Loss formulations for assumption-free neural inference of SDE coefficient functions
Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions...
Saved in:
Published in | NPJ systems biology and applications Vol. 11; no. 1; pp. 22 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure. |
---|---|
AbstractList | Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure. Abstract Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure. Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure. |
ArticleNumber | 22 |
Author | Schmid, Nina Hasenauer, Jan Vaisband, Marc von Bornhaupt, Valentin Abulizi, Izdar |
Author_xml | – sequence: 1 givenname: Marc surname: Vaisband fullname: Vaisband, Marc organization: Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn – sequence: 2 givenname: Valentin surname: von Bornhaupt fullname: von Bornhaupt, Valentin organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn – sequence: 3 givenname: Nina surname: Schmid fullname: Schmid, Nina organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn – sequence: 4 givenname: Izdar surname: Abulizi fullname: Abulizi, Izdar organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn – sequence: 5 givenname: Jan surname: Hasenauer fullname: Hasenauer, Jan email: jan.hasenauer@uni-bonn.de organization: Bonn Center for Mathematical Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40025020$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1UREvpH-CAInHhEhh_5eOEUClQaSUOhbM18Y6XrBJ7sZNK_HucTSktB0722O_7eMYzz9mJD54Ye8nhLQfZvEuKawUlCF0CaICyesLOBOiqrHnTnjzYn7KLlPYAwCupBIdn7FRB9oGAM3azCSkVLsRxHnDqgz8GBaY0j4clLl0kKjzNEYei944ieUtFcMXNx6vCBnKutz35qXCzt0fCC_bU4ZDo4m49Z98_XX27_FJuvn6-vvywKa0SYioF7xwnlKBRdK11okLRiJor3VVoK3K4Vah5I3UtOiE6BNlVGlspQSi0XJ6z65W7Dbg3h9iPGH-ZgL05HoS4Mxin3g5kVOtIkq2FpFZh4xrXdUBWSrmQYZtZ71fWYe5G2tpcUC74EfTxje9_mF24NZw3tZS8zoQ3d4QYfs6UJjP2ydIwoKcwJ7NocuK1XBJ__Y90H-bo818tKlGJRjcL8NXDlO5z-dO8LBCrwMbcxEjuXsLBLENi1iExWW-OQ2KqbJKrKWWx31H8-_Z_XL8BJmi-Zg |
Cites_doi | 10.1214/24-AOS2371 10.1073/pnas.1912789117 10.1017/S0962492921000052 10.1239/jap/1082552205 10.1021/acs.iecr.1c00552 10.1103/PhysRev.36.823 10.1371/journal.pcbi.1007575 10.1137/10081856X 10.1016/j.csbj.2014.10.003 10.1038/s41540-018-0079-7 10.1007/s10915-022-01939-z 10.1142/9789812701022_0005 10.1029/1999GL900252 10.1007/BF01184157 10.1007/978-3-030-47439-3 10.1007/BF02846028 10.21203/rs.3.rs-55125/v1 10.1109/TNNLS.2020.3017010 10.1007/978-3-642-25969-2 10.1007/978-1-0716-1032-9_2 10.1007/978-3-319-08488-6 10.1098/rsos.200270 10.1145/3567591 10.1287/educ.2019.0198 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41540-025-00500-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2056-7189 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_49fe3ec723e94a8f8fbb0ec333b22b0d PMC11873317 40025020 10_1038_s41540_025_00500_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Province of Salzburg grantid: 20102-F2001080-FPR – fundername: Austrian Science Fund grantid: P32762-B funderid: http://dx.doi.org/10.13039/501100002428 – fundername: Rheinische Friedrich-Wilhelms-Universität Bonn grantid: 432325352—SFB funderid: http://dx.doi.org/10.13039/501100008131 – fundername: Deutsche Forschungsgemeinschaft grantid: EXC 2047 - 390685813; EXC 2047 - 390685813; EXC 2047 - 390685813 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Rheinische Friedrich-Wilhelms-Universität Bonn grantid: 432325352-SFB – fundername: Austrian Science Fund grantid: P32762-B – fundername: Deutsche Forschungsgemeinschaft grantid: EXC 2047 - 390685813 |
GroupedDBID | 0R~ 5VS 7X7 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M7P M~E NAO NO~ OK1 PGMZT PHGZT PIMPY PQQKQ PROAC RNT RPM UKHRP AASML AAYXX CITATION PHGZM PQGLB SNYQT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c422t-21bf1ea305a2b9cf26a2827145b6ac6efad4a5183572b22ba03b65a933024ac13 |
IEDL.DBID | DOA |
ISSN | 2056-7189 |
IngestDate | Wed Aug 27 01:12:44 EDT 2025 Thu Aug 21 18:27:24 EDT 2025 Thu Jul 10 17:51:08 EDT 2025 Wed Aug 13 04:19:01 EDT 2025 Mon May 12 02:38:48 EDT 2025 Wed Aug 20 07:45:22 EDT 2025 Sun Mar 02 01:13:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-21bf1ea305a2b9cf26a2827145b6ac6efad4a5183572b22ba03b65a933024ac13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/49fe3ec723e94a8f8fbb0ec333b22b0d |
PMID | 40025020 |
PQID | 3172628587 |
PQPubID | 2041915 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_49fe3ec723e94a8f8fbb0ec333b22b0d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11873317 proquest_miscellaneous_3173024731 proquest_journals_3172628587 pubmed_primary_40025020 crossref_primary_10_1038_s41540_025_00500_6 springer_journals_10_1038_s41540_025_00500_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ systems biology and applications |
PublicationTitleAbbrev | npj Syst Biol Appl |
PublicationTitleAlternate | NPJ Syst Biol Appl |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | A Bensoussan (500_CR32) 1992; 25 W Bradley (500_CR20) 2021; 60 K Cranmer (500_CR27) 2020; 117 R DeVore (500_CR18) 2021; 30 P Pilipovic (500_CR33) 2024; 52 S Cuomo (500_CR10) 2022; 92 500_CR36 500_CR15 500_CR37 500_CR16 500_CR38 A Gray (500_CR7) 2011; 71 500_CR17 500_CR39 500_CR11 500_CR12 S Kim (500_CR21) 2020; 32 500_CR13 T Székely Jr (500_CR3) 2014; 12 GE Uhlenbeck (500_CR35) 1930; 36 500_CR30 G Maruyama (500_CR31) 1955; 4 C Legaard (500_CR9) 2023; 55 M Cranmer (500_CR19) 2020; 33 MU Gutmann (500_CR28) 2016; 17 S Crépey (500_CR8) 2013; 10 A Yazdani (500_CR14) 2020; 16 F Fröhlich (500_CR34) 2018; 4 S Pieschner (500_CR25) 2020; 7 500_CR22 PD Ditlevsen (500_CR26) 1999; 26 500_CR23 500_CR24 500_CR4 J Stoyanov (500_CR29) 2004; 41 500_CR40 500_CR2 500_CR41 500_CR1 500_CR42 500_CR6 500_CR5 |
References_xml | – volume: 52 start-page: 842 year: 2024 ident: 500_CR33 publication-title: Ann. Stat. doi: 10.1214/24-AOS2371 – volume: 117 start-page: 30055 year: 2020 ident: 500_CR27 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1912789117 – ident: 500_CR24 – ident: 500_CR16 – ident: 500_CR39 – volume: 30 start-page: 327 year: 2021 ident: 500_CR18 publication-title: Acta Numerica doi: 10.1017/S0962492921000052 – volume: 41 start-page: 281 year: 2004 ident: 500_CR29 publication-title: J. Appl. Probab. doi: 10.1239/jap/1082552205 – volume: 60 start-page: 16330 year: 2021 ident: 500_CR20 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c00552 – volume: 36 start-page: 823 year: 1930 ident: 500_CR35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.36.823 – ident: 500_CR37 – ident: 500_CR12 – volume: 16 start-page: e1007575 year: 2020 ident: 500_CR14 publication-title: PLoS computational Biol. doi: 10.1371/journal.pcbi.1007575 – volume: 33 start-page: 17429 year: 2020 ident: 500_CR19 publication-title: Adv. Neural Inf. Process. Syst. – ident: 500_CR41 – ident: 500_CR1 – volume: 71 start-page: 876 year: 2011 ident: 500_CR7 publication-title: SIAM J. Appl. Math. doi: 10.1137/10081856X – volume: 12 start-page: 14 year: 2014 ident: 500_CR3 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.10.003 – volume: 4 start-page: 1 year: 2018 ident: 500_CR34 publication-title: NPJ Syst. Biol. Appl. doi: 10.1038/s41540-018-0079-7 – volume: 92 start-page: 88 year: 2022 ident: 500_CR10 publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01939-z – ident: 500_CR36 doi: 10.1142/9789812701022_0005 – volume: 26 start-page: 1441 year: 1999 ident: 500_CR26 publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL900252 – volume: 25 start-page: 81 year: 1992 ident: 500_CR32 publication-title: Appl. Math. Optim. doi: 10.1007/BF01184157 – volume: 17 start-page: 1 year: 2016 ident: 500_CR28 publication-title: J. Mach. Learn. Res. – ident: 500_CR42 – ident: 500_CR23 – ident: 500_CR38 – ident: 500_CR11 doi: 10.1007/978-3-030-47439-3 – volume: 4 start-page: 48 year: 1955 ident: 500_CR31 publication-title: Rendiconti del. Circolo Matematico di Palermo doi: 10.1007/BF02846028 – ident: 500_CR17 doi: 10.21203/rs.3.rs-55125/v1 – volume: 32 start-page: 4166 year: 2020 ident: 500_CR21 publication-title: IEEE Trans. neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3017010 – ident: 500_CR6 – volume: 10 start-page: 978 year: 2013 ident: 500_CR8 publication-title: Springe. Financ., DOI – ident: 500_CR22 doi: 10.1007/978-3-642-25969-2 – ident: 500_CR5 doi: 10.1007/978-1-0716-1032-9_2 – ident: 500_CR13 – ident: 500_CR15 – ident: 500_CR40 – ident: 500_CR4 doi: 10.1007/978-3-319-08488-6 – volume: 7 start-page: 200270 year: 2020 ident: 500_CR25 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.200270 – ident: 500_CR2 – volume: 55 start-page: 1 year: 2023 ident: 500_CR9 publication-title: ACM Comput. Surv. doi: 10.1145/3567591 – ident: 500_CR30 doi: 10.1287/educ.2019.0198 |
SSID | ssj0001634210 |
Score | 2.2843893 |
Snippet | Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological... Abstract Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 22 |
SubjectTerms | 631/553/2393 631/553/2695 631/553/2700 631/553/2709 Algorithms Bioinformatics Biology Biomedical and Life Sciences Brownian motion Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Simulation Deep learning Dynamical systems Life Sciences Medical research Neural networks Neural Networks, Computer Ordinary differential equations Simulation Stochastic Processes Systems Biology |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6I8gy0KEjcwGpiO7ZzQtCHKgRcSqW9WWPHhl6Ssrs98PfMOMmultfRseWM5-EZz9gzjL1uK2-S1Yqj6W-50lXLIXQ1B2UraOvW-4peI3_-os8v1cdFs5gcbqvpWuW8J-aNuhsC-ciPUM8Jeu5nzbvrH5yqRlF0dSqhcZvdodRlxNVmYbY-Fi0VHmmmtzKVtEcr1Fd0n1E0nDKf4MlpRx_ltP1_szX_vDL5W9w0q6OzB-z-ZEeW70fC77NbsX_I7o6VJX8-Yhef8GclGaRTea7cKNFSRvJRm6dljCVls8RZruZXf-WQyouT0zIMMaeWQDBK0nx5hsfs8uz06_E5n-on8KCEWHNR-1RHQIkG4duQhAY8YJlaNV5D0DFBp6BBmW6M8EJ4qKTXDZCLQygItXzC9vqhj89YqSB2jfYGDHhlO2kVmolGigC2A8R0wd7MWHTXY5oMl8Pb0roR5w5x7jLOnS7YB0L0ZiSluM4fhuU3N0mMU22KMgYjZGwV2GQT8k0MUkqCteoKdjCTyU1yt3JbLinYq003SgyFQaCPw00eQws0si7Y05GqG0hUtgkFrsfu0HsH1N2e_up7zspNddslzl2wtzNrbOH6Ny6e_38ZL9g9kbmVbr0dsL318iYeohm09i8zr_8C1t0FFQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiQuiG-6DVQkbhDRJmmSHh-waXoCLo9Ju0VOmsAu7fT2duC_x0nbNz0YB45p0tSxncZJ7J8B3raV09Eoycj0N0yqqmXou5qhNBW2detclaKRv35TZ-dyedFc7AGfY2Gy036GtMy_6dk77MM1LTTJEZE3LEGW0JbnHhwkqHbS7YPFYrla3p6sKCFpIzNFyFTC3PHyziqUwfrvsjD_dpT847Y0L0Knj-DhZD2Wi5Hex7AX-idwf8wn-esprL7Qx8pkhk5JuXKhJPuYhJbKLK5DKBOGJfVyOcf6lUMsV59PSj-EDChBZJRpvcs9PIPz05Pvn87YlDWBecn5hvHaxTogzWPkrvWRK6Rtla5l4xR6FSJ2EhuayY3mjnOHlXCqwXSwwSX6WjyH_X7ow0soJYauUU6jRidNJwyxW2jBPZoOidMFvJu5aK9GcAybL7WFsSPPLfHcZp5bVcDHxOhtywRsnR8M6x92ErSVbQwieM1FaCWaaCJpS_BCiERr1RVwPIvJTrPt2pINxFMoqNEFvNlW0zxJlx_Yh-Emt0kD1KIu4MUo1S0lMluCnMZjduS9Q-puTX_5M2Nxp2ztgvou4P2sGrd0_ZsXh__X_Age8Ky9yfftGPY365vwioyhjXs9af9vVIcEAg priority: 102 providerName: Springer Nature |
Title | Loss formulations for assumption-free neural inference of SDE coefficient functions |
URI | https://link.springer.com/article/10.1038/s41540-025-00500-6 https://www.ncbi.nlm.nih.gov/pubmed/40025020 https://www.proquest.com/docview/3172628587 https://www.proquest.com/docview/3173024731 https://pubmed.ncbi.nlm.nih.gov/PMC11873317 https://doaj.org/article/49fe3ec723e94a8f8fbb0ec333b22b0d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxJtAWRmJG1hNbMd2jttlq2oFFWKptDdr7Diilyxqtwf-PWMnu3R5iAunKLHjjL_JZD7H9gzAm6b0prNacaL-litdNhxDW3FUtsSmarwv027kj2f69FwtVvXqRqqvtCZsCA88AHekmi7KGIyQsVFoO9vR7TFIKb0QvmzT15d83o3BVP67oqWiwcy4S6aU9uiKPFVayShqnmKe0JhpzxPlgP1_Ypm_L5b8ZcY0O6KTB3B_ZJBsOkj-EG7F_hHcHXJKfn8Myw_0MJao6JiYK58w4sikuHTOu8sYWYpjSa1cbPf7sXXHlu_nLKxjDipBYrDk83ILT-D8ZP5ldsrHzAk8KCE2XFS-qyKSLaPwTeiERhpamUrVXmPQscNWYU3WXBuRYMRSel1j-rkhFIZKPoWDft3H58AUxrbW3qBBr2wrrSKCaKQIaFskpAt4u0XRfRsCZLg8sS2tGzB3hLnLmDtdwHECelczBbfOF0jlblS5-5fKCzjcqsmNFnfliAeJtB3UmgJe74rJVtIECPZxfZ3rpA4aWRXwbNDqThKV2aCg_tg9fe-Jul_SX3zN8bhTxnZJbRfwbvtq_JTr71i8-B9YvIR7Ir_TaVXcIRxsLq_jK6JJGz-B22ZlJnBnOl0sF3Q8np99-kxXZ3o2ydbyAw4XE58 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImthM7B4SAttrSbS9tpb0Z23Ggl03Z3Qr1T_EbmXGSXS2vW4-OLWc8_uyZsT0zAK-qzKlGlzJF1V-nssyq1Po6T63Uma3yyrmMvJEPj8rRqfw8KSYb8HPwhaFnlcOeGDfquvV0Rr6Nco6Tu59W78-_p5Q1im5XhxQaHSwOwuUPNNnm7_Z3cH5fc763e_JplPZZBVIvOV-kPHdNHizi3HJX-YaXFs0OlcvCldaXobG1tAUivVDcce5sJlxZWDL8ubQ-F9jvNbiOgjcjY09N1OpMpxQSTajeNycTenuO8pHeT_IipUgraKmtyb-YJuBvuu2fTzR_u6eN4m_vDtzu9Vb2oQPaXdgI03two8tkeXkfjsf4M0YKcJ8OLBYYauYIFyqnzSwERtEzsZezwcuQtQ073tllvg0xlAWSwUjSxh4ewOmVcPYhbE7baXgMTNpQF6VTVlkndS20RLVUCe6tri1yOoE3AxfNeReWw8TrdKFNx3ODPDeR56ZM4CMxetmSQmrHD-3sq-lXqJFVE0TwiotQSasb3SBOgxdCEK1ZncDWME2mX-dzs0JlAi-X1bhC6drFTkN7EdvQAJXIE3jUzeqSEhl1UI7j0WvzvUbqes307FuMAk554gX2ncDbARoruv7Niyf_H8YLuDk6ORyb8f7RwVO4xSNy6cXdFmwuZhfhGapgC_c84p7Bl6teaL8AD4BBRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ7A2sZ3EOSBE2V21tKwqSqXeXDtxaC9Ju7sV6l_j1zHjJLtaXrce85AzHn-TmbHnAfA6j2xWqVQyNP0Vk2mUM1OUMTNSRSaPc2sjykb-Mk13juTn4-R4A372uTAUVtn_E_2PumwK2iMfop7jlO6nsmHVhUUcjCYfzi8YdZCik9a-nUYLkT139QPdt_n73RGu9RvOJ-Nvn3ZY12GAFZLzBeOxrWJnEPOG27yoeGrQBclimdjUFKmrTClNgqhPMm45tyYSNk0MbQJwaYpY4Lg3YDMjr2gAm9vj6cHX1Q5PKiQ6VF2mTiTUcI7akqIpecKo7gr6bWva0DcN-Jul-2fA5m-ntl4ZTu7Cnc6KDT-2sLsHG66-DzfbvpZXD-BwHz8WkjncNQfzFyHa6QgeumbVzLmQamniKGd9zmHYVOHhaBwWjfOFLZCMkPSuH-EhHF0Lbx_BoG5q9wRCaVyZpDYzmbFSlUJJNFIzwQujSoOcDuBtz0V93hbp0P5wXSjd8lwjz7XnuU4D2CZGL9-kAtv-RjP7rjt51TKvnHBFxoXLpVGVqhC1rhBCEK1RGcBWv0y6k_q5XmE0gFfLxyivdAhjatdc-ndogpmIA3jcruqSEuktUo7zUWvrvUbq-pP67NTXBKeu8QLHDuBdD40VXf_mxdP_T-Ml3EIh0_u7071ncJt74FL43RYMFrNL9xztsYV90QE_hJPrlrVflhVG3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+formulations+for+assumption-free+neural+inference+of+SDE+coefficient+functions&rft.jtitle=NPJ+systems+biology+and+applications&rft.au=Marc+Vaisband&rft.au=Valentin+von+Bornhaupt&rft.au=Nina+Schmid&rft.au=Izdar+Abulizi&rft.date=2025-03-01&rft.pub=Nature+Portfolio&rft.eissn=2056-7189&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41540-025-00500-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_49fe3ec723e94a8f8fbb0ec333b22b0d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7189&client=summon |