The Critical Role of Electron‐Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers
Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐...
Saved in:
Published in | Advanced electronic materials Vol. 5; no. 5 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Blackwell (John Wiley & Sons)
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists in para‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record low Tg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tg conjugated polymers for stretchable electronics.
This paper investigates the effect of isolated/fused thiophene units on the thermomechanical properties of donor–acceptor conjugated polymers. In diketopyrrolopyrrole‐based polymers, it is observed that thiophene units in the main chain structure serve as the antiplasticizer, which increase the stiffness and glass transition temperature of polymer chains. This allows for the development of a much softer conjugated polymer. |
---|---|
AbstractList | Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (
T
g
) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists in
para
‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record low
T
g
, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐
T
g
conjugated polymers for stretchable electronics. Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists in para‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record low Tg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tg conjugated polymers for stretchable electronics. This paper investigates the effect of isolated/fused thiophene units on the thermomechanical properties of donor–acceptor conjugated polymers. In diketopyrrolopyrrole‐based polymers, it is observed that thiophene units in the main chain structure serve as the antiplasticizer, which increase the stiffness and glass transition temperature of polymer chains. This allows for the development of a much softer conjugated polymer. |
Author | Ehlenberg, Dakota Ocheje, Michael U. Azoulay, Jason D. Zhou, Dongshan Chiu, Yu‐Cheng Luo, Shaochuan Gu, Xiaodan Cao, Zhiqiang Rondeau‐Gagné, Simon Liu, Yi Zhang, Song Huang, Lifeng Galuska, Luke Cheng, Yu‐Hsuan Goodman, Renée B. |
Author_xml | – sequence: 1 givenname: Song surname: Zhang fullname: Zhang, Song organization: The University of Southern Mississippi – sequence: 2 givenname: Michael U. surname: Ocheje fullname: Ocheje, Michael U. organization: University of Windsor – sequence: 3 givenname: Lifeng surname: Huang fullname: Huang, Lifeng organization: The University of Southern Mississippi – sequence: 4 givenname: Luke surname: Galuska fullname: Galuska, Luke organization: The University of Southern Mississippi – sequence: 5 givenname: Zhiqiang surname: Cao fullname: Cao, Zhiqiang organization: The University of Southern Mississippi – sequence: 6 givenname: Shaochuan surname: Luo fullname: Luo, Shaochuan organization: Nanjing University – sequence: 7 givenname: Yu‐Hsuan surname: Cheng fullname: Cheng, Yu‐Hsuan organization: National Taiwan University of Science and Technology – sequence: 8 givenname: Dakota surname: Ehlenberg fullname: Ehlenberg, Dakota organization: The University of Southern Mississippi – sequence: 9 givenname: Renée B. surname: Goodman fullname: Goodman, Renée B. organization: University of Windsor – sequence: 10 givenname: Dongshan surname: Zhou fullname: Zhou, Dongshan organization: Nanjing University – sequence: 11 givenname: Yi surname: Liu fullname: Liu, Yi organization: Lawrence Berkeley National Laboratory – sequence: 12 givenname: Yu‐Cheng surname: Chiu fullname: Chiu, Yu‐Cheng organization: National Taiwan University of Science and Technology – sequence: 13 givenname: Jason D. surname: Azoulay fullname: Azoulay, Jason D. organization: The University of Southern Mississippi – sequence: 14 givenname: Simon surname: Rondeau‐Gagné fullname: Rondeau‐Gagné, Simon email: srondeau@uwindsor.ca organization: University of Windsor – sequence: 15 givenname: Xiaodan orcidid: 0000-0002-1123-3673 surname: Gu fullname: Gu, Xiaodan email: xiaodan.gu@usm.edu organization: The University of Southern Mississippi |
BackLink | https://www.osti.gov/biblio/1499211$$D View this record in Osti.gov |
BookMark | eNqFkMtKAzEYhYMoeN26Du5bc5lpJ8tS6wVaFK3gbkgzf2xkJhmSiHTnE4jgG_okpq2oCOIq_-L7DjlnF21aZwGhQ0q6lBB2LKFuuozQgpBCiA20w6gQHdojd5s_7m10EMIDIYT2ezzL-Q56mc4BD72JRskaX7sasNN4VIOK3tn359cTZ2U09h5P58a1c7CAz7x7bAN2FsckT0DNpV3p0lYJA9-k-8q7Fnw0EJaBKcX59-e3gVLQRufxDTRGOVs9qlX4lasXDfiwj7a0rAMcfL576PZ0NB2ed8aXZxfDwbijMsZER1SaCsa5zEBoyEEzyZUu2Kzoyb6scg5VQXSRM8Fgls2YnOnUGSrO-wpInvE9dLTOdSGaMigTU4v0H5t6lzQTglGaoGwNKe9C8KDLxKUxnI1emrqkpFxuXy63L7-2T1r3l9Z600i_-FsQa-HJ1LD4hy4Ho_Hk2_0AxNmefw |
CitedBy_id | crossref_primary_10_1038_s41467_021_22473_w crossref_primary_10_1021_jacs_2c00072 crossref_primary_10_1039_D0TC04085A crossref_primary_10_1002_adfm_202303031 crossref_primary_10_1021_acs_chemmater_1c02426 crossref_primary_10_1002_polb_24889 crossref_primary_10_1021_acs_macromol_1c00441 crossref_primary_10_1021_acs_macromol_1c00044 crossref_primary_10_1002_pol_20210623 crossref_primary_10_1039_D1TC02116H crossref_primary_10_1002_pol_20210462 crossref_primary_10_1021_acsaelm_1c00932 crossref_primary_10_1055_a_1491_4818 crossref_primary_10_1021_acspolymersau_1c00005 crossref_primary_10_1039_C9PY01026B crossref_primary_10_1002_anie_202015216 crossref_primary_10_1021_acsomega_3c04437 crossref_primary_10_1039_D0TC06059C crossref_primary_10_1021_acs_macromol_9b02738 crossref_primary_10_1039_D3CS00833A crossref_primary_10_1007_s00894_022_05402_6 crossref_primary_10_1002_adfm_202203527 crossref_primary_10_1021_acs_cgd_4c01156 crossref_primary_10_3390_polym14214612 crossref_primary_10_1002_adfm_202000663 crossref_primary_10_1021_acs_jpca_2c02017 crossref_primary_10_1016_j_polymer_2022_124606 crossref_primary_10_1021_acs_macromol_0c00889 crossref_primary_10_1002_aelm_202100928 crossref_primary_10_1021_acsenergylett_3c00755 crossref_primary_10_1002_adfm_202100161 crossref_primary_10_1021_acs_macromol_9b01235 crossref_primary_10_1021_acs_macromol_1c00936 crossref_primary_10_1021_acs_macromol_4c00576 crossref_primary_10_1016_j_xcrp_2022_100911 crossref_primary_10_1021_acs_chemmater_3c02394 crossref_primary_10_1088_2058_8585_acda48 crossref_primary_10_1002_aelm_202100551 crossref_primary_10_1021_acs_macromol_0c02673 crossref_primary_10_1021_acs_macromol_9b02573 crossref_primary_10_1002_marc_202500018 crossref_primary_10_1002_pol_20210281 crossref_primary_10_1021_acsami_0c14592 crossref_primary_10_1021_acsami_1c02860 crossref_primary_10_1021_acs_macromol_1c00268 crossref_primary_10_1002_adma_202302178 crossref_primary_10_1021_acs_macromol_3c00633 crossref_primary_10_1002_macp_201900062 crossref_primary_10_1126_sciadv_adk0647 crossref_primary_10_1021_acs_chemmater_4c03120 crossref_primary_10_1007_s13233_020_8123_z crossref_primary_10_1002_cjce_25426 crossref_primary_10_1021_acs_chemmater_0c01437 crossref_primary_10_3390_polym15214268 crossref_primary_10_1002_adfm_202202456 crossref_primary_10_1021_acs_chemmater_0c03854 crossref_primary_10_1002_pol_20210550 crossref_primary_10_1002_ange_202015216 crossref_primary_10_1016_j_dyepig_2025_112782 crossref_primary_10_1002_adma_202110639 crossref_primary_10_1007_s10895_022_03075_1 crossref_primary_10_1016_j_compositesb_2021_109392 crossref_primary_10_1002_adfm_202105597 crossref_primary_10_3390_molecules26206130 crossref_primary_10_1021_acs_chemmater_3c02131 crossref_primary_10_1002_adfm_202306576 crossref_primary_10_1016_j_jmgm_2023_108538 crossref_primary_10_1002_pol_20230671 crossref_primary_10_1002_marc_202200533 crossref_primary_10_1021_acsami_9b10943 crossref_primary_10_1021_acs_chemmater_0c02258 crossref_primary_10_1021_acs_joc_1c01416 crossref_primary_10_1002_idm2_12223 crossref_primary_10_1021_acsaelm_2c01228 crossref_primary_10_1021_acs_accounts_3c00214 crossref_primary_10_1021_acsaelm_4c02364 crossref_primary_10_1021_acsomega_9b03402 crossref_primary_10_1007_s12633_021_01179_0 crossref_primary_10_1039_D3MH00956D crossref_primary_10_1021_acs_macromol_0c00209 crossref_primary_10_1016_j_optmat_2022_113117 crossref_primary_10_1038_s41598_022_15244_0 crossref_primary_10_1002_sstr_202100024 crossref_primary_10_1039_D1CP03257G crossref_primary_10_1021_acs_chemmater_4c02003 crossref_primary_10_1039_D1TC06103H crossref_primary_10_1002_smll_202206938 crossref_primary_10_1039_D1QM01521D crossref_primary_10_1021_acs_jpclett_2c00509 crossref_primary_10_1039_D2SE01413K crossref_primary_10_1002_marc_202300169 crossref_primary_10_1002_adfm_201905340 crossref_primary_10_1021_acsami_3c10033 crossref_primary_10_1021_acsmacrolett_3c00517 crossref_primary_10_1021_acs_macromol_0c02086 crossref_primary_10_1002_adfm_202002221 crossref_primary_10_1002_adma_202400287 crossref_primary_10_1016_j_jphotochem_2024_116246 crossref_primary_10_1016_j_mtcomm_2025_111624 crossref_primary_10_1021_acs_chemmater_0c03019 crossref_primary_10_1002_app_54448 crossref_primary_10_1021_acs_chemmater_1c04055 crossref_primary_10_1021_acsapm_4c03380 |
Cites_doi | 10.1021/acs.macromol.5b00194 10.1021/ja405112s 10.1038/nmat1175 10.1002/aelm.201600104 10.1039/C6TA08317J 10.1039/C8TA06860G 10.1002/adma.201302514 10.1021/acsami.6b16115 10.1021/ma402215j 10.1002/adfm.201602603 10.1021/acs.macromol.5b01473 10.1021/ma00049a001 10.1021/acs.chemmater.6b00525 10.1038/ncomms8955 10.1016/j.orgel.2018.01.039 10.1021/acsami.5b03310 10.1021/jacs.5b07015 10.1002/adfm.201801874 10.1039/C7PY00435D 10.1002/aelm.201600311 10.1021/cm2037487 10.1039/c2ee21149a 10.1021/cr3001109 10.1021/ja907506r 10.1002/marc.201600377 10.1038/nmat5063 10.1002/adma.201800868 10.1016/j.solmat.2010.12.049 10.1039/C7TC01680H 10.1021/ja204515s 10.1039/c1jm10961h 10.1021/acs.macromol.7b02393 10.1039/c3ee00015j 10.1126/science.aat2612 10.1038/nphoton.2012.11 10.1021/acsami.7b07624 10.1063/1.1613257 10.1002/adfm.201701973 10.1021/cr100380z 10.1126/science.aah4496 10.1002/adma.201304346 10.1021/cm402421p 10.1002/adma.201201795 10.1021/nn1018768 10.1021/ma500286d 10.1021/cm502271j 10.1002/marc.201800092 10.1038/nmat4671 10.1038/nature21004 10.1038/natrevmats.2016.50 10.1002/adma.201304373 10.1038/nature20102 10.1039/c1ee01881g 10.1021/ja203189h 10.1002/adma.201202873 10.1021/acs.chemmater.5b04804 10.1021/cr050140x 10.1021/acs.macromol.7b00712 10.1021/acs.macromol.7b00430 10.1557/mrs.2012.306 10.1002/aelm.201700429 10.1021/acs.chemrev.7b00003 10.1002/adma.201801079 10.1021/la904840q 10.1021/ma8012543 10.1021/acs.chemrev.5b00098 10.1021/acs.macromol.8b00971 10.1103/PhysRevLett.94.127801 10.1016/j.progpolymsci.2013.07.009 10.1002/adfm.200601248 10.1021/ma302463d 10.1088/2058-8585/aa9c9b 10.1021/cm302341m 10.1063/1.1699711 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1002/aelm.201800899 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | 1499211 10_1002_aelm_201800899 AELM201800899 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: #21790345 – fundername: National Science Foundation funderid: OIA‐ 1757220 – fundername: NSERC funderid: RGPIN‐2017‐06611 – fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Science funderid: SC0019361; DE‐AC02‐76SF00515; DE‐AC02‐05CH11231 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAYXX ABJNI ADMLS AFPKN CITATION M~E AEUQT OTOTI |
ID | FETCH-LOGICAL-c4229-9df19233a4e9fe5ef2a3cf82b86a7ad53ed80f85292eb4b2abf001ed337ce0543 |
ISSN | 2199-160X |
IngestDate | Fri May 19 02:34:46 EDT 2023 Tue Jul 01 00:35:16 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Wed Jan 22 16:34:08 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4229-9df19233a4e9fe5ef2a3cf82b86a7ad53ed80f85292eb4b2abf001ed337ce0543 |
Notes | USDOE SC0019361; DE‐AC02‐76SF00515; DE‐AC02‐05CH11231 |
ORCID | 0000-0002-1123-3673 0000000211233673 |
OpenAccessLink | https://www.osti.gov/biblio/1499211 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1499211 crossref_citationtrail_10_1002_aelm_201800899 crossref_primary_10_1002_aelm_201800899 wiley_primary_10_1002_aelm_201800899_AELM201800899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2019 |
Publisher | Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 5 2018; 361 2017; 8 2007; 107 2003; 119 2013; 25 2017; 2 2017; 3 1950; 21 2014; 26 2004; 3 2016; 540 2017; 355 2016; 37 2013; 6 2017; 9 2017; 117 2018; 6 2015; 48 2018; 39 2010; 26 2018; 4 2015; 137 2011; 21 2018; 30 2012; 24 2010; 4 2007; 17 2018; 28 2015; 6 2013; 46 2017; 27 2014; 47 2009; 131 2011; 4 2016; 15 2015; 7 2011; 133 2017; 50 2018; 17 2016; 1 2012; 112 2016; 2 2013; 38 2015; 115 2016; 539 2011; 95 1969; 66 2013; 135 2018; 51 1992; 25 2008; 41 2005; 94 2012; 6 2018; 56 2016; 28 2016; 26 2012; 5 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 Watts C. (e_1_2_7_57_1) 1969; 66 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 27 start-page: 1701973 year: 2017 publication-title: Adv. Funct. Mater. – volume: 539 start-page: 411 year: 2016 publication-title: Nature – volume: 25 start-page: 1847 year: 2013 publication-title: Adv. Mater. – volume: 540 start-page: 379 year: 2016 publication-title: Nature – volume: 2 start-page: 1600104 year: 2016 publication-title: Adv. Electron. Mater. – volume: 39 start-page: 1800092 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 131 start-page: 16616 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 5146 year: 2017 publication-title: Macromolecules – volume: 6 start-page: 7955 year: 2015 publication-title: Nat. Commun. – volume: 361 start-page: 1094 year: 2018 publication-title: Science – volume: 50 start-page: 3347 year: 2017 publication-title: Macromolecules – volume: 28 start-page: 1801874 year: 2018 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 4544 year: 2014 publication-title: Chem. Mater. – volume: 112 start-page: 2208 year: 2012 publication-title: Chem. Rev. – volume: 46 start-page: 1899 year: 2013 publication-title: Macromolecules – volume: 9 start-page: 25426 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 043002 year: 2017 publication-title: Flexible Printed Electron. – volume: 115 start-page: 12666 year: 2015 publication-title: Chem. Rev. – volume: 28 start-page: 1196 year: 2016 publication-title: Chem. Mater. – volume: 6 start-page: 1684 year: 2013 publication-title: Energy Environ. Sci. – volume: 5 start-page: 6857 year: 2012 publication-title: Energy Environ. Sci. – volume: 51 start-page: 4976 year: 2018 publication-title: Macromolecules – volume: 133 start-page: 15073 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 7538 year: 2010 publication-title: ACS Nano – volume: 135 start-page: 14896 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 129 year: 2018 publication-title: Org. Electron. Phys., Mater. Appl. – volume: 26 start-page: 647 year: 2014 publication-title: Chem. Mater. – volume: 26 start-page: 10 year: 2014 publication-title: Adv. Mater. – volume: 24 start-page: 1316 year: 2012 publication-title: Chem. Mater. – volume: 137 start-page: 9503 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 6081 year: 1992 publication-title: Macromolecules – volume: 1 start-page: 16050 year: 2016 publication-title: Nat. Rev. Mater. – volume: 117 start-page: 6467 year: 2017 publication-title: Chem. Rev. – volume: 38 start-page: 1978 year: 2013 publication-title: Prog. Polym. Sci. – volume: 25 start-page: 6158 year: 2013 publication-title: Adv. Mater. – volume: 47 start-page: 1981 year: 2014 publication-title: Macromolecules – volume: 17 start-page: 2674 year: 2007 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 1336 year: 2018 publication-title: Macromolecules – volume: 30 start-page: 1800868 year: 2018 publication-title: Adv. Mater. – volume: 41 start-page: 7662 year: 2008 publication-title: Macromolecules – volume: 48 start-page: 2048 year: 2015 publication-title: Macromolecules – volume: 3 start-page: 545 year: 2004 publication-title: Nat. Mater. – volume: 15 start-page: 937 year: 2016 publication-title: Nat. Mater. – volume: 24 start-page: 4350 year: 2012 publication-title: Chem. Mater. – volume: 119 start-page: 8730 year: 2003 publication-title: J. Chem. Phys. – volume: 30 start-page: 1801079 year: 2018 publication-title: Adv. Mater. – volume: 37 start-page: 1623 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 38 start-page: 15 year: 2013 publication-title: MRS Bull. – volume: 26 start-page: 1319 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 3 start-page: 1600311 year: 2017 publication-title: Adv. Electron. Mater. – volume: 9 start-page: 8855 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1859 year: 2013 publication-title: Adv. Mater. – volume: 95 start-page: 1168 year: 2011 publication-title: Sol. Energy Mater. Sol. Cells – volume: 5 start-page: 11396 year: 2017 publication-title: J. Mater. Chem. A – volume: 8 start-page: 5185 year: 2017 publication-title: Polym. Chem. – volume: 28 start-page: 2363 year: 2016 publication-title: Chem. Mater. – volume: 5 start-page: 8654 year: 2017 publication-title: J. Mater. Chem. C – volume: 48 start-page: 6534 year: 2015 publication-title: Macromolecules – volume: 94 start-page: 127801 year: 2005 publication-title: Phys. Rev. Lett. – volume: 133 start-page: 10364 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 581 year: 1950 publication-title: J. Appl. Phys. – volume: 6 start-page: 18225 year: 2018 publication-title: J. Mater. Chem. A – volume: 4 start-page: 3314 year: 2011 publication-title: Energy Environ. Sci. – volume: 21 start-page: 9224 year: 2011 publication-title: J. Mater. Chem. – volume: 4 start-page: 1700429 year: 2018 publication-title: Adv. Electron. Mater. – volume: 112 start-page: 5488 year: 2012 publication-title: Chem. Rev. – volume: 7 start-page: 14095 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 107 start-page: 926 year: 2007 publication-title: Chem. Rev. – volume: 355 start-page: 59 year: 2017 publication-title: Science. – volume: 26 start-page: 7254 year: 2016 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 1117 year: 2014 publication-title: Macromolecules – volume: 17 start-page: 119 year: 2018 publication-title: Nat. Mater. – volume: 26 start-page: 9146 year: 2010 publication-title: Langmuir – volume: 66 start-page: 80 year: 1969 publication-title: Trans. Faraday Soc. – ident: e_1_2_7_36_1 doi: 10.1021/acs.macromol.5b00194 – ident: e_1_2_7_30_1 doi: 10.1021/ja405112s – ident: e_1_2_7_53_1 doi: 10.1038/nmat1175 – ident: e_1_2_7_42_1 doi: 10.1002/aelm.201600104 – ident: e_1_2_7_14_1 doi: 10.1039/C6TA08317J – ident: e_1_2_7_17_1 doi: 10.1039/C8TA06860G – ident: e_1_2_7_4_1 doi: 10.1002/adma.201302514 – ident: e_1_2_7_59_1 doi: 10.1021/acsami.6b16115 – ident: e_1_2_7_60_1 doi: 10.1021/ma402215j – ident: e_1_2_7_45_1 doi: 10.1002/adfm.201602603 – ident: e_1_2_7_54_1 doi: 10.1021/acs.macromol.5b01473 – volume: 66 start-page: 80 year: 1969 ident: e_1_2_7_57_1 publication-title: Trans. Faraday Soc. – ident: e_1_2_7_71_1 doi: 10.1021/ma00049a001 – ident: e_1_2_7_40_1 doi: 10.1021/acs.chemmater.6b00525 – ident: e_1_2_7_67_1 doi: 10.1038/ncomms8955 – ident: e_1_2_7_38_1 doi: 10.1016/j.orgel.2018.01.039 – ident: e_1_2_7_27_1 doi: 10.1021/acsami.5b03310 – ident: e_1_2_7_12_1 doi: 10.1021/jacs.5b07015 – ident: e_1_2_7_66_1 doi: 10.1002/adfm.201801874 – ident: e_1_2_7_7_1 doi: 10.1039/C7PY00435D – ident: e_1_2_7_43_1 doi: 10.1002/aelm.201600311 – ident: e_1_2_7_65_1 doi: 10.1021/cm2037487 – ident: e_1_2_7_51_1 doi: 10.1039/c2ee21149a – ident: e_1_2_7_68_1 doi: 10.1021/cr3001109 – ident: e_1_2_7_72_1 doi: 10.1021/ja907506r – ident: e_1_2_7_41_1 doi: 10.1002/marc.201600377 – ident: e_1_2_7_15_1 doi: 10.1038/nmat5063 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201800868 – ident: e_1_2_7_73_1 doi: 10.1016/j.solmat.2010.12.049 – ident: e_1_2_7_31_1 doi: 10.1039/C7TC01680H – ident: e_1_2_7_64_1 doi: 10.1021/ja204515s – ident: e_1_2_7_48_1 doi: 10.1039/c1jm10961h – ident: e_1_2_7_47_1 doi: 10.1021/acs.macromol.7b02393 – ident: e_1_2_7_50_1 doi: 10.1039/c3ee00015j – ident: e_1_2_7_18_1 doi: 10.1126/science.aat2612 – ident: e_1_2_7_8_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_7_61_1 doi: 10.1021/acsami.7b07624 – ident: e_1_2_7_70_1 doi: 10.1063/1.1613257 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.201701973 – ident: e_1_2_7_2_1 doi: 10.1021/cr100380z – ident: e_1_2_7_33_1 doi: 10.1126/science.aah4496 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201304346 – ident: e_1_2_7_29_1 doi: 10.1021/cm402421p – ident: e_1_2_7_32_1 doi: 10.1002/adma.201201795 – ident: e_1_2_7_25_1 doi: 10.1021/nn1018768 – ident: e_1_2_7_19_1 doi: 10.1021/ma500286d – ident: e_1_2_7_35_1 doi: 10.1021/cm502271j – ident: e_1_2_7_52_1 doi: 10.1002/marc.201800092 – ident: e_1_2_7_23_1 doi: 10.1038/nmat4671 – ident: e_1_2_7_24_1 doi: 10.1038/nature21004 – ident: e_1_2_7_11_1 doi: 10.1038/natrevmats.2016.50 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201304373 – ident: e_1_2_7_46_1 doi: 10.1038/nature20102 – ident: e_1_2_7_34_1 doi: 10.1039/c1ee01881g – ident: e_1_2_7_49_1 doi: 10.1021/ja203189h – ident: e_1_2_7_9_1 doi: 10.1002/adma.201202873 – ident: e_1_2_7_28_1 doi: 10.1021/acs.chemmater.5b04804 – ident: e_1_2_7_13_1 doi: 10.1021/cr050140x – ident: e_1_2_7_63_1 doi: 10.1021/acs.macromol.7b00712 – ident: e_1_2_7_74_1 doi: 10.1021/acs.macromol.7b00430 – ident: e_1_2_7_3_1 doi: 10.1557/mrs.2012.306 – ident: e_1_2_7_21_1 doi: 10.1002/aelm.201700429 – ident: e_1_2_7_22_1 doi: 10.1021/acs.chemrev.7b00003 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201801079 – ident: e_1_2_7_69_1 doi: 10.1021/la904840q – ident: e_1_2_7_75_1 doi: 10.1021/ma8012543 – ident: e_1_2_7_6_1 doi: 10.1021/acs.chemrev.5b00098 – ident: e_1_2_7_44_1 doi: 10.1021/acs.macromol.8b00971 – ident: e_1_2_7_55_1 doi: 10.1103/PhysRevLett.94.127801 – ident: e_1_2_7_58_1 doi: 10.1016/j.progpolymsci.2013.07.009 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.200601248 – ident: e_1_2_7_56_1 doi: 10.1021/ma302463d – ident: e_1_2_7_20_1 doi: 10.1088/2058-8585/aa9c9b – ident: e_1_2_7_37_1 doi: 10.1021/cm302341m – ident: e_1_2_7_62_1 doi: 10.1063/1.1699711 |
SSID | ssj0001763453 |
Score | 2.4458416 |
Snippet | Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect... |
SourceID | osti crossref wiley |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | conjugated polymers conjugation linkers stretchable electronics structure–property relationship thermomechanical properties |
Title | The Critical Role of Electron‐Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201800899 https://www.osti.gov/biblio/1499211 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaq7oULAgGiLCAfkDissiROnCbHCi2sUIsQalHFJbIdWyzbTVZLe4DTPgFC4m14nH0SZmI7SaH8XqI2Siat5-t4ZjrzDSGPIqN0lIs0kJrLIIkY2EEuwoBLE3KR4UQRbBSevUyPF8mLJV8OBt96VUubtTxUn3b2lfyPVuEc6BW7ZP9Bs61QOAGvQb9wBA3D8a913M4qeO3rBN1gm7aMAdO_TXHz_N0JsgiAW9lknPwfBQczje2_LW0ASAVrvcIegnOsura0tCAFInsnM54oLIepL8DWnAGWKmSNxUe8qlcfz1xRfUtu68sMeiN3wE-2C_Rz4rp2eylmfgFR73Wvuv9gcdjh0N0wPTG6u-W5WG0-nDYe8XRzqvtJDeyj4v2khrWIXQoTnO0dhUQ-V9JYS7C8eRCl4dJubDvOOXPPe6jmOzcRS0oLXwqZCiLwqDM7w-kHYm6ILXOGbeV7DEIUsLF7kzeLt4suwwemO2loUNvP4VlDQ_ZkW_yWVzSswbpvB0uNtzO_Qa67MIVOLOZukoGubpHPgAzq8UYRb7Q21OPt6vKLRxptkUYt0mhdUUAa7ZBGAWnUIY12SEOBDdKuLr96jNFtjFGPsdtk8exo_vQ4cPM8ApUwlgd5aTCeiEWic6O5NkzEymRMZqkYi5LHusxCk3GWMy0TyQTYizDSZRyPlYbQIr5DhlVd6buEikjioKIo0RAQjKWSWRQqZsqxEDIJy3REAr-ehXJk9zhzZVVYmm5W4PoX7fqPyOP2-nNL8_LLK_dRPQU4qMiyrLAcTa0LB4YRYY3W_iCkmBxNZ-27e78VuU-udb-Q-2S4vtjoB-AIr-VDh7jvXWu3jg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxELVoOLQXBGoRKR_1oVJPK9bej6yPEQoKJUGIJhXisrK9Y4G0WlchHLjxCxAS_5BfwszuJiiHConjruw5eDz289PMG8Z-CmdBKJ0GBhITxELiOZjoMEiMCxOdUUcRKhQen6XDafz7MllkE1ItTKMPsSTcKDLq85oCnAjpwzfVUA0llZILhDz4aPjE1gna4MZe7_-dXk3fiBaMoLhWo8TgVIFIw8uFeGMoD1eNrFxOHY9BtopZ60vneJNttGiR9xv3brE1qL6yR3QtX7Qo4Be-BO4dH7T9bF4enojvpWxmPrm-IdmACnhNMd1yX3EEfHwMVO9bT9dVgcPoeC75ORHzM1JYJYNoxc9eHp77ljJf_Iz_oTx6X5FALBk_9-U9kd7f2PR4MDkaBm1bhcDGUqpAFY5gXaRjUA4ScFJH1mXSZKnu6SKJoMhClyVSSTCxkRrdFgoooqhnARFetM06la9gh3EtDPWLETEgLusZazIRWumKntYmDou0y4LFeua21Ryn1hdl3qgly5zWP1-uf5f9Wo7_16ht_HfkLrknR5xAYreWsoLsHB8ySuGTtstk7bV3jOT9wWi8_Pr-kUk_2OfhZDzKRydnp7vsC_5XTTrkHuvMZ3ewj5Blbg7aTfkKcArnSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbhMxELUglRAXBAJE2lJ8QOK0qu1db9bHCBK10FQRNCjisrK9Y4G0WldpOPTWL0BI_GG_hJndTUoOCInjruw5eDwzz6OZN4y9lsGDNDZPHGiXZFKhH9RWJNoFoW1BE0WoUXh2np8ssvdLvfyji7_jh9gm3MgyWn9NBn5ZheM70lALNXWSS0Q8-Ga4z_Y0hiYxYHvjz4svi7s8CxpQ1pJRom2aROZiueFuFOp4V8hObBpEtLFdyNrGnOlj9qgHi3zcafcJuwfNU_YDNcs3Ewr4x1gDj4FP-nE2tzc_Kd1Lxcz84us3Yg1ogLcZpiseG454j8-A2n3b7bapcBl555rPKS-_IoJVEohS4ur25tfYU-FLXPFPVEYfG-KHJeHzWF9TzvsZW0wnF29Pkn6qQuIzpUxiqkCoLrUZmAAagrKpD4VyRW5HttIpVIUIhVZGgcucsqg1IaFK05EHBHjpczZoYgMvGLfS0bgYmQHCspHzrpDCq1CNrHWZqPIhSzbnWfqecpwmX9RlR5asSjr_cnv-Q_Zmu_6yI9v468oDUk-JMIG4bj0VBfk1vmOMwRftkKlWa_8QUo4nZ7Pt1_7_bHrFHszfTcuz0_MPB-wh_jZdMeQhG6xX3-ElApa1O-rv5G_-t-Zp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Critical+Role+of+Electron%E2%80%90Donating+Thiophene+Groups+on+the+Mechanical+and+Thermal+Properties+of+Donor%E2%80%93Acceptor+Semiconducting+Polymers&rft.jtitle=Advanced+electronic+materials&rft.au=Zhang%2C+Song&rft.au=Ocheje%2C+Michael+U.&rft.au=Huang%2C+Lifeng&rft.au=Galuska%2C+Luke&rft.date=2019-05-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Faelm.201800899&rft.externalDocID=1499211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |