Methodology to identify subject-specific dynamic laxity tests to stretch individual parts of knee ligaments
•A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The stretch in the target ligament is isolated as much as possible from other ligaments. The mechanical properties of ligaments are important for m...
Saved in:
Published in | Medical engineering & physics Vol. 133; p. 104246 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The stretch in the target ligament is isolated as much as possible from other ligaments.
The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0–150 N), moments (0–10 Nm) and knee flexion angles (0–90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric.
We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests.
From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies. |
---|---|
AbstractList | •A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The stretch in the target ligament is isolated as much as possible from other ligaments.
The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0–150 N), moments (0–10 Nm) and knee flexion angles (0–90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric.
We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests.
From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies. The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0-150 N), moments (0-10 Nm) and knee flexion angles (0-90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies. The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0-150 N), moments (0-10 Nm) and knee flexion angles (0-90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies.The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0-150 N), moments (0-10 Nm) and knee flexion angles (0-90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies. |
ArticleNumber | 104246 |
Author | Theodorakos, Ilias Andersen, Michael Skipper |
Author_xml | – sequence: 1 givenname: Michael Skipper orcidid: 0000-0001-8275-9472 surname: Andersen fullname: Andersen, Michael Skipper email: msa@mp.aau.dk – sequence: 2 givenname: Ilias orcidid: 0000-0002-7558-7286 surname: Theodorakos fullname: Theodorakos, Ilias email: iliast@mp.aau.dk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39557503$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v3CAQxVGVqPnTfoXWx168BYNhOVVR1LSVUuXSnhEL4112MbiAo_rbh9WmOfSU04zgzU8z712hsxADIPSR4BXBhH_er0awELbTbll1uGP1lXWMv0GXZC1oyzDFZ7WnPW5ZT-kFusp5jzFmjNO36ILKvhc9ppfo8BPKLtro43ZpSmxcpRY3LE2eN3swpc0TGDc409gl6LFWr_-6UrWQSz5O5JKgmF3jgnWPzs7aN5NO9S8OzSEANN5t9Vip-R06H7TP8P65XqPfd19_3X5v7x--_bi9uW8N67rSUlKXHDCXRBrDhZCaSS17vSbcALfDZiMGQTpDCWhsiKwt57bjVkjDjeT0Gn06cacU_8x1TzW6bMB7HSDOWVFCcYeFXJMq_fAsnTfVUTUlN-q0qH8GVYE4CUyKOScYXiQEq2MUaq9eolDHKNQpijp5c5qEeuqjg6SycRAMWJeqscpG9wrGl_8YxrvgjPYHWF5FeAKO16yg |
Cites_doi | 10.1115/1.4032464 10.1016/0021-9290(86)90019-9 10.1115/1.4029258 10.1115/1.2894883 10.1016/j.jbiomech.2011.11.052 10.3390/app11052423 10.1115/1.4053792 10.1115/1.4037100 10.1115/1.4044245 10.1109/TBME.2022.3156018 10.1038/s41598-017-17228-x 10.1115/1.4050027 10.1007/s10439-015-1326-3 10.3390/bioengineering10050543 10.1016/j.medengphy.2022.103871 10.1016/j.jbiomech.2017.08.030 10.1002/jor.23032 10.1002/acr.22811 10.1002/jor.25686 10.1016/j.jbiomech.2018.10.016 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Ltd. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.medengphy.2024.104246 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
ExternalDocumentID | 39557503 10_1016_j_medengphy_2024_104246 S1350453324001474 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- 6I. AACTN AAFTH AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c422t-31463f06919cc6779a49a95a816ce6dfbb7f712c31ea0c1912c66d26d79c6c963 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Tue Aug 05 10:14:35 EDT 2025 Thu Apr 03 07:09:27 EDT 2025 Tue Jul 01 04:25:00 EDT 2025 Sat Nov 16 15:58:21 EST 2024 Tue Aug 26 16:31:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Knee model Laxity Ligaments |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-31463f06919cc6779a49a95a816ce6dfbb7f712c31ea0c1912c66d26d79c6c963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8275-9472 0000-0002-7558-7286 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1350453324001474 |
PMID | 39557503 |
PQID | 3130207981 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3130207981 pubmed_primary_39557503 crossref_primary_10_1016_j_medengphy_2024_104246 elsevier_sciencedirect_doi_10_1016_j_medengphy_2024_104246 elsevier_clinicalkey_doi_10_1016_j_medengphy_2024_104246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dejtiar, Dzialo, Pedersen, Jensen, Fleron, Andersen (bib0007) 2020; 142 Naghibi Beidokhti, Janssen, van de Groes, Hazrati, Van den Boogaard, Verdonschot (bib0011) 2017; 65 Pedersen, Vanheule, Wirix-Speetjens, Taylan, Delport, Scheys (bib0016) 2019; 82 Butler, Kay, Stouffer (bib0019) 1986; 19 Esrafilian, Halonen, Dzialo, Mannisi, Mononen, Tanska (bib0004) 2024; 42 Skipper Andersen, de Zee, Damsgaard, Nolte, Rasmussen (bib0017) 2017; 139 Esrafilian, Stenroth, Mononen, Vartiainen, Tanska, Karjalainen (bib0009) 2022; 69 Andersen, Dzialo, Marra, Pedersen (bib0013) 2021; 143 Blankevoort, Huiskes (bib0018) 1991; 113 Andersen, Pedersen (bib0006) 2022; 107 Tzanetis, Marra, Fluit, Koopman, Verdonschot (bib0003) 2021; 11 Halonen, Dzialo, Mannisi, Venäläinen, de Zee, Andersen (bib0008) 2017; 7 Nevitt, Tolstykh, Shakoor, Nguyen, Segal, Lewis (bib0001) 2016; 68 Ewing, Kaufman, Hutter, Granger, Beal, Piazza (bib0012) 2016; 34 Smith, Vignos, Lenhart, Kaiser, Thelen (bib0014) 2016; 138 Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (bib0020) 2012; 45 Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot (bib0005) 2015; 137 Lenhart, Kaiser, Smith, Thelen (bib0010) 2015; 43 Tzanetis, Fluit, de Souza, Robertson, Koopman, Verdonschot (bib0002) 2023; 10 Kümmerlin, Fabro, Pedersen, Jensen, Pedersen, Andersen (bib0015) 2022; 144 Kümmerlin (10.1016/j.medengphy.2024.104246_bib0015) 2022; 144 Skipper Andersen (10.1016/j.medengphy.2024.104246_bib0017) 2017; 139 Halonen (10.1016/j.medengphy.2024.104246_bib0008) 2017; 7 Ewing (10.1016/j.medengphy.2024.104246_bib0012) 2016; 34 Butler (10.1016/j.medengphy.2024.104246_bib0019) 1986; 19 Nevitt (10.1016/j.medengphy.2024.104246_bib0001) 2016; 68 Lenhart (10.1016/j.medengphy.2024.104246_bib0010) 2015; 43 Marra (10.1016/j.medengphy.2024.104246_bib0005) 2015; 137 Andersen (10.1016/j.medengphy.2024.104246_bib0006) 2022; 107 Esrafilian (10.1016/j.medengphy.2024.104246_bib0009) 2022; 69 Tzanetis (10.1016/j.medengphy.2024.104246_bib0002) 2023; 10 Blankevoort (10.1016/j.medengphy.2024.104246_bib0018) 1991; 113 Andersen (10.1016/j.medengphy.2024.104246_bib0013) 2021; 143 Esrafilian (10.1016/j.medengphy.2024.104246_bib0004) 2024; 42 Naghibi Beidokhti (10.1016/j.medengphy.2024.104246_bib0011) 2017; 65 Dejtiar (10.1016/j.medengphy.2024.104246_bib0007) 2020; 142 Baldwin (10.1016/j.medengphy.2024.104246_bib0020) 2012; 45 Smith (10.1016/j.medengphy.2024.104246_bib0014) 2016; 138 Pedersen (10.1016/j.medengphy.2024.104246_bib0016) 2019; 82 Tzanetis (10.1016/j.medengphy.2024.104246_bib0003) 2021; 11 |
References_xml | – volume: 69 start-page: 2860 year: 2022 end-page: 2871 ident: bib0009 article-title: An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox publication-title: IEEE Trans Biomed Eng – volume: 113 start-page: 263 year: 1991 end-page: 269 ident: bib0018 article-title: Ligament-bone interaction in a three-dimensional model of the knee publication-title: J Biomech Eng – volume: 107 year: 2022 ident: bib0006 article-title: Methodology to identify optimal subject-specific laxity tests to stretch individual parts of knee ligaments publication-title: Med Eng Phys – volume: 19 start-page: 425 year: 1986 end-page: 432 ident: bib0019 article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments publication-title: J Biomech – volume: 68 start-page: 1089 year: 2016 end-page: 1097 ident: bib0001 article-title: Symptoms of knee instability as risk factors for recurrent falls publication-title: Arthritis Care Res (Hoboken) – volume: 43 start-page: 2675 year: 2015 end-page: 2685 ident: bib0010 article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement publication-title: Ann Biomed Eng – volume: 139 year: 2017 ident: bib0017 article-title: Introduction to force-dependent kinematics: theory and application to mandible modeling publication-title: J Biomech Eng – volume: 10 start-page: 543 year: 2023 ident: bib0002 article-title: Pre-planning the surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty publication-title: Bioengineering (Basel) – volume: 144 year: 2022 ident: bib0015 article-title: Measuring knee joint laxity in three degrees-of-freedom in vivo using a robotics- and image-based technology publication-title: J Biomech Eng – volume: 34 start-page: 435 year: 2016 end-page: 443 ident: bib0012 article-title: Estimating patient-specific soft-tissue properties in a TKA knee publication-title: J Orthop Res – volume: 82 start-page: 62 year: 2019 end-page: 69 ident: bib0016 article-title: A novel non-invasive method for measuring knee joint laxity in four dof: publication-title: J Biomech – volume: 142 year: 2020 ident: bib0007 article-title: Development and evaluation of a subject-specific lower limb model with an eleven-degrees-of-freedom natural knee model using magnetic resonance and biplanar X-ray imaging during a quasi-static lunge publication-title: J Biomech Eng – volume: 42 start-page: 326 year: 2024 end-page: 338 ident: bib0004 article-title: Effects of gait modifications on tissue-level knee mechanics in individuals with medial tibiofemoral osteoarthritis: a proof-of-concept study towards personalized interventions publication-title: J Orthop Res – volume: 65 start-page: 1 year: 2017 end-page: 11 ident: bib0011 article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint publication-title: J Biomech – volume: 138 year: 2016 ident: bib0014 article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement publication-title: J Biomech Eng – volume: 137 year: 2015 ident: bib0005 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J Biomech Eng – volume: 143 year: 2021 ident: bib0013 article-title: A methodology to evaluate the effects of kinematic measurement uncertainties on knee ligament properties estimated from laxity measurements publication-title: J Biomech Eng – volume: 7 start-page: 17396 year: 2017 ident: bib0008 article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage - combined musculoskeletal modelling and finite element analysis publication-title: Sci Rep – volume: 11 start-page: 2423 year: 2021 ident: bib0003 article-title: Biomechanical consequences of tibial insert thickness after total knee arthroplasty: a musculoskeletal simulation study publication-title: Appl Sci – volume: 45 start-page: 474 year: 2012 end-page: 483 ident: bib0020 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J Biomech – volume: 138 year: 2016 ident: 10.1016/j.medengphy.2024.104246_bib0014 article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement publication-title: J Biomech Eng doi: 10.1115/1.4032464 – volume: 19 start-page: 425 year: 1986 ident: 10.1016/j.medengphy.2024.104246_bib0019 article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments publication-title: J Biomech doi: 10.1016/0021-9290(86)90019-9 – volume: 137 year: 2015 ident: 10.1016/j.medengphy.2024.104246_bib0005 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J Biomech Eng doi: 10.1115/1.4029258 – volume: 113 start-page: 263 year: 1991 ident: 10.1016/j.medengphy.2024.104246_bib0018 article-title: Ligament-bone interaction in a three-dimensional model of the knee publication-title: J Biomech Eng doi: 10.1115/1.2894883 – volume: 45 start-page: 474 year: 2012 ident: 10.1016/j.medengphy.2024.104246_bib0020 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.11.052 – volume: 11 start-page: 2423 year: 2021 ident: 10.1016/j.medengphy.2024.104246_bib0003 article-title: Biomechanical consequences of tibial insert thickness after total knee arthroplasty: a musculoskeletal simulation study publication-title: Appl Sci doi: 10.3390/app11052423 – volume: 144 year: 2022 ident: 10.1016/j.medengphy.2024.104246_bib0015 article-title: Measuring knee joint laxity in three degrees-of-freedom in vivo using a robotics- and image-based technology publication-title: J Biomech Eng doi: 10.1115/1.4053792 – volume: 139 year: 2017 ident: 10.1016/j.medengphy.2024.104246_bib0017 article-title: Introduction to force-dependent kinematics: theory and application to mandible modeling publication-title: J Biomech Eng doi: 10.1115/1.4037100 – volume: 142 year: 2020 ident: 10.1016/j.medengphy.2024.104246_bib0007 article-title: Development and evaluation of a subject-specific lower limb model with an eleven-degrees-of-freedom natural knee model using magnetic resonance and biplanar X-ray imaging during a quasi-static lunge publication-title: J Biomech Eng doi: 10.1115/1.4044245 – volume: 69 start-page: 2860 year: 2022 ident: 10.1016/j.medengphy.2024.104246_bib0009 article-title: An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2022.3156018 – volume: 7 start-page: 17396 year: 2017 ident: 10.1016/j.medengphy.2024.104246_bib0008 article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage - combined musculoskeletal modelling and finite element analysis publication-title: Sci Rep doi: 10.1038/s41598-017-17228-x – volume: 143 year: 2021 ident: 10.1016/j.medengphy.2024.104246_bib0013 article-title: A methodology to evaluate the effects of kinematic measurement uncertainties on knee ligament properties estimated from laxity measurements publication-title: J Biomech Eng doi: 10.1115/1.4050027 – volume: 43 start-page: 2675 year: 2015 ident: 10.1016/j.medengphy.2024.104246_bib0010 article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement publication-title: Ann Biomed Eng doi: 10.1007/s10439-015-1326-3 – volume: 10 start-page: 543 year: 2023 ident: 10.1016/j.medengphy.2024.104246_bib0002 article-title: Pre-planning the surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty publication-title: Bioengineering (Basel) doi: 10.3390/bioengineering10050543 – volume: 107 year: 2022 ident: 10.1016/j.medengphy.2024.104246_bib0006 article-title: Methodology to identify optimal subject-specific laxity tests to stretch individual parts of knee ligaments publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2022.103871 – volume: 65 start-page: 1 year: 2017 ident: 10.1016/j.medengphy.2024.104246_bib0011 article-title: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.08.030 – volume: 34 start-page: 435 year: 2016 ident: 10.1016/j.medengphy.2024.104246_bib0012 article-title: Estimating patient-specific soft-tissue properties in a TKA knee publication-title: J Orthop Res doi: 10.1002/jor.23032 – volume: 68 start-page: 1089 year: 2016 ident: 10.1016/j.medengphy.2024.104246_bib0001 article-title: Symptoms of knee instability as risk factors for recurrent falls publication-title: Arthritis Care Res (Hoboken) doi: 10.1002/acr.22811 – volume: 42 start-page: 326 year: 2024 ident: 10.1016/j.medengphy.2024.104246_bib0004 article-title: Effects of gait modifications on tissue-level knee mechanics in individuals with medial tibiofemoral osteoarthritis: a proof-of-concept study towards personalized interventions publication-title: J Orthop Res doi: 10.1002/jor.25686 – volume: 82 start-page: 62 year: 2019 ident: 10.1016/j.medengphy.2024.104246_bib0016 article-title: A novel non-invasive method for measuring knee joint laxity in four dof: in vitro proof-of-concept and validation publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.10.016 |
SSID | ssj0004463 |
Score | 2.4157398 |
Snippet | •A methodology to identify subject-specific dynamic knee laxity tests is developed.•Novel dynamic laxity tests were identified for each ligament bundle.•The... The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 104246 |
SubjectTerms | Biomechanical Phenomena Humans Joint Instability - diagnosis Joint Instability - physiopathology Knee Joint - physiology Knee model Laxity Ligaments Mechanical Phenomena Mechanical properties Mechanical Tests Monte Carlo Method |
Title | Methodology to identify subject-specific dynamic laxity tests to stretch individual parts of knee ligaments |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453324001474 https://dx.doi.org/10.1016/j.medengphy.2024.104246 https://www.ncbi.nlm.nih.gov/pubmed/39557503 https://www.proquest.com/docview/3130207981 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQLC8toXKSFzDJrZjx71VK6oFtL1Apd4ix7Gr0Cq7YrMSXPjtnXGShUogkDgm8sjxzGT82fMCeIMQvyokj2HlNpHchQRRvktwq_VBBF772KZzeaYW5_LDRX6xB_MxF4bCKgfb39v0aK2HN7OBm7N108w-ZSJHPCKoohzifE01QaXUpOVvf_wM88DjTgyyx8EJjb4V44Ubjm8vcT14UOSS_J2ckPDvd6g_IdC4E50-gocDhGQn_Vc-hj3fTuDefOzcNoEHvxQZnMDd5eA-fwJXy9gvOt6ks27FmpilG76zzbai-5iE8i4pdojVfaN6dm2_IUxniEe7DVFQagnKmTW7PC62RnZt2CqwK5ySXTeXNmbNPYXz03ef54tk6LaQOMl5h8YYORVSZTLjnNLaWGmsyW2RKedVHapKB51xJzJvU4fHPO6UqrmqtXHK4X_8DPbbVetfANNB5s6KyuRFkCJkVWqDosr0Qde5cGIK6cjhct0X1SjHaLMv5U4oJQml7IUyhWKURDnmjKKVK9Hw_530eEd6S7X-jfj1KPYSpUjeFNv61XZTCnL5ptoU2RSe9_qwW4wweU4O4oP_mfoQ7tNTn_j4Eva7r1v_ChFQVx1FFT-COyfvPy7ObgDBrQZj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTmLjAUGBUX4aideoie3YMW9TxdSxtS9s0t4sx7GnsCmtaCrBf8_ZSQqTQCDxmuTk5M45f_bddwfwHiF-WXAa08pNwqn1CaJ8m-BS6zzztHKxTediKeaX_NNVfrUHs4ELE9Iqe9_f-fTorfsr016b03VdTz9nLEc8wkJFOcT5kt-D_VCdKh_B_vHp2Xz5kx7JY0O18HwSBO6keeGa45pr_CTcK1IeQp40gOHfL1J_AqFxMTp5BA97FEmOuxd9DHuuGcPBbGjeNoYHv9QZHMP9RR9BfwI3i9gyOh6mk3ZF6kjU9d_JZluGI5kkUC9D-hCpul715NZ8Q6ROEJK2myAR2CVoalLvqFxkjRrbkJUnNzgkua2vTSTOPYXLk48Xs3nSN1xILKe0RX-MmvKpUJmyVkipDFdG5abIhHWi8mUpvcyoZZkzqcWdHrVCVFRUUllh8Vd-BqNm1bjnQKTnuTWsVHnhOfNZmRovQnF6L6ucWTaBdNCwXnd1NfSQcPZF74yig1F0Z5QJFIMl9EAbRUen0ff_XfTDTvTO7Po34XeD2TVaMQRUTONW241mIeqbSlVkEzjq5sPuY5jK8xAjfvE_Q7-Fg_nF4lyfny7PXsJhuNPxIF_BqP26da8RELXlm37C_wCztgkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+to+identify+subject-specific+dynamic+laxity+tests+to+stretch+individual+parts+of+knee+ligaments&rft.jtitle=Medical+engineering+%26+physics&rft.au=Andersen%2C+Michael+Skipper&rft.au=Theodorakos%2C+Ilias&rft.date=2024-11-01&rft.issn=1873-4030&rft.eissn=1873-4030&rft.volume=133&rft.spage=104246&rft_id=info:doi/10.1016%2Fj.medengphy.2024.104246&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon |