A framework for reducing the overhead of the quantum oracle for use with Grover’s algorithm with applications to cryptanalysis of SIKE

In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems)...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical cryptology Vol. 15; no. 1; pp. 143 - 156
Main Authors Biasse, Jean-François, Pring, Benjamin
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2021
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from (where originates from the cost of implementing the quantum oracle) to without the use of quantum ram, whilst also slightly reducing the number of required qubits. This framework captures a previous optimisation of Grover’s algorithm using preprocessing [ ] applied to cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improvements on recent cryptanalysis [ ] of SIKE [ ] via Grover’s algorithm, demonstrating that the speedup applies to this attack and impacting upon quantum security estimates [ ] incorporated into the SIKE specification [ ].
AbstractList In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from O2n/2⋅mC$O\left(2^{n/2}\cdot mC\right)$ (where C originates from the cost of implementing the quantum oracle) to O(2n/2⋅mC)$O(2^{n/2} \cdot m\sqrt{C})$ without the use of quantum ram, whilst also slightly reducing the number of required qubits.
In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from [Image omitted] (where C originates from the cost of implementing the quantum oracle) to [Image omitted] without the use of quantum ram, whilst also slightly reducing the number of required qubits. This framework captures a previous optimisation of Grover’s algorithm using preprocessing [21] applied to cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improvements on recent cryptanalysis [16] of SIKE [14] via Grover’s algorithm, demonstrating that the speedup applies to this attack and impacting upon quantum security estimates [16] incorporated into the SIKE specification [14].
Abstract In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from O 2 n / 2 ⋅ m C $O\left(2^{n/2}\cdot mC\right)$ (where C originates from the cost of implementing the quantum oracle) to O ( 2 n / 2 ⋅ m C ) $O(2^{n/2} \cdot m\sqrt{C})$ without the use of quantum ram, whilst also slightly reducing the number of required qubits. This framework captures a previous optimisation of Grover’s algorithm using preprocessing [21] applied to cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improvements on recent cryptanalysis [16] of SIKE [14] via Grover’s algorithm, demonstrating that the speedup applies to this attack and impacting upon quantum security estimates [16] incorporated into the SIKE specification [14].
In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from (where originates from the cost of implementing the quantum oracle) to without the use of quantum ram, whilst also slightly reducing the number of required qubits. This framework captures a previous optimisation of Grover’s algorithm using preprocessing [ ] applied to cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improvements on recent cryptanalysis [ ] of SIKE [ ] via Grover’s algorithm, demonstrating that the speedup applies to this attack and impacting upon quantum security estimates [ ] incorporated into the SIKE specification [ ].
Author Pring, Benjamin
Biasse, Jean-François
Author_xml – sequence: 1
  givenname: Jean-François
  surname: Biasse
  fullname: Biasse, Jean-François
  email: biasse@usf.edu
  organization: University of South Florida, Florida United States of America
– sequence: 2
  givenname: Benjamin
  surname: Pring
  fullname: Pring, Benjamin
  email: benjamin.pring@gmail.com
  organization: University of South Florida, Florida United States of America
BookMark eNptkc1u1DAURi1UJNrCkr0l1gHbiRNbrKqqlFErsQDW1o1_ZjIkcWo7jGbXJa_A6_EkOJMKWLDy9fXxsa6_C3Q2-tEi9JqSt5RT_m4_6IIRRgpCBHmGzqmoWcGkqM7-qV-gixj3hNSNEPQc_bjCLsBgDz58w84HHKyZdTducdpZ7L_bsLNgsHen_cMMY5oH7APo3p74OVp86NIO34aF_vX4M2Lotz7k3rCewDT1nYbU-THi5LEOxynBCP0xdnFRf97c3bxEzx300b56Wi_R1w83X64_FvefbjfXV_eFrhhLBdWuKqWzwknXEla1UnDQouUtJ21FgRpqStYQbjUh0knTatuSGqpagiklKS_RZvUaD3s1hW6AcFQeOnVq-LBVEFKXx1Oc04a0xFAiZMVZ1jVW1LwxtdNQSpNdb1bXFPzDbGNSez-HPFhUjPP8wTWteaaKldLBxxis-_MqJWoJTuXg1BKcWoLL_PuVP0CfbDB2G-ZjLv7K_3svd2hVlr8B7myjKw
CitedBy_id crossref_primary_10_1103_PhysRevResearch_4_013096
crossref_primary_10_1080_23799927_2021_1884605
crossref_primary_10_1109_ACCESS_2023_3289764
crossref_primary_10_1049_ise2_12081
Cites_doi 10.1007/978-3-030-05153-2_17
10.1007/978-3-662-48797-6_14
10.1109/TCAD.2013.2244643
10.1103/PhysRevA.93.022311
10.1007/978-3-319-70697-9_9
10.1515/jmc-2012-0015
10.1007/978-3-642-25405-5_2
10.1017/CBO9780511976667
10.1007/978-3-319-49445-6_17
10.1103/PhysRevA.87.042302
10.1007/978-3-030-19478-9_1
10.1103/PhysRevA.60.2746
10.1145/237814.237866
10.1007/s00145-007-9002-x
10.1007/978-3-319-79063-3_23
10.1007/978-3-319-59879-6_12
10.1145/191177.191231
10.1007/978-3-030-26948-7_2
10.1145/3197507.3197516
ContentType Journal Article
Copyright This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1515/jmc-2020-0080
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1862-2984
EndPage 156
ExternalDocumentID oai_doaj_org_article_55170b0d108945209f7e8657d6fca39d
10_1515_jmc_2020_0080
10_1515_jmc_2020_0080151143
GroupedDBID -~0
0R~
0~D
4.4
9-L
AAEMA
AAFPC
AAFWJ
AAGVJ
AAONY
AAQCX
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABPTK
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACGFS
ACIWK
ACTFP
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AEQDQ
AERZL
AEUFC
AEXIE
AFBAA
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AIGSN
AJATJ
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
BCIFA
CAG
CFGNV
CS3
DBYYV
EBS
GROUPED_DOAJ
HZ~
IY9
J9A
O9-
OK1
P2P
PQEST
PQQKQ
QD8
RDG
SA.
~Z8
AAYXX
AKXKS
CITATION
M48
SLJYH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c422t-1cf439fe8f9fb024b985ac8b5b50b41a1d1d32705ec009f9dbceb06a469ad3903
IEDL.DBID M48
ISSN 1862-2984
1862-2976
IngestDate Tue Oct 22 14:42:53 EDT 2024
Thu Oct 10 17:27:25 EDT 2024
Fri Aug 23 02:57:30 EDT 2024
Fri Nov 25 00:39:09 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-1cf439fe8f9fb024b985ac8b5b50b41a1d1d32705ec009f9dbceb06a469ad3903
OpenAccessLink https://doaj.org/article/55170b0d108945209f7e8657d6fca39d
PQID 2557886165
PQPubID 2030086
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_55170b0d108945209f7e8657d6fca39d
proquest_journals_2557886165
crossref_primary_10_1515_jmc_2020_0080
walterdegruyter_journals_10_1515_jmc_2020_0080151143
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of mathematical cryptology
PublicationYear 2021
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2021081821075301059_j_jmc-2020-0080_ref_010
2021081821075301059_j_jmc-2020-0080_ref_019
2021081821075301059_j_jmc-2020-0080_ref_017
2021081821075301059_j_jmc-2020-0080_ref_018
2021081821075301059_j_jmc-2020-0080_ref_015
2021081821075301059_j_jmc-2020-0080_ref_016
2021081821075301059_j_jmc-2020-0080_ref_013
2021081821075301059_j_jmc-2020-0080_ref_014
2021081821075301059_j_jmc-2020-0080_ref_011
2021081821075301059_j_jmc-2020-0080_ref_012
2021081821075301059_j_jmc-2020-0080_ref_020
2021081821075301059_j_jmc-2020-0080_ref_021
2021081821075301059_j_jmc-2020-0080_ref_008
2021081821075301059_j_jmc-2020-0080_ref_009
2021081821075301059_j_jmc-2020-0080_ref_006
2021081821075301059_j_jmc-2020-0080_ref_028
2021081821075301059_j_jmc-2020-0080_ref_007
2021081821075301059_j_jmc-2020-0080_ref_004
2021081821075301059_j_jmc-2020-0080_ref_026
2021081821075301059_j_jmc-2020-0080_ref_005
2021081821075301059_j_jmc-2020-0080_ref_027
2021081821075301059_j_jmc-2020-0080_ref_002
2021081821075301059_j_jmc-2020-0080_ref_024
2021081821075301059_j_jmc-2020-0080_ref_003
2021081821075301059_j_jmc-2020-0080_ref_025
2021081821075301059_j_jmc-2020-0080_ref_022
2021081821075301059_j_jmc-2020-0080_ref_001
2021081821075301059_j_jmc-2020-0080_ref_023
References_xml – ident: 2021081821075301059_j_jmc-2020-0080_ref_021
  doi: 10.1007/978-3-030-05153-2_17
– ident: 2021081821075301059_j_jmc-2020-0080_ref_014
– ident: 2021081821075301059_j_jmc-2020-0080_ref_020
  doi: 10.1007/978-3-662-48797-6_14
– ident: 2021081821075301059_j_jmc-2020-0080_ref_002
  doi: 10.1109/TCAD.2013.2244643
– ident: 2021081821075301059_j_jmc-2020-0080_ref_008
– ident: 2021081821075301059_j_jmc-2020-0080_ref_017
  doi: 10.1103/PhysRevA.93.022311
– ident: 2021081821075301059_j_jmc-2020-0080_ref_006
– ident: 2021081821075301059_j_jmc-2020-0080_ref_022
  doi: 10.1007/978-3-319-70697-9_9
– ident: 2021081821075301059_j_jmc-2020-0080_ref_010
  doi: 10.1515/jmc-2012-0015
– ident: 2021081821075301059_j_jmc-2020-0080_ref_015
  doi: 10.1007/978-3-642-25405-5_2
– ident: 2021081821075301059_j_jmc-2020-0080_ref_018
  doi: 10.1017/CBO9780511976667
– ident: 2021081821075301059_j_jmc-2020-0080_ref_023
  doi: 10.1007/978-3-319-49445-6_17
– ident: 2021081821075301059_j_jmc-2020-0080_ref_001
– ident: 2021081821075301059_j_jmc-2020-0080_ref_024
  doi: 10.1103/PhysRevA.87.042302
– ident: 2021081821075301059_j_jmc-2020-0080_ref_011
– ident: 2021081821075301059_j_jmc-2020-0080_ref_007
  doi: 10.1007/978-3-030-19478-9_1
– ident: 2021081821075301059_j_jmc-2020-0080_ref_028
  doi: 10.1103/PhysRevA.60.2746
– ident: 2021081821075301059_j_jmc-2020-0080_ref_013
– ident: 2021081821075301059_j_jmc-2020-0080_ref_009
– ident: 2021081821075301059_j_jmc-2020-0080_ref_025
– ident: 2021081821075301059_j_jmc-2020-0080_ref_012
  doi: 10.1145/237814.237866
– ident: 2021081821075301059_j_jmc-2020-0080_ref_004
– ident: 2021081821075301059_j_jmc-2020-0080_ref_005
  doi: 10.1007/s00145-007-9002-x
– ident: 2021081821075301059_j_jmc-2020-0080_ref_003
  doi: 10.1007/978-3-319-79063-3_23
– ident: 2021081821075301059_j_jmc-2020-0080_ref_019
  doi: 10.1007/978-3-319-59879-6_12
– ident: 2021081821075301059_j_jmc-2020-0080_ref_027
  doi: 10.1145/191177.191231
– ident: 2021081821075301059_j_jmc-2020-0080_ref_016
  doi: 10.1007/978-3-030-26948-7_2
– ident: 2021081821075301059_j_jmc-2020-0080_ref_026
  doi: 10.1145/3197507.3197516
SSID ssj0067881
Score 2.2737718
Snippet In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order...
Abstract In this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 143
SubjectTerms 68Q12
Algorithms
Asymptotic properties
Circuits
Complexity
Cryptography
Optimization
Polynomials
Preprocessing
Quantum computing
quantum cryptanalysis
quantum search
Qubits (quantum computing)
reversible computation
Search algorithms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELUqVnSB6ANxgVZeVN1FOHGc2Eta8azopkViZ_mJhLj3Qm6iih1LfqG_1y_pjJPQC0Ji002kOCPL8Zl4zsSTE0I-yQikwzifcSdjVoaoMlNLOAgljVVC8og7uqffq6Oz8uRcnC_96gtrwnp54H7idiGi18wynzOpSqzZiHWQlah9FZ3hyqfVl6kxmerX4ApF0gdFTQjYu5dTB-5Q4DfUqP-4FIGSUP8jdrn2K-1T-3DRdLftuC-aws3BOlkbeCLd68f3hrwKs7fk9emDyOriHbnfo3EsraLAPWmDMqwQiigYUSzNhIXW03lM5zcdzGE3pQA5dJjsu0Wg-B6WHjZo_efu94Kaq4t5A23T_sry_jZt59Q1t9dAJ3shE-z6x_G3_ffk7GD_59ejbPixQubKomiz3EXgITEAUNFCkLZKCuOkFVYwW-Ym97nnRc1EcEDBovLWBcsqA6m08VwxvkFWZvNZ2CSUl96ImqkAxA0ySxT_4UF5B0uFFSYWE_J5nGx93etnaMw7ABUNqGhERSMqE_IFoXgwQtnr1ADOoAdn0C85w4TsjEDq4VlcaEiawB2qvBITUj4B95_Vs4PK8a741v8Y2jZZLbAcJr292SErbdOFD8BnWvsxue5fBL309g
  priority: 102
  providerName: Directory of Open Access Journals
Title A framework for reducing the overhead of the quantum oracle for use with Grover’s algorithm with applications to cryptanalysis of SIKE
URI http://www.degruyter.com/doi/10.1515/jmc-2020-0080
https://www.proquest.com/docview/2557886165
https://doaj.org/article/55170b0d108945209f7e8657d6fca39d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQucCh4lNsKZUPiFsgie3EPlSooJYCKhdYqTfLnyuh7qbNJoK99chf4O_xS5jxJlsKPXCJFGcSxX52_MYzeSbkuYxAOozzGXMyZjxElZlawkEoaawSkkWM6J58qo6n_MOpOL2SFBoacHmja4f7SU3bs5ffL1avYcDvp917CvHq69wB2CX-IS3Be79dcnDSMYuPbwIKFaqmo-8FBD4rleSD3OY_t1-bnpKK_zXquf0tBbF9mLX9qhuDpmkuOrpHtgcSSQ_WqN8nt8LiAbl7slFgXT4kPw5oHPOuKBBT2qJGK8xTFIwo5m3CV9jTJqbzix4auJ9T6A_wwGTfLwPFRVr6rkXrX5c_l9SczZoWyubrK38Gv2nXUNeuzoFrrlVO8NGf3388fESmR4df3h5nw64LmeNl2WWFi0BSYgAUo4UZ3CopjJNWWJFbXpjCF56VdS6CA34Wlbcu2Lwy4Gcbz1TOHpOtRbMITwhl3BtR5yoAqwO3E5WBWFDewXfEChPLCXkxNrY-X4traHRKABUNqGhERSMqE_IGodgYoSZ2KmjamR6GmAbuV-c290UuFcfsnlgHWYnaV9EZpvyE7I5A6rGfafCooGtURSUmhP8F7pXVjS9VYK3Yzv_W4Sm5U2I-TFq-2SVbXduHZ0BoOruXFgL2Uof9DaED9Z8
link.rule.ids 315,783,787,867,2109,2228,24330,27936,27937,67486,69270
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVguoAuqvJSB1rwArGLxonjxF4OVdsp7ZRFW4md5ecg1JmUPIS6Y8kv8Ht8Cdd5TFtgxSZSnGvL8bF9j-2bE4Tecg-kQxkbUcN9lDovIpVzuDDBlRaMUx9OdOdn2ewy_fCJDdGEVR9Wad2ibG7qTiF1YgvThI2ytdYAeODJl6UBfJPwUTQnk8_18uoh2shEkpMR2pjOjs4_DtNxFvTSe3HNv3Lec0atZv89orn1rT2yXtfnjuc53EZbPWXE0w7jJ-iBWz1Fm_O13mr1DP2YYj9EWWGgobgMiqzglTAY4RClCXOuxYVv77820JzNEgP6UGBr31QOhy1ZfFQG61_ff1ZYXS2KEtKW3ZO7R924LrApb66BWXaaJqHo8-OTg-fo8vDgYn8W9f9YiEyaJHUUGw-UxDvAzGvw11pwpgzXTDOi01jFNrYUmpU5A2zMC6uN0yRTsKpWlgpCX6DRqli5HYRpahXLiXDA4WCRGXSAqBPWwKyhmfLJGL0bGlted1IaMixBABUJqMiAigyojNH7AMXaKChgtwlFuZD9gJLA9HKiiY0JF2mI5fG54xnLbeaNosKO0e4ApOyHZSVh_QTdIYszNkbpH-DeWv2zUnF4K_ry_7K9QY9mF_NTeXp8dvIKPU5CXEy7jbOLRnXZuD0gNrV-3Xfd3_NH-Gs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWglRAcKj7F0gI-IG7RJnGc2MeldLultCCVSr1Z_lypYjdLNhHqrUf-An-PX9KZJLtsgROXSEkmkePneN7Y42dC3ogApENbFzErQpT5ICNdCDhwKbSRXLCAM7onp_nkPPtwwS82VvFjWqXz06q5qjuF1KErbYMDZWutAfDAw8uZBXxTXBQt4uHChbtkG7fNgDa-PZocnn1a9cY5yqX32pp_PXjLF7WS_bd45s73dsZ6XZwNxzN-SHZ6xkhHHcSPyB0_f0wenKzlVpdPyI8RDaskKwoslFYoyApOiYIRxSRN6HIdLUN7_q2B2mxmFMCHF7b2zdJTHJGlhxVa_7r-uaT667Ss4Nqsu7M5003rktrqagHEspM0wVefHR0fPCXn44Mv-5Oo32Ihslma1lFiAzCS4AGyYMBdGym4tsJww2OTJTpxiWNpEXNvgYwF6Yz1Js41BNXaMRmzZ2RrXs79c0JZ5jQvYumBwkGMiTJAzEtnodMwXId0QN6uKlstOiUNhREIoKIAFYWoKERlQN4hFGsjFMBuL5TVVPX_kwKiV8QmdkksZIapPKHwIueFy4PVTLoB2VsBqfq_cqkgfILmkCc5H5DsD3B_W_2zUAl-FXvxf4-9Jvc-vx-rj0enx7vkfopZMe0gzh7ZqqvGvwRaU5tXfcu9AYvT95o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+reducing+the+overhead+of+the+quantum+oracle+for+use+with+Grover%E2%80%99s+algorithm+with+applications+to+cryptanalysis+of+SIKE&rft.jtitle=Journal+of+mathematical+cryptology&rft.au=Biasse%2C+Jean-Fran%C3%A7ois&rft.au=Pring%2C+Benjamin&rft.date=2021-01-01&rft.issn=1862-2984&rft.eissn=1862-2984&rft.volume=15&rft.issue=1&rft.spage=143&rft.epage=156&rft_id=info:doi/10.1515%2Fjmc-2020-0080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jmc_2020_0080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-2984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-2984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-2984&client=summon