Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides
[Display omitted] •Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when assimilating alginate.•Some F. prausnitzii strains assimilate Bacteroides-degraded alginate oligomers. Faecalibacterium prausnitzii is a commensal...
Saved in:
Published in | Food research international Vol. 144; p. 110326 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when assimilating alginate.•Some F. prausnitzii strains assimilate Bacteroides-degraded alginate oligomers.
Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii. |
---|---|
AbstractList | [Display omitted]
•Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when assimilating alginate.•Some F. prausnitzii strains assimilate Bacteroides-degraded alginate oligomers.
Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii. Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii. Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii. |
ArticleNumber | 110326 |
Author | Hashikura, Nanami Murakami, Ryuta Xiao, Jin-zhong Odamaki, Toshitaka Yoshida, Keisuke |
Author_xml | – sequence: 1 givenname: Ryuta surname: Murakami fullname: Murakami, Ryuta email: ryuuta-murakami622@morinagamilk.co.jp – sequence: 2 givenname: Nanami surname: Hashikura fullname: Hashikura, Nanami – sequence: 3 givenname: Keisuke surname: Yoshida fullname: Yoshida, Keisuke – sequence: 4 givenname: Jin-zhong surname: Xiao fullname: Xiao, Jin-zhong – sequence: 5 givenname: Toshitaka surname: Odamaki fullname: Odamaki, Toshitaka |
BookMark | eNqNkT1vFDEURS0UJDaBn4DkkmYWf4w9sSgQRCRBikST3rI9z7tvNWsvtoeI_Hpms6lokuo191zpvnNOzlJOQMhHztaccf15t445jwXqWjDB15wzKfQbsuKXg-wG3qszsmJGy84Ybd6R81p3jDGtBrMiu5uSH9q2O5S8zw3ThkKMEBrNkbppg8k1oDnRawfBTehdaFBw3tNDcXNN2B4RaduWPG-2NJRcaxcBxmPRA7Yt_f4EZByhvidvo5sqfHi-F-T--sf91W139-vm59W3uy70QrSOq0tQo_RxUHEUXPnIRg9BS8F5GDUs6zw3Xg3eCaF1AK-9UMwAM1JLLy_Ip1PtMun3DLXZPdYA0-QS5LlaoaTiQvS8f0VU9MIYPsgl-uUUfdpYINqAzTXMqRWHk-XMHl3YnX12YY8u7MnFQqv_6EPBvSt_X-S-njhY_vUHodgaEFJYHlwWSXbM-ELDPy45qs4 |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2022_129903 crossref_primary_10_12938_bmfh_2023_085 crossref_primary_10_1042_EBC20220123 crossref_primary_10_1016_j_jff_2025_106696 crossref_primary_10_3390_biology12010057 crossref_primary_10_1016_j_jff_2023_105463 crossref_primary_10_1016_j_ijbiomac_2024_131910 crossref_primary_10_1093_femsre_fuad039 crossref_primary_10_3390_nu16193347 crossref_primary_10_3390_foods10122988 crossref_primary_10_3390_nutraceuticals3010003 crossref_primary_10_3390_nu14235025 crossref_primary_10_1016_j_envint_2025_109380 crossref_primary_10_3390_nu16213580 crossref_primary_10_3390_nu16244262 crossref_primary_10_3390_microorganisms11071753 crossref_primary_10_1093_femsec_fiad002 crossref_primary_10_20517_mrr_2023_19 crossref_primary_10_1007_s00253_024_13346_5 crossref_primary_10_3390_nu15061402 crossref_primary_10_1080_10408398_2022_2098249 crossref_primary_10_1016_j_jbc_2024_107596 crossref_primary_10_1128_aem_01185_23 crossref_primary_10_1016_j_jff_2022_105193 crossref_primary_10_1016_j_foodres_2022_112308 crossref_primary_10_1109_JBHI_2024_3507789 crossref_primary_10_1093_jimb_kuab052 crossref_primary_10_1016_j_fbio_2022_101763 crossref_primary_10_3390_life14050585 crossref_primary_10_1021_acs_jafc_4c10445 crossref_primary_10_3389_fmicb_2022_913624 crossref_primary_10_3390_microorganisms10091831 crossref_primary_10_1016_j_foodres_2023_112949 crossref_primary_10_1016_j_foodhyd_2024_110055 crossref_primary_10_3390_cimb46010036 crossref_primary_10_1111_ped_15209 crossref_primary_10_1007_s12649_023_02064_0 crossref_primary_10_1016_j_foodhyd_2023_109068 crossref_primary_10_1152_ajpgi_00303_2023 crossref_primary_10_1016_j_fbio_2022_101613 crossref_primary_10_1007_s12602_024_10274_8 crossref_primary_10_1021_acs_jafc_2c06232 crossref_primary_10_1002_jsfa_12221 crossref_primary_10_1128_aem_01235_24 crossref_primary_10_3389_fmicb_2022_910390 crossref_primary_10_3389_fnut_2021_813690 |
Cites_doi | 10.1038/ismej.2016.176 10.1263/jbb.99.48 10.4161/gmic.29330 10.1017/S0029665120006916 10.3389/fimmu.2019.00143 10.1021/bi047781r 10.1038/ismej.2017.24 10.1136/gutjnl-2020-322753 10.1016/j.anaerobe.2016.02.003 10.1038/s12276-020-0473-2 10.1128/AEM.06858-11 10.1128/mBio.00886-20 10.1371/journal.pone.0068739 10.1111/1753-0407.12986 10.1128/JB.182.14.3998-4004.2000 10.1038/ismej.2012.5 10.1016/S0016-5085(13)60210-3 10.1128/JB.182.16.4572-4577.2000 10.1016/j.crohns.2013.04.002 10.1093/femsle/fnv176 10.1097/MEG.0000000000001842 10.1038/pr.2016.167 10.3389/fmicb.2018.00346 10.1016/j.medj.2020.07.001 10.1038/bmt.2012.244 10.1371/journal.pone.0160533 10.1007/s13668-018-0248-8 10.1111/1574-6941.12186 10.1101/gr.186072.114 10.1371/journal.pone.0171576 10.1016/j.ejphar.2018.05.003 10.1186/s12866-016-0708-5 10.3389/fmicb.2019.01234 10.1016/j.cgh.2019.08.063 10.1016/j.carbpol.2017.09.059 10.1038/s41587-019-0209-9 10.1038/s41598-017-04511-0 10.1016/S0021-9673(01)90433-9 10.1186/s12866-015-0400-1 10.3390/foods7090140 10.1128/AEM.68.10.5186-5190.2002 10.3390/md17060327 10.1016/j.micpath.2020.104344 10.1038/s41598-017-18391-x |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 7X8 |
DOI | 10.1016/j.foodres.2021.110326 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1873-7145 |
ExternalDocumentID | 10_1016_j_foodres_2021_110326 S0963996921002258 |
GroupedDBID | --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALCJ AALRI AAMNW AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABMAC ABXDB ABYKQ ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c422t-158e5d3bf75fd215bf0dbec63211cd6e103b19b57ba2266ceb6b2509e09363b3 |
IEDL.DBID | .~1 |
ISSN | 0963-9969 1873-7145 |
IngestDate | Thu Jul 10 19:08:33 EDT 2025 Thu Jul 10 23:38:51 EDT 2025 Tue Jul 01 03:06:03 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Fri Feb 23 02:38:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gut microbiota Butyrate-producing-bacteria Alginate oligosaccharides Cross-feeding pH-controlled single-batch fermenter Prebiotics |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-158e5d3bf75fd215bf0dbec63211cd6e103b19b57ba2266ceb6b2509e09363b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0963996921002258 |
PQID | 2524299173 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2535122414 proquest_miscellaneous_2524299173 crossref_citationtrail_10_1016_j_foodres_2021_110326 crossref_primary_10_1016_j_foodres_2021_110326 elsevier_sciencedirect_doi_10_1016_j_foodres_2021_110326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Food research international |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | National Health and Nutrition Survey (2018). Retrieved from Park, Im (b0200) 2020 Qiu, Zhang, Yang (b0210) 2013; 7 Kanda (b0090) 2013; 48 Cherbuy, Bellet, Robert, Mayeur, Schwiertz, Langella (b0025) JUN 2019; 10 Milani, Hevia, Foroni, Duranti, Turroni, Lugli, Ventura (b0155) 2013; 8 Gibson, Hutkins, Sanders, Prescott, Reimer, Salminen, Reid (b0065) 2017; 14 Xu, Liang, Zhang, Tian, Li, Chen, Chen (b0260) 2020; 12 Koga, Tokunaga, Nagano, Sato, Konishi, Tochio, Shibata (b0100) 2016; 80 Parks, Imelfort, Skennerton, Hugenholtz, Tyson (b0205) 2015; 25 Duncan, Flint (bib271) 2014; 87 Lin, Shu, Lai, Tzeng, Lai, Lu (b0125) 2019; 1–2 Takagi, Sasaki, Sasaki, Fukuda, Tanaka, Yoshida, Osawa (b0235) 2016; 11 Tochio, Kadota, Tanaka, Koga (b0245) 2018; 7 Shang, Q., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2018). Gut microbiota fermentation of marine polysaccharides and its e ff ects on intestinal ecology : An overview. 179(September 2017), 173–185. https://doi.org/10.1016/j.carbpol.2017.09.059. Odamaki, Bottacini, Kato, Mitsuyama, Yoshida, Horigome, Van Sinderen (b0185) 2018; 8 Momma, Okamoto, Mishima, Mori, Hashimoto, Murata (b0170) 2000; 182 Martín, R., Miquel, S., Chain, F., Natividad, J. M., Jury, J., Lu, J., … Bermúdez-humarán, L. G. (2015). Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. 1–12. https://doi.org/10.1186/s12866-015-0400-1. Touchefeu, Y., Duchalais, E., Bruley des Varannes, S., Alameddine, J., Mirallie, E., Matysiak-Budnik, T., … Montassier, E. (2021). Concomitant decrease of double-positive lymphocyte population CD4CD8αα and Faecalibacterium prausnitzii in patients with colorectal cancer. European Journal of Gastroenterology & Hepatology, 32(2), 149–156. https://doi.org/10.1097/MEG.0000000000001842. Wang, Han, Hu, Li, Yu (b0255) 2006; 26 Geuking, Köller, Rupp, McCoy (b0060) 2014; 5 Hashimoto, Miyake, Momma, Kawai, Murata (b0075) 2000; 182 Estevinho, M. M., Rocha, C., Correia, L., Lago, P., Ministro, P., Portela, F., … GEDII (Portuguese IBD Group). (2020). Features of Fecal and Colon Microbiomes Associate With Responses to Biologic Therapies for Inflammatory Bowel Diseases: A Systematic Review. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association, 18(5), 1054–1069. https://doi.org/10.1016/j.cgh.2019.08.063. Soto-Martin, Warnke, Farquharson, Christodoulou, Horgan, Derrien, Louis (b0230) 2020; 11 Alameddine, Godefroy, Papargyris, Sarrabayrouse, Tabiasco, Bridonneau, Jotereau (b0005) 2019; 10 Khan, Duncan, Stams, Van Dijl, Flint, Harmsen (b0095) 2012; 6 Li, van Esch, Wagenaar, Garssen, Folkerts, Henricks (b0115) 2018; 831 Lopez-Siles, Duncan, Garcia-Gil, Martinez-Medina (b0130) 2017; 11 Thomas, Wrzosek, Miquel, Noordine, Bouet, Chevalier-Curt, Langella (b0240) 2013; 144 Accessed 18 September 2020. Hosomi, Ohno, Murakami, Natsume-Kitatani, Tanisawa, Hirata, Kunisawa (b0085) 2017; 7 Martín, Bermúdez-Humarán, Langella (b0145) 2018; 9 Langella, Guarner, Martín (b0105) August 2019; 10 Munukka, Rintala, Toivonen, Nylund, Yang, Takanen, Pekkala (b0175) 2017; 11 Odamaki, Kato, Sugahara, Hashikura, Takahashi, Xiao, Osawa (b0190) 2016; 16 Chambers, E. S., Preston, T., Frost, G., & Morrison, D. J. (2018). Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. 198–206. Cherry, P., Yadav, S., Strain, C. R., Allsopp, P. J., Mcsorley, E. M., Ross, R. P., & Stanton, C. (2019). Prebiotics from Seaweeds: An Ocean of Opportunity ? 1–35. Miwa, Hiyama, Yamamoto (b0160) 1985; 321 Li, Li, Shang, Chen, Liu, Pi, Wang (b0120) 2016; 39 Bai, Chen, Zhu, Liu, Yu, Wang, Yin (b0010) 2017; 12 Momma, Mishima, Hashimoto, Mikami, Murata (b0165) 2005; 44 Gupta, Lokesh, Abdelhafiz, Siriyappagouder (b0070) September 2019; 10 Lopez-Siles, Khan, Duncan, Harmsen, Garcia-Gil, Flint (b0135) 2012; 78 Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2020). SCFA: Mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, (December 2019). https://doi.org/10.1017/S0029665120006916. Duncan, Barcenilla, Stewart, Pryde, Flint (b0035) 2002; 68 Leylabadlo, Ghotaslou, Feizabadi, Farajnia, Moaddab, Ganbarov, Kafil (b0110) 2020; 149 Zhang, Huang, Yoon, Kemmitt, Wright, Schneider, Griffith (b0270) 2021; 2 Rios-Covian, Gueimonde, Duncan, Flint, De Los Reyes-Gavilan (b0215) 2015; 362 Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Caporaso (b0015) 2019; 37 Hashimoto, Miyake, Ochiai, Murata (b0080) 2005; 99 Frost, Kacprowski, Rühlemann, Pietzner, Bang, Franke, Lerch (b0055) 2021; 70 Langella (10.1016/j.foodres.2021.110326_b0105) 2019; 10 Khan (10.1016/j.foodres.2021.110326_b0095) 2012; 6 Alameddine (10.1016/j.foodres.2021.110326_b0005) 2019; 10 Li (10.1016/j.foodres.2021.110326_b0115) 2018; 831 Soto-Martin (10.1016/j.foodres.2021.110326_b0230) 2020; 11 Duncan (10.1016/j.foodres.2021.110326_b0035) 2002; 68 Koga (10.1016/j.foodres.2021.110326_b0100) 2016; 80 Momma (10.1016/j.foodres.2021.110326_b0170) 2000; 182 10.1016/j.foodres.2021.110326_b0045 10.1016/j.foodres.2021.110326_b0250 Kanda (10.1016/j.foodres.2021.110326_b0090) 2013; 48 Odamaki (10.1016/j.foodres.2021.110326_b0190) 2016; 16 Lopez-Siles (10.1016/j.foodres.2021.110326_b0135) 2012; 78 Parks (10.1016/j.foodres.2021.110326_b0205) 2015; 25 Geuking (10.1016/j.foodres.2021.110326_b0060) 2014; 5 Zhang (10.1016/j.foodres.2021.110326_b0270) 2021; 2 Wang (10.1016/j.foodres.2021.110326_b0255) 2006; 26 Li (10.1016/j.foodres.2021.110326_b0120) 2016; 39 Momma (10.1016/j.foodres.2021.110326_b0165) 2005; 44 10.1016/j.foodres.2021.110326_bib272 Tochio (10.1016/j.foodres.2021.110326_b0245) 2018; 7 10.1016/j.foodres.2021.110326_b0020 10.1016/j.foodres.2021.110326_b0140 Cherbuy (10.1016/j.foodres.2021.110326_b0025) 2019; 10 Xu (10.1016/j.foodres.2021.110326_b0260) 2020; 12 Frost (10.1016/j.foodres.2021.110326_b0055) 2021; 70 Duncan (10.1016/j.foodres.2021.110326_bib271) 2014; 87 Hosomi (10.1016/j.foodres.2021.110326_b0085) 2017; 7 Rios-Covian (10.1016/j.foodres.2021.110326_b0215) 2015; 362 Bolyen (10.1016/j.foodres.2021.110326_b0015) 2019; 37 Hashimoto (10.1016/j.foodres.2021.110326_b0075) 2000; 182 Gupta (10.1016/j.foodres.2021.110326_b0070) 2019; 10 10.1016/j.foodres.2021.110326_b0225 Milani (10.1016/j.foodres.2021.110326_b0155) 2013; 8 Bai (10.1016/j.foodres.2021.110326_b0010) 2017; 12 Odamaki (10.1016/j.foodres.2021.110326_b0185) 2018; 8 10.1016/j.foodres.2021.110326_b0030 Munukka (10.1016/j.foodres.2021.110326_b0175) 2017; 11 10.1016/j.foodres.2021.110326_b0150 Park (10.1016/j.foodres.2021.110326_b0200) 2020 Takagi (10.1016/j.foodres.2021.110326_b0235) 2016; 11 Thomas (10.1016/j.foodres.2021.110326_b0240) 2013; 144 Lin (10.1016/j.foodres.2021.110326_b0125) 2019; 1–2 Miwa (10.1016/j.foodres.2021.110326_b0160) 1985; 321 Gibson (10.1016/j.foodres.2021.110326_b0065) 2017; 14 Hashimoto (10.1016/j.foodres.2021.110326_b0080) 2005; 99 Lopez-Siles (10.1016/j.foodres.2021.110326_b0130) 2017; 11 Martín (10.1016/j.foodres.2021.110326_b0145) 2018; 9 Leylabadlo (10.1016/j.foodres.2021.110326_b0110) 2020; 149 Qiu (10.1016/j.foodres.2021.110326_b0210) 2013; 7 |
References_xml | – reference: Touchefeu, Y., Duchalais, E., Bruley des Varannes, S., Alameddine, J., Mirallie, E., Matysiak-Budnik, T., … Montassier, E. (2021). Concomitant decrease of double-positive lymphocyte population CD4CD8αα and Faecalibacterium prausnitzii in patients with colorectal cancer. European Journal of Gastroenterology & Hepatology, 32(2), 149–156. https://doi.org/10.1097/MEG.0000000000001842. – volume: 26 start-page: 597 year: 2006 end-page: 603 ident: b0255 publication-title: vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. – reference: Chambers, E. S., Preston, T., Frost, G., & Morrison, D. J. (2018). Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. 198–206. – volume: 11 start-page: 1 year: 2016 end-page: 16 ident: b0235 article-title: A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics publication-title: PLoS ONE – volume: 6 start-page: 1578 year: 2012 end-page: 1585 ident: b0095 article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic – anoxic interphases publication-title: The ISME Journal – reference: National Health and Nutrition Survey (2018). Retrieved from – volume: 5 year: 2014 ident: b0060 article-title: The interplay between the gut microbiota and the immune system publication-title: Gut Microbes – volume: 11 start-page: 841 year: 2017 end-page: 852 ident: b0130 article-title: Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics publication-title: ISME Journal – volume: 10 start-page: 1 year: August 2019 end-page: 2 ident: b0105 publication-title: Editorial : Next-Generation Probiotics : From Commensal Bacteria to Novel Drugs and Food Supplements. – volume: 831 start-page: 52 year: 2018 end-page: 59 ident: b0115 article-title: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells publication-title: European Journal of Pharmacology – volume: 80 start-page: 844 year: 2016 end-page: 851 ident: b0100 article-title: Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants publication-title: Pediatric Research – reference: Accessed 18 September 2020. – volume: 10 year: September 2019 ident: b0070 publication-title: Macroalga-Derived Alginate Oligosaccharide Alters Intestinal Bacteria of Atlantic Salmon. – reference: Cherry, P., Yadav, S., Strain, C. R., Allsopp, P. J., Mcsorley, E. M., Ross, R. P., & Stanton, C. (2019). Prebiotics from Seaweeds: An Ocean of Opportunity ? 1–35. – volume: 149 year: 2020 ident: b0110 article-title: The critical role of Faecalibacterium prausnitzii in human health: An overview publication-title: Microbial Pathogenesis – reference: Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2020). SCFA: Mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, (December 2019). https://doi.org/10.1017/S0029665120006916. – volume: 37 start-page: 852 year: 2019 end-page: 857 ident: b0015 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nature Biotechnology – volume: 11 start-page: 1 year: 2020 end-page: 18 ident: b0230 article-title: Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities publication-title: MBio – volume: 9 start-page: 346 year: 2018 ident: b0145 article-title: Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii publication-title: Frontiers in Microbiology – volume: 48 start-page: 452 year: 2013 end-page: 458 ident: b0090 article-title: Investigation of the freely available easy-to-use software “EZR” for medical statistics publication-title: Bone Marrow Transplantation – volume: 12 start-page: 224 year: 2020 end-page: 236 ident: b0260 article-title: Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression publication-title: Journal of Diabetes – volume: 182 start-page: 3998 year: 2000 end-page: 4004 ident: b0170 article-title: A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules publication-title: Journal of Bacteriology – year: 2020 ident: b0200 article-title: Of men in mice: The development and application of a humanized gnotobiotic mouse model for microbiome therapeutics publication-title: Experimental and Molecular Medicine – volume: 1–2 year: 2019 ident: b0125 article-title: Investiture of next generation probiotics on amelioration of diseases – Strains do matter publication-title: Medicine in Microecology – volume: 362 start-page: 1 year: 2015 end-page: 7 ident: b0215 article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis publication-title: FEMS Microbiology Letters – volume: 87 start-page: 30 year: 2014 end-page: 40 ident: bib271 article-title: Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro publication-title: FEMS Microbiology Ecology – volume: 68 start-page: 5186 year: 2002 end-page: 5190 ident: b0035 article-title: Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine publication-title: Applied and Environmental Microbiology – reference: Martín, R., Miquel, S., Chain, F., Natividad, J. M., Jury, J., Lu, J., … Bermúdez-humarán, L. G. (2015). Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. 1–12. https://doi.org/10.1186/s12866-015-0400-1. – volume: 182 start-page: 4572 year: 2000 end-page: 4577 ident: b0075 article-title: Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate publication-title: Journal of Bacteriology – volume: 70 start-page: 522 year: 2021 end-page: 530 ident: b0055 article-title: Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function publication-title: Gut – volume: 39 start-page: 19 year: 2016 end-page: 25 ident: b0120 article-title: In vitro fermentation of alginate and its derivatives by human gut microbiota publication-title: Anaerobe – volume: 44 start-page: 5053 year: 2005 end-page: 5064 ident: b0165 article-title: Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: Molecular insights into alginate transport in the periplasm publication-title: Biochemistry – volume: 144 start-page: S-59 year: 2013 ident: b0240 article-title: Bacteroides Thetaiotaomicron and Faecalibacterium prausnitzii Shape the Mucus Production and Mucin O-Glycosylation in Colon Epithelium publication-title: Gastroenterology – volume: 10 start-page: 143 year: 2019 ident: b0005 article-title: Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction publication-title: Frontiers in Immunology – volume: 2 start-page: 74 year: 2021 end-page: 98.e9 ident: b0270 article-title: Primary Human Colonic Mucosal Barrier Crosstalk with Super Oxygen-Sensitive Faecalibacterium prausnitzii in Continuous Culture publication-title: Med – volume: 12 start-page: 1 year: 2017 end-page: 15 ident: b0010 article-title: Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota publication-title: PLoS ONE – volume: 78 start-page: 420 year: 2012 end-page: 428 ident: b0135 article-title: Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth publication-title: Applied and Environmental Microbiology – volume: 25 start-page: 1043 year: 2015 end-page: 1055 ident: b0205 article-title: CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes publication-title: Genome Research – volume: 14 start-page: 491 year: 2017 end-page: 502 ident: b0065 article-title: CONSENSUS The International Scientific Association and scope of prebiotics publication-title: Nature Publishing Group – volume: 8 start-page: 1 year: 2018 end-page: 12 ident: b0185 article-title: Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan publication-title: Scientific Reports – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: b0085 article-title: Method for preparing DNA from feces in guanidine thiocyanate solution affects 16S rRNA-based profiling of human microbiota diversity publication-title: Scientific Reports – volume: 10 start-page: 1 year: JUN 2019 end-page: 11 ident: b0025 article-title: Modulation of the caecal gut microbiota of mice by dietary supplement containing resistant starch: Impact is donor-dependent publication-title: Frontiers in Microbiology – volume: 321 start-page: 165 year: 1985 end-page: 174 ident: b0160 article-title: high-performance liquid chromatography of short-and long-chain fatty acids as 2-nitrophenylhydrazides publication-title: Journal of Chromatography A – reference: Estevinho, M. M., Rocha, C., Correia, L., Lago, P., Ministro, P., Portela, F., … GEDII (Portuguese IBD Group). (2020). Features of Fecal and Colon Microbiomes Associate With Responses to Biologic Therapies for Inflammatory Bowel Diseases: A Systematic Review. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association, 18(5), 1054–1069. https://doi.org/10.1016/j.cgh.2019.08.063. – reference: Shang, Q., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2018). Gut microbiota fermentation of marine polysaccharides and its e ff ects on intestinal ecology : An overview. 179(September 2017), 173–185. https://doi.org/10.1016/j.carbpol.2017.09.059. – volume: 99 start-page: 48 year: 2005 end-page: 54 ident: b0080 article-title: Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution publication-title: Journal of Bioscience and Bioengineering – volume: 7 start-page: 1 year: 2018 end-page: 11 ident: b0245 article-title: 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates faecalibacterium prausnitzii as well as bifidobacteria in humans publication-title: Foods – volume: 11 start-page: 1667 year: 2017 end-page: 1679 ident: b0175 article-title: Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice publication-title: ISME Journal – volume: 16 start-page: 1 year: 2016 end-page: 12 ident: b0190 article-title: Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study publication-title: BMC Microbiology – volume: 8 year: 2013 ident: b0155 article-title: Assessing the fecal microbiota: An optimized ion torrent 16S rRNA gene-based analysis protocol publication-title: PloS One – volume: 7 start-page: e558 year: 2013 end-page: e568 ident: b0210 article-title: ScienceDirect Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis publication-title: Journal of Crohn’s and Colitis – volume: 11 start-page: 841 issue: 4 year: 2017 ident: 10.1016/j.foodres.2021.110326_b0130 article-title: Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics publication-title: ISME Journal doi: 10.1038/ismej.2016.176 – volume: 1–2 issue: November year: 2019 ident: 10.1016/j.foodres.2021.110326_b0125 article-title: Investiture of next generation probiotics on amelioration of diseases – Strains do matter publication-title: Medicine in Microecology – volume: 99 start-page: 48 issue: 1 year: 2005 ident: 10.1016/j.foodres.2021.110326_b0080 article-title: Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution publication-title: Journal of Bioscience and Bioengineering doi: 10.1263/jbb.99.48 – volume: 5 issue: 3 year: 2014 ident: 10.1016/j.foodres.2021.110326_b0060 article-title: The interplay between the gut microbiota and the immune system publication-title: Gut Microbes doi: 10.4161/gmic.29330 – ident: 10.1016/j.foodres.2021.110326_b0140 doi: 10.1017/S0029665120006916 – volume: 10 start-page: 143 year: 2019 ident: 10.1016/j.foodres.2021.110326_b0005 article-title: Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction publication-title: Frontiers in Immunology doi: 10.3389/fimmu.2019.00143 – ident: 10.1016/j.foodres.2021.110326_bib272 – volume: 14 start-page: 491 issue: 8 year: 2017 ident: 10.1016/j.foodres.2021.110326_b0065 article-title: CONSENSUS The International Scientific Association and scope of prebiotics publication-title: Nature Publishing Group – volume: 44 start-page: 5053 issue: 13 year: 2005 ident: 10.1016/j.foodres.2021.110326_b0165 article-title: Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: Molecular insights into alginate transport in the periplasm publication-title: Biochemistry doi: 10.1021/bi047781r – volume: 11 start-page: 1667 issue: 7 year: 2017 ident: 10.1016/j.foodres.2021.110326_b0175 article-title: Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice publication-title: ISME Journal doi: 10.1038/ismej.2017.24 – volume: 70 start-page: 522 issue: 3 year: 2021 ident: 10.1016/j.foodres.2021.110326_b0055 article-title: Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function publication-title: Gut doi: 10.1136/gutjnl-2020-322753 – volume: 39 start-page: 19 year: 2016 ident: 10.1016/j.foodres.2021.110326_b0120 article-title: In vitro fermentation of alginate and its derivatives by human gut microbiota publication-title: Anaerobe doi: 10.1016/j.anaerobe.2016.02.003 – year: 2020 ident: 10.1016/j.foodres.2021.110326_b0200 article-title: Of men in mice: The development and application of a humanized gnotobiotic mouse model for microbiome therapeutics publication-title: Experimental and Molecular Medicine doi: 10.1038/s12276-020-0473-2 – volume: 10 year: 2019 ident: 10.1016/j.foodres.2021.110326_b0070 publication-title: Macroalga-Derived Alginate Oligosaccharide Alters Intestinal Bacteria of Atlantic Salmon. – volume: 78 start-page: 420 issue: 2 year: 2012 ident: 10.1016/j.foodres.2021.110326_b0135 article-title: Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.06858-11 – volume: 11 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.foodres.2021.110326_b0230 article-title: Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities publication-title: MBio doi: 10.1128/mBio.00886-20 – volume: 8 issue: 7 year: 2013 ident: 10.1016/j.foodres.2021.110326_b0155 article-title: Assessing the fecal microbiota: An optimized ion torrent 16S rRNA gene-based analysis protocol publication-title: PloS One doi: 10.1371/journal.pone.0068739 – volume: 12 start-page: 224 issue: 3 year: 2020 ident: 10.1016/j.foodres.2021.110326_b0260 article-title: Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression publication-title: Journal of Diabetes doi: 10.1111/1753-0407.12986 – volume: 182 start-page: 3998 issue: 14 year: 2000 ident: 10.1016/j.foodres.2021.110326_b0170 article-title: A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules publication-title: Journal of Bacteriology doi: 10.1128/JB.182.14.3998-4004.2000 – volume: 6 start-page: 1578 issue: 8 year: 2012 ident: 10.1016/j.foodres.2021.110326_b0095 article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic – anoxic interphases publication-title: The ISME Journal doi: 10.1038/ismej.2012.5 – volume: 26 start-page: 597 year: 2006 ident: 10.1016/j.foodres.2021.110326_b0255 publication-title: vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. – volume: 144 start-page: S-59 issue: 5 year: 2013 ident: 10.1016/j.foodres.2021.110326_b0240 article-title: Bacteroides Thetaiotaomicron and Faecalibacterium prausnitzii Shape the Mucus Production and Mucin O-Glycosylation in Colon Epithelium publication-title: Gastroenterology doi: 10.1016/S0016-5085(13)60210-3 – volume: 182 start-page: 4572 issue: 16 year: 2000 ident: 10.1016/j.foodres.2021.110326_b0075 article-title: Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate publication-title: Journal of Bacteriology doi: 10.1128/JB.182.16.4572-4577.2000 – volume: 7 start-page: e558 issue: 11 year: 2013 ident: 10.1016/j.foodres.2021.110326_b0210 article-title: ScienceDirect Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis publication-title: Journal of Crohn’s and Colitis doi: 10.1016/j.crohns.2013.04.002 – volume: 362 start-page: 1 issue: 21 year: 2015 ident: 10.1016/j.foodres.2021.110326_b0215 article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis publication-title: FEMS Microbiology Letters doi: 10.1093/femsle/fnv176 – ident: 10.1016/j.foodres.2021.110326_b0250 doi: 10.1097/MEG.0000000000001842 – volume: 80 start-page: 844 issue: 6 year: 2016 ident: 10.1016/j.foodres.2021.110326_b0100 article-title: Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants publication-title: Pediatric Research doi: 10.1038/pr.2016.167 – volume: 9 start-page: 346 year: 2018 ident: 10.1016/j.foodres.2021.110326_b0145 article-title: Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2018.00346 – volume: 2 start-page: 74 issue: 1 year: 2021 ident: 10.1016/j.foodres.2021.110326_b0270 article-title: Primary Human Colonic Mucosal Barrier Crosstalk with Super Oxygen-Sensitive Faecalibacterium prausnitzii in Continuous Culture publication-title: Med doi: 10.1016/j.medj.2020.07.001 – volume: 48 start-page: 452 issue: 3 year: 2013 ident: 10.1016/j.foodres.2021.110326_b0090 article-title: Investigation of the freely available easy-to-use software “EZR” for medical statistics publication-title: Bone Marrow Transplantation doi: 10.1038/bmt.2012.244 – volume: 11 start-page: 1 issue: 8 year: 2016 ident: 10.1016/j.foodres.2021.110326_b0235 article-title: A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics publication-title: PLoS ONE doi: 10.1371/journal.pone.0160533 – ident: 10.1016/j.foodres.2021.110326_b0020 doi: 10.1007/s13668-018-0248-8 – volume: 87 start-page: 30 issue: 1 year: 2014 ident: 10.1016/j.foodres.2021.110326_bib271 article-title: Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro publication-title: FEMS Microbiology Ecology doi: 10.1111/1574-6941.12186 – volume: 25 start-page: 1043 issue: 7 year: 2015 ident: 10.1016/j.foodres.2021.110326_b0205 article-title: CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes publication-title: Genome Research doi: 10.1101/gr.186072.114 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.foodres.2021.110326_b0105 publication-title: Editorial : Next-Generation Probiotics : From Commensal Bacteria to Novel Drugs and Food Supplements. – volume: 12 start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.foodres.2021.110326_b0010 article-title: Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota publication-title: PLoS ONE doi: 10.1371/journal.pone.0171576 – volume: 831 start-page: 52 year: 2018 ident: 10.1016/j.foodres.2021.110326_b0115 article-title: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells publication-title: European Journal of Pharmacology doi: 10.1016/j.ejphar.2018.05.003 – volume: 16 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.foodres.2021.110326_b0190 article-title: Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study publication-title: BMC Microbiology doi: 10.1186/s12866-016-0708-5 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.foodres.2021.110326_b0025 article-title: Modulation of the caecal gut microbiota of mice by dietary supplement containing resistant starch: Impact is donor-dependent publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2019.01234 – ident: 10.1016/j.foodres.2021.110326_b0045 doi: 10.1016/j.cgh.2019.08.063 – ident: 10.1016/j.foodres.2021.110326_b0225 doi: 10.1016/j.carbpol.2017.09.059 – volume: 37 start-page: 852 issue: 8 year: 2019 ident: 10.1016/j.foodres.2021.110326_b0015 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nature Biotechnology doi: 10.1038/s41587-019-0209-9 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.foodres.2021.110326_b0085 article-title: Method for preparing DNA from feces in guanidine thiocyanate solution affects 16S rRNA-based profiling of human microbiota diversity publication-title: Scientific Reports doi: 10.1038/s41598-017-04511-0 – volume: 321 start-page: 165 year: 1985 ident: 10.1016/j.foodres.2021.110326_b0160 article-title: high-performance liquid chromatography of short-and long-chain fatty acids as 2-nitrophenylhydrazides publication-title: Journal of Chromatography A doi: 10.1016/S0021-9673(01)90433-9 – ident: 10.1016/j.foodres.2021.110326_b0150 doi: 10.1186/s12866-015-0400-1 – volume: 7 start-page: 1 issue: 9 year: 2018 ident: 10.1016/j.foodres.2021.110326_b0245 article-title: 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates faecalibacterium prausnitzii as well as bifidobacteria in humans publication-title: Foods doi: 10.3390/foods7090140 – volume: 68 start-page: 5186 issue: 10 year: 2002 ident: 10.1016/j.foodres.2021.110326_b0035 article-title: Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.68.10.5186-5190.2002 – ident: 10.1016/j.foodres.2021.110326_b0030 doi: 10.3390/md17060327 – volume: 149 year: 2020 ident: 10.1016/j.foodres.2021.110326_b0110 article-title: The critical role of Faecalibacterium prausnitzii in human health: An overview publication-title: Microbial Pathogenesis doi: 10.1016/j.micpath.2020.104344 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.foodres.2021.110326_b0185 article-title: Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan publication-title: Scientific Reports doi: 10.1038/s41598-017-18391-x |
SSID | ssj0006579 |
Score | 2.5467708 |
Snippet | [Display omitted]
•Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when... Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110326 |
SubjectTerms | ABC transporters acetic acid alginate lyase Alginate oligosaccharides alginates bacteria Bacteroides Butyrate-producing-bacteria carbon correlation Cross-feeding digestive system fermentation fermenters food research genomics Gut microbiota health promotion humans industrial applications intestinal microorganisms oligosaccharides oxygen pH-controlled single-batch fermenter Prebiotics probiotics quantitative polymerase chain reaction sole |
Title | Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides |
URI | https://dx.doi.org/10.1016/j.foodres.2021.110326 https://www.proquest.com/docview/2524299173 https://www.proquest.com/docview/2535122414 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFNBK_Ztc2rPeriuip6UcFbSdpEu2i7uN2LB3-7kzZ1VUTBY0IGwkwy30wyD4QOtWLWZqkk1jBOmGCWRIwKwtw0mBwqqB9zrq7F4I5d3PP7GdRrc2FcWKXX_Y1Or7W1n-l6bnZHed69AeMb0FXEoasiGnKX8MuYdKe88zYN8xDc19sTlLjV0yye7rBjyzIDrxbcxDBwAfHU1Vj4GZ--aeoafvrLaMnbjfi42doKmjHFKppv04rHq2jxU2XBNTQ8A_e6eiSjJtqueMBN4AYuLVZPrhdDZXBZ4L4yIKRcNzWbJ8949KImY7jmr3mOfQ8fXO8U2FzjHHYvt_ikJijzzIzX0W3_9LY3IL6tAklZGFYk4JHhGdVWcpsB4mt7lIEkBQVfMM2EATboINZcagW2mUiNFhoMpdgcxVRQTTfQbFEWZhPhGChTIePYgBEZCaNMxLlSUmgpTRhkW4i1vExSX3Lcdb54StrYsmHiRZA4ESSNCLZQ54Ns1NTc-IsgagWVfDk8CeDCX6QHrWATuFjut0QVppzAIh46rA4k_W0N5fXXJNv-_xZ20IIbNfFnu2i2epmYPbB0Kr1fH-V9NHd8fjm4fgdTMABV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8q41A4IBibGJ9G4up2iT-SHLeKrsC2y4rUm2Un9kg1kmpNLxz423lOHMomRCWujp9kvWe_D-fn3wP4YDR3rsgT6iwXlEvuaMqZpNwPY8qho_Yy5-JSzr7yzwuxGMCkfwvjYZXB93c-vfXWYWQctDleleX4CpNvjK4yiz2LaCzSB_CQ4_H1bQxGP7c4DykC4Z5k1E_fPuMZL0eurgssa7FOjCOPiGeeZOHvAeqeq27jz_QpPAmJIznp1vYMBrbah2H_rni9D4__oBZ8DsszrK-bb3TVwe2qa9IhN0jtiL7xzRgaS-qKTLVFK5WmI23efCerW71Z4zn_UZYkNPEh7UpRz22gI_7qlpy2AnVZ2PUBzKcf55MZDX0VaM7juKGRSK0omHGJcAWGfOOOCzSlZFgM5oW0qAYTZUYkRmNyJnNrpMFMKbPHGZPMsEPYq-rKvgCSoWQukyyzmEWm0mqbCqF1Ik2S2DgqjoD3ulR54Bz3rS9uVA8uW6pgAuVNoDoTHMHot9iqI93YJZD2hlJ3do_CwLBL9H1vWIUny_8u0ZWtNzhJxD5YRwn71xwm2n-T_OX_L-EdDGfzi3N1_unyyyt45L90YLTXsNfcbuwbTHsa87bd1r8AHb0B4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth-promoting+effect+of+alginate+on+Faecalibacterium+prausnitzii+through+cross-feeding+with+Bacteroides&rft.jtitle=Food+research+international&rft.au=Murakami%2C+Ryuta&rft.au=Hashikura%2C+Nanami&rft.au=Yoshida%2C+Keisuke&rft.au=Xiao%2C+Jin-zhong&rft.date=2021-06-01&rft.issn=0963-9969&rft.volume=144+p.110326-&rft_id=info:doi/10.1016%2Fj.foodres.2021.110326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9969&client=summon |