Flexible Stable Solid‐State Al‐Ion Batteries

Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust el...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 1
Main Authors Yu, Zhijing, Jiao, Shuqiang, Li, Shijie, Chen, Xiaodong, Song, Wei‐Li, Teng, Teng, Tu, Jiguo, Chen, Hao‐Sen, Zhang, Guohua, Fang, Dai‐Ning
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 04.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g−1. Meanwhile, an impressive specific capacity ≈120 mA h g−1 is obtained at current density of 60 mA g−1, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs. Flexible stable solid‐state Al‐ion batteries are constructed using the gel‐polymer electrolyte, Al anode, and graphite cathode. The novel polymeric electrolyte substantially promotes the overall energy storage performance via addressing the unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators in the liquid systems, suggesting new strategies for achieving advanced flexible energy storage devices.
AbstractList Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g −1 . Meanwhile, an impressive specific capacity ≈120 mA h g −1 is obtained at current density of 60 mA g −1 , approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs.
Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g−1. Meanwhile, an impressive specific capacity ≈120 mA h g−1 is obtained at current density of 60 mA g−1, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs.
Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g−1. Meanwhile, an impressive specific capacity ≈120 mA h g−1 is obtained at current density of 60 mA g−1, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs. Flexible stable solid‐state Al‐ion batteries are constructed using the gel‐polymer electrolyte, Al anode, and graphite cathode. The novel polymeric electrolyte substantially promotes the overall energy storage performance via addressing the unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators in the liquid systems, suggesting new strategies for achieving advanced flexible energy storage devices.
Author Chen, Xiaodong
Fang, Dai‐Ning
Zhang, Guohua
Tu, Jiguo
Teng, Teng
Li, Shijie
Jiao, Shuqiang
Song, Wei‐Li
Yu, Zhijing
Chen, Hao‐Sen
Author_xml – sequence: 1
  givenname: Zhijing
  surname: Yu
  fullname: Yu, Zhijing
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Shuqiang
  orcidid: 0000-0001-9600-752X
  surname: Jiao
  fullname: Jiao, Shuqiang
  email: sjiao@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Shijie
  surname: Li
  fullname: Li, Shijie
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Xiaodong
  surname: Chen
  fullname: Chen, Xiaodong
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Wei‐Li
  surname: Song
  fullname: Song, Wei‐Li
  email: weilis@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Teng
  surname: Teng
  fullname: Teng, Teng
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Jiguo
  surname: Tu
  fullname: Tu, Jiguo
  organization: University of Science and Technology Beijing
– sequence: 8
  givenname: Hao‐Sen
  surname: Chen
  fullname: Chen, Hao‐Sen
  email: chenhs@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Guohua
  surname: Zhang
  fullname: Zhang, Guohua
  organization: University of Science and Technology Beijing
– sequence: 10
  givenname: Dai‐Ning
  surname: Fang
  fullname: Fang, Dai‐Ning
  organization: Beijing Institute of Technology
BookMark eNqFkEFLAzEQhYNUsK1ePRc8b82km2RzrNVqoeJBBW8hu8lCSrqpyRbtzZ_gb_SXmFqpIIineQPvm3m8Huo0vjEInQIeAsbkXOl6OSQYCsy4EAeoCwxYNsKk6Ow1PB2hXowLjIHzUd5FeOrMqy2dGdy36mt4Z_XH23taWzMYuyRnvhlcqLY1wZp4jA5r5aI5-Z599Di9epjcZPO769lkPM-qnBCRFVABVQQTrWgKpGlBoayxqDnThRCaE02BpQyCKmZKzhkVqlIFw1QDKdWoj852d1fBP69NbOXCr0OTXkoCjOSEEyySK9-5quBjDKaWlU3BrW_aoKyTgOW2G7ntRu67SdjwF7YKdqnC5m9A7IAX68zmH7ccX05vf9hPVhF4uw
CitedBy_id crossref_primary_10_1039_C9TA00762H
crossref_primary_10_1039_D1TA10125K
crossref_primary_10_1016_j_jpowsour_2025_236168
crossref_primary_10_1039_C9TA02569C
crossref_primary_10_1016_j_ensm_2021_09_023
crossref_primary_10_1002_cssc_202201390
crossref_primary_10_1016_j_matchemphys_2022_126468
crossref_primary_10_1038_s41578_019_0165_5
crossref_primary_10_1021_acsami_9b06528
crossref_primary_10_1002_advs_201902162
crossref_primary_10_1002_cjoc_202000389
crossref_primary_10_1016_j_electacta_2022_141508
crossref_primary_10_1016_j_est_2023_108576
crossref_primary_10_1002_sstr_202000005
crossref_primary_10_1016_j_carbon_2021_10_049
crossref_primary_10_1038_s41467_023_41361_z
crossref_primary_10_1016_j_cej_2020_127792
crossref_primary_10_1002_adfm_201906770
crossref_primary_10_1002_adma_202104557
crossref_primary_10_1016_j_cej_2019_123452
crossref_primary_10_1021_acs_chemrev_2c00289
crossref_primary_10_1002_smtd_201900119
crossref_primary_10_1021_acs_chemrev_0c01257
crossref_primary_10_1021_acsami_9b21999
crossref_primary_10_1016_j_ensm_2022_01_062
crossref_primary_10_1039_C9TA04085D
crossref_primary_10_1002_adma_202205489
crossref_primary_10_1016_j_jcis_2023_07_208
crossref_primary_10_1002_anie_202215408
crossref_primary_10_1021_acs_jpclett_0c03768
crossref_primary_10_1016_j_ensm_2023_102922
crossref_primary_10_1016_j_pmatsci_2022_100960
crossref_primary_10_1007_s12274_021_3861_6
crossref_primary_10_1021_acsaem_4c03240
crossref_primary_10_1021_acsami_0c04640
crossref_primary_10_20517_microstructures_2024_27
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1016_j_electacta_2020_136677
crossref_primary_10_1007_s40820_023_01160_z
crossref_primary_10_1021_acsaem_4c02431
crossref_primary_10_1002_anie_202114681
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1007_s10008_023_05426_9
crossref_primary_10_1002_celc_201901186
crossref_primary_10_1088_2053_1591_ad0af2
crossref_primary_10_1016_j_jpowsour_2023_233110
crossref_primary_10_1021_acsami_1c17433
crossref_primary_10_1016_j_electacta_2023_143302
crossref_primary_10_1021_acsami_9b22081
crossref_primary_10_1039_D2TA00630H
crossref_primary_10_1021_acs_jpclett_0c00324
crossref_primary_10_1016_j_carbon_2019_03_080
crossref_primary_10_1016_j_jiec_2020_07_033
crossref_primary_10_1002_est2_132
crossref_primary_10_1016_j_pmatsci_2024_101322
crossref_primary_10_1002_ange_202215408
crossref_primary_10_1016_j_jpowsour_2025_236776
crossref_primary_10_1149_1945_7111_abfb36
crossref_primary_10_1039_D0QI00841A
crossref_primary_10_1039_D0EE02104K
crossref_primary_10_1016_j_polymer_2021_123707
crossref_primary_10_1002_aenm_202100769
crossref_primary_10_1002_cssc_202400423
crossref_primary_10_1039_D0MA00924E
crossref_primary_10_1039_D2SE01744J
crossref_primary_10_1002_ange_202114681
crossref_primary_10_1142_S1793604721300036
crossref_primary_10_1016_j_ensm_2024_103545
crossref_primary_10_1002_asia_202100882
crossref_primary_10_1002_celc_202000407
crossref_primary_10_1039_D2EE02998G
crossref_primary_10_1002_batt_202400114
crossref_primary_10_1016_j_mtsust_2022_100213
crossref_primary_10_1021_acs_chemmater_9b01556
crossref_primary_10_1039_D0CS01603A
crossref_primary_10_1039_D2TA08676J
crossref_primary_10_1021_acssuschemeng_9b01454
crossref_primary_10_1016_j_jelechem_2023_117145
crossref_primary_10_1016_j_nanoen_2023_108626
crossref_primary_10_1016_j_ensm_2023_102820
crossref_primary_10_1039_D0TA00216J
crossref_primary_10_1002_ente_202400991
crossref_primary_10_1007_s40684_024_00603_1
crossref_primary_10_1016_j_jpowsour_2020_228870
crossref_primary_10_1039_C9TA01550G
crossref_primary_10_1002_cey2_425
crossref_primary_10_1016_j_ensm_2024_103538
crossref_primary_10_1039_D2TA09259J
crossref_primary_10_1002_adfm_202205562
crossref_primary_10_1002_aenm_202302464
crossref_primary_10_3389_fmats_2020_00015
crossref_primary_10_1016_j_electacta_2021_139786
crossref_primary_10_1039_C9CP00453J
crossref_primary_10_1039_D0QI01302A
crossref_primary_10_1002_batt_202000312
crossref_primary_10_1016_j_jcis_2021_03_075
crossref_primary_10_1021_acsaem_9b00848
crossref_primary_10_1002_adma_202416755
crossref_primary_10_1002_aenm_201902736
crossref_primary_10_1007_s40820_021_00698_0
crossref_primary_10_1002_adma_202500695
crossref_primary_10_1039_C9SE00941H
crossref_primary_10_1007_s42864_020_00068_0
crossref_primary_10_3390_batteries10120454
crossref_primary_10_3390_polym12061336
crossref_primary_10_1007_s11581_019_02955_0
crossref_primary_10_1016_j_est_2024_113686
crossref_primary_10_1007_s11581_019_02983_w
crossref_primary_10_1038_s41467_021_22633_y
crossref_primary_10_1016_j_jelechem_2019_113374
crossref_primary_10_1016_j_nantod_2022_101588
crossref_primary_10_1021_acsaem_0c02374
crossref_primary_10_1002_aenm_202100785
crossref_primary_10_1016_j_commatsci_2021_110324
crossref_primary_10_1016_j_electacta_2021_137790
crossref_primary_10_1016_j_est_2024_112110
crossref_primary_10_1016_j_ensm_2023_102953
crossref_primary_10_1002_pc_25793
crossref_primary_10_1002_aenm_202303285
crossref_primary_10_1016_j_compscitech_2019_107695
crossref_primary_10_1016_j_jpowsour_2021_230656
crossref_primary_10_1021_acsami_0c03882
crossref_primary_10_1002_cssc_201902846
crossref_primary_10_1016_j_cej_2021_129131
crossref_primary_10_1021_acsami_1c05476
crossref_primary_10_1039_D1RA08067A
crossref_primary_10_1016_j_cej_2020_126377
crossref_primary_10_1149_1945_7111_aba5da
crossref_primary_10_1039_D0TA07764J
crossref_primary_10_3389_fchem_2023_1190102
crossref_primary_10_1016_j_enchem_2020_100049
crossref_primary_10_1016_j_carbon_2019_03_034
crossref_primary_10_1016_j_nanoen_2024_110140
crossref_primary_10_1016_j_rser_2022_112694
crossref_primary_10_1016_j_jpowsour_2021_229839
crossref_primary_10_1002_cnma_201900490
crossref_primary_10_1186_s11671_022_03687_3
crossref_primary_10_1021_acsaem_2c03906
crossref_primary_10_1016_j_jallcom_2019_153285
crossref_primary_10_1002_anie_201912167
crossref_primary_10_1002_adma_202001212
crossref_primary_10_1002_smll_202201362
crossref_primary_10_1016_j_jechem_2020_06_072
crossref_primary_10_1016_j_electacta_2019_135188
crossref_primary_10_1016_j_mtcomm_2020_101641
crossref_primary_10_1016_j_progpolymsci_2021_101474
crossref_primary_10_1021_acs_chemrev_0c01264
crossref_primary_10_1039_C9SE00656G
crossref_primary_10_1089_soro_2020_0175
crossref_primary_10_1007_s11581_020_03799_9
crossref_primary_10_1016_j_cej_2019_123594
crossref_primary_10_1016_j_electacta_2019_134805
crossref_primary_10_1016_j_est_2024_111287
crossref_primary_10_1016_j_jechem_2020_08_035
crossref_primary_10_1002_celc_201900883
crossref_primary_10_1016_j_cej_2022_137985
crossref_primary_10_1002_cssc_202001557
crossref_primary_10_1002_adfm_202411395
crossref_primary_10_1002_ente_202100208
crossref_primary_10_1016_j_bios_2020_112410
crossref_primary_10_3390_su142316001
crossref_primary_10_1016_j_jiec_2019_06_001
crossref_primary_10_1021_acsapm_3c02217
crossref_primary_10_1016_j_ensm_2020_08_002
crossref_primary_10_1016_j_progpolymsci_2023_101714
crossref_primary_10_3103_S0003701X22030033
crossref_primary_10_1002_ente_201900528
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1021_acssuschemeng_9b06818
crossref_primary_10_1021_acsmaterialslett_0c00208
crossref_primary_10_1021_acs_energyfuels_2c02453
crossref_primary_10_1002_ange_201912167
crossref_primary_10_1002_cssc_202202297
crossref_primary_10_1021_acsami_0c13057
crossref_primary_10_1021_acsaem_0c00957
crossref_primary_10_1021_acssuschemeng_2c07614
crossref_primary_10_1016_j_ensm_2021_05_019
crossref_primary_10_1002_pssa_202100219
crossref_primary_10_1002_slct_202302287
crossref_primary_10_1016_j_ensm_2021_01_023
crossref_primary_10_1021_acsami_9b03250
crossref_primary_10_1016_j_cej_2021_133135
crossref_primary_10_1016_j_ensm_2019_05_030
crossref_primary_10_1007_s12274_020_2623_1
crossref_primary_10_1149_2_0341910jes
crossref_primary_10_1002_adsu_202100418
crossref_primary_10_1039_C9RA09158K
crossref_primary_10_1039_C9TA06815E
crossref_primary_10_1016_j_cej_2020_124370
crossref_primary_10_3390_s22051996
crossref_primary_10_1021_acsami_3c17059
Cites_doi 10.1016/j.ssi.2008.01.045
10.1016/S0032-3861(03)00189-7
10.1002/adma.201606128
10.1021/acs.inorgchem.5b02744
10.1016/j.electacta.2004.07.014
10.1016/S0378-7753(01)01014-X
10.1016/S0167-2738(98)00114-3
10.1039/C5CC00542F
10.1039/c2ee22987k
10.1016/0301-0104(96)00006-7
10.1016/j.jpowsour.2010.10.089
10.1039/C5CC06643C
10.1039/C6TA09829K
10.1038/nmat3602
10.1016/S0378-7753(98)00193-1
10.1016/j.jpowsour.2013.03.064
10.1016/0038-1098(77)90663-9
10.5539/ijc.v5n4p1
10.1149/2.072310jes
10.1002/adma.201601357
10.1016/j.jpowsour.2005.03.141
10.1016/j.electacta.2006.05.053
10.1021/am4019115
10.1021/ja502133j
10.1002/anie.201306267
10.1021/acsami.5b06420
10.1038/451652a
10.1149/2.114306jes
10.1021/cr500049y
10.1016/j.electacta.2011.08.048
10.1021/jp500593d
10.1016/S0039-9140(00)00585-3
10.1039/c1cc15779e
10.1002/aenm.201600467
10.1038/nature14340
10.1002/aenm.201300654
10.1038/srep03383
10.1039/c0cs00081g
10.1039/C8CC04468F
10.1021/ja029326t
10.1016/0167-2738(82)90072-8
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201806799
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201806799
ADFM201806799
Genre article
GrantInformation_xml – fundername: 973 Project
  funderid: 2015CB932500
– fundername: National Natural Science Foundation of China
  funderid: 51725401
– fundername: Fundamental Research Funds for the Central Universities
  funderid: FRF‐TP‐17‐002C2
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4229-81c15a202da5806d5851bf09f76d899d72d51677395a6eb77659aca8605d12ba3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:42:43 EDT 2025
Tue Jul 01 04:11:54 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Aug 20 07:26:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4229-81c15a202da5806d5851bf09f76d899d72d51677395a6eb77659aca8605d12ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9600-752X
PQID 2162427209
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2162427209
crossref_citationtrail_10_1002_adfm_201806799
crossref_primary_10_1002_adfm_201806799
wiley_primary_10_1002_adfm_201806799_ADFM201806799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 4, 2019
PublicationDateYYYYMMDD 2019-01-04
PublicationDate_xml – month: 01
  year: 2019
  text: January 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2017; 5
2013; 3
2006; 52
2015; 3
2002; 110
2015; 51
2015; 520
2011; 40
2016; 52
2011; 57
2017; 29
1977; 23
2011; 196
1998; 110
2013; 5
2015; 7
2013; 160
2014; 114
2014; 136
1996; 206
2016; 55
2016; 6
2004; 50
2014; 4
2005; 146
2013; 12
2013; 239
2013; 52
1982; 7
1999; 77
2011; 47
2008; 179
2016; 28
2003; 125
2008; 451
2018; 54
1998; 32
2012; 5
2003; 44
2001; 54
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Murugan R. (e_1_2_6_34_1) 1998; 32
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Liu S. (e_1_2_6_14_1) 2015; 3
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 114
  start-page: 11683
  year: 2014
  publication-title: Chem. Rev.
– volume: 136
  start-page: 7395
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9743
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 7564
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 75
  year: 1982
  publication-title: Solid State Ionics
– volume: 52
  start-page: 292
  year: 2016
  publication-title: Chem. Commun.
– volume: 7
  start-page: 24385
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 160
  start-page: A1781
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 47
  start-page: 12610
  year: 2011
  publication-title: Chem. Commun.
– volume: 196
  start-page: 6742
  year: 2011
  publication-title: J. Power Sources
– volume: 77
  start-page: 183
  year: 1999
  publication-title: J. Power Sources
– volume: 52
  start-page: 12582
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 110
  start-page: 1
  year: 2002
  publication-title: J. Power Sources
– volume: 55
  start-page: 2374
  year: 2016
  publication-title: Inorg. Chem.
– volume: 52
  start-page: 675
  year: 2006
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 233
  year: 2001
  publication-title: Talanta
– volume: 23
  start-page: 117
  year: 1977
  publication-title: Solid State Commun.
– volume: 5
  start-page: 1282
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 4
  year: 2011
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 11725
  year: 2018
  publication-title: Chem. Commun.
– volume: 3
  start-page: 3383
  year: 2013
  publication-title: Sci. Rep.
– volume: 40
  start-page: 2525
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1
  year: 2013
  publication-title: Int. J. Chem.
– volume: 29
  start-page: 1
  year: 2017
  publication-title: Adv. Mater.
– volume: 32
  start-page: 505
  year: 1998
  publication-title: J. Korean Phys. Soc.
– volume: 12
  start-page: 452
  year: 2013
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1600467
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 206
  start-page: 129
  year: 1996
  publication-title: Chem. Phys.
– volume: 179
  start-page: 1310
  year: 2008
  publication-title: Solid State Ionics
– volume: 520
  start-page: 324
  year: 2015
  publication-title: Nature
– volume: 118
  start-page: 5203
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 1
  year: 1998
  publication-title: Solid State Ionics
– volume: 160
  start-page: A915
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 146
  start-page: 380
  year: 2005
  publication-title: J. Power Sources
– volume: 5
  start-page: 8477
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 69
  year: 2004
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 11892
  year: 2015
  publication-title: Chem. Commun.
– volume: 3
  start-page: 959
  year: 2015
  publication-title: J. Phys. Chem. A
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 4
  start-page: 1300654
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 125
  start-page: 4619
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 2957
  year: 2003
  publication-title: Polymer
– volume: 239
  start-page: 563
  year: 2013
  publication-title: J. Power Sources
– ident: e_1_2_6_39_1
  doi: 10.1016/j.ssi.2008.01.045
– ident: e_1_2_6_36_1
  doi: 10.1016/S0032-3861(03)00189-7
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201606128
– ident: e_1_2_6_32_1
  doi: 10.1021/acs.inorgchem.5b02744
– ident: e_1_2_6_27_1
  doi: 10.1016/j.electacta.2004.07.014
– ident: e_1_2_6_1_1
  doi: 10.1016/S0378-7753(01)01014-X
– ident: e_1_2_6_38_1
  doi: 10.1016/S0167-2738(98)00114-3
– volume: 3
  start-page: 959
  year: 2015
  ident: e_1_2_6_14_1
  publication-title: J. Phys. Chem. A
– ident: e_1_2_6_3_1
  doi: 10.1039/C5CC00542F
– ident: e_1_2_6_11_1
  doi: 10.1039/c2ee22987k
– ident: e_1_2_6_31_1
  doi: 10.1016/0301-0104(96)00006-7
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jpowsour.2010.10.089
– ident: e_1_2_6_30_1
  doi: 10.1039/C5CC06643C
– ident: e_1_2_6_15_1
  doi: 10.1039/C6TA09829K
– ident: e_1_2_6_20_1
  doi: 10.1038/nmat3602
– ident: e_1_2_6_26_1
  doi: 10.1016/S0378-7753(98)00193-1
– ident: e_1_2_6_41_1
  doi: 10.1016/j.jpowsour.2013.03.064
– ident: e_1_2_6_43_1
  doi: 10.1016/0038-1098(77)90663-9
– ident: e_1_2_6_5_1
  doi: 10.5539/ijc.v5n4p1
– ident: e_1_2_6_12_1
  doi: 10.1149/2.072310jes
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.201601357
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jpowsour.2005.03.141
– ident: e_1_2_6_42_1
  doi: 10.1016/j.electacta.2006.05.053
– ident: e_1_2_6_28_1
  doi: 10.1021/am4019115
– ident: e_1_2_6_22_1
  doi: 10.1021/ja502133j
– ident: e_1_2_6_33_1
  doi: 10.1002/anie.201306267
– ident: e_1_2_6_6_1
  doi: 10.1021/acsami.5b06420
– ident: e_1_2_6_2_1
  doi: 10.1038/451652a
– ident: e_1_2_6_9_1
  doi: 10.1149/2.114306jes
– ident: e_1_2_6_7_1
  doi: 10.1021/cr500049y
– ident: e_1_2_6_19_1
  doi: 10.1016/j.electacta.2011.08.048
– volume: 32
  start-page: 505
  year: 1998
  ident: e_1_2_6_34_1
  publication-title: J. Korean Phys. Soc.
– ident: e_1_2_6_13_1
  doi: 10.1021/jp500593d
– ident: e_1_2_6_35_1
  doi: 10.1016/S0039-9140(00)00585-3
– ident: e_1_2_6_8_1
  doi: 10.1039/c1cc15779e
– ident: e_1_2_6_37_1
  doi: 10.1002/aenm.201600467
– ident: e_1_2_6_4_1
  doi: 10.1038/nature14340
– ident: e_1_2_6_21_1
  doi: 10.1002/aenm.201300654
– ident: e_1_2_6_10_1
  doi: 10.1038/srep03383
– ident: e_1_2_6_23_1
  doi: 10.1039/c0cs00081g
– ident: e_1_2_6_29_1
  doi: 10.1039/C8CC04468F
– ident: e_1_2_6_40_1
  doi: 10.1021/ja029326t
– ident: e_1_2_6_24_1
  doi: 10.1016/0167-2738(82)90072-8
SSID ssj0017734
Score 2.6413195
Snippet Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum
aluminum‐ion batteries
Current density
Deformation
Electrochemical analysis
Electrodes
Electrolytes
Energy storage
flexible batteries
Flux density
Lithium-ion batteries
Materials science
polymer electrolytes
Rechargeable batteries
Safety
Separators
solid‐state devices
Storage batteries
Storage systems
Title Flexible Stable Solid‐State Al‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806799
https://www.proquest.com/docview/2162427209
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhRKlQGJKW3s-pGMESUqiDIAlbpFduxIiCpFtF2Y-An8Rn4JvrzaIiEkmOIoduScffF357vPCJ0bZqShiTVTlUddKljqKmmIG2jOiPa9RGnIHR7c8f6Q3ozYaCmLv-CHqB1uoBn5_xoUXKppZ0EaKnUKmeTYB1cIZPBBwBagovuaPwoLUWwrcwwBXnhUsTZ6pLPafHVVWkDNZcCarzjRDpJVX4tAk-f2fKbayds3Gsf_fMwu2i7hqBMW82cPrZlsH20tkRQeIC8Czkw1No4FpvllMn7Sn-8fOU51wrEtXk8yp2DqtIb3IRpGV4-Xfbc8Z8FNKCHgBUwwk8QjWjLbAQ07hSr1glRwbc0xLYhmmAvY0pPcKCE4C2QifWsJaUyU7B6h9WySmWPkECJ9zLQdfamoZlJhyX2vS5WFDWmQ8gZyKznHSUlCDmdhjOOCPpnEIIm4lkQDXdT1Xwr6jR9rNqthi0s1nMYEQ_qLIJ59THL5__KWOOxFg_ru5C-NTtGmLQe5m4Y20frsdW7OLHCZqRbaCHuD24dWPkm_AP4I5lQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MgGCY6D-rBb-N0ag8mnroVVqA9Lmqz6baD2ZLdCBSaGJvO6Hbx5E_wN_pLBPrhZmJM9NQvaOgLlOf9egDgQmHFlR9rNVV4vutTnLiCK-SGkmAkAy8W0uQOD4akO_ZvJ7iMJjS5MDk_RGVwMzPD_q_NBDcG6dYXayiXiUklh4GxhYSrYM1s6221qvuKQQpSmjuWCTQhXnBS8jZ6qLVcf3ld-gKbi5DVrjnRNhBla_NQk8fmfCaa8es3Isd_fc4O2CoQqdPJh9AuWFHZHthc4CncB15kaDNFqhyNTe1hmj7Ij7d3C1WdTqpPe9PMyck6te59AMbRzeiq6xZbLbixj5AxBMYQc-QhybFugDTOQpF4YUKJ1BqZpEhiSKjx6nGiBKUEhzzmgVaGJESCtw9BLZtm6gg4CPEAYqkHABe-xFxATgKv7QuNHJIwIXXgloJmccFDbrbDSFnOoIyYkQSrJFEHl1X5p5yB48eSjbLfWDETXxiCJgOGIk8_RrYDfnkL61xHg-rq-C-VzsF6dzTos35veHcCNvT90Fpt_AaozZ7n6lTjmJk4syP1Ey6T6Ns
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuzid2gfBp25Jlkv7OJxlUzdEHOytJE0KYumGbi8--RP8jf4Sk7brNkEEfeotKenJSfOdc3K-AHChqRaaRMZMlZC4hNPYlUJj11eMYuXBSCqbO9zrs86A3AzpcCGLP-eHKB1udmRk_2s7wMcqbsxJQ4WKbSY58qwrxF8Fa4RBz-p1-6EkkEKc53FlhuwKLzSc0TZC3FiuvzwtzbHmImLNppxgG4hZY_OVJs_16UTWo7dvPI7_-ZodsFXgUaeVK9AuWNHpHthcYCncBzCwpJky0Y5BptlhlDypz_ePDKg6rcScdkepk1N1Gsv7AAyC68erjltstOBGBGPrBowQFRhiJahpgLKhQhlDP-ZMGXtMcawoYtzG9ATTknNGfREJz5hCCmEpmoegko5SfQQcjIWHqDLdLyRRVEgkmAebRBrcEPsxqwJ3JucwKljI7WYYSZjzJ-PQSiIsJVEFl2X5cc6_8WPJ2qzbwmIcvoYY2fwXjqF5jDP5__KWsNUOeuXV8V8qnYP1-3YQ3nX7tydgw9z2M5cNqYHK5GWqTw2ImcizTE-_AJiB55M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Stable+Solid%E2%80%90State+Al%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Yu%2C+Zhijing&rft.au=Jiao%2C+Shuqiang&rft.au=Li%2C+Shijie&rft.au=Chen%2C+Xiaodong&rft.date=2019-01-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201806799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon