A scheme combining feature fusion and hybrid deep learning models for epileptic seizure detection and prediction
Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks fac...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 16916 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time–frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures. |
---|---|
AbstractList | Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time–frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures. Abstract Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time–frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures. Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time-frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures.Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time-frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures. |
ArticleNumber | 16916 |
Author | Jiang, Hongwei Du, Ganqin Chen, Wenna Zheng, Shaojie Fu, Qizhi Zhang, Jincan |
Author_xml | – sequence: 1 givenname: Jincan surname: Zhang fullname: Zhang, Jincan organization: College of Information Engineering, Henan University of Science and Technology – sequence: 2 givenname: Shaojie surname: Zheng fullname: Zheng, Shaojie organization: College of Information Engineering, Henan University of Science and Technology – sequence: 3 givenname: Wenna surname: Chen fullname: Chen, Wenna email: chenwenna0408@163.com organization: The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology – sequence: 4 givenname: Ganqin surname: Du fullname: Du, Ganqin organization: The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology – sequence: 5 givenname: Qizhi surname: Fu fullname: Fu, Qizhi organization: The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology – sequence: 6 givenname: Hongwei surname: Jiang fullname: Jiang, Hongwei organization: The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39043914$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1UREvpH-CALHHhEvBXnPiEqoqPSpW4wNnyx2TXq8QOdoJUfj3e3ba0HPDF9sw7j2es9yU6iSkCQq8peU8J7z8UQVvVN4SJRnZ92zbiGTpjRLQN44ydPDqfootSdqSulilB1Qt0yhURXFFxhuZLXNwWJsAuTTbEEDd4ALOsGfCwlpAiNtHj7a3NwWMPMOMRTD7opuRhLHhIGcMcRpiX4HCB8Htf7GEBt9zXzxl8OFxfoeeDGQtc3O3n6MfnT9-vvjY3375cX13eNE4wtjScG0MZWNEqJVvPCRf9QDhxA3NdT53tVGupks5IxZS0hNaIN2SgnTdc9fwcXR-5PpmdnnOYTL7VyQR9CKS80SbXhkfQxlIOjnjb9YMwfW-ssYo6MIOiXCqorI9H1rzaCbyDuGQzPoE-zcSw1Zv0S1PKpJQtqYR3d4Scfq5QFj2F4mAcTYS0Fs1JLwinRKkqffuPdJfWHOtf7VW8k1LQ_XjsqHI5lZJheOiGEr03iD4aRFeD6INBtKhFbx7P8VByb4cq4EdBqam4gfz37f9g_wC24cmb |
Cites_doi | 10.3389/fnins.2023.1174005 10.17485/IJST/v14i16.625 10.1186/s12911-023-02180-w 10.1016/j.eij.2015.06.002 10.1007/s11760-012-0362-9 10.1016/j.physleta.2014.03.034 10.3389/fninf.2024.1354436 10.1109/TNSRE.2017.2697920 10.1111/epi.13294 10.1111/j.1528-1167.2011.03121.x 10.1016/S1474-4422(18)30038-3 10.1093/brain/awl241 10.1002/cnm.3573 10.1016/j.cmpb.2005.06.011 10.1016/j.ijmedinf.2019.103977 10.3389/fneur.2020.594679 10.1109/TNSRE.2021.3103210 10.1038/s41598-023-43328-y 10.1016/j.clinph.2009.09.002 10.3389/fnins.2023.1246995 10.1016/j.knosys.2013.02.014 10.3390/ijerph191811326 10.1109/TBME.2017.2679136 10.3390/s23010423 10.1109/JPETS.2014.2363403 10.1212/01.wnl.0000243257.85592.9a 10.3390/app12147251 10.1109/ACCESS.2023.3312187 10.1145/3241056 10.1088/1742-6596/2128/1/012012 10.1007/s10916-005-9001-0 10.1109/TNSRE.2024.3350074 10.3390/diagnostics12112879 10.1109/TNSRE.2022.3143540 10.1016/j.yebeh.2018.09.030 10.1007/978-3-319-17269-9_6 10.1111/epi.12550 10.3390/s22176592 10.47750/pnr.2022.13.S08.139 10.1109/TNSRE.2012.2206054 10.1016/j.eswa.2006.02.005 10.1007/s11277-020-07857-3 10.1109/ACCESS.2023.3287927 10.3389/fphys.2020.00607 10.3389/fninf.2018.00095 10.1109/RBME.2020.3008792 10.1088/1741-2552/ac7256 10.1016/j.bspc.2021.102699 10.1016/j.bspc.2017.07.022 10.1109/ACCESS.2023.3317241 10.1002/ima.22199 10.1155/2017/1240323 10.1109/TNSRE.2020.2973434 10.3390/s21062173 10.1109/TNSRE.2023.3317093 10.1002/cpe.7031 10.1016/j.compbiomed.2019.05.016 10.1145/3307339.3342131 10.1109/AICCIT57614.2023.10218011 10.1109/ATSIP.2016.7523093 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-67855-4 |
DatabaseName | Springer Nature OA Free Journals Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_ab13ec0db78f4a88abab91ceaf91369e 10_1038_s41598_024_67855_4 39043914 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Construction Project of Improving Medical Service Capacity of Provincial Medical Institutions in Henan Province grantid: 2017-51 – fundername: Foundation of Henan Educational Committee grantid: 24A320004 funderid: http://dx.doi.org/10.13039/501100004609 – fundername: Major Science and Technology Projects of Henan Province grantid: 221100210500 – fundername: Medical and Health Research Project in Luoyang grantid: 2001027A – fundername: Henan Province Young Backbone Teachers Training Program grantid: 2023GGJS045 – fundername: Foundation of Henan Educational Committee grantid: 24A320004 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX AFPKN CITATION 7XB 8FK K9. M48 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c422t-33aa12eb459965d30348f030cf2c781cb795b196ca69296b01b79da0f17da3983 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:15:45 EDT 2024 Tue Sep 17 21:27:47 EDT 2024 Sat Oct 26 04:31:38 EDT 2024 Thu Nov 07 19:01:33 EST 2024 Fri Aug 23 04:40:54 EDT 2024 Sat Nov 02 12:21:37 EDT 2024 Fri Oct 11 20:56:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Attention mechanism (AM) Gated recurrent unit (GRU) Convolutional neural network (CNN) Seizure detection and prediction Electroencephalography (EEG) signal Multi-class feature fusion |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-33aa12eb459965d30348f030cf2c781cb795b196ca69296b01b79da0f17da3983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266650/ |
PMID | 39043914 |
PQID | 3083766418 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab13ec0db78f4a88abab91ceaf91369e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11266650 proquest_miscellaneous_3084031099 proquest_journals_3083766418 crossref_primary_10_1038_s41598_024_67855_4 pubmed_primary_39043914 springer_journals_10_1038_s41598_024_67855_4 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-23 |
PublicationDateYYYYMMDD | 2024-07-23 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Acharya, Faust, Kannathal, Chua, Laxminarayan (CR32) 2005; 80 Azami, Rostaghi, Abásolo, Escudero (CR36) 2017; 64 Raghu (CR38) 2019; 110 Alotaiby, Alshebeili, Alotaibi, Alrshoud (CR49) 2017; 2017 CR34 CR33 Henry (CR50) 2006; 67 Mirowski, Madhavan, LeCun, Kuzniecky (CR16) 2009; 120 Kavya, Prasad (CR40) 2022; 1 Zhong (CR44) 2023; 17 Zhang (CR46) 2022; 30 Kumar, Dewal, Anand (CR26) 2014; 8 Shoaib, Elshamy, Taha, El-Fishawy, Abd El-Samie (CR7) 2021; 2128 Jiang, Chen, Li, Zhang, You (CR54) 2021; 68 Deivasigamani, Senthilpari, Yong (CR31) 2016; 26 Elger, Hoppe (CR8) 2018; 17 Liu, Zhou, Yuan, Chen (CR21) 2012; 20 Vidyaratne, Iftekharuddin (CR9) 2017; 25 CR48 CR47 Lee (CR61) 2024; 14 Thurman (CR3) 2011; 52 Gill, Fatima, Usman Akram, Khawaja, Awan, Sulaiman, Othman, Abd Aziz, Abd Malek (CR41) 2015 Chung (CR12) 2020; 11 Hanebuth, Kalokitis, Cedrone (CR43) 2014; 1 Hossain, Amin, Alsulaiman, Muhammad (CR45) 2019; 15 Singh, Hussain, Lal, Guesgen (CR18) 2021; 21 Aslam (CR59) 2022; 12 Liu (CR39) 2024; 18 Zhou (CR29) 2018; 12 Chen (CR30) 2023; 23 Mormann, Andrzejak, Elger, Lehnertz (CR14) 2007; 130 Shoaib, Elshamy, Taha, El-Fishawy, Abd El-Samie (CR5) 2022; 34 Liu, Wang, Li, Cai (CR23) 2023; 31 Alkan, Kiymik (CR22) 2006; 30 Shoeb, Guttag (CR42) 2022; 12 Harpale, Bairagi (CR52) 2021; 33 Kapoor, Nagpal, Jain, Abraham, Gabralla (CR63) 2022; 23 Megiddo (CR1) 2016; 57 Emara, El-Shafai, Algarni, Soliman, El-Samie (CR2) 2023; 11 Petukhov, Glazyrin, Gorokhov, Steshina, Tanryverdiev (CR10) 2020; 136 Wu, Wu, Lin, Lee, Peng (CR35) 2014; 378 Rasheed (CR13) 2021; 14 Alharthi, Moria, Alghazzawi, Tayeb (CR55) 2022; 22 Prasanna, Rahman, Bayleyegn (CR56) 2023; 11 Hellar, Erfanian, Aazhang (CR58) 2022; 19 Ji (CR62) 2023; 17 Yang, Zhao, Sun, Lu, Ma (CR20) 2021; 29 Emara (CR6) 2021; 116 Aung, Wongsawat (CR37) 2020; 11 Acharya, Hagiwara, Adeli (CR11) 2018; 88 Tang, Wu, Mao, Guo (CR57) 2024; 32 CR25 Alickovic, Kevric, Subasi (CR27) 2018; 39 Li (CR53) 2020; 28 Ma (CR60) 2023; 11 Fisher (CR4) 2014; 55 Ibrahim (CR17) 2022; 38 Abdulkader, Atia, Mostafa (CR19) 2015; 16 Xu, Lin, Xu (CR51) 2022; 19 Subasi (CR24) 2007; 32 Acharya, Vinitha Sree, Swapna, Martis, Suri (CR15) 2013; 45 Banupriya, Devi (CR28) 2021; 14 YG Chung (67855_CR12) 2020; 11 L Zhong (67855_CR44) 2023; 17 S Liu (67855_CR23) 2023; 31 IV Petukhov (67855_CR10) 2020; 136 CV Banupriya (67855_CR28) 2021; 14 UR Acharya (67855_CR11) 2018; 88 HM Emara (67855_CR2) 2023; 11 TN Alotaiby (67855_CR49) 2017; 2017 A Shoeb (67855_CR42) 2022; 12 67855_CR48 Y Liu (67855_CR21) 2012; 20 67855_CR47 P Mirowski (67855_CR16) 2009; 120 Y Zhang (67855_CR46) 2022; 30 M Zhou (67855_CR29) 2018; 12 S Deivasigamani (67855_CR31) 2016; 26 MH Aslam (67855_CR59) 2022; 12 CSL Prasanna (67855_CR56) 2023; 11 Y Li (67855_CR53) 2020; 28 FE Ibrahim (67855_CR17) 2022; 38 J Hellar (67855_CR58) 2022; 19 W Chen (67855_CR30) 2023; 23 E Alickovic (67855_CR27) 2018; 39 67855_CR34 B Kapoor (67855_CR63) 2022; 23 UR Acharya (67855_CR32) 2005; 80 MR Shoaib (67855_CR5) 2022; 34 Y Ma (67855_CR60) 2023; 11 S Raghu (67855_CR38) 2019; 110 DJ Thurman (67855_CR3) 2011; 52 UR Acharya (67855_CR15) 2013; 45 A Subasi (67855_CR24) 2007; 32 Y Kumar (67855_CR26) 2014; 8 67855_CR33 Y Jiang (67855_CR54) 2021; 68 Y Tang (67855_CR57) 2024; 32 SN Abdulkader (67855_CR19) 2015; 16 D Lee (67855_CR61) 2024; 14 I Megiddo (67855_CR1) 2016; 57 MS Hossain (67855_CR45) 2019; 15 MK Alharthi (67855_CR55) 2022; 22 X Liu (67855_CR39) 2024; 18 AF Gill (67855_CR41) 2015 67855_CR25 S-D Wu (67855_CR35) 2014; 378 RS Fisher (67855_CR4) 2014; 55 JC Henry (67855_CR50) 2006; 67 A Alkan (67855_CR22) 2006; 30 ST Aung (67855_CR37) 2020; 11 K Rasheed (67855_CR13) 2021; 14 CE Elger (67855_CR8) 2018; 17 V Harpale (67855_CR52) 2021; 33 HM Emara (67855_CR6) 2021; 116 MR Shoaib (67855_CR7) 2021; 2128 H Ji (67855_CR62) 2023; 17 X Yang (67855_CR20) 2021; 29 BS Kavya (67855_CR40) 2022; 1 SC Hanebuth (67855_CR43) 2014; 1 H Azami (67855_CR36) 2017; 64 A Singh (67855_CR18) 2021; 21 X Xu (67855_CR51) 2022; 19 LS Vidyaratne (67855_CR9) 2017; 25 F Mormann (67855_CR14) 2007; 130 |
References_xml | – volume: 17 start-page: 1174005 year: 2023 ident: CR44 article-title: Epileptic prediction using spatiotemporal information combined with optimal features strategy on EEG publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1174005 contributor: fullname: Zhong – volume: 14 start-page: 1250 year: 2021 end-page: 1260 ident: CR28 article-title: Robust optimization of electroencephalograph (EEG) signals for epilepsy seizure prediction by utilizing VSPO genetic algorithms with SVM and machine learning methods publication-title: IJST doi: 10.17485/IJST/v14i16.625 contributor: fullname: Devi – volume: 23 start-page: 96 issue: 1 year: 2023 ident: CR30 article-title: An automated detection of epileptic EEG using CNN classifier based on 2 feature fusion with high accuracy publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-023-02180-w contributor: fullname: Chen – volume: 16 start-page: 213 year: 2015 end-page: 230 ident: CR19 article-title: Brain computer interfacing: Applications and challenges publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2015.06.002 contributor: fullname: Mostafa – volume: 8 start-page: 1323 year: 2014 end-page: 1334 ident: CR26 article-title: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network publication-title: SIViP doi: 10.1007/s11760-012-0362-9 contributor: fullname: Anand – volume: 378 start-page: 1369 year: 2014 end-page: 1374 ident: CR35 article-title: Analysis of complex time series using refined composite multiscale entropy publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2014.03.034 contributor: fullname: Peng – volume: 18 start-page: 1354436 year: 2024 ident: CR39 article-title: Epileptic seizure prediction based on EEG using pseudo-three-dimensional CNN publication-title: Front. Neuroinform. doi: 10.3389/fninf.2024.1354436 contributor: fullname: Liu – volume: 25 start-page: 2146 year: 2017 end-page: 2156 ident: CR9 article-title: Real-time epileptic seizure detection using EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2697920 contributor: fullname: Iftekharuddin – volume: 57 start-page: 464 year: 2016 end-page: 474 ident: CR1 article-title: Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model publication-title: Epilepsia doi: 10.1111/epi.13294 contributor: fullname: Megiddo – volume: 52 start-page: 2 year: 2011 end-page: 26 ident: CR3 article-title: Standards for epidemiologic studies and surveillance of epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03121.x contributor: fullname: Thurman – volume: 17 start-page: 279 year: 2018 end-page: 288 ident: CR8 article-title: Diagnostic challenges in epilepsy: Seizure under-reporting and seizure detection publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30038-3 contributor: fullname: Hoppe – volume: 130 start-page: 314 year: 2007 end-page: 333 ident: CR14 article-title: Seizure prediction: The long and winding road publication-title: Brain doi: 10.1093/brain/awl241 contributor: fullname: Lehnertz – volume: 38 start-page: e3573 year: 2022 ident: CR17 article-title: Deep-learning-based seizure detection and prediction from electroencephalography signals publication-title: Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3573 contributor: fullname: Ibrahim – volume: 80 start-page: 37 year: 2005 end-page: 45 ident: CR32 article-title: Non-linear analysis of EEG signals at various sleep stages publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2005.06.011 contributor: fullname: Laxminarayan – volume: 136 start-page: 103977 year: 2020 ident: CR10 article-title: Being present in a real or virtual world: A EEG study publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2019.103977 contributor: fullname: Tanryverdiev – volume: 11 start-page: 594679 year: 2020 ident: CR12 article-title: Deep convolutional neural network based interictal–preictal electroencephalography prediction: Application to focal cortical dysplasia type-II publication-title: Front. Neurol. doi: 10.3389/fneur.2020.594679 contributor: fullname: Chung – ident: CR25 – volume: 29 start-page: 1604 year: 2021 end-page: 1613 ident: CR20 article-title: An effective dual self-attention residual network for seizure prediction publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3103210 contributor: fullname: Ma – volume: 14 start-page: 1319 year: 2024 ident: CR61 article-title: A ResNet-LSTM hybrid model for predicting epileptic seizures using a pretrained model with supervised contrastive learning publication-title: Sci. Rep. doi: 10.1038/s41598-023-43328-y contributor: fullname: Lee – volume: 120 start-page: 1927 year: 2009 end-page: 1940 ident: CR16 article-title: Classification of patterns of EEG synchronization for seizure prediction publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.09.002 contributor: fullname: Kuzniecky – volume: 17 start-page: 1246995 year: 2023 ident: CR62 article-title: An effective fusion model for seizure prediction: GAMRNN publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1246995 contributor: fullname: Ji – volume: 45 start-page: 147 year: 2013 end-page: 165 ident: CR15 article-title: Automated EEG analysis of epilepsy: A review publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.02.014 contributor: fullname: Suri – volume: 19 start-page: 11326 year: 2022 ident: CR51 article-title: Epilepsy seizures prediction based on nonlinear features of EEG signal and gradient boosting decision tree publication-title: IJERPH doi: 10.3390/ijerph191811326 contributor: fullname: Xu – volume: 64 start-page: 2872 year: 2017 end-page: 2879 ident: CR36 article-title: Refined composite multiscale dispersion entropy and its application to biomedical signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2679136 contributor: fullname: Escudero – volume: 23 start-page: 423 year: 2022 ident: CR63 article-title: Epileptic seizure prediction based on hybrid seek optimization tuned ensemble classifier using EEG signals publication-title: Sensors doi: 10.3390/s23010423 contributor: fullname: Gabralla – volume: 1 start-page: 1 year: 2014 end-page: 11 ident: CR43 article-title: Structured methodology for the investigation of contact voltages publication-title: IEEE Power Energy Technol. Syst. J. doi: 10.1109/JPETS.2014.2363403 contributor: fullname: Cedrone – volume: 67 start-page: 2092 year: 2006 ident: CR50 article-title: Electroencephalography: Basic principles, clinical applications, and related fields, fifth edition publication-title: Neurology doi: 10.1212/01.wnl.0000243257.85592.9a contributor: fullname: Henry – volume: 12 start-page: 7251 year: 2022 ident: CR59 article-title: Classification of EEG signals for prediction of epileptic seizures publication-title: Appl. Sci. doi: 10.3390/app12147251 contributor: fullname: Aslam – volume: 11 start-page: 97990 year: 2023 end-page: 98004 ident: CR56 article-title: Brain epileptic seizure detection using joint CNN and exhaustive feature selection with RNN-BLSTM classifier publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3312187 contributor: fullname: Bayleyegn – volume: 15 start-page: 1 year: 2019 end-page: 17 ident: CR45 article-title: Applying deep learning for epilepsy seizure detection and brain mapping visualization publication-title: ACM Trans. Multimedia Comput. Commun. Appl. doi: 10.1145/3241056 contributor: fullname: Muhammad – volume: 2128 start-page: 012012 year: 2021 ident: CR7 article-title: Efficient brain tumor detection based on deep learning models publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2128/1/012012 contributor: fullname: Abd El-Samie – volume: 30 start-page: 413 year: 2006 end-page: 419 ident: CR22 article-title: Comparison of AR and Welch methods in epileptic seizure detection publication-title: J. Med. Syst. doi: 10.1007/s10916-005-9001-0 contributor: fullname: Kiymik – volume: 32 start-page: 304 year: 2024 end-page: 313 ident: CR57 article-title: Epileptic seizure detection based on path signature and Bi-LSTM network with attention mechanism publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3350074 contributor: fullname: Guo – volume: 12 start-page: 2879 issue: 11 year: 2022 ident: CR42 article-title: Application of machine learning to epileptic seizure detection publication-title: Diagnostics doi: 10.3390/diagnostics12112879 contributor: fullname: Guttag – volume: 30 start-page: 135 year: 2022 end-page: 145 ident: CR46 article-title: Epileptic seizure detection based on bidirectional gated recurrent unit network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3143540 contributor: fullname: Zhang – volume: 88 start-page: 251 year: 2018 end-page: 261 ident: CR11 article-title: Automated seizure prediction publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2018.09.030 contributor: fullname: Adeli – ident: CR47 – start-page: 49 year: 2015 end-page: 57 ident: CR41 article-title: Analysis of EEG signals for detection of epileptic seizure using hybrid feature set publication-title: Theory and Applications of Applied Electromagnetics doi: 10.1007/978-3-319-17269-9_6 contributor: fullname: Abd Malek – volume: 55 start-page: 475 year: 2014 end-page: 482 ident: CR4 article-title: ILAE Official Report: A practical clinical definition of epilepsy publication-title: Epilepsia doi: 10.1111/epi.12550 contributor: fullname: Fisher – volume: 22 start-page: 6592 year: 2022 ident: CR55 article-title: Epileptic disorder detection of seizures using EEG signals publication-title: Sensors doi: 10.3390/s22176592 contributor: fullname: Tayeb – volume: 1 start-page: 1092 year: 2022 end-page: 1109 ident: CR40 article-title: Identifying epileptic seizure by optimized feature extraction process using the method of feature fusion technique publication-title: J. Pharm. Negative Results doi: 10.47750/pnr.2022.13.S08.139 contributor: fullname: Prasad – ident: CR33 – volume: 20 start-page: 749 year: 2012 end-page: 755 ident: CR21 article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2206054 contributor: fullname: Chen – volume: 32 start-page: 1084 year: 2007 end-page: 1093 ident: CR24 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.02.005 contributor: fullname: Subasi – volume: 116 start-page: 3371 year: 2021 end-page: 3395 ident: CR6 article-title: Hilbert transform and statistical analysis for channel selection and epileptic seizure prediction publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07857-3 contributor: fullname: Emara – volume: 11 start-page: 62855 year: 2023 end-page: 62864 ident: CR60 article-title: A multi-channel feature fusion CNN-Bi-LSTM epilepsy EEG classification and prediction model based on attention mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3287927 contributor: fullname: Ma – volume: 11 start-page: 607 year: 2020 ident: CR37 article-title: Modified-distribution entropy as the features for the detection of epileptic seizures publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00607 contributor: fullname: Wongsawat – volume: 12 start-page: 95 year: 2018 ident: CR29 article-title: Epileptic seizure detection based on EEG signals and CNN publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00095 contributor: fullname: Zhou – volume: 14 start-page: 139 year: 2021 end-page: 155 ident: CR13 article-title: Machine learning for predicting epileptic seizures using EEG signals: A review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.3008792 contributor: fullname: Rasheed – ident: CR48 – volume: 19 start-page: 036029 year: 2022 ident: CR58 article-title: Epileptic electroencephalography classification using embedded dynamic mode decomposition publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac7256 contributor: fullname: Aazhang – volume: 68 start-page: 102699 year: 2021 ident: CR54 article-title: Synchroextracting chirplet transform-based epileptic seizures detection using EEG publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102699 contributor: fullname: You – volume: 39 start-page: 94 year: 2018 end-page: 102 ident: CR27 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 contributor: fullname: Subasi – volume: 33 start-page: 668 year: 2021 end-page: 676 ident: CR52 article-title: An adaptive method for feature selection and extraction for classification of epileptic EEG signal in significant states publication-title: J. King Saud Univ. Comput. Inf. Sci. contributor: fullname: Bairagi – volume: 11 start-page: 108126 year: 2023 end-page: 108151 ident: CR2 article-title: A hybrid compressive sensing and classification approach for dynamic storage management of vital biomedical signals publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3317241 contributor: fullname: El-Samie – volume: 26 start-page: 277 year: 2016 end-page: 283 ident: CR31 article-title: Classification of focal and nonfocal EEG signals using ANFIS classifier for epilepsy detection publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22199 contributor: fullname: Yong – volume: 2017 start-page: 1 year: 2017 end-page: 11 ident: CR49 article-title: Epileptic seizure prediction using CSP and LDA for scalp EEG signals publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/1240323 contributor: fullname: Alrshoud – volume: 28 start-page: 782 year: 2020 end-page: 794 ident: CR53 article-title: Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2973434 contributor: fullname: Li – ident: CR34 – volume: 21 start-page: 2173 year: 2021 ident: CR18 article-title: A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain–computer interface publication-title: Sensors doi: 10.3390/s21062173 contributor: fullname: Guesgen – volume: 31 start-page: 3884 year: 2023 end-page: 3894 ident: CR23 article-title: Epileptic seizure detection and prediction in EEGs using power spectra density parameterization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3317093 contributor: fullname: Cai – volume: 34 start-page: e7031 year: 2022 ident: CR5 article-title: Efficient deep learning models for brain tumor detection with segmentation and data augmentation techniques publication-title: Concurr. Comput. doi: 10.1002/cpe.7031 contributor: fullname: Abd El-Samie – volume: 110 start-page: 127 year: 2019 end-page: 143 ident: CR38 article-title: Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.05.016 contributor: fullname: Raghu – ident: 67855_CR33 doi: 10.1145/3307339.3342131 – volume: 120 start-page: 1927 year: 2009 ident: 67855_CR16 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.09.002 contributor: fullname: P Mirowski – volume: 30 start-page: 413 year: 2006 ident: 67855_CR22 publication-title: J. Med. Syst. doi: 10.1007/s10916-005-9001-0 contributor: fullname: A Alkan – volume: 11 start-page: 97990 year: 2023 ident: 67855_CR56 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3312187 contributor: fullname: CSL Prasanna – volume: 33 start-page: 668 year: 2021 ident: 67855_CR52 publication-title: J. King Saud Univ. Comput. Inf. Sci. contributor: fullname: V Harpale – volume: 14 start-page: 139 year: 2021 ident: 67855_CR13 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.3008792 contributor: fullname: K Rasheed – volume: 32 start-page: 304 year: 2024 ident: 67855_CR57 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3350074 contributor: fullname: Y Tang – volume: 136 start-page: 103977 year: 2020 ident: 67855_CR10 publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2019.103977 contributor: fullname: IV Petukhov – volume: 28 start-page: 782 year: 2020 ident: 67855_CR53 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2973434 contributor: fullname: Y Li – volume: 39 start-page: 94 year: 2018 ident: 67855_CR27 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 contributor: fullname: E Alickovic – volume: 32 start-page: 1084 year: 2007 ident: 67855_CR24 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.02.005 contributor: fullname: A Subasi – volume: 20 start-page: 749 year: 2012 ident: 67855_CR21 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2206054 contributor: fullname: Y Liu – volume: 19 start-page: 036029 year: 2022 ident: 67855_CR58 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac7256 contributor: fullname: J Hellar – volume: 11 start-page: 594679 year: 2020 ident: 67855_CR12 publication-title: Front. Neurol. doi: 10.3389/fneur.2020.594679 contributor: fullname: YG Chung – volume: 67 start-page: 2092 year: 2006 ident: 67855_CR50 publication-title: Neurology doi: 10.1212/01.wnl.0000243257.85592.9a contributor: fullname: JC Henry – volume: 38 start-page: e3573 year: 2022 ident: 67855_CR17 publication-title: Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3573 contributor: fullname: FE Ibrahim – volume: 2017 start-page: 1 year: 2017 ident: 67855_CR49 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/1240323 contributor: fullname: TN Alotaiby – volume: 68 start-page: 102699 year: 2021 ident: 67855_CR54 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102699 contributor: fullname: Y Jiang – volume: 18 start-page: 1354436 year: 2024 ident: 67855_CR39 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2024.1354436 contributor: fullname: X Liu – volume: 17 start-page: 1246995 year: 2023 ident: 67855_CR62 publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1246995 contributor: fullname: H Ji – volume: 57 start-page: 464 year: 2016 ident: 67855_CR1 publication-title: Epilepsia doi: 10.1111/epi.13294 contributor: fullname: I Megiddo – volume: 14 start-page: 1319 year: 2024 ident: 67855_CR61 publication-title: Sci. Rep. doi: 10.1038/s41598-023-43328-y contributor: fullname: D Lee – volume: 130 start-page: 314 year: 2007 ident: 67855_CR14 publication-title: Brain doi: 10.1093/brain/awl241 contributor: fullname: F Mormann – volume: 45 start-page: 147 year: 2013 ident: 67855_CR15 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.02.014 contributor: fullname: UR Acharya – volume: 12 start-page: 95 year: 2018 ident: 67855_CR29 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00095 contributor: fullname: M Zhou – volume: 17 start-page: 1174005 year: 2023 ident: 67855_CR44 publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1174005 contributor: fullname: L Zhong – volume: 22 start-page: 6592 year: 2022 ident: 67855_CR55 publication-title: Sensors doi: 10.3390/s22176592 contributor: fullname: MK Alharthi – volume: 23 start-page: 96 issue: 1 year: 2023 ident: 67855_CR30 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-023-02180-w contributor: fullname: W Chen – volume: 2128 start-page: 012012 year: 2021 ident: 67855_CR7 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2128/1/012012 contributor: fullname: MR Shoaib – volume: 17 start-page: 279 year: 2018 ident: 67855_CR8 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30038-3 contributor: fullname: CE Elger – volume: 11 start-page: 108126 year: 2023 ident: 67855_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3317241 contributor: fullname: HM Emara – volume: 34 start-page: e7031 year: 2022 ident: 67855_CR5 publication-title: Concurr. Comput. doi: 10.1002/cpe.7031 contributor: fullname: MR Shoaib – volume: 31 start-page: 3884 year: 2023 ident: 67855_CR23 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3317093 contributor: fullname: S Liu – volume: 52 start-page: 2 year: 2011 ident: 67855_CR3 publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03121.x contributor: fullname: DJ Thurman – volume: 30 start-page: 135 year: 2022 ident: 67855_CR46 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3143540 contributor: fullname: Y Zhang – volume: 26 start-page: 277 year: 2016 ident: 67855_CR31 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22199 contributor: fullname: S Deivasigamani – volume: 116 start-page: 3371 year: 2021 ident: 67855_CR6 publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07857-3 contributor: fullname: HM Emara – volume: 15 start-page: 1 year: 2019 ident: 67855_CR45 publication-title: ACM Trans. Multimedia Comput. Commun. Appl. doi: 10.1145/3241056 contributor: fullname: MS Hossain – volume: 25 start-page: 2146 year: 2017 ident: 67855_CR9 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2697920 contributor: fullname: LS Vidyaratne – volume: 1 start-page: 1 year: 2014 ident: 67855_CR43 publication-title: IEEE Power Energy Technol. Syst. J. doi: 10.1109/JPETS.2014.2363403 contributor: fullname: SC Hanebuth – volume: 110 start-page: 127 year: 2019 ident: 67855_CR38 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.05.016 contributor: fullname: S Raghu – volume: 23 start-page: 423 year: 2022 ident: 67855_CR63 publication-title: Sensors doi: 10.3390/s23010423 contributor: fullname: B Kapoor – volume: 64 start-page: 2872 year: 2017 ident: 67855_CR36 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2679136 contributor: fullname: H Azami – volume: 11 start-page: 607 year: 2020 ident: 67855_CR37 publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00607 contributor: fullname: ST Aung – volume: 14 start-page: 1250 year: 2021 ident: 67855_CR28 publication-title: IJST doi: 10.17485/IJST/v14i16.625 contributor: fullname: CV Banupriya – ident: 67855_CR48 – volume: 19 start-page: 11326 year: 2022 ident: 67855_CR51 publication-title: IJERPH doi: 10.3390/ijerph191811326 contributor: fullname: X Xu – volume: 12 start-page: 7251 year: 2022 ident: 67855_CR59 publication-title: Appl. Sci. doi: 10.3390/app12147251 contributor: fullname: MH Aslam – volume: 11 start-page: 62855 year: 2023 ident: 67855_CR60 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3287927 contributor: fullname: Y Ma – volume: 88 start-page: 251 year: 2018 ident: 67855_CR11 publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2018.09.030 contributor: fullname: UR Acharya – volume: 29 start-page: 1604 year: 2021 ident: 67855_CR20 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3103210 contributor: fullname: X Yang – volume: 16 start-page: 213 year: 2015 ident: 67855_CR19 publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2015.06.002 contributor: fullname: SN Abdulkader – ident: 67855_CR34 doi: 10.1109/AICCIT57614.2023.10218011 – volume: 21 start-page: 2173 year: 2021 ident: 67855_CR18 publication-title: Sensors doi: 10.3390/s21062173 contributor: fullname: A Singh – volume: 378 start-page: 1369 year: 2014 ident: 67855_CR35 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2014.03.034 contributor: fullname: S-D Wu – start-page: 49 volume-title: Theory and Applications of Applied Electromagnetics year: 2015 ident: 67855_CR41 doi: 10.1007/978-3-319-17269-9_6 contributor: fullname: AF Gill – volume: 55 start-page: 475 year: 2014 ident: 67855_CR4 publication-title: Epilepsia doi: 10.1111/epi.12550 contributor: fullname: RS Fisher – ident: 67855_CR47 – ident: 67855_CR25 doi: 10.1109/ATSIP.2016.7523093 – volume: 12 start-page: 2879 issue: 11 year: 2022 ident: 67855_CR42 publication-title: Diagnostics doi: 10.3390/diagnostics12112879 contributor: fullname: A Shoeb – volume: 1 start-page: 1092 year: 2022 ident: 67855_CR40 publication-title: J. Pharm. Negative Results doi: 10.47750/pnr.2022.13.S08.139 contributor: fullname: BS Kavya – volume: 8 start-page: 1323 year: 2014 ident: 67855_CR26 publication-title: SIViP doi: 10.1007/s11760-012-0362-9 contributor: fullname: Y Kumar – volume: 80 start-page: 37 year: 2005 ident: 67855_CR32 publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2005.06.011 contributor: fullname: UR Acharya |
SSID | ssj0000529419 |
Score | 2.468398 |
Snippet | Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their... Abstract Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 16916 |
SubjectTerms | 692/308 692/617 Algorithms Attention mechanism (AM) Convolutional neural network (CNN) Convulsions & seizures Deep Learning EEG Electroencephalography (EEG) signal Electroencephalography - methods Epilepsy Epilepsy - diagnosis Epilepsy - physiopathology Gated recurrent unit (GRU) Humanities and Social Sciences Humans Multi-class feature fusion multidisciplinary Neural networks Neural Networks, Computer Neurological diseases Predictions Quality of life Science Science (multidisciplinary) Seizure detection and prediction Seizures Seizures - diagnosis Signal Processing, Computer-Assisted Wavelet Analysis Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbhA1fsSPY4uoKiQ4Uak3a-yMaQ-kq-7uofx6xk526fIQF45xbGnkmfF8fsw3jL1Bq5Ix1rY9oYdWS8gt2FTeiGEfXZ8piJbzjk-fzemZ_njen98q9VXehE30wNPEHUIUClM3ROuyBucgQvQiIWQvlPFYV9_O39pMTaze0mvh5yyZTrnDJUWqkk0mdUvrc9-3eicSVcL-P6HM3x9L_nJjWgPRyQN2f0aQ_GiSfJ_dwfEhuzvVlLx5xBZHnDas-A052VKs5R94xkrfyfO6nI1xGAd-cVNStfiAuOBz5YivvJbFWXLCsRwXtFzQcpL4Ei-_l8EDruqzrWn84rrc8JTPx-zs5MOX96ftXFahTVrKVasUgJAYdWFm6QeKYdpl8vWUZbJOpGh9H8kxExjCTiZ2gloG6LKwAyjv1BO2N16N-IxxEw3ooYuowOioI4CNPuVuINwCKPuGvd1McVhM7Bmh3norFyaFBFJIqAoJumHHRQvbnoX5ujaQPYTZHsK_7KFhBxsdhtkdl0ER0LTGaOEa9nr7mxyp3I7AiFfr2kdXnlTfsKeTyreSKF8yiAVJ6HaMYUfU3T_j5UUl6y4pWoZgcMPebezmp1x_n4vn_2MuXrB7shh8Z1upDtje6nqNLwlDreKr6i4_ANSJG1E priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLYidQkJG4gdV4ie2cUEFUFRKcqDQ3y8tL2wOZdDJzKL-eZycz1bAdkziS47d9eSshb8HIqLUxrEH0wJTwHfMm5hwxaIJtOjSi2d_x9Zs-PVNfFs1idriNc1rlVicWRZ2WMfvIjyRiBaO14vbDcMXy1KgcXZ1HaNwmd7iodU7pMguz87HkKJbi7VwrU0t7NKK9yjVlQjHU0k3D1J49Km37_4Y1_0yZ_C1uWszRyQNyf8aR9Hgi_ENyC_pH5O40WfL6MRmOKf62wg-g-HWhDIGgHZQmnrTbZA8Z9X2iF9e5YIsmgIHO8yPOaRmOM1JEsxQGVBqoVCId4fJnfjnBuiRvTe8PqxznyZdPyNnJ5--fTtk8XIFFJcSaSek9FxBU7s_SJLRkynYo8bET0Vgeg2mbgOIZvUYEpUPN8U7ydcdN8rK18ik56Jc9PCdUB-1VqgNIr1VQwXsT2tjVCdGLB9FU5N32iN0w9dBwJfYtrZsI4pAgrhDEqYp8zFTYrcz9r8uN5erczeLkfOASYp2CsZ3y1vrgQ8sj-K7lUrdQkcMtDd0slKO7YaGKvNk9RnHKMRLfw3JT1qjSLbWtyLOJ5LudyDbXEXPcod1jhr2t7j_pLy9Ky-5cqKURDFfk_ZZvbvb177N48f_PeEnuiczKtWFCHpKD9WoDrxAjrcPrIgi_ALnREOM priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkL4k2gICNxg4g4fuZYVlQVEpyo1Js1dsa0B9Kou3sov56xk10UKAeO8UMaeWY8Xzwvxt6ildEYa2tN6KFWLaQabMwxYqiD04mMaH7v-PLVnJyqz2f6bC6Tk3NhFv576T6sycDkJLBW1XStal2r2-wO2WCXw7dWZrV_T8keKyW6OS_m5q0L21NK9N-EK_8Oj_zDR1pMz_EDdn_GjPxoYvJDdguHR-zu1EXy-jEbjzj9ouIP5CQ9oTR84AlLwU6etvk1jMPQ8_PrnJzFe8SRz70ivvPSCGfNCblyHOmCoAsk8jVe_Mybe9yUQK1p_3iVfTr58wk7Pf70bXVSz40U6qjadlNLCSBaDCrXYtE9WS3lEml3TG20TsRgOx1IFSMYQksmNIJGemiSsD3Izsmn7GC4HPA54yYYUH0TUIJRQQUAG7qYmp6QCmCrK_Zud8R-nOpl-OLnls5PDPHEEF8Y4lXFPmYu7FfmWtdlgETAz6rjIQiJsemDdUmBcxAgdCIipE5I02HFDnc89LMCrr0kaGmNUcJV7M1-mlQn-0NgwMttWaNKZdSuYs8mlu8pkV3OGRZEoVsIw4LU5cxwcV7Kc-ekLEPAt2Lvd3Lzm65_n8WL_1v-kt1rs2g3tm7lITvYXG3xFeGjTXhdFOMXByIJ5w priority: 102 providerName: Springer Nature |
Title | A scheme combining feature fusion and hybrid deep learning models for epileptic seizure detection and prediction |
URI | https://link.springer.com/article/10.1038/s41598-024-67855-4 https://www.ncbi.nlm.nih.gov/pubmed/39043914 https://www.proquest.com/docview/3083766418 https://www.proquest.com/docview/3084031099 https://pubmed.ncbi.nlm.nih.gov/PMC11266650 https://doaj.org/article/ab13ec0db78f4a88abab91ceaf91369e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SlEIvpe86TRcVemudtSVZko_JkhAKCaE0sDcjyVKy0PWafRzSX5-RbG-7fVx6tGRjoflG80maB8BHJ5kVQsq0QPaQcqp9qqUNPmKuMKrwaETDecfllbi44V-mxXQPxBALE532rZkdN9_nx83sLvpWtnM7HvzExteXkxD2IpBajPdhHxH6yx69y-hNS56XfYRMxtR4hVYqRJJRnuLaXBRpqMaDm_0Qdcp3DFLM2_83svmnz-RvF6fRHp0_g6c9kSQn3YCfw55rXsDjrrTk_UtoTwjuW93cEYSUiVUgiHcxiyfxm3BERnRTk7v7ELFFauda0heQuCWxOs6KIJ0lrsVVA1cVS1Zu9iN8XLt19N7qvm-X4aInPL6Cm_Ozb5OLtK-ukFpO6TplTOucOsNDgpaiRlPGlUeVt55aqXJrZFkY1E-rBVIoYbIcW2qd-VzWmpWKvYaDZtG4t0CEEZrXmXFMC2640Vqa0vqsRvqiHS0S-DRMcdV2STSqePnNVNXJpkLZVFE2FU_gNEhh-2ZIgB0bFsvbqodBpU3OnM1qI5XnWilttClz67QvcyZKl8DRIMOq18pVxZBvSiF4rhL4sO1GfQqXJLpxi018h8d0qWUCbzqRb0cyQCYBtQOGnaHu9iCEY87uAbIJfB5w83Nc_56Lw___0zt4QgPiM5lSdgQH6-XGvUcCtTYj1JqpHMGj07Or66_4NBGTUTyMGEVNegCtwx58 |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4lkCBYzEDaLGsWM7J9SiVgu0K4RaqTfLz7YHsmGzeyi_nrHj3Wp5HePYku3xzHye8cwg9NYLajkXomwAPZSs1qHUwsY3Yr4xsgmgRKO942TKJ2fs83lzng1uQ35WuZKJSVC7mY028j0KWEFwzoj80P8oY9Wo6F3NJTRuo-2YqgouX9sHh9Ov39ZWlujHYqTN0TIVlXsDaKwYVVazEuR005RsQyOlxP1_Q5t_Ppr8zXOaFNLRA3Q_I0m8P5L-Ibrlu0fozlhb8vox6vcxXFz9d49hfSaVgcDBpzSeOCyjjQzrzuHL6xiyhZ33Pc4VJC5wKo8zYMCz2PcgNkCsWDz4q59xsPOL9HxrHN_Po6cnfj5BZ0eHpx8nZS6vUFpW14uSUq1J7Q2LGVoaB7qMyQA8b0NthSTWiLYxwKBWc8BQ3FQEWpyuAhFO01bSp2irm3X-GcLccM1cZTzVnBlmtBamtaFygF-0r5sCvVttserHLBoqeb-pVCNBFBBEJYIoVqCDSIV1z5gBOzXM5hcqM5TShlBvK2eEDExLqY02LbFeh5ZQ3voC7a5oqDJbDurmEBXozfo3MFT0kujOz5apD0v5UtsC7YwkX8-EtjGSmMAM5cZh2Jjq5p_u6jIl7Y6hWhzgcIHer87Nzbz-vRfP_7-M1-ju5PTkWB1_mn55ge7V8VhXoqzpLtpazJf-JSCmhXmV2eIXVMgVOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLZgKhAXxE5KASNxg2ji2LGdE2qho7KNKkSl3iyvbQ9k0lkO5dfz7HimGrZjEkdy_LYvb0XotRfUci5E2QB6KFmtQ6mFjTlivjGyCWBEo7_j65QfnbBPp81pzn9a5LTKtU5MitrNbPSRjylgBcE5I3IcclrE8YfJu_6yjBOkYqQ1j9O4iXYE47QaoZ2Dw-nxt43HJca0GGlz5UxF5XgB1itWmNWsBJ3dNCXbsk6pif_fkOefCZS_RVGTcZrcQ3czqsT7AxvcRzd89wDdGuZMXj1E_T6Gn1j_w2P4VpNGQuDgU0tPHFbRX4Z15_D5VSzfws77HudpEmc4jcpZYMC22PegQkDFWLzwFz_jy84vUyrX8H4_j1GfePkInUwOv78_KvOohdKyul6WlGpNam9Y7NbSOLBrTAaQfxtqKySxRrSNAWG1mgOe4qYicMfpKhDhNG0lfYxG3azzTxHmhmvmKuOp5swwo7UwrQ2VAyyjfd0U6M36iFU_dNRQKRJOpRoIooAgKhFEsQIdRCpsVsZu2OnGbH6msnApbQj1tnJGyMC0lNpo0xLrdWgJ5a0v0N6ahiqL6EJdM1SBXm0eg3DFiInu_GyV1rDUO7Ut0JOB5Jud0DZWFRPYodxihq2tbj_pLs5TA-9YtsUBGhfo7Zpvrvf177PY_f9nvES3QSLUl4_Tz8_QnTpydSXKmu6h0XK-8s8BPC3NiywVvwA-2hln |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scheme+combining+feature+fusion+and+hybrid+deep+learning+models+for+epileptic+seizure+detection+and+prediction&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Jincan&rft.au=Zheng%2C+Shaojie&rft.au=Chen%2C+Wenna&rft.au=Du%2C+Ganqin&rft.date=2024-07-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-67855-4&rft_id=info%3Apmid%2F39043914&rft.externalDBID=PMC11266650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |