The Critical Role of Electron‐Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers

Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 5; no. 5
Main Authors Zhang, Song, Ocheje, Michael U., Huang, Lifeng, Galuska, Luke, Cao, Zhiqiang, Luo, Shaochuan, Cheng, Yu‐Hsuan, Ehlenberg, Dakota, Goodman, Renée B., Zhou, Dongshan, Liu, Yi, Chiu, Yu‐Cheng, Azoulay, Jason D., Rondeau‐Gagné, Simon, Gu, Xiaodan
Format Journal Article
LanguageEnglish
Published United States Wiley Blackwell (John Wiley & Sons) 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists in para‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record low Tg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tg conjugated polymers for stretchable electronics. This paper investigates the effect of isolated/fused thiophene units on the thermomechanical properties of donor–acceptor conjugated polymers. In diketopyrrolopyrrole‐based polymers, it is observed that thiophene units in the main chain structure serve as the antiplasticizer, which increase the stiffness and glass transition temperature of polymer chains. This allows for the development of a much softer conjugated polymer.
AbstractList Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature ( T g ) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists in para ‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record low T g , and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐ T g conjugated polymers for stretchable electronics.
Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists in para‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record low Tg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tg conjugated polymers for stretchable electronics. This paper investigates the effect of isolated/fused thiophene units on the thermomechanical properties of donor–acceptor conjugated polymers. In diketopyrrolopyrrole‐based polymers, it is observed that thiophene units in the main chain structure serve as the antiplasticizer, which increase the stiffness and glass transition temperature of polymer chains. This allows for the development of a much softer conjugated polymer.
Author Ehlenberg, Dakota
Ocheje, Michael U.
Azoulay, Jason D.
Zhou, Dongshan
Chiu, Yu‐Cheng
Luo, Shaochuan
Gu, Xiaodan
Cao, Zhiqiang
Rondeau‐Gagné, Simon
Liu, Yi
Zhang, Song
Huang, Lifeng
Galuska, Luke
Cheng, Yu‐Hsuan
Goodman, Renée B.
Author_xml – sequence: 1
  givenname: Song
  surname: Zhang
  fullname: Zhang, Song
  organization: The University of Southern Mississippi
– sequence: 2
  givenname: Michael U.
  surname: Ocheje
  fullname: Ocheje, Michael U.
  organization: University of Windsor
– sequence: 3
  givenname: Lifeng
  surname: Huang
  fullname: Huang, Lifeng
  organization: The University of Southern Mississippi
– sequence: 4
  givenname: Luke
  surname: Galuska
  fullname: Galuska, Luke
  organization: The University of Southern Mississippi
– sequence: 5
  givenname: Zhiqiang
  surname: Cao
  fullname: Cao, Zhiqiang
  organization: The University of Southern Mississippi
– sequence: 6
  givenname: Shaochuan
  surname: Luo
  fullname: Luo, Shaochuan
  organization: Nanjing University
– sequence: 7
  givenname: Yu‐Hsuan
  surname: Cheng
  fullname: Cheng, Yu‐Hsuan
  organization: National Taiwan University of Science and Technology
– sequence: 8
  givenname: Dakota
  surname: Ehlenberg
  fullname: Ehlenberg, Dakota
  organization: The University of Southern Mississippi
– sequence: 9
  givenname: Renée B.
  surname: Goodman
  fullname: Goodman, Renée B.
  organization: University of Windsor
– sequence: 10
  givenname: Dongshan
  surname: Zhou
  fullname: Zhou, Dongshan
  organization: Nanjing University
– sequence: 11
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: Lawrence Berkeley National Laboratory
– sequence: 12
  givenname: Yu‐Cheng
  surname: Chiu
  fullname: Chiu, Yu‐Cheng
  organization: National Taiwan University of Science and Technology
– sequence: 13
  givenname: Jason D.
  surname: Azoulay
  fullname: Azoulay, Jason D.
  organization: The University of Southern Mississippi
– sequence: 14
  givenname: Simon
  surname: Rondeau‐Gagné
  fullname: Rondeau‐Gagné, Simon
  email: srondeau@uwindsor.ca
  organization: University of Windsor
– sequence: 15
  givenname: Xiaodan
  orcidid: 0000-0002-1123-3673
  surname: Gu
  fullname: Gu, Xiaodan
  email: xiaodan.gu@usm.edu
  organization: The University of Southern Mississippi
BackLink https://www.osti.gov/biblio/1499211$$D View this record in Osti.gov
BookMark eNqFkMtKAzEYhYMoeN26Du5bc5lpJ8tS6wVaFK3gbkgzf2xkJhmSiHTnE4jgG_okpq2oCOIq_-L7DjlnF21aZwGhQ0q6lBB2LKFuuozQgpBCiA20w6gQHdojd5s_7m10EMIDIYT2ezzL-Q56mc4BD72JRskaX7sasNN4VIOK3tn359cTZ2U09h5P58a1c7CAz7x7bAN2FsckT0DNpV3p0lYJA9-k-8q7Fnw0EJaBKcX59-e3gVLQRufxDTRGOVs9qlX4lasXDfiwj7a0rAMcfL576PZ0NB2ed8aXZxfDwbijMsZER1SaCsa5zEBoyEEzyZUu2Kzoyb6scg5VQXSRM8Fgls2YnOnUGSrO-wpInvE9dLTOdSGaMigTU4v0H5t6lzQTglGaoGwNKe9C8KDLxKUxnI1emrqkpFxuXy63L7-2T1r3l9Z600i_-FsQa-HJ1LD4hy4Ho_Hk2_0AxNmefw
CitedBy_id crossref_primary_10_1038_s41467_021_22473_w
crossref_primary_10_1021_jacs_2c00072
crossref_primary_10_1039_D0TC04085A
crossref_primary_10_1002_adfm_202303031
crossref_primary_10_1021_acs_chemmater_1c02426
crossref_primary_10_1002_polb_24889
crossref_primary_10_1021_acs_macromol_1c00441
crossref_primary_10_1021_acs_macromol_1c00044
crossref_primary_10_1002_pol_20210623
crossref_primary_10_1039_D1TC02116H
crossref_primary_10_1002_pol_20210462
crossref_primary_10_1021_acsaelm_1c00932
crossref_primary_10_1055_a_1491_4818
crossref_primary_10_1021_acspolymersau_1c00005
crossref_primary_10_1039_C9PY01026B
crossref_primary_10_1002_anie_202015216
crossref_primary_10_1021_acsomega_3c04437
crossref_primary_10_1039_D0TC06059C
crossref_primary_10_1021_acs_macromol_9b02738
crossref_primary_10_1039_D3CS00833A
crossref_primary_10_1007_s00894_022_05402_6
crossref_primary_10_1002_adfm_202203527
crossref_primary_10_1021_acs_cgd_4c01156
crossref_primary_10_3390_polym14214612
crossref_primary_10_1002_adfm_202000663
crossref_primary_10_1021_acs_jpca_2c02017
crossref_primary_10_1016_j_polymer_2022_124606
crossref_primary_10_1021_acs_macromol_0c00889
crossref_primary_10_1002_aelm_202100928
crossref_primary_10_1021_acsenergylett_3c00755
crossref_primary_10_1002_adfm_202100161
crossref_primary_10_1021_acs_macromol_9b01235
crossref_primary_10_1021_acs_macromol_1c00936
crossref_primary_10_1021_acs_macromol_4c00576
crossref_primary_10_1016_j_xcrp_2022_100911
crossref_primary_10_1021_acs_chemmater_3c02394
crossref_primary_10_1088_2058_8585_acda48
crossref_primary_10_1002_aelm_202100551
crossref_primary_10_1021_acs_macromol_0c02673
crossref_primary_10_1021_acs_macromol_9b02573
crossref_primary_10_1002_marc_202500018
crossref_primary_10_1002_pol_20210281
crossref_primary_10_1021_acsami_0c14592
crossref_primary_10_1021_acsami_1c02860
crossref_primary_10_1021_acs_macromol_1c00268
crossref_primary_10_1002_adma_202302178
crossref_primary_10_1021_acs_macromol_3c00633
crossref_primary_10_1002_macp_201900062
crossref_primary_10_1126_sciadv_adk0647
crossref_primary_10_1021_acs_chemmater_4c03120
crossref_primary_10_1007_s13233_020_8123_z
crossref_primary_10_1002_cjce_25426
crossref_primary_10_1021_acs_chemmater_0c01437
crossref_primary_10_3390_polym15214268
crossref_primary_10_1002_adfm_202202456
crossref_primary_10_1021_acs_chemmater_0c03854
crossref_primary_10_1002_pol_20210550
crossref_primary_10_1002_ange_202015216
crossref_primary_10_1016_j_dyepig_2025_112782
crossref_primary_10_1002_adma_202110639
crossref_primary_10_1007_s10895_022_03075_1
crossref_primary_10_1016_j_compositesb_2021_109392
crossref_primary_10_1002_adfm_202105597
crossref_primary_10_3390_molecules26206130
crossref_primary_10_1021_acs_chemmater_3c02131
crossref_primary_10_1002_adfm_202306576
crossref_primary_10_1016_j_jmgm_2023_108538
crossref_primary_10_1002_pol_20230671
crossref_primary_10_1002_marc_202200533
crossref_primary_10_1021_acsami_9b10943
crossref_primary_10_1021_acs_chemmater_0c02258
crossref_primary_10_1021_acs_joc_1c01416
crossref_primary_10_1002_idm2_12223
crossref_primary_10_1021_acsaelm_2c01228
crossref_primary_10_1021_acs_accounts_3c00214
crossref_primary_10_1021_acsaelm_4c02364
crossref_primary_10_1021_acsomega_9b03402
crossref_primary_10_1007_s12633_021_01179_0
crossref_primary_10_1039_D3MH00956D
crossref_primary_10_1021_acs_macromol_0c00209
crossref_primary_10_1016_j_optmat_2022_113117
crossref_primary_10_1038_s41598_022_15244_0
crossref_primary_10_1002_sstr_202100024
crossref_primary_10_1039_D1CP03257G
crossref_primary_10_1021_acs_chemmater_4c02003
crossref_primary_10_1039_D1TC06103H
crossref_primary_10_1002_smll_202206938
crossref_primary_10_1039_D1QM01521D
crossref_primary_10_1021_acs_jpclett_2c00509
crossref_primary_10_1039_D2SE01413K
crossref_primary_10_1002_marc_202300169
crossref_primary_10_1002_adfm_201905340
crossref_primary_10_1021_acsami_3c10033
crossref_primary_10_1021_acsmacrolett_3c00517
crossref_primary_10_1021_acs_macromol_0c02086
crossref_primary_10_1002_adfm_202002221
crossref_primary_10_1002_adma_202400287
crossref_primary_10_1016_j_jphotochem_2024_116246
crossref_primary_10_1016_j_mtcomm_2025_111624
crossref_primary_10_1021_acs_chemmater_0c03019
crossref_primary_10_1002_app_54448
crossref_primary_10_1021_acs_chemmater_1c04055
crossref_primary_10_1021_acsapm_4c03380
Cites_doi 10.1021/acs.macromol.5b00194
10.1021/ja405112s
10.1038/nmat1175
10.1002/aelm.201600104
10.1039/C6TA08317J
10.1039/C8TA06860G
10.1002/adma.201302514
10.1021/acsami.6b16115
10.1021/ma402215j
10.1002/adfm.201602603
10.1021/acs.macromol.5b01473
10.1021/ma00049a001
10.1021/acs.chemmater.6b00525
10.1038/ncomms8955
10.1016/j.orgel.2018.01.039
10.1021/acsami.5b03310
10.1021/jacs.5b07015
10.1002/adfm.201801874
10.1039/C7PY00435D
10.1002/aelm.201600311
10.1021/cm2037487
10.1039/c2ee21149a
10.1021/cr3001109
10.1021/ja907506r
10.1002/marc.201600377
10.1038/nmat5063
10.1002/adma.201800868
10.1016/j.solmat.2010.12.049
10.1039/C7TC01680H
10.1021/ja204515s
10.1039/c1jm10961h
10.1021/acs.macromol.7b02393
10.1039/c3ee00015j
10.1126/science.aat2612
10.1038/nphoton.2012.11
10.1021/acsami.7b07624
10.1063/1.1613257
10.1002/adfm.201701973
10.1021/cr100380z
10.1126/science.aah4496
10.1002/adma.201304346
10.1021/cm402421p
10.1002/adma.201201795
10.1021/nn1018768
10.1021/ma500286d
10.1021/cm502271j
10.1002/marc.201800092
10.1038/nmat4671
10.1038/nature21004
10.1038/natrevmats.2016.50
10.1002/adma.201304373
10.1038/nature20102
10.1039/c1ee01881g
10.1021/ja203189h
10.1002/adma.201202873
10.1021/acs.chemmater.5b04804
10.1021/cr050140x
10.1021/acs.macromol.7b00712
10.1021/acs.macromol.7b00430
10.1557/mrs.2012.306
10.1002/aelm.201700429
10.1021/acs.chemrev.7b00003
10.1002/adma.201801079
10.1021/la904840q
10.1021/ma8012543
10.1021/acs.chemrev.5b00098
10.1021/acs.macromol.8b00971
10.1103/PhysRevLett.94.127801
10.1016/j.progpolymsci.2013.07.009
10.1002/adfm.200601248
10.1021/ma302463d
10.1088/2058-8585/aa9c9b
10.1021/cm302341m
10.1063/1.1699711
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
OTOTI
DOI 10.1002/aelm.201800899
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID 1499211
10_1002_aelm_201800899
AELM201800899
Genre article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: #21790345
– fundername: National Science Foundation
  funderid: OIA‐ 1757220
– fundername: NSERC
  funderid: RGPIN‐2017‐06611
– fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Science
  funderid: SC0019361; DE‐AC02‐76SF00515; DE‐AC02‐05CH11231
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFPKN
CITATION
M~E
AEUQT
OTOTI
ID FETCH-LOGICAL-c4229-9df19233a4e9fe5ef2a3cf82b86a7ad53ed80f85292eb4b2abf001ed337ce0543
ISSN 2199-160X
IngestDate Fri May 19 02:34:46 EDT 2023
Tue Jul 01 00:35:16 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Wed Jan 22 16:34:08 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4229-9df19233a4e9fe5ef2a3cf82b86a7ad53ed80f85292eb4b2abf001ed337ce0543
Notes USDOE
SC0019361; DE‐AC02‐76SF00515; DE‐AC02‐05CH11231
ORCID 0000-0002-1123-3673
0000000211233673
OpenAccessLink https://www.osti.gov/biblio/1499211
PageCount 11
ParticipantIDs osti_scitechconnect_1499211
crossref_citationtrail_10_1002_aelm_201800899
crossref_primary_10_1002_aelm_201800899
wiley_primary_10_1002_aelm_201800899_AELM201800899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Advanced electronic materials
PublicationYear 2019
Publisher Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Blackwell (John Wiley & Sons)
References 2017; 5
2018; 361
2017; 8
2007; 107
2003; 119
2013; 25
2017; 2
2017; 3
1950; 21
2014; 26
2004; 3
2016; 540
2017; 355
2016; 37
2013; 6
2017; 9
2017; 117
2018; 6
2015; 48
2018; 39
2010; 26
2018; 4
2015; 137
2011; 21
2018; 30
2012; 24
2010; 4
2007; 17
2018; 28
2015; 6
2013; 46
2017; 27
2014; 47
2009; 131
2011; 4
2016; 15
2015; 7
2011; 133
2017; 50
2018; 17
2016; 1
2012; 112
2016; 2
2013; 38
2015; 115
2016; 539
2011; 95
1969; 66
2013; 135
2018; 51
1992; 25
2008; 41
2005; 94
2012; 6
2018; 56
2016; 28
2016; 26
2012; 5
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
Watts C. (e_1_2_7_57_1) 1969; 66
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 27
  start-page: 1701973
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 539
  start-page: 411
  year: 2016
  publication-title: Nature
– volume: 25
  start-page: 1847
  year: 2013
  publication-title: Adv. Mater.
– volume: 540
  start-page: 379
  year: 2016
  publication-title: Nature
– volume: 2
  start-page: 1600104
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 39
  start-page: 1800092
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 131
  start-page: 16616
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 5146
  year: 2017
  publication-title: Macromolecules
– volume: 6
  start-page: 7955
  year: 2015
  publication-title: Nat. Commun.
– volume: 361
  start-page: 1094
  year: 2018
  publication-title: Science
– volume: 50
  start-page: 3347
  year: 2017
  publication-title: Macromolecules
– volume: 28
  start-page: 1801874
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 4544
  year: 2014
  publication-title: Chem. Mater.
– volume: 112
  start-page: 2208
  year: 2012
  publication-title: Chem. Rev.
– volume: 46
  start-page: 1899
  year: 2013
  publication-title: Macromolecules
– volume: 9
  start-page: 25426
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 043002
  year: 2017
  publication-title: Flexible Printed Electron.
– volume: 115
  start-page: 12666
  year: 2015
  publication-title: Chem. Rev.
– volume: 28
  start-page: 1196
  year: 2016
  publication-title: Chem. Mater.
– volume: 6
  start-page: 1684
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 6857
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 4976
  year: 2018
  publication-title: Macromolecules
– volume: 133
  start-page: 15073
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 7538
  year: 2010
  publication-title: ACS Nano
– volume: 135
  start-page: 14896
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 129
  year: 2018
  publication-title: Org. Electron. Phys., Mater. Appl.
– volume: 26
  start-page: 647
  year: 2014
  publication-title: Chem. Mater.
– volume: 26
  start-page: 10
  year: 2014
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1316
  year: 2012
  publication-title: Chem. Mater.
– volume: 137
  start-page: 9503
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 6081
  year: 1992
  publication-title: Macromolecules
– volume: 1
  start-page: 16050
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 117
  start-page: 6467
  year: 2017
  publication-title: Chem. Rev.
– volume: 38
  start-page: 1978
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 25
  start-page: 6158
  year: 2013
  publication-title: Adv. Mater.
– volume: 47
  start-page: 1981
  year: 2014
  publication-title: Macromolecules
– volume: 17
  start-page: 2674
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 1336
  year: 2018
  publication-title: Macromolecules
– volume: 30
  start-page: 1800868
  year: 2018
  publication-title: Adv. Mater.
– volume: 41
  start-page: 7662
  year: 2008
  publication-title: Macromolecules
– volume: 48
  start-page: 2048
  year: 2015
  publication-title: Macromolecules
– volume: 3
  start-page: 545
  year: 2004
  publication-title: Nat. Mater.
– volume: 15
  start-page: 937
  year: 2016
  publication-title: Nat. Mater.
– volume: 24
  start-page: 4350
  year: 2012
  publication-title: Chem. Mater.
– volume: 119
  start-page: 8730
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 1801079
  year: 2018
  publication-title: Adv. Mater.
– volume: 37
  start-page: 1623
  year: 2016
  publication-title: Macromol. Rapid Commun.
– volume: 38
  start-page: 15
  year: 2013
  publication-title: MRS Bull.
– volume: 26
  start-page: 1319
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 3
  start-page: 1600311
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 9
  start-page: 8855
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1859
  year: 2013
  publication-title: Adv. Mater.
– volume: 95
  start-page: 1168
  year: 2011
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 5
  start-page: 11396
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 5185
  year: 2017
  publication-title: Polym. Chem.
– volume: 28
  start-page: 2363
  year: 2016
  publication-title: Chem. Mater.
– volume: 5
  start-page: 8654
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 48
  start-page: 6534
  year: 2015
  publication-title: Macromolecules
– volume: 94
  start-page: 127801
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 133
  start-page: 10364
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 581
  year: 1950
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 18225
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 3314
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 9224
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 1700429
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 112
  start-page: 5488
  year: 2012
  publication-title: Chem. Rev.
– volume: 7
  start-page: 14095
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  start-page: 926
  year: 2007
  publication-title: Chem. Rev.
– volume: 355
  start-page: 59
  year: 2017
  publication-title: Science.
– volume: 26
  start-page: 7254
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 1117
  year: 2014
  publication-title: Macromolecules
– volume: 17
  start-page: 119
  year: 2018
  publication-title: Nat. Mater.
– volume: 26
  start-page: 9146
  year: 2010
  publication-title: Langmuir
– volume: 66
  start-page: 80
  year: 1969
  publication-title: Trans. Faraday Soc.
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.macromol.5b00194
– ident: e_1_2_7_30_1
  doi: 10.1021/ja405112s
– ident: e_1_2_7_53_1
  doi: 10.1038/nmat1175
– ident: e_1_2_7_42_1
  doi: 10.1002/aelm.201600104
– ident: e_1_2_7_14_1
  doi: 10.1039/C6TA08317J
– ident: e_1_2_7_17_1
  doi: 10.1039/C8TA06860G
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201302514
– ident: e_1_2_7_59_1
  doi: 10.1021/acsami.6b16115
– ident: e_1_2_7_60_1
  doi: 10.1021/ma402215j
– ident: e_1_2_7_45_1
  doi: 10.1002/adfm.201602603
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.macromol.5b01473
– volume: 66
  start-page: 80
  year: 1969
  ident: e_1_2_7_57_1
  publication-title: Trans. Faraday Soc.
– ident: e_1_2_7_71_1
  doi: 10.1021/ma00049a001
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.chemmater.6b00525
– ident: e_1_2_7_67_1
  doi: 10.1038/ncomms8955
– ident: e_1_2_7_38_1
  doi: 10.1016/j.orgel.2018.01.039
– ident: e_1_2_7_27_1
  doi: 10.1021/acsami.5b03310
– ident: e_1_2_7_12_1
  doi: 10.1021/jacs.5b07015
– ident: e_1_2_7_66_1
  doi: 10.1002/adfm.201801874
– ident: e_1_2_7_7_1
  doi: 10.1039/C7PY00435D
– ident: e_1_2_7_43_1
  doi: 10.1002/aelm.201600311
– ident: e_1_2_7_65_1
  doi: 10.1021/cm2037487
– ident: e_1_2_7_51_1
  doi: 10.1039/c2ee21149a
– ident: e_1_2_7_68_1
  doi: 10.1021/cr3001109
– ident: e_1_2_7_72_1
  doi: 10.1021/ja907506r
– ident: e_1_2_7_41_1
  doi: 10.1002/marc.201600377
– ident: e_1_2_7_15_1
  doi: 10.1038/nmat5063
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201800868
– ident: e_1_2_7_73_1
  doi: 10.1016/j.solmat.2010.12.049
– ident: e_1_2_7_31_1
  doi: 10.1039/C7TC01680H
– ident: e_1_2_7_64_1
  doi: 10.1021/ja204515s
– ident: e_1_2_7_48_1
  doi: 10.1039/c1jm10961h
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.macromol.7b02393
– ident: e_1_2_7_50_1
  doi: 10.1039/c3ee00015j
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aat2612
– ident: e_1_2_7_8_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_7_61_1
  doi: 10.1021/acsami.7b07624
– ident: e_1_2_7_70_1
  doi: 10.1063/1.1613257
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.201701973
– ident: e_1_2_7_2_1
  doi: 10.1021/cr100380z
– ident: e_1_2_7_33_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201304346
– ident: e_1_2_7_29_1
  doi: 10.1021/cm402421p
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201201795
– ident: e_1_2_7_25_1
  doi: 10.1021/nn1018768
– ident: e_1_2_7_19_1
  doi: 10.1021/ma500286d
– ident: e_1_2_7_35_1
  doi: 10.1021/cm502271j
– ident: e_1_2_7_52_1
  doi: 10.1002/marc.201800092
– ident: e_1_2_7_23_1
  doi: 10.1038/nmat4671
– ident: e_1_2_7_24_1
  doi: 10.1038/nature21004
– ident: e_1_2_7_11_1
  doi: 10.1038/natrevmats.2016.50
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201304373
– ident: e_1_2_7_46_1
  doi: 10.1038/nature20102
– ident: e_1_2_7_34_1
  doi: 10.1039/c1ee01881g
– ident: e_1_2_7_49_1
  doi: 10.1021/ja203189h
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201202873
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.chemmater.5b04804
– ident: e_1_2_7_13_1
  doi: 10.1021/cr050140x
– ident: e_1_2_7_63_1
  doi: 10.1021/acs.macromol.7b00712
– ident: e_1_2_7_74_1
  doi: 10.1021/acs.macromol.7b00430
– ident: e_1_2_7_3_1
  doi: 10.1557/mrs.2012.306
– ident: e_1_2_7_21_1
  doi: 10.1002/aelm.201700429
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.chemrev.7b00003
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201801079
– ident: e_1_2_7_69_1
  doi: 10.1021/la904840q
– ident: e_1_2_7_75_1
  doi: 10.1021/ma8012543
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.chemrev.5b00098
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.macromol.8b00971
– ident: e_1_2_7_55_1
  doi: 10.1103/PhysRevLett.94.127801
– ident: e_1_2_7_58_1
  doi: 10.1016/j.progpolymsci.2013.07.009
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.200601248
– ident: e_1_2_7_56_1
  doi: 10.1021/ma302463d
– ident: e_1_2_7_20_1
  doi: 10.1088/2058-8585/aa9c9b
– ident: e_1_2_7_37_1
  doi: 10.1021/cm302341m
– ident: e_1_2_7_62_1
  doi: 10.1063/1.1699711
SSID ssj0001763453
Score 2.4458416
Snippet Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect...
SourceID osti
crossref
wiley
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms conjugated polymers
conjugation linkers
stretchable electronics
structure–property relationship
thermomechanical properties
Title The Critical Role of Electron‐Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201800899
https://www.osti.gov/biblio/1499211
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaq7oULAgGiLCAfkDissiROnCbHCi2sUIsQalHFJbIdWyzbTVZLe4DTPgFC4m14nH0SZmI7SaH8XqI2Siat5-t4ZjrzDSGPIqN0lIs0kJrLIIkY2EEuwoBLE3KR4UQRbBSevUyPF8mLJV8OBt96VUubtTxUn3b2lfyPVuEc6BW7ZP9Bs61QOAGvQb9wBA3D8a913M4qeO3rBN1gm7aMAdO_TXHz_N0JsgiAW9lknPwfBQczje2_LW0ASAVrvcIegnOsura0tCAFInsnM54oLIepL8DWnAGWKmSNxUe8qlcfz1xRfUtu68sMeiN3wE-2C_Rz4rp2eylmfgFR73Wvuv9gcdjh0N0wPTG6u-W5WG0-nDYe8XRzqvtJDeyj4v2khrWIXQoTnO0dhUQ-V9JYS7C8eRCl4dJubDvOOXPPe6jmOzcRS0oLXwqZCiLwqDM7w-kHYm6ILXOGbeV7DEIUsLF7kzeLt4suwwemO2loUNvP4VlDQ_ZkW_yWVzSswbpvB0uNtzO_Qa67MIVOLOZukoGubpHPgAzq8UYRb7Q21OPt6vKLRxptkUYt0mhdUUAa7ZBGAWnUIY12SEOBDdKuLr96jNFtjFGPsdtk8exo_vQ4cPM8ApUwlgd5aTCeiEWic6O5NkzEymRMZqkYi5LHusxCk3GWMy0TyQTYizDSZRyPlYbQIr5DhlVd6buEikjioKIo0RAQjKWSWRQqZsqxEDIJy3REAr-ehXJk9zhzZVVYmm5W4PoX7fqPyOP2-nNL8_LLK_dRPQU4qMiyrLAcTa0LB4YRYY3W_iCkmBxNZ-27e78VuU-udb-Q-2S4vtjoB-AIr-VDh7jvXWu3jg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxELVoOLQXBGoRKR_1oVJPK9bej6yPEQoKJUGIJhXisrK9Y4G0WlchHLjxCxAS_5BfwszuJiiHConjruw5eDz289PMG8Z-CmdBKJ0GBhITxELiOZjoMEiMCxOdUUcRKhQen6XDafz7MllkE1ItTKMPsSTcKDLq85oCnAjpwzfVUA0llZILhDz4aPjE1gna4MZe7_-dXk3fiBaMoLhWo8TgVIFIw8uFeGMoD1eNrFxOHY9BtopZ60vneJNttGiR9xv3brE1qL6yR3QtX7Qo4Be-BO4dH7T9bF4enojvpWxmPrm-IdmACnhNMd1yX3EEfHwMVO9bT9dVgcPoeC75ORHzM1JYJYNoxc9eHp77ljJf_Iz_oTx6X5FALBk_9-U9kd7f2PR4MDkaBm1bhcDGUqpAFY5gXaRjUA4ScFJH1mXSZKnu6SKJoMhClyVSSTCxkRrdFgoooqhnARFetM06la9gh3EtDPWLETEgLusZazIRWumKntYmDou0y4LFeua21Ryn1hdl3qgly5zWP1-uf5f9Wo7_16ht_HfkLrknR5xAYreWsoLsHB8ySuGTtstk7bV3jOT9wWi8_Pr-kUk_2OfhZDzKRydnp7vsC_5XTTrkHuvMZ3ewj5Blbg7aTfkKcArnSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbhMxELUglRAXBAJE2lJ8QOK0qu1db9bHCBK10FQRNCjisrK9Y4G0WldpOPTWL0BI_GG_hJndTUoOCInjruw5eDwzz6OZN4y9lsGDNDZPHGiXZFKhH9RWJNoFoW1BE0WoUXh2np8ssvdLvfyji7_jh9gm3MgyWn9NBn5ZheM70lALNXWSS0Q8-Ga4z_Y0hiYxYHvjz4svi7s8CxpQ1pJRom2aROZiueFuFOp4V8hObBpEtLFdyNrGnOlj9qgHi3zcafcJuwfNU_YDNcs3Ewr4x1gDj4FP-nE2tzc_Kd1Lxcz84us3Yg1ogLcZpiseG454j8-A2n3b7bapcBl555rPKS-_IoJVEohS4ur25tfYU-FLXPFPVEYfG-KHJeHzWF9TzvsZW0wnF29Pkn6qQuIzpUxiqkCoLrUZmAAagrKpD4VyRW5HttIpVIUIhVZGgcucsqg1IaFK05EHBHjpczZoYgMvGLfS0bgYmQHCspHzrpDCq1CNrHWZqPIhSzbnWfqecpwmX9RlR5asSjr_cnv-Q_Zmu_6yI9v468oDUk-JMIG4bj0VBfk1vmOMwRftkKlWa_8QUo4nZ7Pt1_7_bHrFHszfTcuz0_MPB-wh_jZdMeQhG6xX3-ElApa1O-rv5G_-t-Zp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Critical+Role+of+Electron%E2%80%90Donating+Thiophene+Groups+on+the+Mechanical+and+Thermal+Properties+of+Donor%E2%80%93Acceptor+Semiconducting+Polymers&rft.jtitle=Advanced+electronic+materials&rft.au=Zhang%2C+Song&rft.au=Ocheje%2C+Michael+U.&rft.au=Huang%2C+Lifeng&rft.au=Galuska%2C+Luke&rft.date=2019-05-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Faelm.201800899&rft.externalDocID=1499211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon