nn5urr58uzz9cNZoRkhva8RURiBMF0HemNaY0akynCLWtLZ1ZwTtjlABreg3K9AxWFLDQ3IqOKnpaXS66JqiNnEqDKu5lUE4eHkIcpIrZ6RGkBko118ZoQKxkVSCs6hAzYFsu-KpovV-0prnfQsF8jmp8JPrY491aDmEnMRaU0lYUhTd3CjH8nMsA5NYlDeOoPIQ5SYo5EpytECvo63_QTZijL391oLpOYEwK9ephSfe1_Bl8AcgC6BhSimDvEYzk7YLJZcFkWTB5WDB5XYLoEpQK7AeIf3P_J-oGmzzZKg
Cites_doi 10.1016/j.soildyn.2020.106463
10.1137/0111030
10.1016/j.jfranklin.2018.11.012
10.16385/j.cnki.issn.1004-4523.2024.11.006
10.1016/j.jsv.2022.117018
10.1016/j.jsv.2021.116121
10.1007/s42417-024-01387-z
10.1080/00423110701519031
10.1007/s13369-024-08960-4
10.1002/eqe.2356
10.1016/j.engstruct.2022.115265
10.1016/j.jobe.2021.103259
10.3130/aijs.76.1271
10.1016/j.jfranklin.2019.02.040
10.1016/j.engstruct.2020.111169
10.1002/stc.1879
10.1016/j.ymssp.2023.110903
10.1016/j.compstruc.2005.09.018
10.1002/stc.2082
10.1016/j.cnsns.2020.105654
10.1002/eqe.2256
10.1088/1361-665X/ab785a
10.1007/s11071-024-10532-y
10.1038/s41598-023-31482-2
10.1002/stc.3000
10.1016/j.ymssp.2018.01.018
10.1016/j.ymssp.2019.04.047
10.1007/s10518-021-01279-7
10.1061/(ASCE)SC.1943-5576.0000661
10.1002/eqe.2390
10.1016/j.engstruct.2022.114308
10.1016/j.oceaneng.2025.120679
10.1137/0806023
10.1002/stc.2523
10.1007/s00707-023-03556-9
10.1016/j.ijmecsci.2020.106087
10.1016/j.istruc.2023.105253
10.1061/(ASCE)BE.1943-5592.0001941
10.1002/eqe.3147
10.1016/j.mechmachtheory.2019.03.010
10.1016/j.jfranklin.2019.01.036
10.1007/s12239-016-0041-x
10.1016/j.ijmecsci.2020.105845
10.1007/978-3-319-70939-0
10.1016/j.tws.2024.112347
10.1007/s41062-022-00904-x
10.1016/j.engstruct.2016.07.045
10.1016/j.soildyn.2019.03.016
10.1016/j.ijimpeng.2024.105076
10.1016/j.oceaneng.2024.117172
10.3130/jaabe.11.375
10.1002/eqe.3011
10.1002/eqe.1138
10.12989/sss.2020.26.4.481
10.1007/s11071-018-4262-6
10.1016/j.engstruct.2018.11.020
10.1016/j.ymssp.2021.108520
10.1016/j.ijmecsci.2023.108447
10.1115/1.3023120
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-93971-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_ce33c8cddce04629ae9fa704def58986
PMC11933359
40128253
10_1038_s41598_025_93971_w
Genre Journal Article
GrantInformation_xml – fundername: Postdoctoral Fellowship Program of CPSF
  grantid: GZC20241247
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0112200
  funderid: https://doi.org/10.13039/501100012166
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 23200714300
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2023-2-YB-05
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0112200
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
AJTQC
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c422t-378629082aeeb7d5dd322dd7a23f5f253f987dda9efdbceadb4e63e19c8f973a3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:58 EDT 2025
Thu Aug 21 18:39:57 EDT 2025
Fri Jul 11 02:10:58 EDT 2025
Wed Aug 13 09:18:24 EDT 2025
Fri Mar 28 01:32:26 EDT 2025
Tue Jul 01 05:17:24 EDT 2025
Mon Jul 21 06:10:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Constitutive model
Dynamic negative stiffness
Multi-body simulation
Yoke-type inerter
Apparent mass
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-378629082aeeb7d5dd322dd7a23f5f253f987dda9efdbceadb4e63e19c8f973a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7339-8863
OpenAccessLink https://doaj.org/article/ce33c8cddce04629ae9fa704def58986
PMID 40128253
PQID 3180779112
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_ce33c8cddce04629ae9fa704def58986
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11933359
proquest_miscellaneous_3180984604
proquest_journals_3180779112
pubmed_primary_40128253
crossref_primary_10_1038_s41598_025_93971_w
springer_journals_10_1038_s41598_025_93971_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-24
PublicationDateYYYYMMDD 2025-03-24
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Málaga-Chuquitaype (93971_CR38) 2019; 121
K Ikago (93971_CR3) 2012; 41
X Liu (93971_CR47) 2019; 137
MC Xu (93971_CR64) 2024; 205
A Javidialesaadi (93971_CR17) 2021; 140
EDA John (93971_CR35) 2019; 356
G Alotta (93971_CR49) 2021; 192
R Mirza Hessabi (93971_CR34) 2016; 126
KK Kiran (93971_CR40) 2025; 50
RF Zhang (93971_CR15) 2020; 27
J Song (93971_CR44) 2024; 206
A Pirrotta (93971_CR50) 2024
T Wei (93971_CR63) 2024; 194
H He (93971_CR14) 2022; 534
93971_CR30
RS Jangid (93971_CR36) 2022; 29
DW Marquardt (93971_CR58) 1963; 11
A Javidialesaadi (93971_CR19) 2019; 129
B Zhu (93971_CR23) 2024; 298
T Chen (93971_CR65) 2025; 324
KK Kiran (93971_CR25) 2022; 7
X Shi (93971_CR12) 2019; 356
L Zhang (93971_CR51) 2023; 254
R Thiers-Moggia (93971_CR33) 2019; 48
FC Wang (93971_CR45) 2008; 46
X Liu (93971_CR32) 2018; 106
93971_CR46
H Kida (93971_CR1) 2011; 76
E Bozdag (93971_CR56) 2006; 84
S Djerouni (93971_CR18) 2021; 44
CR Liu (93971_CR21) 2021; 95
YH Li (93971_CR29) 2022; 167
Q Wang (93971_CR10) 2020; 223
K Ikago (93971_CR2) 2012; 11
TF Coleman (93971_CR59) 1996; 6
Y Li (93971_CR61) 2021; 504
RF Zhang (93971_CR7) 2019; 180
ZP Zhao (93971_CR13) 2020; 184
K Rajana (93971_CR16) 2023; 234
RF Zhang (93971_CR4) 2024; 37
IF Lazar (93971_CR8) 2014; 43
93971_CR52
K Ye (93971_CR24) 2023; 21
LQ Zhang (93971_CR5) 2023; 275
L Zhang (93971_CR41) 2022; 262
XQ Sun (93971_CR60) 2016; 17
KK Kiran (93971_CR39) 2024; 12
D De Domenico (93971_CR31) 2019; 356
C Papageorgiou (93971_CR48) 2009; 131
RS Jangid (93971_CR37) 2022; 27
93971_CR6
93971_CR26
TC Pan (93971_CR55) 2014; 43
93971_CR28
93971_CR27
ZP Zhao (93971_CR11) 2020; 26
KK Kiran (93971_CR20) 2023; 57
A Gonzalez-Buelga (93971_CR42) 2017; 24
KK Kiran (93971_CR9) 2023; 13
D De Domenico (93971_CR22) 2018; 47
J Shan (93971_CR54) 2013; 42
93971_CR62
FD Moraes (93971_CR53) 2018; 93
Q Wang (93971_CR57) 2020; 29
ZC Li (93971_CR43) 2022; 27
References_xml – volume: 140
  start-page: 106463
  year: 2021
  ident: 93971_CR17
  publication-title: Soil. Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2020.106463
– volume: 11
  start-page: 431
  year: 1963
  ident: 93971_CR58
  publication-title: J. Soc. Indust Appl. Math.
  doi: 10.1137/0111030
– volume: 356
  start-page: 7626
  year: 2019
  ident: 93971_CR31
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2018.11.012
– volume: 37
  start-page: 1848
  year: 2024
  ident: 93971_CR4
  publication-title: J. Vib. Eng.
  doi: 10.16385/j.cnki.issn.1004-4523.2024.11.006
– volume: 534
  start-page: 117018
  year: 2022
  ident: 93971_CR14
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2022.117018
– ident: 93971_CR26
– volume: 504
  start-page: 116121
  year: 2021
  ident: 93971_CR61
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116121
– volume: 12
  start-page: 8737
  year: 2024
  ident: 93971_CR39
  publication-title: J. Vib. Eng. Technol.
  doi: 10.1007/s42417-024-01387-z
– volume: 46
  start-page: 575
  year: 2008
  ident: 93971_CR45
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423110701519031
– volume: 50
  start-page: 1753
  year: 2025
  ident: 93971_CR40
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-024-08960-4
– volume: 43
  start-page: 449
  year: 2014
  ident: 93971_CR55
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.2356
– volume: 275
  start-page: 115265
  year: 2023
  ident: 93971_CR5
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115265
– volume: 44
  start-page: 103259
  year: 2021
  ident: 93971_CR18
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103259
– volume: 76
  start-page: 1271
  year: 2011
  ident: 93971_CR1
  publication-title: J. Struct. Constr. Eng.
  doi: 10.3130/aijs.76.1271
– volume: 356
  start-page: 7922
  year: 2019
  ident: 93971_CR12
  publication-title: J. Frankl. Inst- Eng. Appl. Math.
  doi: 10.1016/j.jfranklin.2019.02.040
– volume: 223
  start-page: 111169
  year: 2020
  ident: 93971_CR10
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111169
– volume: 24
  start-page: e1879
  year: 2017
  ident: 93971_CR42
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1879
– volume: 206
  start-page: 110903
  year: 2024
  ident: 93971_CR44
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2023.110903
– volume: 84
  start-page: 283
  year: 2006
  ident: 93971_CR56
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2005.09.018
– ident: 93971_CR6
  doi: 10.1002/stc.2082
– volume: 95
  start-page: 105654
  year: 2021
  ident: 93971_CR21
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105654
– volume: 42
  start-page: 1013
  year: 2013
  ident: 93971_CR54
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.2256
– volume: 29
  start-page: 045034
  year: 2020
  ident: 93971_CR57
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab785a
– year: 2024
  ident: 93971_CR50
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-10532-y
– volume: 13
  start-page: 4980
  year: 2023
  ident: 93971_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-31482-2
– volume: 29
  start-page: e3000
  year: 2022
  ident: 93971_CR36
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.3000
– ident: 93971_CR52
– volume: 106
  start-page: 479
  year: 2018
  ident: 93971_CR32
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2018.01.018
– volume: 129
  start-page: 449
  year: 2019
  ident: 93971_CR19
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2019.04.047
– volume: 21
  start-page: 1651
  year: 2023
  ident: 93971_CR24
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-021-01279-7
– volume: 27
  start-page: 04021078
  year: 2022
  ident: 93971_CR37
  publication-title: Pract. Period Struct. Des. Constr.
  doi: 10.1061/(ASCE)SC.1943-5576.0000661
– volume: 43
  start-page: 1129
  year: 2014
  ident: 93971_CR8
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.2390
– volume: 262
  start-page: 114308
  year: 2022
  ident: 93971_CR41
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114308
– volume: 324
  start-page: 120679
  year: 2025
  ident: 93971_CR65
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2025.120679
– volume: 6
  start-page: 418
  year: 1996
  ident: 93971_CR59
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806023
– volume: 27
  start-page: e2523
  year: 2020
  ident: 93971_CR15
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2523
– volume: 234
  start-page: 3751
  year: 2023
  ident: 93971_CR16
  publication-title: Acta Mech.
  doi: 10.1007/s00707-023-03556-9
– ident: 93971_CR46
– volume: 192
  start-page: 106087
  year: 2021
  ident: 93971_CR49
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106087
– ident: 93971_CR28
– volume: 57
  start-page: 105253
  year: 2023
  ident: 93971_CR20
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.105253
– ident: 93971_CR30
– volume: 27
  start-page: 04022101
  year: 2022
  ident: 93971_CR43
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001941
– volume: 48
  start-page: 528
  year: 2019
  ident: 93971_CR33
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.3147
– volume: 137
  start-page: 1
  year: 2019
  ident: 93971_CR47
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.03.010
– volume: 356
  start-page: 7650
  year: 2019
  ident: 93971_CR35
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.01.036
– volume: 17
  start-page: 399
  year: 2016
  ident: 93971_CR60
  publication-title: Int. J. Automot. Technol.
  doi: 10.1007/s12239-016-0041-x
– volume: 184
  start-page: 105845
  year: 2020
  ident: 93971_CR13
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105845
– ident: 93971_CR62
  doi: 10.1007/978-3-319-70939-0
– volume: 205
  start-page: 112347
  year: 2024
  ident: 93971_CR64
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2024.112347
– ident: 93971_CR27
– volume: 7
  start-page: 310
  year: 2022
  ident: 93971_CR25
  publication-title: Innovative Infrastructure Solutions
  doi: 10.1007/s41062-022-00904-x
– volume: 126
  start-page: 174
  year: 2016
  ident: 93971_CR34
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.07.045
– volume: 121
  start-page: 200
  year: 2019
  ident: 93971_CR38
  publication-title: Soil. Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2019.03.016
– volume: 194
  start-page: 105076
  year: 2024
  ident: 93971_CR63
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2024.105076
– volume: 298
  start-page: 117172
  year: 2024
  ident: 93971_CR23
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2024.117172
– volume: 11
  start-page: 375
  year: 2012
  ident: 93971_CR2
  publication-title: J. Asian Archit. Build. Eng.
  doi: 10.3130/jaabe.11.375
– volume: 47
  start-page: 1169
  year: 2018
  ident: 93971_CR22
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.3011
– volume: 41
  start-page: 453
  year: 2012
  ident: 93971_CR3
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.1138
– volume: 26
  start-page: 481
  year: 2020
  ident: 93971_CR11
  publication-title: Smart Struct. Syst.
  doi: 10.12989/sss.2020.26.4.481
– volume: 93
  start-page: 1325
  year: 2018
  ident: 93971_CR53
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4262-6
– volume: 180
  start-page: 29
  year: 2019
  ident: 93971_CR7
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.11.020
– volume: 167
  start-page: 108520
  year: 2022
  ident: 93971_CR29
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2021.108520
– volume: 254
  start-page: 108447
  year: 2023
  ident: 93971_CR51
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108447
– volume: 131
  start-page: 011001
  year: 2009
  ident: 93971_CR48
  publication-title: J. Dyn. Syst. Meas. Contr
  doi: 10.1115/1.3023120
SSID ssj0000529419
Score 2.4435043
Snippet Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to establish...
Abstract Yoke-type inerters demonstrate adaptive apparent mass properties and dynamic negative stiffness characteristics; however, prior research has yet to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10122
SubjectTerms 639/166
639/166/986
639/166/988
Apparent mass
Civil engineering
Comparative analysis
Constitutive model
Dynamic negative stiffness
Friction
Humanities and Social Sciences
Inertia
Multi-body simulation
multidisciplinary
Science
Science (multidisciplinary)
Simulation
Vibration
Yoke-type inerter
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaxN_IidEwLEaoXEnlipN8vxg63QJqVpWe2v4C8z46Qt5XVN3Mrx941n_JhvCHkpQu2MqRwLvvZMtrFisFZRTAjBva5CGVtMTv50Wp-cyY8zNZs23IbpWuVmTswTdeg97pEfAfdKrcE0-ZvFN4ZVo_B0dSqhcZ3cQOkyZLWe6e0eC55iyaqZcmVKYY4G8FeYU8YVa8ATV-xyzx9l2f6_xZp_Xpn87dw0u6PjO-T2FEfStyPwd8m12N0jN8fKklf3yY_TUQLDLbNiKp3v5DT6jrou0F-l_SnQbT4WV4KWA67X8Sernl5EzAxGIGmumUP7RK_6r5Hh1i3FxEHAhULgS2N3ni8T0O-4AM9_NawX0zXb7gE5O_7w-f0Jm2ovMC85X8G8A0sdLIfuYmx1UCGA5YegHRdJJa5EaowOwTUxhdYDHVsZaxGrxpvUaOHEQ3LQ9V18TKjzptbeoXAMlwECUpOi5EkrFcsAAUlBXm0QsItRYsPmo3Fh7IiXBbxsxsteFuQdgrRtifLY-UG__GIna7M-CuGNDwAXJt-iAHlyupQhJmUaUxfkcAOxnWx2sDuGFeTF9jVYGx6huC7267FNAyFbKQvyaGTEticSfT2MTEHMHlf2urr_ppufZ0VvIC8Yh4KheL2h1a5f_x6LJ___jKfkFkeml4JxeUgOVst1fAYh1Kp9nu3kJ-BnIDI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDeBgozEDSwSP2LnuCCqaiV6gUq9WY4fdIVIqn1Q9Vfwl5lxki0L5cA1tiPL39gz9sx8Q8hrEWpnTOVY8LVnso0Vg7uKYkII7nUVythicvKnk_r4VM7P1Nke4VMuTA7az5SW-ZieosPerUDRYDIYV6wBFVqxy1vkAKnaQbYPZrP55_n2ZQV9V7JqxgyZUpgbBu9ooUzWf5OF-Xeg5B_e0qyEju6Ru6P1SGfDfO-Tvdg9ILeHepJXD8nPk4H4wi0zTypdXJNo9B11XaC_E_pTELLFUFIJeq7wlo5D1j39HjEfGOGjuVIO7RO96r9Fhg-2FNMFAQ0K5i6N3XkOIaA_8Nqdf7XaXIzBtd0jcnr08cuHYzZWXGBecr6G0wYuOFgE3cXY6qBCgP0egnZcJJW4EqkxOgTXxBRaD0LYyliLWDXepEYLJx6T_a7v4lNCnTe19g7pYrgMYIaaFCVPWqlYBjBDCvJmQsBeDMQaNjvEhbEDXhbwshkve1mQ9wjStieSYucP_fKrHYXE-iiENz4AXJhyi7TjyelShpiUaUxdkMMJYjvu1JWFM63UGo58XpBX22bYY-g4cV3sN0OfBgy1UhbkySAR25lI1PCwMgUxO7KyM9Xdlm5xnnm8KzCehVCwFG8nsbqe17_X4tn_dX9O7nCU_FIwLg_J_nq5iS_AkFq3L8ed8wtlMR__
  priority: 102
  providerName: Springer Nature
Title Nonlinearities investigation and experimental validation insights into mechanical model of yoke-type inerter for enhanced vibration suppression
URI https://link.springer.com/article/10.1038/s41598-025-93971-w
https://www.ncbi.nlm.nih.gov/pubmed/40128253
https://www.proquest.com/docview/3180779112
https://www.proquest.com/docview/3180984604
https://pubmed.ncbi.nlm.nih.gov/PMC11933359
https://doaj.org/article/ce33c8cddce04629ae9fa704def58986
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0nfdposKvbUith6WfNwsCWGhS2kb2JuQ9SAh1A7Z3Yb8iv7ljiTvZrcPeunJIMlGzEMzY818g9A75mqjVGWIs7UlvPUVgVhFEMYYtbJypW9jcfLHWX1yyqdzMd9q9RVzwjI8cCbcgfWMWWWdsz7WUUYs6WBkyZ0PQjUqgW2DzdsKpjKqN2141QxVMiVTBwuwVLGajArSgA2uyPWOJUqA_X_yMn9PlvzlxjQZouNH6OHgQeJx3vljdMd3T9D93FPy5in6McvgF-YqYaXi81sgjb7DpnN4G9Qfg6Cd57ZKsHIRI_X4yrLH33ysCY4sxKlbDu4DvukvPIk_bXEsGQSOYHB5se_OUhoB_h5D7_SpxepySLDtnqHT46OvkxMydF0gllO6hBMHgpzYCN1430onnAOdd04ayoIIVLDQKOmcaXxwrQVBbLmvma8aq0IjmWHP0V7Xd_4lwsaqWloTIWMod-CKquA5DVIIXzpwRQr0fs0BfZnBNXS6FGdKZ35p4JdO_NLXBTqMTNqsjMDYaQDERQ_iov8lLgXaX7NYD9q60HCulVLCsU8L9HYzDXoWL09M5_tVXtOAs1byAr3IErHZCY9WHihTILUjKztb3Z3pzs8SlncFDjRjAkjxYS1Wt_v6Oy1e_Q9avEYPaNSHkhHK99He8mrl34CLtWxH6K6cyxG6Nx5Pv0zheXg0-_QZRif1ZJQ07SeotS78
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ7Ca2E7sHBDiVW1pu6dW6i04tkNXiGTZB6v9FfwTfiMzTrLL8rr1unEir-cbzzcezwwhT4XLjNaJYc5mlsnSJwx8lZQJIbhViYt9icnJx8NscCo_nKVnW-RHnwuD1yr7PTFs1K6xeEa-B9iLlQLV5K_GXxl2jcLoat9Co4XFoV8uwGWbvjx4B_J9xvn--5O3A9Z1FWBWcj4DjQISj42-jfelcqlzgGnnlOGiSiueigrccOdM7itXWljoUvpM-CS3usqVMAK-e4lcBsMbo7OnztTqTAejZjLJu9ycWOi9KdhHzGHjKcvB8idssWH_QpuAv3HbP69o_hanDeZv_wa53vFW-roF2k2y5etb5ErbyXJ5m3wftiU3zCRUaKWjdfmOpqamdvTXVgIU4D1qmznByCmeD-Ars4Z-8ZiJjMChoUcPbSq6bD57hkfFFBMVAQcUiDb19Xm4vEC_ocMfPjWdj7trvfUdcnohUrlLtuum9vcINVZnyhosVMOlAwKsKy95pdLUxw4IUESe9xIoxm1JjyKE4oUuWnkVIK8iyKtYROQNCmk1Estxhx-ayaei0-7CeiGstg7Ehcm-WPC8MiqWzlepznUWkd1exEW3R0yLNaIj8mT1GLQbQzam9s28HZMDRYxlRHZaRKxmIpFbwMpERG9gZWOqm0_q0XmoIJ4AbRcihaV40cNqPa9_r8X9__-Nx-Tq4OT4qDg6GB4-INc4oj4WjMtdsj2bzP1DoG-z8lHQGUo-XrSS_gTgqV89
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VVCBeEDcLBYwET2Bl197zASFKG7UUogpRqW9brw8aIXZDDqL8Cv4Pv46ZPRLC9dbXrHfleL6xv_FcAE-liVWaBoobHWseFjbgaKtEXEopdBIY3xaUnPx-GB-chG9Po9Mt-NHlwlBYZbcn1hu1qTTdkfcRe36SoGqKvmvDIo73Bq_GXzl1kCJPa9dOo4HIkV0u0HybvjzcQ1k_E2Kw__HNAW87DHAdCjFD7UJCT02_lbVFYiJjEN_GJEpIFzkRSYcmuTEqs84UGhe9CG0sbZDp1GWJVBK_ewm2E7KKerC9uz88_rC64SEfWhhkbaaOL9P-FE9LymgTEc-QBwR8sXEa1k0D_sZ0_wzY_M1rWx-Gg-twrWWx7HUDuxuwZcubcLnpa7m8Bd-HTQEONanrtbLRuphHVTJVGvZrYwGGYB81rZ1w5JRuC-iVWcW-WMpLJhixumMPqxxbVp8tp4tjRmmLiAqGtJvZ8rwOZWDfyPyvPzWdj9sg3_I2nFyIXO5Ar6xKew-Y0mmcaEVla0RokA6nzobCJVFkfYN0yIPnnQTycVPgI68d8zLNG3nlKK-8lle-8GCXhLQaScW56x-qyae81fVcWyl1qg2Ki1J_qfy5U4kfGuuiNEtjD3Y6EeftjjHN1_j24MnqMeo6OXBUaat5MyZDwuiHHtxtELGaSUhMA1fGg3QDKxtT3XxSjs7reuIBkngpI1yKFx2s1vP691rc___feAxXUEHzd4fDowdwVRDofclFuAO92WRuHyKXmxWPWqVhcHbRevoTyZxk2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearities+investigation+and+experimental+validation+insights+into+mechanical+model+of+yoke-type+inerter+for+enhanced+vibration+suppression&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Ruifu&rft.au=Tao%2C+Qian&rft.au=Zhang%2C+Li&rft.au=Hao%2C+Linfei&rft.date=2025-03-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=10122&rft_id=info:doi/10.1038%2Fs41598-025-93971-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon