Loss formulations for assumption-free neural inference of SDE coefficient functions

Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions...

Full description

Saved in:
Bibliographic Details
Published inNPJ systems biology and applications Vol. 11; no. 1; pp. 22 - 10
Main Authors Vaisband, Marc, von Bornhaupt, Valentin, Schmid, Nina, Abulizi, Izdar, Hasenauer, Jan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.
AbstractList Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.
Abstract Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.
Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.
ArticleNumber 22
Author Schmid, Nina
Hasenauer, Jan
Vaisband, Marc
von Bornhaupt, Valentin
Abulizi, Izdar
Author_xml – sequence: 1
  givenname: Marc
  surname: Vaisband
  fullname: Vaisband, Marc
  organization: Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 2
  givenname: Valentin
  surname: von Bornhaupt
  fullname: von Bornhaupt, Valentin
  organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 3
  givenname: Nina
  surname: Schmid
  fullname: Schmid, Nina
  organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 4
  givenname: Izdar
  surname: Abulizi
  fullname: Abulizi, Izdar
  organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 5
  givenname: Jan
  surname: Hasenauer
  fullname: Hasenauer, Jan
  email: jan.hasenauer@uni-bonn.de
  organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40025020$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHhEhh_5eOEUClQaSUOhbM18Y6XrBJ7sZNK_HucTSktB0722O_7eMYzz9mJD54Ye8nhLQfZvEuKawUlCF0CaICyesLOBOiqrHnTnjzYn7KLlPYAwCupBIdn7FRB9oGAM3azCSkVLsRxHnDqgz8GBaY0j4clLl0kKjzNEYei944ieUtFcMXNx6vCBnKutz35qXCzt0fCC_bU4ZDo4m49Z98_XX27_FJuvn6-vvywKa0SYioF7xwnlKBRdK11okLRiJor3VVoK3K4Vah5I3UtOiE6BNlVGlspQSi0XJ6z65W7Dbg3h9iPGH-ZgL05HoS4Mxin3g5kVOtIkq2FpFZh4xrXdUBWSrmQYZtZ71fWYe5G2tpcUC74EfTxje9_mF24NZw3tZS8zoQ3d4QYfs6UJjP2ydIwoKcwJ7NocuK1XBJ__Y90H-bo818tKlGJRjcL8NXDlO5z-dO8LBCrwMbcxEjuXsLBLENi1iExWW-OQ2KqbJKrKWWx31H8-_Z_XL8BJmi-Zg
Cites_doi 10.1214/24-AOS2371
10.1073/pnas.1912789117
10.1017/S0962492921000052
10.1239/jap/1082552205
10.1021/acs.iecr.1c00552
10.1103/PhysRev.36.823
10.1371/journal.pcbi.1007575
10.1137/10081856X
10.1016/j.csbj.2014.10.003
10.1038/s41540-018-0079-7
10.1007/s10915-022-01939-z
10.1142/9789812701022_0005
10.1029/1999GL900252
10.1007/BF01184157
10.1007/978-3-030-47439-3
10.1007/BF02846028
10.21203/rs.3.rs-55125/v1
10.1109/TNNLS.2020.3017010
10.1007/978-3-642-25969-2
10.1007/978-1-0716-1032-9_2
10.1007/978-3-319-08488-6
10.1098/rsos.200270
10.1145/3567591
10.1287/educ.2019.0198
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41540-025-00500-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2056-7189
EndPage 10
ExternalDocumentID oai_doaj_org_article_49fe3ec723e94a8f8fbb0ec333b22b0d
PMC11873317
40025020
10_1038_s41540_025_00500_6
Genre Journal Article
GrantInformation_xml – fundername: Province of Salzburg
  grantid: 20102-F2001080-FPR
– fundername: Austrian Science Fund
  grantid: P32762-B
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: Rheinische Friedrich-Wilhelms-Universität Bonn
  grantid: 432325352—SFB
  funderid: http://dx.doi.org/10.13039/501100008131
– fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC 2047 - 390685813; EXC 2047 - 390685813; EXC 2047 - 390685813
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Rheinische Friedrich-Wilhelms-Universität Bonn
  grantid: 432325352-SFB
– fundername: Austrian Science Fund
  grantid: P32762-B
– fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC 2047 - 390685813
GroupedDBID 0R~
5VS
7X7
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PGMZT
PHGZT
PIMPY
PQQKQ
PROAC
RNT
RPM
UKHRP
AASML
AAYXX
CITATION
PHGZM
PQGLB
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c422t-21bf1ea305a2b9cf26a2827145b6ac6efad4a5183572b22ba03b65a933024ac13
IEDL.DBID DOA
ISSN 2056-7189
IngestDate Wed Aug 27 01:12:44 EDT 2025
Thu Aug 21 18:27:24 EDT 2025
Thu Jul 10 17:51:08 EDT 2025
Wed Aug 13 04:19:01 EDT 2025
Mon May 12 02:38:48 EDT 2025
Wed Aug 20 07:45:22 EDT 2025
Sun Mar 02 01:13:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-21bf1ea305a2b9cf26a2827145b6ac6efad4a5183572b22ba03b65a933024ac13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/49fe3ec723e94a8f8fbb0ec333b22b0d
PMID 40025020
PQID 3172628587
PQPubID 2041915
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_49fe3ec723e94a8f8fbb0ec333b22b0d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11873317
proquest_miscellaneous_3173024731
proquest_journals_3172628587
pubmed_primary_40025020
crossref_primary_10_1038_s41540_025_00500_6
springer_journals_10_1038_s41540_025_00500_6
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ systems biology and applications
PublicationTitleAbbrev npj Syst Biol Appl
PublicationTitleAlternate NPJ Syst Biol Appl
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References A Bensoussan (500_CR32) 1992; 25
W Bradley (500_CR20) 2021; 60
K Cranmer (500_CR27) 2020; 117
R DeVore (500_CR18) 2021; 30
P Pilipovic (500_CR33) 2024; 52
S Cuomo (500_CR10) 2022; 92
500_CR36
500_CR15
500_CR37
500_CR16
500_CR38
A Gray (500_CR7) 2011; 71
500_CR17
500_CR39
500_CR11
500_CR12
S Kim (500_CR21) 2020; 32
500_CR13
T Székely Jr (500_CR3) 2014; 12
GE Uhlenbeck (500_CR35) 1930; 36
500_CR30
G Maruyama (500_CR31) 1955; 4
C Legaard (500_CR9) 2023; 55
M Cranmer (500_CR19) 2020; 33
MU Gutmann (500_CR28) 2016; 17
S Crépey (500_CR8) 2013; 10
A Yazdani (500_CR14) 2020; 16
F Fröhlich (500_CR34) 2018; 4
S Pieschner (500_CR25) 2020; 7
500_CR22
PD Ditlevsen (500_CR26) 1999; 26
500_CR23
500_CR24
500_CR4
J Stoyanov (500_CR29) 2004; 41
500_CR40
500_CR2
500_CR41
500_CR1
500_CR42
500_CR6
500_CR5
References_xml – volume: 52
  start-page: 842
  year: 2024
  ident: 500_CR33
  publication-title: Ann. Stat.
  doi: 10.1214/24-AOS2371
– volume: 117
  start-page: 30055
  year: 2020
  ident: 500_CR27
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1912789117
– ident: 500_CR24
– ident: 500_CR16
– ident: 500_CR39
– volume: 30
  start-page: 327
  year: 2021
  ident: 500_CR18
  publication-title: Acta Numerica
  doi: 10.1017/S0962492921000052
– volume: 41
  start-page: 281
  year: 2004
  ident: 500_CR29
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1082552205
– volume: 60
  start-page: 16330
  year: 2021
  ident: 500_CR20
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c00552
– volume: 36
  start-page: 823
  year: 1930
  ident: 500_CR35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.36.823
– ident: 500_CR37
– ident: 500_CR12
– volume: 16
  start-page: e1007575
  year: 2020
  ident: 500_CR14
  publication-title: PLoS computational Biol.
  doi: 10.1371/journal.pcbi.1007575
– volume: 33
  start-page: 17429
  year: 2020
  ident: 500_CR19
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 500_CR41
– ident: 500_CR1
– volume: 71
  start-page: 876
  year: 2011
  ident: 500_CR7
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/10081856X
– volume: 12
  start-page: 14
  year: 2014
  ident: 500_CR3
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.10.003
– volume: 4
  start-page: 1
  year: 2018
  ident: 500_CR34
  publication-title: NPJ Syst. Biol. Appl.
  doi: 10.1038/s41540-018-0079-7
– volume: 92
  start-page: 88
  year: 2022
  ident: 500_CR10
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01939-z
– ident: 500_CR36
  doi: 10.1142/9789812701022_0005
– volume: 26
  start-page: 1441
  year: 1999
  ident: 500_CR26
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL900252
– volume: 25
  start-page: 81
  year: 1992
  ident: 500_CR32
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01184157
– volume: 17
  start-page: 1
  year: 2016
  ident: 500_CR28
  publication-title: J. Mach. Learn. Res.
– ident: 500_CR42
– ident: 500_CR23
– ident: 500_CR38
– ident: 500_CR11
  doi: 10.1007/978-3-030-47439-3
– volume: 4
  start-page: 48
  year: 1955
  ident: 500_CR31
  publication-title: Rendiconti del. Circolo Matematico di Palermo
  doi: 10.1007/BF02846028
– ident: 500_CR17
  doi: 10.21203/rs.3.rs-55125/v1
– volume: 32
  start-page: 4166
  year: 2020
  ident: 500_CR21
  publication-title: IEEE Trans. neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3017010
– ident: 500_CR6
– volume: 10
  start-page: 978
  year: 2013
  ident: 500_CR8
  publication-title: Springe. Financ., DOI
– ident: 500_CR22
  doi: 10.1007/978-3-642-25969-2
– ident: 500_CR5
  doi: 10.1007/978-1-0716-1032-9_2
– ident: 500_CR13
– ident: 500_CR15
– ident: 500_CR40
– ident: 500_CR4
  doi: 10.1007/978-3-319-08488-6
– volume: 7
  start-page: 200270
  year: 2020
  ident: 500_CR25
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.200270
– ident: 500_CR2
– volume: 55
  start-page: 1
  year: 2023
  ident: 500_CR9
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3567591
– ident: 500_CR30
  doi: 10.1287/educ.2019.0198
SSID ssj0001634210
Score 2.2843893
Snippet Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological...
Abstract Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22
SubjectTerms 631/553/2393
631/553/2695
631/553/2700
631/553/2709
Algorithms
Bioinformatics
Biology
Biomedical and Life Sciences
Brownian motion
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Simulation
Deep learning
Dynamical systems
Life Sciences
Medical research
Neural networks
Neural Networks, Computer
Ordinary differential equations
Simulation
Stochastic Processes
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6I8gy0KEjcwGpiO7ZzQtCHKgRcSqW9WWPHhl6Ssrs98PfMOMmultfRseWM5-EZz9gzjL1uK2-S1Yqj6W-50lXLIXQ1B2UraOvW-4peI3_-os8v1cdFs5gcbqvpWuW8J-aNuhsC-ciPUM8Jeu5nzbvrH5yqRlF0dSqhcZvdodRlxNVmYbY-Fi0VHmmmtzKVtEcr1Fd0n1E0nDKf4MlpRx_ltP1_szX_vDL5W9w0q6OzB-z-ZEeW70fC77NbsX_I7o6VJX8-Yhef8GclGaRTea7cKNFSRvJRm6dljCVls8RZruZXf-WQyouT0zIMMaeWQDBK0nx5hsfs8uz06_E5n-on8KCEWHNR-1RHQIkG4duQhAY8YJlaNV5D0DFBp6BBmW6M8EJ4qKTXDZCLQygItXzC9vqhj89YqSB2jfYGDHhlO2kVmolGigC2A8R0wd7MWHTXY5oMl8Pb0roR5w5x7jLOnS7YB0L0ZiSluM4fhuU3N0mMU22KMgYjZGwV2GQT8k0MUkqCteoKdjCTyU1yt3JbLinYq003SgyFQaCPw00eQws0si7Y05GqG0hUtgkFrsfu0HsH1N2e_up7zspNddslzl2wtzNrbOH6Ny6e_38ZL9g9kbmVbr0dsL318iYeohm09i8zr_8C1t0FFQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiQuiG-6DVQkbhDRJmmSHh-waXoCLo9Ju0VOmsAu7fT2duC_x0nbNz0YB45p0tSxncZJ7J8B3raV09Eoycj0N0yqqmXou5qhNBW2detclaKRv35TZ-dyedFc7AGfY2Gy036GtMy_6dk77MM1LTTJEZE3LEGW0JbnHhwkqHbS7YPFYrla3p6sKCFpIzNFyFTC3PHyziqUwfrvsjD_dpT847Y0L0Knj-DhZD2Wi5Hex7AX-idwf8wn-esprL7Qx8pkhk5JuXKhJPuYhJbKLK5DKBOGJfVyOcf6lUMsV59PSj-EDChBZJRpvcs9PIPz05Pvn87YlDWBecn5hvHaxTogzWPkrvWRK6Rtla5l4xR6FSJ2EhuayY3mjnOHlXCqwXSwwSX6WjyH_X7ow0soJYauUU6jRidNJwyxW2jBPZoOidMFvJu5aK9GcAybL7WFsSPPLfHcZp5bVcDHxOhtywRsnR8M6x92ErSVbQwieM1FaCWaaCJpS_BCiERr1RVwPIvJTrPt2pINxFMoqNEFvNlW0zxJlx_Yh-Emt0kD1KIu4MUo1S0lMluCnMZjduS9Q-puTX_5M2Nxp2ztgvou4P2sGrd0_ZsXh__X_Age8Ky9yfftGPY365vwioyhjXs9af9vVIcEAg
  priority: 102
  providerName: Springer Nature
Title Loss formulations for assumption-free neural inference of SDE coefficient functions
URI https://link.springer.com/article/10.1038/s41540-025-00500-6
https://www.ncbi.nlm.nih.gov/pubmed/40025020
https://www.proquest.com/docview/3172628587
https://www.proquest.com/docview/3173024731
https://pubmed.ncbi.nlm.nih.gov/PMC11873317
https://doaj.org/article/49fe3ec723e94a8f8fbb0ec333b22b0d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxJtAWRmJG1hNbMd2jttlq2oFFWKptDdr7Diilyxqtwf-PWMnu3R5iAunKLHjjL_JZD7H9gzAm6b0prNacaL-litdNhxDW3FUtsSmarwv027kj2f69FwtVvXqRqqvtCZsCA88AHekmi7KGIyQsVFoO9vR7TFIKb0QvmzT15d83o3BVP67oqWiwcy4S6aU9uiKPFVayShqnmKe0JhpzxPlgP1_Ypm_L5b8ZcY0O6KTB3B_ZJBsOkj-EG7F_hHcHXJKfn8Myw_0MJao6JiYK58w4sikuHTOu8sYWYpjSa1cbPf7sXXHlu_nLKxjDipBYrDk83ILT-D8ZP5ldsrHzAk8KCE2XFS-qyKSLaPwTeiERhpamUrVXmPQscNWYU3WXBuRYMRSel1j-rkhFIZKPoWDft3H58AUxrbW3qBBr2wrrSKCaKQIaFskpAt4u0XRfRsCZLg8sS2tGzB3hLnLmDtdwHECelczBbfOF0jlblS5-5fKCzjcqsmNFnfliAeJtB3UmgJe74rJVtIECPZxfZ3rpA4aWRXwbNDqThKV2aCg_tg9fe-Jul_SX3zN8bhTxnZJbRfwbvtq_JTr71i8-B9YvIR7Ir_TaVXcIRxsLq_jK6JJGz-B22ZlJnBnOl0sF3Q8np99-kxXZ3o2ydbyAw4XE58
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImthM7B4SAttrSbS9tpb0Z23Ggl03Z3Qr1T_EbmXGSXS2vW4-OLWc8_uyZsT0zAK-qzKlGlzJF1V-nssyq1Po6T63Uma3yyrmMvJEPj8rRqfw8KSYb8HPwhaFnlcOeGDfquvV0Rr6Nco6Tu59W78-_p5Q1im5XhxQaHSwOwuUPNNnm7_Z3cH5fc763e_JplPZZBVIvOV-kPHdNHizi3HJX-YaXFs0OlcvCldaXobG1tAUivVDcce5sJlxZWDL8ubQ-F9jvNbiOgjcjY09N1OpMpxQSTajeNycTenuO8pHeT_IipUgraKmtyb-YJuBvuu2fTzR_u6eN4m_vDtzu9Vb2oQPaXdgI03two8tkeXkfjsf4M0YKcJ8OLBYYauYIFyqnzSwERtEzsZezwcuQtQ073tllvg0xlAWSwUjSxh4ewOmVcPYhbE7baXgMTNpQF6VTVlkndS20RLVUCe6tri1yOoE3AxfNeReWw8TrdKFNx3ODPDeR56ZM4CMxetmSQmrHD-3sq-lXqJFVE0TwiotQSasb3SBOgxdCEK1ZncDWME2mX-dzs0JlAi-X1bhC6drFTkN7EdvQAJXIE3jUzeqSEhl1UI7j0WvzvUbqes307FuMAk554gX2ncDbARoruv7Niyf_H8YLuDk6ORyb8f7RwVO4xSNy6cXdFmwuZhfhGapgC_c84p7Bl6teaL8AD4BBRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ7A2sZ3EOSBE2V21tKwqSqXeXDtxaC9Ju7sV6l_j1zHjJLtaXrce85AzHn-TmbHnAfA6j2xWqVQyNP0Vk2mUM1OUMTNSRSaPc2sjykb-Mk13juTn4-R4A372uTAUVtn_E_2PumwK2iMfop7jlO6nsmHVhUUcjCYfzi8YdZCik9a-nUYLkT139QPdt_n73RGu9RvOJ-Nvn3ZY12GAFZLzBeOxrWJnEPOG27yoeGrQBclimdjUFKmrTClNgqhPMm45tyYSNk0MbQJwaYpY4Lg3YDMjr2gAm9vj6cHX1Q5PKiQ6VF2mTiTUcI7akqIpecKo7gr6bWva0DcN-Jul-2fA5m-ntl4ZTu7Cnc6KDT-2sLsHG66-DzfbvpZXD-BwHz8WkjncNQfzFyHa6QgeumbVzLmQamniKGd9zmHYVOHhaBwWjfOFLZCMkPSuH-EhHF0Lbx_BoG5q9wRCaVyZpDYzmbFSlUJJNFIzwQujSoOcDuBtz0V93hbp0P5wXSjd8lwjz7XnuU4D2CZGL9-kAtv-RjP7rjt51TKvnHBFxoXLpVGVqhC1rhBCEK1RGcBWv0y6k_q5XmE0gFfLxyivdAhjatdc-ndogpmIA3jcruqSEuktUo7zUWvrvUbq-pP67NTXBKeu8QLHDuBdD40VXf_mxdP_T-Ml3EIh0_u7071ncJt74FL43RYMFrNL9xztsYV90QE_hJPrlrVflhVG3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+formulations+for+assumption-free+neural+inference+of+SDE+coefficient+functions&rft.jtitle=NPJ+systems+biology+and+applications&rft.au=Marc+Vaisband&rft.au=Valentin+von+Bornhaupt&rft.au=Nina+Schmid&rft.au=Izdar+Abulizi&rft.date=2025-03-01&rft.pub=Nature+Portfolio&rft.eissn=2056-7189&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41540-025-00500-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_49fe3ec723e94a8f8fbb0ec333b22b0d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7189&client=summon