Methodology to identify subject-specific dynamic laxity tests to stretch individual parts of knee ligaments

•A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The stretch in the target ligament is isolated as much as possible from other ligaments. The mechanical properties of ligaments are important for m...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 133; p. 104246
Main Authors Andersen, Michael Skipper, Theodorakos, Ilias
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The stretch in the target ligament is isolated as much as possible from other ligaments. The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0–150 N), moments (0–10 Nm) and knee flexion angles (0–90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies.
AbstractList •A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The stretch in the target ligament is isolated as much as possible from other ligaments. The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0–150 N), moments (0–10 Nm) and knee flexion angles (0–90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies.
The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0-150 N), moments (0-10 Nm) and knee flexion angles (0-90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies.
The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0-150 N), moments (0-10 Nm) and knee flexion angles (0-90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies.The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0-150 N), moments (0-10 Nm) and knee flexion angles (0-90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies.
ArticleNumber 104246
Author Theodorakos, Ilias
Andersen, Michael Skipper
Author_xml – sequence: 1
  givenname: Michael Skipper
  orcidid: 0000-0001-8275-9472
  surname: Andersen
  fullname: Andersen, Michael Skipper
  email: msa@mp.aau.dk
– sequence: 2
  givenname: Ilias
  orcidid: 0000-0002-7558-7286
  surname: Theodorakos
  fullname: Theodorakos, Ilias
  email: iliast@mp.aau.dk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39557503$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v3CAQxVGVqPnTfoXWx168BYNhOVVR1LSVUuXSnhEL4112MbiAo_rbh9WmOfSU04zgzU8z712hsxADIPSR4BXBhH_er0awELbTbll1uGP1lXWMv0GXZC1oyzDFZ7WnPW5ZT-kFusp5jzFmjNO36ILKvhc9ppfo8BPKLtro43ZpSmxcpRY3LE2eN3swpc0TGDc409gl6LFWr_-6UrWQSz5O5JKgmF3jgnWPzs7aN5NO9S8OzSEANN5t9Vip-R06H7TP8P65XqPfd19_3X5v7x--_bi9uW8N67rSUlKXHDCXRBrDhZCaSS17vSbcALfDZiMGQTpDCWhsiKwt57bjVkjDjeT0Gn06cacU_8x1TzW6bMB7HSDOWVFCcYeFXJMq_fAsnTfVUTUlN-q0qH8GVYE4CUyKOScYXiQEq2MUaq9eolDHKNQpijp5c5qEeuqjg6SycRAMWJeqscpG9wrGl_8YxrvgjPYHWF5FeAKO16yg
Cites_doi 10.1115/1.4032464
10.1016/0021-9290(86)90019-9
10.1115/1.4029258
10.1115/1.2894883
10.1016/j.jbiomech.2011.11.052
10.3390/app11052423
10.1115/1.4053792
10.1115/1.4037100
10.1115/1.4044245
10.1109/TBME.2022.3156018
10.1038/s41598-017-17228-x
10.1115/1.4050027
10.1007/s10439-015-1326-3
10.3390/bioengineering10050543
10.1016/j.medengphy.2022.103871
10.1016/j.jbiomech.2017.08.030
10.1002/jor.23032
10.1002/acr.22811
10.1002/jor.25686
10.1016/j.jbiomech.2018.10.016
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Ltd.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.medengphy.2024.104246
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
ExternalDocumentID 39557503
10_1016_j_medengphy_2024_104246
S1350453324001474
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
6I.
AACTN
AAFTH
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c422t-31463f06919cc6779a49a95a816ce6dfbb7f712c31ea0c1912c66d26d79c6c963
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Tue Aug 05 10:14:35 EDT 2025
Thu Apr 03 07:09:27 EDT 2025
Tue Jul 01 04:25:00 EDT 2025
Sat Nov 16 15:58:21 EST 2024
Tue Aug 26 16:31:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Knee model
Laxity
Ligaments
Language English
License This is an open access article under the CC BY license.
Copyright © 2024. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-31463f06919cc6779a49a95a816ce6dfbb7f712c31ea0c1912c66d26d79c6c963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8275-9472
0000-0002-7558-7286
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1350453324001474
PMID 39557503
PQID 3130207981
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3130207981
pubmed_primary_39557503
crossref_primary_10_1016_j_medengphy_2024_104246
elsevier_sciencedirect_doi_10_1016_j_medengphy_2024_104246
elsevier_clinicalkey_doi_10_1016_j_medengphy_2024_104246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dejtiar, Dzialo, Pedersen, Jensen, Fleron, Andersen (bib0007) 2020; 142
Naghibi Beidokhti, Janssen, van de Groes, Hazrati, Van den Boogaard, Verdonschot (bib0011) 2017; 65
Pedersen, Vanheule, Wirix-Speetjens, Taylan, Delport, Scheys (bib0016) 2019; 82
Butler, Kay, Stouffer (bib0019) 1986; 19
Esrafilian, Halonen, Dzialo, Mannisi, Mononen, Tanska (bib0004) 2024; 42
Skipper Andersen, de Zee, Damsgaard, Nolte, Rasmussen (bib0017) 2017; 139
Esrafilian, Stenroth, Mononen, Vartiainen, Tanska, Karjalainen (bib0009) 2022; 69
Andersen, Dzialo, Marra, Pedersen (bib0013) 2021; 143
Blankevoort, Huiskes (bib0018) 1991; 113
Andersen, Pedersen (bib0006) 2022; 107
Tzanetis, Marra, Fluit, Koopman, Verdonschot (bib0003) 2021; 11
Halonen, Dzialo, Mannisi, Venäläinen, de Zee, Andersen (bib0008) 2017; 7
Nevitt, Tolstykh, Shakoor, Nguyen, Segal, Lewis (bib0001) 2016; 68
Ewing, Kaufman, Hutter, Granger, Beal, Piazza (bib0012) 2016; 34
Smith, Vignos, Lenhart, Kaiser, Thelen (bib0014) 2016; 138
Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (bib0020) 2012; 45
Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot (bib0005) 2015; 137
Lenhart, Kaiser, Smith, Thelen (bib0010) 2015; 43
Tzanetis, Fluit, de Souza, Robertson, Koopman, Verdonschot (bib0002) 2023; 10
Kümmerlin, Fabro, Pedersen, Jensen, Pedersen, Andersen (bib0015) 2022; 144
Kümmerlin (10.1016/j.medengphy.2024.104246_bib0015) 2022; 144
Skipper Andersen (10.1016/j.medengphy.2024.104246_bib0017) 2017; 139
Halonen (10.1016/j.medengphy.2024.104246_bib0008) 2017; 7
Ewing (10.1016/j.medengphy.2024.104246_bib0012) 2016; 34
Butler (10.1016/j.medengphy.2024.104246_bib0019) 1986; 19
Nevitt (10.1016/j.medengphy.2024.104246_bib0001) 2016; 68
Lenhart (10.1016/j.medengphy.2024.104246_bib0010) 2015; 43
Marra (10.1016/j.medengphy.2024.104246_bib0005) 2015; 137
Andersen (10.1016/j.medengphy.2024.104246_bib0006) 2022; 107
Esrafilian (10.1016/j.medengphy.2024.104246_bib0009) 2022; 69
Tzanetis (10.1016/j.medengphy.2024.104246_bib0002) 2023; 10
Blankevoort (10.1016/j.medengphy.2024.104246_bib0018) 1991; 113
Andersen (10.1016/j.medengphy.2024.104246_bib0013) 2021; 143
Esrafilian (10.1016/j.medengphy.2024.104246_bib0004) 2024; 42
Naghibi Beidokhti (10.1016/j.medengphy.2024.104246_bib0011) 2017; 65
Dejtiar (10.1016/j.medengphy.2024.104246_bib0007) 2020; 142
Baldwin (10.1016/j.medengphy.2024.104246_bib0020) 2012; 45
Smith (10.1016/j.medengphy.2024.104246_bib0014) 2016; 138
Pedersen (10.1016/j.medengphy.2024.104246_bib0016) 2019; 82
Tzanetis (10.1016/j.medengphy.2024.104246_bib0003) 2021; 11
References_xml – volume: 69
  start-page: 2860
  year: 2022
  end-page: 2871
  ident: bib0009
  article-title: An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox
  publication-title: IEEE Trans Biomed Eng
– volume: 113
  start-page: 263
  year: 1991
  end-page: 269
  ident: bib0018
  article-title: Ligament-bone interaction in a three-dimensional model of the knee
  publication-title: J Biomech Eng
– volume: 107
  year: 2022
  ident: bib0006
  article-title: Methodology to identify optimal subject-specific laxity tests to stretch individual parts of knee ligaments
  publication-title: Med Eng Phys
– volume: 19
  start-page: 425
  year: 1986
  end-page: 432
  ident: bib0019
  article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments
  publication-title: J Biomech
– volume: 68
  start-page: 1089
  year: 2016
  end-page: 1097
  ident: bib0001
  article-title: Symptoms of knee instability as risk factors for recurrent falls
  publication-title: Arthritis Care Res (Hoboken)
– volume: 43
  start-page: 2675
  year: 2015
  end-page: 2685
  ident: bib0010
  article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement
  publication-title: Ann Biomed Eng
– volume: 139
  year: 2017
  ident: bib0017
  article-title: Introduction to force-dependent kinematics: theory and application to mandible modeling
  publication-title: J Biomech Eng
– volume: 10
  start-page: 543
  year: 2023
  ident: bib0002
  article-title: Pre-planning the surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty
  publication-title: Bioengineering (Basel)
– volume: 144
  year: 2022
  ident: bib0015
  article-title: Measuring knee joint laxity in three degrees-of-freedom in vivo using a robotics- and image-based technology
  publication-title: J Biomech Eng
– volume: 34
  start-page: 435
  year: 2016
  end-page: 443
  ident: bib0012
  article-title: Estimating patient-specific soft-tissue properties in a TKA knee
  publication-title: J Orthop Res
– volume: 82
  start-page: 62
  year: 2019
  end-page: 69
  ident: bib0016
  article-title: A novel non-invasive method for measuring knee joint laxity in four dof:
  publication-title: J Biomech
– volume: 142
  year: 2020
  ident: bib0007
  article-title: Development and evaluation of a subject-specific lower limb model with an eleven-degrees-of-freedom natural knee model using magnetic resonance and biplanar X-ray imaging during a quasi-static lunge
  publication-title: J Biomech Eng
– volume: 42
  start-page: 326
  year: 2024
  end-page: 338
  ident: bib0004
  article-title: Effects of gait modifications on tissue-level knee mechanics in individuals with medial tibiofemoral osteoarthritis: a proof-of-concept study towards personalized interventions
  publication-title: J Orthop Res
– volume: 65
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0011
  article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint
  publication-title: J Biomech
– volume: 138
  year: 2016
  ident: bib0014
  article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement
  publication-title: J Biomech Eng
– volume: 137
  year: 2015
  ident: bib0005
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J Biomech Eng
– volume: 143
  year: 2021
  ident: bib0013
  article-title: A methodology to evaluate the effects of kinematic measurement uncertainties on knee ligament properties estimated from laxity measurements
  publication-title: J Biomech Eng
– volume: 7
  start-page: 17396
  year: 2017
  ident: bib0008
  article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage - combined musculoskeletal modelling and finite element analysis
  publication-title: Sci Rep
– volume: 11
  start-page: 2423
  year: 2021
  ident: bib0003
  article-title: Biomechanical consequences of tibial insert thickness after total knee arthroplasty: a musculoskeletal simulation study
  publication-title: Appl Sci
– volume: 45
  start-page: 474
  year: 2012
  end-page: 483
  ident: bib0020
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J Biomech
– volume: 138
  year: 2016
  ident: 10.1016/j.medengphy.2024.104246_bib0014
  article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement
  publication-title: J Biomech Eng
  doi: 10.1115/1.4032464
– volume: 19
  start-page: 425
  year: 1986
  ident: 10.1016/j.medengphy.2024.104246_bib0019
  article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments
  publication-title: J Biomech
  doi: 10.1016/0021-9290(86)90019-9
– volume: 137
  year: 2015
  ident: 10.1016/j.medengphy.2024.104246_bib0005
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J Biomech Eng
  doi: 10.1115/1.4029258
– volume: 113
  start-page: 263
  year: 1991
  ident: 10.1016/j.medengphy.2024.104246_bib0018
  article-title: Ligament-bone interaction in a three-dimensional model of the knee
  publication-title: J Biomech Eng
  doi: 10.1115/1.2894883
– volume: 45
  start-page: 474
  year: 2012
  ident: 10.1016/j.medengphy.2024.104246_bib0020
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.11.052
– volume: 11
  start-page: 2423
  year: 2021
  ident: 10.1016/j.medengphy.2024.104246_bib0003
  article-title: Biomechanical consequences of tibial insert thickness after total knee arthroplasty: a musculoskeletal simulation study
  publication-title: Appl Sci
  doi: 10.3390/app11052423
– volume: 144
  year: 2022
  ident: 10.1016/j.medengphy.2024.104246_bib0015
  article-title: Measuring knee joint laxity in three degrees-of-freedom in vivo using a robotics- and image-based technology
  publication-title: J Biomech Eng
  doi: 10.1115/1.4053792
– volume: 139
  year: 2017
  ident: 10.1016/j.medengphy.2024.104246_bib0017
  article-title: Introduction to force-dependent kinematics: theory and application to mandible modeling
  publication-title: J Biomech Eng
  doi: 10.1115/1.4037100
– volume: 142
  year: 2020
  ident: 10.1016/j.medengphy.2024.104246_bib0007
  article-title: Development and evaluation of a subject-specific lower limb model with an eleven-degrees-of-freedom natural knee model using magnetic resonance and biplanar X-ray imaging during a quasi-static lunge
  publication-title: J Biomech Eng
  doi: 10.1115/1.4044245
– volume: 69
  start-page: 2860
  year: 2022
  ident: 10.1016/j.medengphy.2024.104246_bib0009
  article-title: An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2022.3156018
– volume: 7
  start-page: 17396
  year: 2017
  ident: 10.1016/j.medengphy.2024.104246_bib0008
  article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage - combined musculoskeletal modelling and finite element analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17228-x
– volume: 143
  year: 2021
  ident: 10.1016/j.medengphy.2024.104246_bib0013
  article-title: A methodology to evaluate the effects of kinematic measurement uncertainties on knee ligament properties estimated from laxity measurements
  publication-title: J Biomech Eng
  doi: 10.1115/1.4050027
– volume: 43
  start-page: 2675
  year: 2015
  ident: 10.1016/j.medengphy.2024.104246_bib0010
  article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-015-1326-3
– volume: 10
  start-page: 543
  year: 2023
  ident: 10.1016/j.medengphy.2024.104246_bib0002
  article-title: Pre-planning the surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty
  publication-title: Bioengineering (Basel)
  doi: 10.3390/bioengineering10050543
– volume: 107
  year: 2022
  ident: 10.1016/j.medengphy.2024.104246_bib0006
  article-title: Methodology to identify optimal subject-specific laxity tests to stretch individual parts of knee ligaments
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2022.103871
– volume: 65
  start-page: 1
  year: 2017
  ident: 10.1016/j.medengphy.2024.104246_bib0011
  article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2017.08.030
– volume: 34
  start-page: 435
  year: 2016
  ident: 10.1016/j.medengphy.2024.104246_bib0012
  article-title: Estimating patient-specific soft-tissue properties in a TKA knee
  publication-title: J Orthop Res
  doi: 10.1002/jor.23032
– volume: 68
  start-page: 1089
  year: 2016
  ident: 10.1016/j.medengphy.2024.104246_bib0001
  article-title: Symptoms of knee instability as risk factors for recurrent falls
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.22811
– volume: 42
  start-page: 326
  year: 2024
  ident: 10.1016/j.medengphy.2024.104246_bib0004
  article-title: Effects of gait modifications on tissue-level knee mechanics in individuals with medial tibiofemoral osteoarthritis: a proof-of-concept study towards personalized interventions
  publication-title: J Orthop Res
  doi: 10.1002/jor.25686
– volume: 82
  start-page: 62
  year: 2019
  ident: 10.1016/j.medengphy.2024.104246_bib0016
  article-title: A novel non-invasive method for measuring knee joint laxity in four dof: in vitro proof-of-concept and validation
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2018.10.016
SSID ssj0004463
Score 2.4157398
Snippet •A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The...
The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 104246
SubjectTerms Biomechanical Phenomena
Humans
Joint Instability - diagnosis
Joint Instability - physiopathology
Knee Joint - physiology
Knee model
Laxity
Ligaments
Mechanical Phenomena
Mechanical properties
Mechanical Tests
Monte Carlo Method
Title Methodology to identify subject-specific dynamic laxity tests to stretch individual parts of knee ligaments
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453324001474
https://dx.doi.org/10.1016/j.medengphy.2024.104246
https://www.ncbi.nlm.nih.gov/pubmed/39557503
https://www.proquest.com/docview/3130207981
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQLC8toXKSFzDJrZjx71VK6oFtL1Apd4ix7Gr0Cq7YrMSXPjtnXGShUogkDgm8sjxzGT82fMCeIMQvyokj2HlNpHchQRRvktwq_VBBF772KZzeaYW5_LDRX6xB_MxF4bCKgfb39v0aK2HN7OBm7N108w-ZSJHPCKoohzifE01QaXUpOVvf_wM88DjTgyyx8EJjb4V44Ubjm8vcT14UOSS_J2ckPDvd6g_IdC4E50-gocDhGQn_Vc-hj3fTuDefOzcNoEHvxQZnMDd5eA-fwJXy9gvOt6ks27FmpilG76zzbai-5iE8i4pdojVfaN6dm2_IUxniEe7DVFQagnKmTW7PC62RnZt2CqwK5ySXTeXNmbNPYXz03ef54tk6LaQOMl5h8YYORVSZTLjnNLaWGmsyW2RKedVHapKB51xJzJvU4fHPO6UqrmqtXHK4X_8DPbbVetfANNB5s6KyuRFkCJkVWqDosr0Qde5cGIK6cjhct0X1SjHaLMv5U4oJQml7IUyhWKURDnmjKKVK9Hw_530eEd6S7X-jfj1KPYSpUjeFNv61XZTCnL5ptoU2RSe9_qwW4wweU4O4oP_mfoQ7tNTn_j4Eva7r1v_ChFQVx1FFT-COyfvPy7ObgDBrQZj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTmLjAUGBUX4aideoie3YMW9TxdSxtS9s0t4sx7GnsCmtaCrBf8_ZSQqTQCDxmuTk5M45f_bddwfwHiF-WXAa08pNwqn1CaJ8m-BS6zzztHKxTediKeaX_NNVfrUHs4ELE9Iqe9_f-fTorfsr016b03VdTz9nLEc8wkJFOcT5kt-D_VCdKh_B_vHp2Xz5kx7JY0O18HwSBO6keeGa45pr_CTcK1IeQp40gOHfL1J_AqFxMTp5BA97FEmOuxd9DHuuGcPBbGjeNoYHv9QZHMP9RR9BfwI3i9gyOh6mk3ZF6kjU9d_JZluGI5kkUC9D-hCpul715NZ8Q6ROEJK2myAR2CVoalLvqFxkjRrbkJUnNzgkua2vTSTOPYXLk48Xs3nSN1xILKe0RX-MmvKpUJmyVkipDFdG5abIhHWi8mUpvcyoZZkzqcWdHrVCVFRUUllh8Vd-BqNm1bjnQKTnuTWsVHnhOfNZmRovQnF6L6ucWTaBdNCwXnd1NfSQcPZF74yig1F0Z5QJFIMl9EAbRUen0ff_XfTDTvTO7Po34XeD2TVaMQRUTONW241mIeqbSlVkEzjq5sPuY5jK8xAjfvE_Q7-Fg_nF4lyfny7PXsJhuNPxIF_BqP26da8RELXlm37C_wCztgkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+to+identify+subject-specific+dynamic+laxity+tests+to+stretch+individual+parts+of+knee+ligaments&rft.jtitle=Medical+engineering+%26+physics&rft.au=Andersen%2C+Michael+Skipper&rft.au=Theodorakos%2C+Ilias&rft.date=2024-11-01&rft.issn=1873-4030&rft.eissn=1873-4030&rft.volume=133&rft.spage=104246&rft_id=info:doi/10.1016%2Fj.medengphy.2024.104246&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon