Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides

[Display omitted] •Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when assimilating alginate.•Some F. prausnitzii strains assimilate Bacteroides-degraded alginate oligomers. Faecalibacterium prausnitzii is a commensal...

Full description

Saved in:
Bibliographic Details
Published inFood research international Vol. 144; p. 110326
Main Authors Murakami, Ryuta, Hashikura, Nanami, Yoshida, Keisuke, Xiao, Jin-zhong, Odamaki, Toshitaka
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when assimilating alginate.•Some F. prausnitzii strains assimilate Bacteroides-degraded alginate oligomers. Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.
AbstractList [Display omitted] •Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when assimilating alginate.•Some F. prausnitzii strains assimilate Bacteroides-degraded alginate oligomers. Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.
Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.
Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.
ArticleNumber 110326
Author Hashikura, Nanami
Murakami, Ryuta
Xiao, Jin-zhong
Odamaki, Toshitaka
Yoshida, Keisuke
Author_xml – sequence: 1
  givenname: Ryuta
  surname: Murakami
  fullname: Murakami, Ryuta
  email: ryuuta-murakami622@morinagamilk.co.jp
– sequence: 2
  givenname: Nanami
  surname: Hashikura
  fullname: Hashikura, Nanami
– sequence: 3
  givenname: Keisuke
  surname: Yoshida
  fullname: Yoshida, Keisuke
– sequence: 4
  givenname: Jin-zhong
  surname: Xiao
  fullname: Xiao, Jin-zhong
– sequence: 5
  givenname: Toshitaka
  surname: Odamaki
  fullname: Odamaki, Toshitaka
BookMark eNqNkT1vFDEURS0UJDaBn4DkkmYWf4w9sSgQRCRBikST3rI9z7tvNWsvtoeI_Hpms6lokuo191zpvnNOzlJOQMhHztaccf15t445jwXqWjDB15wzKfQbsuKXg-wG3qszsmJGy84Ybd6R81p3jDGtBrMiu5uSH9q2O5S8zw3ThkKMEBrNkbppg8k1oDnRawfBTehdaFBw3tNDcXNN2B4RaduWPG-2NJRcaxcBxmPRA7Yt_f4EZByhvidvo5sqfHi-F-T--sf91W139-vm59W3uy70QrSOq0tQo_RxUHEUXPnIRg9BS8F5GDUs6zw3Xg3eCaF1AK-9UMwAM1JLLy_Ip1PtMun3DLXZPdYA0-QS5LlaoaTiQvS8f0VU9MIYPsgl-uUUfdpYINqAzTXMqRWHk-XMHl3YnX12YY8u7MnFQqv_6EPBvSt_X-S-njhY_vUHodgaEFJYHlwWSXbM-ELDPy45qs4
CitedBy_id crossref_primary_10_1016_j_jhazmat_2022_129903
crossref_primary_10_12938_bmfh_2023_085
crossref_primary_10_1042_EBC20220123
crossref_primary_10_1016_j_jff_2025_106696
crossref_primary_10_3390_biology12010057
crossref_primary_10_1016_j_jff_2023_105463
crossref_primary_10_1016_j_ijbiomac_2024_131910
crossref_primary_10_1093_femsre_fuad039
crossref_primary_10_3390_nu16193347
crossref_primary_10_3390_foods10122988
crossref_primary_10_3390_nutraceuticals3010003
crossref_primary_10_3390_nu14235025
crossref_primary_10_1016_j_envint_2025_109380
crossref_primary_10_3390_nu16213580
crossref_primary_10_3390_nu16244262
crossref_primary_10_3390_microorganisms11071753
crossref_primary_10_1093_femsec_fiad002
crossref_primary_10_20517_mrr_2023_19
crossref_primary_10_1007_s00253_024_13346_5
crossref_primary_10_3390_nu15061402
crossref_primary_10_1080_10408398_2022_2098249
crossref_primary_10_1016_j_jbc_2024_107596
crossref_primary_10_1128_aem_01185_23
crossref_primary_10_1016_j_jff_2022_105193
crossref_primary_10_1016_j_foodres_2022_112308
crossref_primary_10_1109_JBHI_2024_3507789
crossref_primary_10_1093_jimb_kuab052
crossref_primary_10_1016_j_fbio_2022_101763
crossref_primary_10_3390_life14050585
crossref_primary_10_1021_acs_jafc_4c10445
crossref_primary_10_3389_fmicb_2022_913624
crossref_primary_10_3390_microorganisms10091831
crossref_primary_10_1016_j_foodres_2023_112949
crossref_primary_10_1016_j_foodhyd_2024_110055
crossref_primary_10_3390_cimb46010036
crossref_primary_10_1111_ped_15209
crossref_primary_10_1007_s12649_023_02064_0
crossref_primary_10_1016_j_foodhyd_2023_109068
crossref_primary_10_1152_ajpgi_00303_2023
crossref_primary_10_1016_j_fbio_2022_101613
crossref_primary_10_1007_s12602_024_10274_8
crossref_primary_10_1021_acs_jafc_2c06232
crossref_primary_10_1002_jsfa_12221
crossref_primary_10_1128_aem_01235_24
crossref_primary_10_3389_fmicb_2022_910390
crossref_primary_10_3389_fnut_2021_813690
Cites_doi 10.1038/ismej.2016.176
10.1263/jbb.99.48
10.4161/gmic.29330
10.1017/S0029665120006916
10.3389/fimmu.2019.00143
10.1021/bi047781r
10.1038/ismej.2017.24
10.1136/gutjnl-2020-322753
10.1016/j.anaerobe.2016.02.003
10.1038/s12276-020-0473-2
10.1128/AEM.06858-11
10.1128/mBio.00886-20
10.1371/journal.pone.0068739
10.1111/1753-0407.12986
10.1128/JB.182.14.3998-4004.2000
10.1038/ismej.2012.5
10.1016/S0016-5085(13)60210-3
10.1128/JB.182.16.4572-4577.2000
10.1016/j.crohns.2013.04.002
10.1093/femsle/fnv176
10.1097/MEG.0000000000001842
10.1038/pr.2016.167
10.3389/fmicb.2018.00346
10.1016/j.medj.2020.07.001
10.1038/bmt.2012.244
10.1371/journal.pone.0160533
10.1007/s13668-018-0248-8
10.1111/1574-6941.12186
10.1101/gr.186072.114
10.1371/journal.pone.0171576
10.1016/j.ejphar.2018.05.003
10.1186/s12866-016-0708-5
10.3389/fmicb.2019.01234
10.1016/j.cgh.2019.08.063
10.1016/j.carbpol.2017.09.059
10.1038/s41587-019-0209-9
10.1038/s41598-017-04511-0
10.1016/S0021-9673(01)90433-9
10.1186/s12866-015-0400-1
10.3390/foods7090140
10.1128/AEM.68.10.5186-5190.2002
10.3390/md17060327
10.1016/j.micpath.2020.104344
10.1038/s41598-017-18391-x
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
7X8
DOI 10.1016/j.foodres.2021.110326
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1873-7145
ExternalDocumentID 10_1016_j_foodres_2021_110326
S0963996921002258
GroupedDBID --K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALCJ
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSZ
T5K
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
7X8
ID FETCH-LOGICAL-c422t-158e5d3bf75fd215bf0dbec63211cd6e103b19b57ba2266ceb6b2509e09363b3
IEDL.DBID .~1
ISSN 0963-9969
1873-7145
IngestDate Thu Jul 10 19:08:33 EDT 2025
Thu Jul 10 23:38:51 EDT 2025
Tue Jul 01 03:06:03 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Fri Feb 23 02:38:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gut microbiota
Butyrate-producing-bacteria
Alginate oligosaccharides
Cross-feeding
pH-controlled single-batch fermenter
Prebiotics
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-158e5d3bf75fd215bf0dbec63211cd6e103b19b57ba2266ceb6b2509e09363b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0963996921002258
PQID 2524299173
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2535122414
proquest_miscellaneous_2524299173
crossref_citationtrail_10_1016_j_foodres_2021_110326
crossref_primary_10_1016_j_foodres_2021_110326
elsevier_sciencedirect_doi_10_1016_j_foodres_2021_110326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Food research international
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References National Health and Nutrition Survey (2018). Retrieved from
Park, Im (b0200) 2020
Qiu, Zhang, Yang (b0210) 2013; 7
Kanda (b0090) 2013; 48
Cherbuy, Bellet, Robert, Mayeur, Schwiertz, Langella (b0025) JUN 2019; 10
Milani, Hevia, Foroni, Duranti, Turroni, Lugli, Ventura (b0155) 2013; 8
Gibson, Hutkins, Sanders, Prescott, Reimer, Salminen, Reid (b0065) 2017; 14
Xu, Liang, Zhang, Tian, Li, Chen, Chen (b0260) 2020; 12
Koga, Tokunaga, Nagano, Sato, Konishi, Tochio, Shibata (b0100) 2016; 80
Parks, Imelfort, Skennerton, Hugenholtz, Tyson (b0205) 2015; 25
Duncan, Flint (bib271) 2014; 87
Lin, Shu, Lai, Tzeng, Lai, Lu (b0125) 2019; 1–2
Takagi, Sasaki, Sasaki, Fukuda, Tanaka, Yoshida, Osawa (b0235) 2016; 11
Tochio, Kadota, Tanaka, Koga (b0245) 2018; 7
Shang, Q., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2018). Gut microbiota fermentation of marine polysaccharides and its e ff ects on intestinal ecology : An overview. 179(September 2017), 173–185. https://doi.org/10.1016/j.carbpol.2017.09.059.
Odamaki, Bottacini, Kato, Mitsuyama, Yoshida, Horigome, Van Sinderen (b0185) 2018; 8
Momma, Okamoto, Mishima, Mori, Hashimoto, Murata (b0170) 2000; 182
Martín, R., Miquel, S., Chain, F., Natividad, J. M., Jury, J., Lu, J., … Bermúdez-humarán, L. G. (2015). Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. 1–12. https://doi.org/10.1186/s12866-015-0400-1.
Touchefeu, Y., Duchalais, E., Bruley des Varannes, S., Alameddine, J., Mirallie, E., Matysiak-Budnik, T., … Montassier, E. (2021). Concomitant decrease of double-positive lymphocyte population CD4CD8αα and Faecalibacterium prausnitzii in patients with colorectal cancer. European Journal of Gastroenterology & Hepatology, 32(2), 149–156. https://doi.org/10.1097/MEG.0000000000001842.
Wang, Han, Hu, Li, Yu (b0255) 2006; 26
Geuking, Köller, Rupp, McCoy (b0060) 2014; 5
Hashimoto, Miyake, Momma, Kawai, Murata (b0075) 2000; 182
Estevinho, M. M., Rocha, C., Correia, L., Lago, P., Ministro, P., Portela, F., … GEDII (Portuguese IBD Group). (2020). Features of Fecal and Colon Microbiomes Associate With Responses to Biologic Therapies for Inflammatory Bowel Diseases: A Systematic Review. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association, 18(5), 1054–1069. https://doi.org/10.1016/j.cgh.2019.08.063.
Soto-Martin, Warnke, Farquharson, Christodoulou, Horgan, Derrien, Louis (b0230) 2020; 11
Alameddine, Godefroy, Papargyris, Sarrabayrouse, Tabiasco, Bridonneau, Jotereau (b0005) 2019; 10
Khan, Duncan, Stams, Van Dijl, Flint, Harmsen (b0095) 2012; 6
Li, van Esch, Wagenaar, Garssen, Folkerts, Henricks (b0115) 2018; 831
Lopez-Siles, Duncan, Garcia-Gil, Martinez-Medina (b0130) 2017; 11
Thomas, Wrzosek, Miquel, Noordine, Bouet, Chevalier-Curt, Langella (b0240) 2013; 144
Accessed 18 September 2020.
Hosomi, Ohno, Murakami, Natsume-Kitatani, Tanisawa, Hirata, Kunisawa (b0085) 2017; 7
Martín, Bermúdez-Humarán, Langella (b0145) 2018; 9
Langella, Guarner, Martín (b0105) August 2019; 10
Munukka, Rintala, Toivonen, Nylund, Yang, Takanen, Pekkala (b0175) 2017; 11
Odamaki, Kato, Sugahara, Hashikura, Takahashi, Xiao, Osawa (b0190) 2016; 16
Chambers, E. S., Preston, T., Frost, G., & Morrison, D. J. (2018). Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. 198–206.
Cherry, P., Yadav, S., Strain, C. R., Allsopp, P. J., Mcsorley, E. M., Ross, R. P., & Stanton, C. (2019). Prebiotics from Seaweeds: An Ocean of Opportunity ? 1–35.
Miwa, Hiyama, Yamamoto (b0160) 1985; 321
Li, Li, Shang, Chen, Liu, Pi, Wang (b0120) 2016; 39
Bai, Chen, Zhu, Liu, Yu, Wang, Yin (b0010) 2017; 12
Momma, Mishima, Hashimoto, Mikami, Murata (b0165) 2005; 44
Gupta, Lokesh, Abdelhafiz, Siriyappagouder (b0070) September 2019; 10
Lopez-Siles, Khan, Duncan, Harmsen, Garcia-Gil, Flint (b0135) 2012; 78
Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2020). SCFA: Mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, (December 2019). https://doi.org/10.1017/S0029665120006916.
Duncan, Barcenilla, Stewart, Pryde, Flint (b0035) 2002; 68
Leylabadlo, Ghotaslou, Feizabadi, Farajnia, Moaddab, Ganbarov, Kafil (b0110) 2020; 149
Zhang, Huang, Yoon, Kemmitt, Wright, Schneider, Griffith (b0270) 2021; 2
Rios-Covian, Gueimonde, Duncan, Flint, De Los Reyes-Gavilan (b0215) 2015; 362
Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Caporaso (b0015) 2019; 37
Hashimoto, Miyake, Ochiai, Murata (b0080) 2005; 99
Frost, Kacprowski, Rühlemann, Pietzner, Bang, Franke, Lerch (b0055) 2021; 70
Langella (10.1016/j.foodres.2021.110326_b0105) 2019; 10
Khan (10.1016/j.foodres.2021.110326_b0095) 2012; 6
Alameddine (10.1016/j.foodres.2021.110326_b0005) 2019; 10
Li (10.1016/j.foodres.2021.110326_b0115) 2018; 831
Soto-Martin (10.1016/j.foodres.2021.110326_b0230) 2020; 11
Duncan (10.1016/j.foodres.2021.110326_b0035) 2002; 68
Koga (10.1016/j.foodres.2021.110326_b0100) 2016; 80
Momma (10.1016/j.foodres.2021.110326_b0170) 2000; 182
10.1016/j.foodres.2021.110326_b0045
10.1016/j.foodres.2021.110326_b0250
Kanda (10.1016/j.foodres.2021.110326_b0090) 2013; 48
Odamaki (10.1016/j.foodres.2021.110326_b0190) 2016; 16
Lopez-Siles (10.1016/j.foodres.2021.110326_b0135) 2012; 78
Parks (10.1016/j.foodres.2021.110326_b0205) 2015; 25
Geuking (10.1016/j.foodres.2021.110326_b0060) 2014; 5
Zhang (10.1016/j.foodres.2021.110326_b0270) 2021; 2
Wang (10.1016/j.foodres.2021.110326_b0255) 2006; 26
Li (10.1016/j.foodres.2021.110326_b0120) 2016; 39
Momma (10.1016/j.foodres.2021.110326_b0165) 2005; 44
10.1016/j.foodres.2021.110326_bib272
Tochio (10.1016/j.foodres.2021.110326_b0245) 2018; 7
10.1016/j.foodres.2021.110326_b0020
10.1016/j.foodres.2021.110326_b0140
Cherbuy (10.1016/j.foodres.2021.110326_b0025) 2019; 10
Xu (10.1016/j.foodres.2021.110326_b0260) 2020; 12
Frost (10.1016/j.foodres.2021.110326_b0055) 2021; 70
Duncan (10.1016/j.foodres.2021.110326_bib271) 2014; 87
Hosomi (10.1016/j.foodres.2021.110326_b0085) 2017; 7
Rios-Covian (10.1016/j.foodres.2021.110326_b0215) 2015; 362
Bolyen (10.1016/j.foodres.2021.110326_b0015) 2019; 37
Hashimoto (10.1016/j.foodres.2021.110326_b0075) 2000; 182
Gupta (10.1016/j.foodres.2021.110326_b0070) 2019; 10
10.1016/j.foodres.2021.110326_b0225
Milani (10.1016/j.foodres.2021.110326_b0155) 2013; 8
Bai (10.1016/j.foodres.2021.110326_b0010) 2017; 12
Odamaki (10.1016/j.foodres.2021.110326_b0185) 2018; 8
10.1016/j.foodres.2021.110326_b0030
Munukka (10.1016/j.foodres.2021.110326_b0175) 2017; 11
10.1016/j.foodres.2021.110326_b0150
Park (10.1016/j.foodres.2021.110326_b0200) 2020
Takagi (10.1016/j.foodres.2021.110326_b0235) 2016; 11
Thomas (10.1016/j.foodres.2021.110326_b0240) 2013; 144
Lin (10.1016/j.foodres.2021.110326_b0125) 2019; 1–2
Miwa (10.1016/j.foodres.2021.110326_b0160) 1985; 321
Gibson (10.1016/j.foodres.2021.110326_b0065) 2017; 14
Hashimoto (10.1016/j.foodres.2021.110326_b0080) 2005; 99
Lopez-Siles (10.1016/j.foodres.2021.110326_b0130) 2017; 11
Martín (10.1016/j.foodres.2021.110326_b0145) 2018; 9
Leylabadlo (10.1016/j.foodres.2021.110326_b0110) 2020; 149
Qiu (10.1016/j.foodres.2021.110326_b0210) 2013; 7
References_xml – reference: Touchefeu, Y., Duchalais, E., Bruley des Varannes, S., Alameddine, J., Mirallie, E., Matysiak-Budnik, T., … Montassier, E. (2021). Concomitant decrease of double-positive lymphocyte population CD4CD8αα and Faecalibacterium prausnitzii in patients with colorectal cancer. European Journal of Gastroenterology & Hepatology, 32(2), 149–156. https://doi.org/10.1097/MEG.0000000000001842.
– volume: 26
  start-page: 597
  year: 2006
  end-page: 603
  ident: b0255
  publication-title: vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate.
– reference: Chambers, E. S., Preston, T., Frost, G., & Morrison, D. J. (2018). Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. 198–206.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0235
  article-title: A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics
  publication-title: PLoS ONE
– volume: 6
  start-page: 1578
  year: 2012
  end-page: 1585
  ident: b0095
  article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic – anoxic interphases
  publication-title: The ISME Journal
– reference: National Health and Nutrition Survey (2018). Retrieved from
– volume: 5
  year: 2014
  ident: b0060
  article-title: The interplay between the gut microbiota and the immune system
  publication-title: Gut Microbes
– volume: 11
  start-page: 841
  year: 2017
  end-page: 852
  ident: b0130
  article-title: Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics
  publication-title: ISME Journal
– volume: 10
  start-page: 1
  year: August 2019
  end-page: 2
  ident: b0105
  publication-title: Editorial : Next-Generation Probiotics : From Commensal Bacteria to Novel Drugs and Food Supplements.
– volume: 831
  start-page: 52
  year: 2018
  end-page: 59
  ident: b0115
  article-title: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells
  publication-title: European Journal of Pharmacology
– volume: 80
  start-page: 844
  year: 2016
  end-page: 851
  ident: b0100
  article-title: Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants
  publication-title: Pediatric Research
– reference: Accessed 18 September 2020.
– volume: 10
  year: September 2019
  ident: b0070
  publication-title: Macroalga-Derived Alginate Oligosaccharide Alters Intestinal Bacteria of Atlantic Salmon.
– reference: Cherry, P., Yadav, S., Strain, C. R., Allsopp, P. J., Mcsorley, E. M., Ross, R. P., & Stanton, C. (2019). Prebiotics from Seaweeds: An Ocean of Opportunity ? 1–35.
– volume: 149
  year: 2020
  ident: b0110
  article-title: The critical role of Faecalibacterium prausnitzii in human health: An overview
  publication-title: Microbial Pathogenesis
– reference: Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2020). SCFA: Mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, (December 2019). https://doi.org/10.1017/S0029665120006916.
– volume: 37
  start-page: 852
  year: 2019
  end-page: 857
  ident: b0015
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nature Biotechnology
– volume: 11
  start-page: 1
  year: 2020
  end-page: 18
  ident: b0230
  article-title: Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities
  publication-title: MBio
– volume: 9
  start-page: 346
  year: 2018
  ident: b0145
  article-title: Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii
  publication-title: Frontiers in Microbiology
– volume: 48
  start-page: 452
  year: 2013
  end-page: 458
  ident: b0090
  article-title: Investigation of the freely available easy-to-use software “EZR” for medical statistics
  publication-title: Bone Marrow Transplantation
– volume: 12
  start-page: 224
  year: 2020
  end-page: 236
  ident: b0260
  article-title: Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression
  publication-title: Journal of Diabetes
– volume: 182
  start-page: 3998
  year: 2000
  end-page: 4004
  ident: b0170
  article-title: A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules
  publication-title: Journal of Bacteriology
– year: 2020
  ident: b0200
  article-title: Of men in mice: The development and application of a humanized gnotobiotic mouse model for microbiome therapeutics
  publication-title: Experimental and Molecular Medicine
– volume: 1–2
  year: 2019
  ident: b0125
  article-title: Investiture of next generation probiotics on amelioration of diseases – Strains do matter
  publication-title: Medicine in Microecology
– volume: 362
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0215
  article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis
  publication-title: FEMS Microbiology Letters
– volume: 87
  start-page: 30
  year: 2014
  end-page: 40
  ident: bib271
  article-title: Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro
  publication-title: FEMS Microbiology Ecology
– volume: 68
  start-page: 5186
  year: 2002
  end-page: 5190
  ident: b0035
  article-title: Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine
  publication-title: Applied and Environmental Microbiology
– reference: Martín, R., Miquel, S., Chain, F., Natividad, J. M., Jury, J., Lu, J., … Bermúdez-humarán, L. G. (2015). Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. 1–12. https://doi.org/10.1186/s12866-015-0400-1.
– volume: 182
  start-page: 4572
  year: 2000
  end-page: 4577
  ident: b0075
  article-title: Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate
  publication-title: Journal of Bacteriology
– volume: 70
  start-page: 522
  year: 2021
  end-page: 530
  ident: b0055
  article-title: Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function
  publication-title: Gut
– volume: 39
  start-page: 19
  year: 2016
  end-page: 25
  ident: b0120
  article-title: In vitro fermentation of alginate and its derivatives by human gut microbiota
  publication-title: Anaerobe
– volume: 44
  start-page: 5053
  year: 2005
  end-page: 5064
  ident: b0165
  article-title: Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: Molecular insights into alginate transport in the periplasm
  publication-title: Biochemistry
– volume: 144
  start-page: S-59
  year: 2013
  ident: b0240
  article-title: Bacteroides Thetaiotaomicron and Faecalibacterium prausnitzii Shape the Mucus Production and Mucin O-Glycosylation in Colon Epithelium
  publication-title: Gastroenterology
– volume: 10
  start-page: 143
  year: 2019
  ident: b0005
  article-title: Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction
  publication-title: Frontiers in Immunology
– volume: 2
  start-page: 74
  year: 2021
  end-page: 98.e9
  ident: b0270
  article-title: Primary Human Colonic Mucosal Barrier Crosstalk with Super Oxygen-Sensitive Faecalibacterium prausnitzii in Continuous Culture
  publication-title: Med
– volume: 12
  start-page: 1
  year: 2017
  end-page: 15
  ident: b0010
  article-title: Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota
  publication-title: PLoS ONE
– volume: 78
  start-page: 420
  year: 2012
  end-page: 428
  ident: b0135
  article-title: Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth
  publication-title: Applied and Environmental Microbiology
– volume: 25
  start-page: 1043
  year: 2015
  end-page: 1055
  ident: b0205
  article-title: CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes
  publication-title: Genome Research
– volume: 14
  start-page: 491
  year: 2017
  end-page: 502
  ident: b0065
  article-title: CONSENSUS The International Scientific Association and scope of prebiotics
  publication-title: Nature Publishing Group
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0185
  article-title: Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan
  publication-title: Scientific Reports
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0085
  article-title: Method for preparing DNA from feces in guanidine thiocyanate solution affects 16S rRNA-based profiling of human microbiota diversity
  publication-title: Scientific Reports
– volume: 10
  start-page: 1
  year: JUN 2019
  end-page: 11
  ident: b0025
  article-title: Modulation of the caecal gut microbiota of mice by dietary supplement containing resistant starch: Impact is donor-dependent
  publication-title: Frontiers in Microbiology
– volume: 321
  start-page: 165
  year: 1985
  end-page: 174
  ident: b0160
  article-title: high-performance liquid chromatography of short-and long-chain fatty acids as 2-nitrophenylhydrazides
  publication-title: Journal of Chromatography A
– reference: Estevinho, M. M., Rocha, C., Correia, L., Lago, P., Ministro, P., Portela, F., … GEDII (Portuguese IBD Group). (2020). Features of Fecal and Colon Microbiomes Associate With Responses to Biologic Therapies for Inflammatory Bowel Diseases: A Systematic Review. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association, 18(5), 1054–1069. https://doi.org/10.1016/j.cgh.2019.08.063.
– reference: Shang, Q., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2018). Gut microbiota fermentation of marine polysaccharides and its e ff ects on intestinal ecology : An overview. 179(September 2017), 173–185. https://doi.org/10.1016/j.carbpol.2017.09.059.
– volume: 99
  start-page: 48
  year: 2005
  end-page: 54
  ident: b0080
  article-title: Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution
  publication-title: Journal of Bioscience and Bioengineering
– volume: 7
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0245
  article-title: 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates faecalibacterium prausnitzii as well as bifidobacteria in humans
  publication-title: Foods
– volume: 11
  start-page: 1667
  year: 2017
  end-page: 1679
  ident: b0175
  article-title: Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice
  publication-title: ISME Journal
– volume: 16
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0190
  article-title: Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study
  publication-title: BMC Microbiology
– volume: 8
  year: 2013
  ident: b0155
  article-title: Assessing the fecal microbiota: An optimized ion torrent 16S rRNA gene-based analysis protocol
  publication-title: PloS One
– volume: 7
  start-page: e558
  year: 2013
  end-page: e568
  ident: b0210
  article-title: ScienceDirect Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis
  publication-title: Journal of Crohn’s and Colitis
– volume: 11
  start-page: 841
  issue: 4
  year: 2017
  ident: 10.1016/j.foodres.2021.110326_b0130
  article-title: Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics
  publication-title: ISME Journal
  doi: 10.1038/ismej.2016.176
– volume: 1–2
  issue: November
  year: 2019
  ident: 10.1016/j.foodres.2021.110326_b0125
  article-title: Investiture of next generation probiotics on amelioration of diseases – Strains do matter
  publication-title: Medicine in Microecology
– volume: 99
  start-page: 48
  issue: 1
  year: 2005
  ident: 10.1016/j.foodres.2021.110326_b0080
  article-title: Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution
  publication-title: Journal of Bioscience and Bioengineering
  doi: 10.1263/jbb.99.48
– volume: 5
  issue: 3
  year: 2014
  ident: 10.1016/j.foodres.2021.110326_b0060
  article-title: The interplay between the gut microbiota and the immune system
  publication-title: Gut Microbes
  doi: 10.4161/gmic.29330
– ident: 10.1016/j.foodres.2021.110326_b0140
  doi: 10.1017/S0029665120006916
– volume: 10
  start-page: 143
  year: 2019
  ident: 10.1016/j.foodres.2021.110326_b0005
  article-title: Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction
  publication-title: Frontiers in Immunology
  doi: 10.3389/fimmu.2019.00143
– ident: 10.1016/j.foodres.2021.110326_bib272
– volume: 14
  start-page: 491
  issue: 8
  year: 2017
  ident: 10.1016/j.foodres.2021.110326_b0065
  article-title: CONSENSUS The International Scientific Association and scope of prebiotics
  publication-title: Nature Publishing Group
– volume: 44
  start-page: 5053
  issue: 13
  year: 2005
  ident: 10.1016/j.foodres.2021.110326_b0165
  article-title: Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: Molecular insights into alginate transport in the periplasm
  publication-title: Biochemistry
  doi: 10.1021/bi047781r
– volume: 11
  start-page: 1667
  issue: 7
  year: 2017
  ident: 10.1016/j.foodres.2021.110326_b0175
  article-title: Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice
  publication-title: ISME Journal
  doi: 10.1038/ismej.2017.24
– volume: 70
  start-page: 522
  issue: 3
  year: 2021
  ident: 10.1016/j.foodres.2021.110326_b0055
  article-title: Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-322753
– volume: 39
  start-page: 19
  year: 2016
  ident: 10.1016/j.foodres.2021.110326_b0120
  article-title: In vitro fermentation of alginate and its derivatives by human gut microbiota
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2016.02.003
– year: 2020
  ident: 10.1016/j.foodres.2021.110326_b0200
  article-title: Of men in mice: The development and application of a humanized gnotobiotic mouse model for microbiome therapeutics
  publication-title: Experimental and Molecular Medicine
  doi: 10.1038/s12276-020-0473-2
– volume: 10
  year: 2019
  ident: 10.1016/j.foodres.2021.110326_b0070
  publication-title: Macroalga-Derived Alginate Oligosaccharide Alters Intestinal Bacteria of Atlantic Salmon.
– volume: 78
  start-page: 420
  issue: 2
  year: 2012
  ident: 10.1016/j.foodres.2021.110326_b0135
  article-title: Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.06858-11
– volume: 11
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.foodres.2021.110326_b0230
  article-title: Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities
  publication-title: MBio
  doi: 10.1128/mBio.00886-20
– volume: 8
  issue: 7
  year: 2013
  ident: 10.1016/j.foodres.2021.110326_b0155
  article-title: Assessing the fecal microbiota: An optimized ion torrent 16S rRNA gene-based analysis protocol
  publication-title: PloS One
  doi: 10.1371/journal.pone.0068739
– volume: 12
  start-page: 224
  issue: 3
  year: 2020
  ident: 10.1016/j.foodres.2021.110326_b0260
  article-title: Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression
  publication-title: Journal of Diabetes
  doi: 10.1111/1753-0407.12986
– volume: 182
  start-page: 3998
  issue: 14
  year: 2000
  ident: 10.1016/j.foodres.2021.110326_b0170
  article-title: A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.182.14.3998-4004.2000
– volume: 6
  start-page: 1578
  issue: 8
  year: 2012
  ident: 10.1016/j.foodres.2021.110326_b0095
  article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic – anoxic interphases
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2012.5
– volume: 26
  start-page: 597
  year: 2006
  ident: 10.1016/j.foodres.2021.110326_b0255
  publication-title: vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate.
– volume: 144
  start-page: S-59
  issue: 5
  year: 2013
  ident: 10.1016/j.foodres.2021.110326_b0240
  article-title: Bacteroides Thetaiotaomicron and Faecalibacterium prausnitzii Shape the Mucus Production and Mucin O-Glycosylation in Colon Epithelium
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(13)60210-3
– volume: 182
  start-page: 4572
  issue: 16
  year: 2000
  ident: 10.1016/j.foodres.2021.110326_b0075
  article-title: Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.182.16.4572-4577.2000
– volume: 7
  start-page: e558
  issue: 11
  year: 2013
  ident: 10.1016/j.foodres.2021.110326_b0210
  article-title: ScienceDirect Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis
  publication-title: Journal of Crohn’s and Colitis
  doi: 10.1016/j.crohns.2013.04.002
– volume: 362
  start-page: 1
  issue: 21
  year: 2015
  ident: 10.1016/j.foodres.2021.110326_b0215
  article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis
  publication-title: FEMS Microbiology Letters
  doi: 10.1093/femsle/fnv176
– ident: 10.1016/j.foodres.2021.110326_b0250
  doi: 10.1097/MEG.0000000000001842
– volume: 80
  start-page: 844
  issue: 6
  year: 2016
  ident: 10.1016/j.foodres.2021.110326_b0100
  article-title: Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants
  publication-title: Pediatric Research
  doi: 10.1038/pr.2016.167
– volume: 9
  start-page: 346
  year: 2018
  ident: 10.1016/j.foodres.2021.110326_b0145
  article-title: Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2018.00346
– volume: 2
  start-page: 74
  issue: 1
  year: 2021
  ident: 10.1016/j.foodres.2021.110326_b0270
  article-title: Primary Human Colonic Mucosal Barrier Crosstalk with Super Oxygen-Sensitive Faecalibacterium prausnitzii in Continuous Culture
  publication-title: Med
  doi: 10.1016/j.medj.2020.07.001
– volume: 48
  start-page: 452
  issue: 3
  year: 2013
  ident: 10.1016/j.foodres.2021.110326_b0090
  article-title: Investigation of the freely available easy-to-use software “EZR” for medical statistics
  publication-title: Bone Marrow Transplantation
  doi: 10.1038/bmt.2012.244
– volume: 11
  start-page: 1
  issue: 8
  year: 2016
  ident: 10.1016/j.foodres.2021.110326_b0235
  article-title: A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0160533
– ident: 10.1016/j.foodres.2021.110326_b0020
  doi: 10.1007/s13668-018-0248-8
– volume: 87
  start-page: 30
  issue: 1
  year: 2014
  ident: 10.1016/j.foodres.2021.110326_bib271
  article-title: Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/1574-6941.12186
– volume: 25
  start-page: 1043
  issue: 7
  year: 2015
  ident: 10.1016/j.foodres.2021.110326_b0205
  article-title: CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes
  publication-title: Genome Research
  doi: 10.1101/gr.186072.114
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.foodres.2021.110326_b0105
  publication-title: Editorial : Next-Generation Probiotics : From Commensal Bacteria to Novel Drugs and Food Supplements.
– volume: 12
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.foodres.2021.110326_b0010
  article-title: Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0171576
– volume: 831
  start-page: 52
  year: 2018
  ident: 10.1016/j.foodres.2021.110326_b0115
  article-title: Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells
  publication-title: European Journal of Pharmacology
  doi: 10.1016/j.ejphar.2018.05.003
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.foodres.2021.110326_b0190
  article-title: Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study
  publication-title: BMC Microbiology
  doi: 10.1186/s12866-016-0708-5
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.foodres.2021.110326_b0025
  article-title: Modulation of the caecal gut microbiota of mice by dietary supplement containing resistant starch: Impact is donor-dependent
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2019.01234
– ident: 10.1016/j.foodres.2021.110326_b0045
  doi: 10.1016/j.cgh.2019.08.063
– ident: 10.1016/j.foodres.2021.110326_b0225
  doi: 10.1016/j.carbpol.2017.09.059
– volume: 37
  start-page: 852
  issue: 8
  year: 2019
  ident: 10.1016/j.foodres.2021.110326_b0015
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-019-0209-9
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.foodres.2021.110326_b0085
  article-title: Method for preparing DNA from feces in guanidine thiocyanate solution affects 16S rRNA-based profiling of human microbiota diversity
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-04511-0
– volume: 321
  start-page: 165
  year: 1985
  ident: 10.1016/j.foodres.2021.110326_b0160
  article-title: high-performance liquid chromatography of short-and long-chain fatty acids as 2-nitrophenylhydrazides
  publication-title: Journal of Chromatography A
  doi: 10.1016/S0021-9673(01)90433-9
– ident: 10.1016/j.foodres.2021.110326_b0150
  doi: 10.1186/s12866-015-0400-1
– volume: 7
  start-page: 1
  issue: 9
  year: 2018
  ident: 10.1016/j.foodres.2021.110326_b0245
  article-title: 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates faecalibacterium prausnitzii as well as bifidobacteria in humans
  publication-title: Foods
  doi: 10.3390/foods7090140
– volume: 68
  start-page: 5186
  issue: 10
  year: 2002
  ident: 10.1016/j.foodres.2021.110326_b0035
  article-title: Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.68.10.5186-5190.2002
– ident: 10.1016/j.foodres.2021.110326_b0030
  doi: 10.3390/md17060327
– volume: 149
  year: 2020
  ident: 10.1016/j.foodres.2021.110326_b0110
  article-title: The critical role of Faecalibacterium prausnitzii in human health: An overview
  publication-title: Microbial Pathogenesis
  doi: 10.1016/j.micpath.2020.104344
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.foodres.2021.110326_b0185
  article-title: Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-18391-x
SSID ssj0006579
Score 2.5467708
Snippet [Display omitted] •Alginate increases F. prausnitzii during human fecal fermentation in vitro.•Bacteroides species produce large amounts of acetate when...
Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110326
SubjectTerms ABC transporters
acetic acid
alginate lyase
Alginate oligosaccharides
alginates
bacteria
Bacteroides
Butyrate-producing-bacteria
carbon
correlation
Cross-feeding
digestive system
fermentation
fermenters
food research
genomics
Gut microbiota
health promotion
humans
industrial applications
intestinal microorganisms
oligosaccharides
oxygen
pH-controlled single-batch fermenter
Prebiotics
probiotics
quantitative polymerase chain reaction
sole
Title Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides
URI https://dx.doi.org/10.1016/j.foodres.2021.110326
https://www.proquest.com/docview/2524299173
https://www.proquest.com/docview/2535122414
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFNBK_Ztc2rPeriuip6UcFbSdpEu2i7uN2LB3-7kzZ1VUTBY0IGwkwy30wyD4QOtWLWZqkk1jBOmGCWRIwKwtw0mBwqqB9zrq7F4I5d3PP7GdRrc2FcWKXX_Y1Or7W1n-l6bnZHed69AeMb0FXEoasiGnKX8MuYdKe88zYN8xDc19sTlLjV0yye7rBjyzIDrxbcxDBwAfHU1Vj4GZ--aeoafvrLaMnbjfi42doKmjHFKppv04rHq2jxU2XBNTQ8A_e6eiSjJtqueMBN4AYuLVZPrhdDZXBZ4L4yIKRcNzWbJ8949KImY7jmr3mOfQ8fXO8U2FzjHHYvt_ikJijzzIzX0W3_9LY3IL6tAklZGFYk4JHhGdVWcpsB4mt7lIEkBQVfMM2EATboINZcagW2mUiNFhoMpdgcxVRQTTfQbFEWZhPhGChTIePYgBEZCaNMxLlSUmgpTRhkW4i1vExSX3Lcdb54StrYsmHiRZA4ESSNCLZQ54Ns1NTc-IsgagWVfDk8CeDCX6QHrWATuFjut0QVppzAIh46rA4k_W0N5fXXJNv-_xZ20IIbNfFnu2i2epmYPbB0Kr1fH-V9NHd8fjm4fgdTMABV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8q41A4IBibGJ9G4up2iT-SHLeKrsC2y4rUm2Un9kg1kmpNLxz423lOHMomRCWujp9kvWe_D-fn3wP4YDR3rsgT6iwXlEvuaMqZpNwPY8qho_Yy5-JSzr7yzwuxGMCkfwvjYZXB93c-vfXWYWQctDleleX4CpNvjK4yiz2LaCzSB_CQ4_H1bQxGP7c4DykC4Z5k1E_fPuMZL0eurgssa7FOjCOPiGeeZOHvAeqeq27jz_QpPAmJIznp1vYMBrbah2H_rni9D4__oBZ8DsszrK-bb3TVwe2qa9IhN0jtiL7xzRgaS-qKTLVFK5WmI23efCerW71Z4zn_UZYkNPEh7UpRz22gI_7qlpy2AnVZ2PUBzKcf55MZDX0VaM7juKGRSK0omHGJcAWGfOOOCzSlZFgM5oW0qAYTZUYkRmNyJnNrpMFMKbPHGZPMsEPYq-rKvgCSoWQukyyzmEWm0mqbCqF1Ik2S2DgqjoD3ulR54Bz3rS9uVA8uW6pgAuVNoDoTHMHot9iqI93YJZD2hlJ3do_CwLBL9H1vWIUny_8u0ZWtNzhJxD5YRwn71xwm2n-T_OX_L-EdDGfzi3N1_unyyyt45L90YLTXsNfcbuwbTHsa87bd1r8AHb0B4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth-promoting+effect+of+alginate+on+Faecalibacterium+prausnitzii+through+cross-feeding+with+Bacteroides&rft.jtitle=Food+research+international&rft.au=Murakami%2C+Ryuta&rft.au=Hashikura%2C+Nanami&rft.au=Yoshida%2C+Keisuke&rft.au=Xiao%2C+Jin-zhong&rft.date=2021-06-01&rft.issn=0963-9969&rft.volume=144+p.110326-&rft_id=info:doi/10.1016%2Fj.foodres.2021.110326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9969&client=summon