Impact of priming on global soil carbon stocks

Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models us...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 24; no. 5; pp. 1873 - 1883
Main Authors Guenet, Bertrand, Camino‐Serrano, Marta, Ciais, Philippe, Tifafi, Marwa, Maignan, Fabienne, Soong, Jennifer L., Janssens, Ivan A.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901–2010. Future projections with the same model across the range of CO2 and climate changes defined by the IPCC‐RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks — both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming‐induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales. Evolution of the soil carbon stock change from: (a) 1901 to 2010. (b) from 1951 to 2100 for the RCP2.6. (c) from 1951 to 2100 for the RCP8.5. In all figures, red indicates the values predicted by ORCHIDEE‐PRIM and blue by ORCHIDEE. For all figures, the thin lines are the simulations with the parameter values modified by ± 50%. For (b) and (c), the light blue and the orange lines represent the simulations performed with the climate forcings from the HadGEM, IPSL‐CM5A and MIROC‐ESM‐CH models for ORCHIDEE and ORCHIDEE‐PRIM, respectively.
AbstractList Abstract Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE . When incorporated into ORCHIDEE , priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901–2010. Future projections with the same model across the range of CO 2 and climate changes defined by the IPCC ‐ RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks — both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming‐induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales.
Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901-2010. Future projections with the same model across the range of CO2 and climate changes defined by the IPCC-RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks - both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming-induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales.
Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901-2010. Future projections with the same model across the range of CO and climate changes defined by the IPCC-RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks - both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming-induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales.
Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901–2010. Future projections with the same model across the range of CO2 and climate changes defined by the IPCC-RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks — both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming-induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales.
Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901–2010. Future projections with the same model across the range of CO2 and climate changes defined by the IPCC‐RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks — both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming‐induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales. Evolution of the soil carbon stock change from: (a) 1901 to 2010. (b) from 1951 to 2100 for the RCP2.6. (c) from 1951 to 2100 for the RCP8.5. In all figures, red indicates the values predicted by ORCHIDEE‐PRIM and blue by ORCHIDEE. For all figures, the thin lines are the simulations with the parameter values modified by ± 50%. For (b) and (c), the light blue and the orange lines represent the simulations performed with the climate forcings from the HadGEM, IPSL‐CM5A and MIROC‐ESM‐CH models for ORCHIDEE and ORCHIDEE‐PRIM, respectively.
Author Soong, Jennifer L.
Tifafi, Marwa
Guenet, Bertrand
Camino‐Serrano, Marta
Ciais, Philippe
Maignan, Fabienne
Janssens, Ivan A.
Author_xml – sequence: 1
  givenname: Bertrand
  orcidid: 0000-0002-4311-8645
  surname: Guenet
  fullname: Guenet, Bertrand
  email: bertrand.guenet@lsce.ipsl.fr
  organization: Université Paris‐Saclay
– sequence: 2
  givenname: Marta
  surname: Camino‐Serrano
  fullname: Camino‐Serrano, Marta
  organization: University of Antwerp
– sequence: 3
  givenname: Philippe
  surname: Ciais
  fullname: Ciais, Philippe
  organization: Université Paris‐Saclay
– sequence: 4
  givenname: Marwa
  surname: Tifafi
  fullname: Tifafi, Marwa
  organization: Université Paris‐Saclay
– sequence: 5
  givenname: Fabienne
  surname: Maignan
  fullname: Maignan, Fabienne
  organization: Université Paris‐Saclay
– sequence: 6
  givenname: Jennifer L.
  surname: Soong
  fullname: Soong, Jennifer L.
  organization: University of Antwerp
– sequence: 7
  givenname: Ivan A.
  surname: Janssens
  fullname: Janssens, Ivan A.
  organization: University of Antwerp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29365210$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01806760$$DView record in HAL
BookMark eNp1kEFLwzAUx4NM3KYe_AJS8KKHbnlJmzbHOXQbDLzoOaRpMjvbZjabsm9vaucEwVxeePz4vff-Q9Srba0RugI8Av_GK5WNIMKMn6ABUBaHJEpZr_3HUQgYaB8NnVtjjCnB7Az1CfcUATxAo0W1kWobWBNsmqIq6lVg62BV2kyWgbNFGSjZZL7ltla9uQt0amTp9OWhnqOXx4fn6TxcPs0W08kyVBEhPOQkiaUBrKPMJAxzyRVhJGac8YQwnus8zimTOsPGyAxSneeQGUgUZWAoZfQc3XXeV1mKdjHZ7IWVhZhPlqLtYUgx8-oP8Oxtx24a-77TbiuqwildlrLWducEcA6Qcohjj978Qdd219T-EkEwwVEENOK_w1VjnWu0OW4AWLSBCx-4-A7cs9cH4y6rdH4kfxL2wLgDPotS7_83idn0vlN-AeyIh7c
CitedBy_id crossref_primary_10_3389_fmicb_2021_730117
crossref_primary_10_1016_j_scitotenv_2024_170511
crossref_primary_10_1016_j_apsoil_2019_103445
crossref_primary_10_1016_j_scitotenv_2021_152882
crossref_primary_10_1111_ejss_13177
crossref_primary_10_1007_s00374_022_01658_5
crossref_primary_10_1016_j_envres_2023_115482
crossref_primary_10_5194_gmd_11_937_2018
crossref_primary_10_1016_j_scitotenv_2023_166777
crossref_primary_10_1016_j_soilbio_2021_108498
crossref_primary_10_1088_1748_9326_acfa12
crossref_primary_10_1016_j_geoderma_2022_116118
crossref_primary_10_1016_j_scitotenv_2021_149590
crossref_primary_10_1016_j_geoderma_2023_116343
crossref_primary_10_1016_j_jenvman_2022_116990
crossref_primary_10_1111_gcb_15968
crossref_primary_10_1016_j_apsoil_2023_105234
crossref_primary_10_1111_gcb_17349
crossref_primary_10_1002_jpln_202100108
crossref_primary_10_1002_lno_11877
crossref_primary_10_1016_j_scitotenv_2020_140802
crossref_primary_10_1016_j_geoderma_2022_115951
crossref_primary_10_1038_s41396_023_01523_9
crossref_primary_10_1029_2024GB008113
crossref_primary_10_1029_2020MS002121
crossref_primary_10_3389_ffgc_2022_1032321
crossref_primary_10_1016_j_soilbio_2023_109112
crossref_primary_10_1007_s11104_024_06819_z
crossref_primary_10_1111_gcb_16604
crossref_primary_10_1111_nph_18930
crossref_primary_10_1016_j_soilbio_2020_108039
crossref_primary_10_1038_s41467_019_11472_7
crossref_primary_10_3354_ame01999
crossref_primary_10_1038_s43247_023_00975_3
crossref_primary_10_1111_1365_2664_14265
crossref_primary_10_5194_bg_17_6393_2020
crossref_primary_10_1016_j_pedobi_2022_150842
crossref_primary_10_1016_j_agee_2020_106972
crossref_primary_10_1016_j_soilbio_2019_107525
crossref_primary_10_1016_j_agee_2020_106973
crossref_primary_10_1080_03650340_2019_1630824
crossref_primary_10_1111_oik_09638
crossref_primary_10_1016_j_scitotenv_2020_138645
crossref_primary_10_1007_s10750_021_04574_1
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_1016_j_jenvman_2019_109483
crossref_primary_10_1111_nph_19177
crossref_primary_10_1111_geb_13524
crossref_primary_10_1038_s41467_019_13119_z
crossref_primary_10_1007_s11104_021_05168_5
crossref_primary_10_1016_j_envres_2023_118063
crossref_primary_10_1016_j_apsoil_2021_103925
crossref_primary_10_1038_s43247_023_01136_2
crossref_primary_10_1016_j_scitotenv_2023_161974
crossref_primary_10_1002_ldr_3422
crossref_primary_10_1002_ldr_4598
crossref_primary_10_1002_fee_2781
crossref_primary_10_1016_j_geoderma_2023_116603
crossref_primary_10_1002_ecy_3790
crossref_primary_10_1111_gcb_15587
crossref_primary_10_1111_fwb_13465
crossref_primary_10_1038_s43247_023_00830_5
crossref_primary_10_1029_2020GB006836
crossref_primary_10_1016_j_gca_2023_04_005
crossref_primary_10_1016_j_scitotenv_2023_166170
crossref_primary_10_1038_s41467_024_45277_0
crossref_primary_10_3389_ffgc_2023_1288259
crossref_primary_10_1007_s13157_023_01722_2
crossref_primary_10_1111_nph_17421
crossref_primary_10_1007_s40641_019_00132_z
crossref_primary_10_1016_j_soilbio_2022_108619
crossref_primary_10_1016_j_still_2022_105598
crossref_primary_10_1111_gcb_15370
crossref_primary_10_1111_gcb_16062
crossref_primary_10_1016_j_soilbio_2022_108850
crossref_primary_10_1029_2022GB007679
crossref_primary_10_1007_s42773_023_00273_3
crossref_primary_10_1016_j_scitotenv_2023_166175
crossref_primary_10_1029_2020JG006201
crossref_primary_10_1007_s10750_018_3672_2
crossref_primary_10_1016_j_scitotenv_2022_153925
crossref_primary_10_1111_gcb_16463
crossref_primary_10_5194_gmd_12_3503_2019
crossref_primary_10_1002_eap_2784
crossref_primary_10_1371_journal_pone_0284092
crossref_primary_10_1016_j_envres_2023_115575
crossref_primary_10_1016_j_apsoil_2023_104982
crossref_primary_10_1007_s11104_021_05260_w
crossref_primary_10_1111_1365_2745_13417
crossref_primary_10_1007_s11104_024_06670_2
crossref_primary_10_1002_ldr_3644
crossref_primary_10_5194_gmd_12_2069_2019
crossref_primary_10_1002_ecy_3094
crossref_primary_10_1111_gcb_16804
crossref_primary_10_1016_j_apsoil_2023_104850
crossref_primary_10_1111_nph_18458
crossref_primary_10_1007_s11356_020_11777_x
crossref_primary_10_1016_j_eti_2023_103475
crossref_primary_10_1016_j_soilbio_2020_108118
crossref_primary_10_1029_2021GL096133
crossref_primary_10_1016_j_soilbio_2023_108955
crossref_primary_10_1007_s13593_023_00876_x
crossref_primary_10_1016_j_jhazmat_2023_132024
crossref_primary_10_1016_j_soilbio_2023_109123
crossref_primary_10_1016_j_geoderma_2021_115128
crossref_primary_10_5194_gmd_13_1201_2020
crossref_primary_10_1016_j_catena_2024_107912
crossref_primary_10_1111_gcb_16004
crossref_primary_10_1111_1365_2435_14038
crossref_primary_10_1111_fwb_13530
crossref_primary_10_3390_environments11020029
crossref_primary_10_1016_j_scitotenv_2022_153746
crossref_primary_10_1007_s10980_021_01320_9
crossref_primary_10_1007_s00374_022_01682_5
crossref_primary_10_1007_s11104_021_05288_y
crossref_primary_10_1016_j_still_2018_09_011
crossref_primary_10_1016_j_soilbio_2019_03_027
crossref_primary_10_1111_gcb_15547
crossref_primary_10_1073_pnas_2016896118
crossref_primary_10_1038_s41598_020_65200_z
crossref_primary_10_1016_j_geoderma_2022_116067
crossref_primary_10_1038_s41561_023_01275_3
crossref_primary_10_1111_pce_14858
crossref_primary_10_1007_s11104_024_06817_1
crossref_primary_10_3389_feart_2019_00076
crossref_primary_10_3390_f14061268
crossref_primary_10_1007_s13762_024_05569_w
crossref_primary_10_1016_j_soilbio_2020_108103
crossref_primary_10_5194_esd_13_1119_2022
crossref_primary_10_1038_s43705_021_00009_z
Cites_doi 10.1146/annurev.earth.29.1.535
10.5194/bg-12-5211-2015
10.1029/2006GB002834
10.1038/nclimate2590
10.1073/pnas.1415123112
10.4155/cmt.13.77
10.5194/bg-10-1717-2013
10.1038/ngeo1324
10.1146/annurev.arplant.55.031903.141610
10.1038/nclimate2438
10.1002/2015GB005239
10.1007/s00374-008-0334-y
10.1890/09-1968.1
10.5194/soil-1-351-2015
10.2136/sssaj1987.03615995005100050015x
10.1038/416617a
10.1016/S0038-0717(03)00123-8
10.5194/bg-9-1173-2012
10.1016/S0038-0717(00)00084-5
10.1175/BAMS-D-11-00094.1
10.5194/esd-5-211-2014
10.1126/science.1184984
10.1016/j.soilbio.2012.04.001
10.1111/j.1469-8137.2007.02063.x
10.5194/gmd-9-841-2016
10.1111/gcb.12493
10.5194/esd-5-197-2014
10.1038/nclimate3071
10.5194/bg-10-2379-2013
10.1029/2003GB002199
10.1038/nclimate1951
10.1038/351304a0
10.1126/science.1249534
10.1126/science.1138544
10.5194/bg-5-749-2008
10.1007/s10584-011-0156-z
10.1034/j.1600-0889.1992.t01-1-00001.x
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1111/1365-2745.12200
10.5194/gmd-6-2153-2013
10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2
10.1073/pnas.1312330110
10.1002/2015GB005188
10.1038/nclimate2436
10.1111/gcb.12475
10.1016/j.apsoil.2010.09.006
10.1111/oik.01728
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
1XC
VOOES
DOI 10.1111/gcb.14069
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 1883
ExternalDocumentID oai_HAL_hal_01806760v1
10_1111_gcb_14069
29365210
GCB14069
Genre article
Journal Article
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
1XC
VOOES
ID FETCH-LOGICAL-c4229-9275af10e4bf7609a9c262569697269ded5d36aeb0ffab18edd1bf17c361f3363
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Wed Sep 04 07:25:28 EDT 2024
Fri Aug 16 20:58:27 EDT 2024
Thu Oct 10 17:26:12 EDT 2024
Fri Aug 23 00:28:59 EDT 2024
Wed Oct 16 00:59:06 EDT 2024
Sat Aug 24 00:58:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords priming
RCP scenario
land surface model
carbon cycle
climate change
Language English
License 2018 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4229-9275af10e4bf7609a9c262569697269ded5d36aeb0ffab18edd1bf17c361f3363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4311-8645
0000-0002-5705-1787
0000-0001-8560-4943
0000-0001-5024-5928
OpenAccessLink https://hal.science/hal-01806760
PMID 29365210
PQID 2020441349
PQPubID 30327
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01806760v1
proquest_miscellaneous_1991189155
proquest_journals_2020441349
crossref_primary_10_1111_gcb_14069
pubmed_primary_29365210
wiley_primary_10_1111_gcb_14069_GCB14069
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 1991; 351
2015; 1
2015; 12
2013; 3
2015; 5
2010; 329
1987; 51
2015; 124
2003; 35
2016; 30
2008; 5
2002; 416
2014; 111
1999; 80
2011; 5
2013; 6
2012; 52
2001; 21
2014; 20
1996; 77
2004; 55
2012; 93
2016; 6
2014; 5
2005; 19
2011; 109
2014; 4
2007; 315
2010; 46
2015; 29
2013; 10
2000; 32
2015; 112
2007; 450
1987
2008; 45
2014
2010; 91
2007; 21
1992; 44
2016; 9
2014; 102
2014; 344
2012; 9
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
Mitchell T. D. (e_1_2_6_31_1) 2004; 55
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 5
  start-page: 749
  year: 2008
  end-page: 759
  article-title: Colimitation of decomposition by substrate and decomposers‐ a comparison of model formulations
  publication-title: Biogeosciences
– volume: 344
  start-page: 508
  year: 2014
  end-page: 509
  article-title: Faster decomposition under increased atmospheric CO limits soil carbon storage
  publication-title: Science
– volume: 77
  start-page: 437
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bulletin of the American Meteorological Society
– volume: 20
  start-page: 1174
  year: 2014
  end-page: 1190
  article-title: Priming effect and microbial diversity in ecosystem functioning and response to global change: A modeling approach using the SYMPHONY model
  publication-title: Global Change Biology
– volume: 329
  start-page: 834
  year: 2010
  end-page: 838
  article-title: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate
  publication-title: Science
– volume: 315
  start-page: 1843
  year: 2007
  end-page: 1846
  article-title: Emergent biogeography of microbial communities in a model ocean
  publication-title: Science (New York, N.Y.)
– volume: 450
  start-page: 277
  year: 2007
  end-page: 280
  article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply
  publication-title: Nature
– volume: 5
  start-page: 211
  year: 2014
  end-page: 221
  article-title: The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes
  publication-title: Earth System Dynamics
– volume: 46
  start-page: 436
  year: 2010
  end-page: 442
  article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input?
  publication-title: Applied Soil Ecology
– volume: 21
  start-page: 535
  year: 2001
  end-page: 562
  article-title: The carbon budget in soils
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review
  publication-title: Biology and Fertility of Soils
– volume: 416
  start-page: 617
  year: 2002
  end-page: 620
  article-title: Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO
  publication-title: Nature
– volume: 21
  start-page: GB2013
  year: 2007
  article-title: Optimizing a process‐based ecosystem model with eddy‐covariance flux measurements: A pine forest in southern France
  publication-title: Global Biogeochemical Cycles
– volume: 112
  start-page: 201415123
  year: 2015
  article-title: Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
  publication-title: Proceedings of the National Academy of Sciences
– year: 2014
– volume: 12
  start-page: 5211
  year: 2015
  end-page: 5228
  article-title: Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models
  publication-title: Biogeosciences
– volume: 19
  start-page: GB1015
  year: 2005
  article-title: A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system
  publication-title: Global Biogeochemical Cycles
– volume: 10
  start-page: 2379
  year: 2013
  end-page: 2392
  article-title: The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles
  publication-title: Biogeosciences
– volume: 52
  start-page: 43
  year: 2012
  end-page: 48
  article-title: Evidence that stable C is as vulnerable to priming effect as is more labile C in soil
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 1173
  year: 2012
  end-page: 1182
  article-title: The moisture response of soil heterotrophic respiration: Interaction with soil properties
  publication-title: Biogeosciences
– volume: 1
  start-page: 351
  year: 2015
  end-page: 365
  article-title: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world
  publication-title: Soil
– volume: 44
  start-page: 81
  year: 1992
  end-page: 99
  article-title: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate
  publication-title: Tellus Series B
– volume: 5
  start-page: 81
  year: 2014
  end-page: 91
  article-title: Global soil carbon: Understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Management
– volume: 351
  start-page: 304
  year: 1991
  end-page: 306
  article-title: Model estimates of CO emissions from soil in response to global warming
  publication-title: Nature
– volume: 3
  start-page: 1
  year: 2013
  end-page: 4
  article-title: Global soil carbon projections are improved by modelling microbial processes
  publication-title: Nature Climate Change
– volume: 55
  start-page: 591
  year: 2004
  end-page: 628
  article-title: Rising atmospheric carbon dioxide: Plants FACE the future
  publication-title: Annual Review of Plant Biology
– volume: 109
  start-page: 213
  year: 2011
  end-page: 241
  article-title: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
  publication-title: Climatic Change
– volume: 111
  start-page: 3228
  year: 2014
  end-page: 3232
  article-title: The Inter‐Sectoral Impact Model Intercomparison Project (ISI‐MIP): Project framework
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 35
  start-page: 837
  year: 2003
  end-page: 843
  article-title: The priming effect of organic matter: A question of microbial competition?
  publication-title: Soil Biology and Biochemistry
– year: 1987
– volume: 5
  start-page: 197
  year: 2014
  end-page: 209
  article-title: Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
  publication-title: Earth System Dynamics
– volume: 5
  start-page: 56
  year: 2014
  end-page: 60
  article-title: Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions
  publication-title: Nature Climate Change
– volume: 10
  start-page: 1717
  year: 2013
  end-page: 1736
  article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
  publication-title: Biogeosciences
– volume: 6
  start-page: 2153
  year: 2013
  end-page: 2163
  article-title: Can we model observed soil carbon changes from a dense inventory? A case study over England and Wales using three versions of the ORCHIDEE ecosystem model (AR5, AR5‐PRIM and O‐CN)
  publication-title: Geoscientific Model Development
– volume: 5
  start-page: 74
  year: 2011
  end-page: 79
  article-title: Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum
  publication-title: Nature Geoscience
– volume: 30
  start-page: 40
  year: 2016
  end-page: 56
  article-title: Toward more realistic projections of soil carbon dynamics by Earth system models
  publication-title: Global Biogeochemical Cycles
– volume: 80
  start-page: 1168
  year: 1999
  article-title: Evolutionary trade‐offs under conditions of resource abundance and scarcity: Experiments with bacteria
  publication-title: Ecology
– volume: 51
  start-page: 1173
  year: 1987
  end-page: 1179
  article-title: Analysis of factors controlling soil organic matter levels in Great Plains grasslands
  publication-title: Soil Science Society of America journal (USA)
– volume: 29
  start-page: 1782
  year: 2015
  end-page: 1800
  article-title: Explicitly representing soil microbial processes in Earth system models
  publication-title: Global Biogeochemical Cycles
– volume: 91
  start-page: 2850
  year: 2010
  end-page: 2861
  article-title: Priming effect: Bridging the gap between terrestrial and aquatic ecology
  publication-title: Ecology
– volume: 5
  start-page: 574
  year: 2015
  end-page: 578
  article-title: Permafrost thawing in organic Arctic soils accelerated by ground heat production
  publication-title: Nature Climate Change
– volume: 6
  start-page: 751
  year: 2016
  end-page: 758
  article-title: Managing uncertainty in soil carbon feedbacks to climate change
  publication-title: Nature Climate Change
– volume: 4
  start-page: 1099
  year: 2014
  end-page: 1102
  article-title: Microbe‐driven turnover offsets mineral‐mediated storage of soil carbon under elevated CO
  publication-title: Nature Climate Change
– volume: 124
  start-page: 649
  year: 2015
  end-page: 657
  article-title: Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation
  publication-title: Oikos
– volume: 55
  start-page: 25
  year: 2004
  article-title: A comprehensive set of high‐resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100)
  publication-title: Tyndall Centre for Climate Change Research Working Paper
– volume: 93
  start-page: 485
  year: 2012
  end-page: 498
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bulletin of the American Meteorological Society
– volume: 102
  start-page: 357
  year: 2014
  end-page: 366
  article-title: Nutrient enrichment and local competition in fl uence the evolution of plant mineralization strategy : A modelling approach
  publication-title: Journal of Ecology
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 841
  year: 2016
  end-page: 855
  article-title: Towards a representation of priming on soil carbon decomposition in the global land biosphere model ORCHIDEE (version 1.9.5.2)
  publication-title: Geoscientific Model Development
– volume: 20
  start-page: 2356
  year: 2014
  end-page: 2367
  article-title: Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories
  publication-title: Global Change Biology
– ident: e_1_2_6_2_1
  doi: 10.1146/annurev.earth.29.1.535
– ident: e_1_2_6_24_1
  doi: 10.5194/bg-12-5211-2015
– ident: e_1_2_6_38_1
  doi: 10.1029/2006GB002834
– ident: e_1_2_6_20_1
  doi: 10.1038/nclimate2590
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.1415123112
– ident: e_1_2_6_39_1
  doi: 10.4155/cmt.13.77
– ident: e_1_2_6_44_1
  doi: 10.5194/bg-10-1717-2013
– ident: e_1_2_6_8_1
  doi: 10.1038/ngeo1324
– ident: e_1_2_6_28_1
  doi: 10.1146/annurev.arplant.55.031903.141610
– ident: e_1_2_6_41_1
  doi: 10.1038/nclimate2438
– ident: e_1_2_6_29_1
  doi: 10.1002/2015GB005239
– ident: e_1_2_6_5_1
  doi: 10.1007/s00374-008-0334-y
– ident: e_1_2_6_14_1
  doi: 10.1890/09-1968.1
– ident: e_1_2_6_23_1
  doi: 10.5194/soil-1-351-2015
– ident: e_1_2_6_34_1
  doi: 10.2136/sssaj1987.03615995005100050015x
– ident: e_1_2_6_37_1
  doi: 10.1038/416617a
– ident: e_1_2_6_12_1
  doi: 10.1016/S0038-0717(03)00123-8
– ident: e_1_2_6_32_1
  doi: 10.5194/bg-9-1173-2012
– ident: e_1_2_6_27_1
  doi: 10.1016/S0038-0717(00)00084-5
– ident: e_1_2_6_43_1
  doi: 10.1175/BAMS-D-11-00094.1
– volume: 55
  start-page: 25
  year: 2004
  ident: e_1_2_6_31_1
  article-title: A comprehensive set of high‐resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100)
  publication-title: Tyndall Centre for Climate Change Research Working Paper
  contributor:
    fullname: Mitchell T. D.
– ident: e_1_2_6_9_1
  doi: 10.5194/esd-5-211-2014
– ident: e_1_2_6_4_1
  doi: 10.1126/science.1184984
– ident: e_1_2_6_16_1
  doi: 10.1016/j.soilbio.2012.04.001
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1469-8137.2007.02063.x
– ident: e_1_2_6_17_1
  doi: 10.5194/gmd-9-841-2016
– ident: e_1_2_6_35_1
  doi: 10.1111/gcb.12493
– ident: e_1_2_6_33_1
  doi: 10.5194/esd-5-197-2014
– ident: e_1_2_6_6_1
  doi: 10.1038/nclimate3071
– ident: e_1_2_6_15_1
  doi: 10.5194/bg-10-2379-2013
– ident: e_1_2_6_26_1
  doi: 10.1029/2003GB002199
– ident: e_1_2_6_42_1
– ident: e_1_2_6_48_1
– ident: e_1_2_6_49_1
  doi: 10.1038/nclimate1951
– ident: e_1_2_6_21_1
  doi: 10.1038/351304a0
– ident: e_1_2_6_13_1
  doi: 10.1126/science.1249534
– ident: e_1_2_6_10_1
  doi: 10.1126/science.1138544
– ident: e_1_2_6_50_1
  doi: 10.5194/bg-5-749-2008
– ident: e_1_2_6_30_1
  doi: 10.1007/s10584-011-0156-z
– ident: e_1_2_6_36_1
  doi: 10.1034/j.1600-0889.1992.t01-1-00001.x
– ident: e_1_2_6_22_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: e_1_2_6_3_1
  doi: 10.1111/1365-2745.12200
– ident: e_1_2_6_18_1
  doi: 10.5194/gmd-6-2153-2013
– ident: e_1_2_6_45_1
  doi: 10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.1312330110
– ident: e_1_2_6_47_1
  doi: 10.1002/2015GB005188
– ident: e_1_2_6_40_1
  doi: 10.1038/nclimate2436
– ident: e_1_2_6_7_1
  doi: 10.1111/gcb.12475
– ident: e_1_2_6_19_1
  doi: 10.1016/j.apsoil.2010.09.006
– ident: e_1_2_6_51_1
  doi: 10.1111/oik.01728
SSID ssj0003206
Score 2.628549
Snippet Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through...
Abstract Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through...
SourceID hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1873
SubjectTerms Carbon - chemistry
Carbon Cycle
Carbon Dioxide
Carbon Sequestration
Climate Change
Continental interfaces, environment
Decomposition
Earth
Earth (Planet)
Environmental Sciences
Global Changes
Incubation period
Intergovernmental Panel on Climate Change
land surface model
Mathematical models
Organic matter
Organic soils
Priming
RCP scenario
Sciences of the Universe
Soil
Soil - chemistry
Soil organic matter
Soils
Stocks
Title Impact of priming on global soil carbon stocks
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14069
https://www.ncbi.nlm.nih.gov/pubmed/29365210
https://www.proquest.com/docview/2020441349
https://search.proquest.com/docview/1991189155
https://hal.science/hal-01806760
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD_MgeCLH1en1SlRRHzppflo0uLTvGxeRX0QB3sQSpImc2y04_bewfzrPUk_5hRBfGubU3qac07yS3vOLwAvhfMI433IecrrVEiTpQZnlVRrhQ4maM1MzPL9LJeH4sNRfrQFb8ZamJ4fYvrgFiIjjtchwLXpfgnyY2swzDMZivcCkV4ARF-uqKM4i_tqUp4L1IPygVUoZPFMd16bi258D5mQf8LM66g1TjsHd-DbqHCfbXI636zN3P74jcvxP9_oLtwe4CjZ6_3nHmy5ZgY3-w0qL2ews39VB4diw0DQzSD5hGC7XUUx8ooszk4Q-caz-zB_HysvSevJedw07Ji0DemZR0jXnpwRq1cGLyHutKfdAzg82P-6WKbDtgypFYyVaclUrj3NnDBeyazUpWW4ipKlLBWTZe3qvOZSO5N5rw0tXF1T46myXFLPueQ7sN20jXsEhAmrCieVF9SIIjdl5nOBPuUVV7aQJoEXo4Gq8559oxpXLdhbVewtFELTTe2BL3u597EK1wI7mUQdL2gCu6NlqyFKu4qFymARCBoTeD41Y3yFnya6ce2mq0JqGC0Ci34CD3uPmB6FTi0R_mQJvI52_buO1bvF23jw-N9Fn8AtRGdFn125C9vr1cY9RQS0Ns-iq_8EMwf9Fg
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQguPBZaAqUYhFAvWcWJY8cSl7K0bGHbA2qlXpAVJ3apWiXVZhcJfj1j51EKqlRxS-yJMvHM2J-d8WeAt8xYhPHW5TylZci4jkKNo0qY5wIdjNEy1j7L95BPj9nnk_RkBd73e2Fafohhwc1Fhu-vXYC7Bek_ovy00BjnEZercAfDPXVh-fHrFXlUEvuTNWmSMtSEJh2vkMvjGR69Nhqtfne5kP8Czeu41Q88ew_hW69ym29yPl4u9Lj49Reb4_9-0yN40CFSstO60GNYMdUI7rZnVP4cwfru1VY4FOv6gmYEwQHi7Xruxcg7Mrk4Q_Dr757AeN9vviS1JZf-3LBTUlekJR8hTX12QYp8rrEIoWdx3jyF473do8k07E5mCAsWxzKUsUhzSyPDtBU8krksYpxIccmliLksTZmWCc-NjqzNNc1MWVJtqSgSTm2S8GQd1qq6Ms-AxKwQmeHCMqpZlmoZ2ZShW1mRiCLjOoA3vYXUZUvAofqJC7aW8q2FQmi7od5RZk93ZsqVOYIyjjr-oAFs9qZVXaA2Knabg5njaAzg9VCNIeb-m-SVqZeNctlhNHNE-gFstC4xvAr9miMCigLY9oa9WUf1afLBXzy_vegruDc9Opip2f7hlxdwH8Fa1iZbbsLaYr40LxEQLfSW9_vfFmUBRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RSAuPBZKAwUMQohLVvEjTiJOZdtlC6VCiEo9VIpix26rVslqs4sEv56x8ygFISFuSTxRJp4Z-3My8xnglTAWYbx1OU9xGQqpolDhrBIWRYIOJmjJlM_yPZSzI_HhOD5eg7d9LUzLDzF8cHOR4cdrF-Dz0v4S5KdaYZhHMluHG0Jy5lZeu1-uuKM48xtrUh4LVITyjlbIpfEMt16bjNbPXCrknzjzOmz18870Lpz0GrfpJhfj1VKN9Y_fyBz_85XuwZ0Oj5Kd1oHuw5qpRnCz3aHy-wg2964K4VCsGwmaEQSfEG3XCy9GXpPJ5TlCX3_2AMb7vvSS1JbM_a5hp6SuSEs9Qpr6_JLoYqHwEgJPfdE8hKPp3tfJLOz2ZQi1YCwLM5bEhaWREcomMsqKTDNcRslMZgmTWWnKuOSyMCqytlA0NWVJlaWJ5pJaziXfhI2qrswWECZ0khqZWEGVSGOVRTYW6FQ24YlOpQrgZW-gfN7Sb-T9sgV7K_e9hUJouqHdEWbPdg5yd83Rk0nU8RsNYLu3bN6FaZMzVxosHENjAC-GZgww99ekqEy9anKXG0ZTR6MfwKPWI4ZHoVdLxD9RAG-8Xf-uY_5-8s4fPP530edw6_PuND_YP_z4BG4jUkvbTMtt2FguVuYpoqGleua9_icNff_l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+priming+on+global+soil+carbon+stocks&rft.jtitle=Global+change+biology&rft.au=Guenet%2C+Bertrand&rft.au=Camino%E2%80%90Serrano%2C+Marta&rft.au=Ciais%2C+Philippe&rft.au=Tifafi%2C+Marwa&rft.date=2018-05-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=24&rft.issue=5&rft.spage=1873&rft.epage=1883&rft_id=info:doi/10.1111%2Fgcb.14069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_14069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon