Flexible Stable Solid‐State Al‐Ion Batteries
Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust el...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 1 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
04.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g−1. Meanwhile, an impressive specific capacity ≈120 mA h g−1 is obtained at current density of 60 mA g−1, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs.
Flexible stable solid‐state Al‐ion batteries are constructed using the gel‐polymer electrolyte, Al anode, and graphite cathode. The novel polymeric electrolyte substantially promotes the overall energy storage performance via addressing the unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators in the liquid systems, suggesting new strategies for achieving advanced flexible energy storage devices. |
---|---|
AbstractList | Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g
−1
. Meanwhile, an impressive specific capacity ≈120 mA h g
−1
is obtained at current density of 60 mA g
−1
, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs. Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g−1. Meanwhile, an impressive specific capacity ≈120 mA h g−1 is obtained at current density of 60 mA g−1, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs. Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g−1. Meanwhile, an impressive specific capacity ≈120 mA h g−1 is obtained at current density of 60 mA g−1, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs. Flexible stable solid‐state Al‐ion batteries are constructed using the gel‐polymer electrolyte, Al anode, and graphite cathode. The novel polymeric electrolyte substantially promotes the overall energy storage performance via addressing the unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators in the liquid systems, suggesting new strategies for achieving advanced flexible energy storage devices. |
Author | Chen, Xiaodong Fang, Dai‐Ning Zhang, Guohua Tu, Jiguo Teng, Teng Li, Shijie Jiao, Shuqiang Song, Wei‐Li Yu, Zhijing Chen, Hao‐Sen |
Author_xml | – sequence: 1 givenname: Zhijing surname: Yu fullname: Yu, Zhijing organization: University of Science and Technology Beijing – sequence: 2 givenname: Shuqiang orcidid: 0000-0001-9600-752X surname: Jiao fullname: Jiao, Shuqiang email: sjiao@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 3 givenname: Shijie surname: Li fullname: Li, Shijie organization: University of Science and Technology Beijing – sequence: 4 givenname: Xiaodong surname: Chen fullname: Chen, Xiaodong organization: University of Science and Technology Beijing – sequence: 5 givenname: Wei‐Li surname: Song fullname: Song, Wei‐Li email: weilis@bit.edu.cn organization: Beijing Institute of Technology – sequence: 6 givenname: Teng surname: Teng fullname: Teng, Teng organization: University of Science and Technology Beijing – sequence: 7 givenname: Jiguo surname: Tu fullname: Tu, Jiguo organization: University of Science and Technology Beijing – sequence: 8 givenname: Hao‐Sen surname: Chen fullname: Chen, Hao‐Sen email: chenhs@bit.edu.cn organization: Beijing Institute of Technology – sequence: 9 givenname: Guohua surname: Zhang fullname: Zhang, Guohua organization: University of Science and Technology Beijing – sequence: 10 givenname: Dai‐Ning surname: Fang fullname: Fang, Dai‐Ning organization: Beijing Institute of Technology |
BookMark | eNqFkEFLAzEQhYNUsK1ePRc8b82km2RzrNVqoeJBBW8hu8lCSrqpyRbtzZ_gb_SXmFqpIIineQPvm3m8Huo0vjEInQIeAsbkXOl6OSQYCsy4EAeoCwxYNsKk6Ow1PB2hXowLjIHzUd5FeOrMqy2dGdy36mt4Z_XH23taWzMYuyRnvhlcqLY1wZp4jA5r5aI5-Z599Di9epjcZPO769lkPM-qnBCRFVABVQQTrWgKpGlBoayxqDnThRCaE02BpQyCKmZKzhkVqlIFw1QDKdWoj852d1fBP69NbOXCr0OTXkoCjOSEEyySK9-5quBjDKaWlU3BrW_aoKyTgOW2G7ntRu67SdjwF7YKdqnC5m9A7IAX68zmH7ccX05vf9hPVhF4uw |
CitedBy_id | crossref_primary_10_1039_C9TA00762H crossref_primary_10_1039_D1TA10125K crossref_primary_10_1016_j_jpowsour_2025_236168 crossref_primary_10_1039_C9TA02569C crossref_primary_10_1016_j_ensm_2021_09_023 crossref_primary_10_1002_cssc_202201390 crossref_primary_10_1016_j_matchemphys_2022_126468 crossref_primary_10_1038_s41578_019_0165_5 crossref_primary_10_1021_acsami_9b06528 crossref_primary_10_1002_advs_201902162 crossref_primary_10_1002_cjoc_202000389 crossref_primary_10_1016_j_electacta_2022_141508 crossref_primary_10_1016_j_est_2023_108576 crossref_primary_10_1002_sstr_202000005 crossref_primary_10_1016_j_carbon_2021_10_049 crossref_primary_10_1038_s41467_023_41361_z crossref_primary_10_1016_j_cej_2020_127792 crossref_primary_10_1002_adfm_201906770 crossref_primary_10_1002_adma_202104557 crossref_primary_10_1016_j_cej_2019_123452 crossref_primary_10_1021_acs_chemrev_2c00289 crossref_primary_10_1002_smtd_201900119 crossref_primary_10_1021_acs_chemrev_0c01257 crossref_primary_10_1021_acsami_9b21999 crossref_primary_10_1016_j_ensm_2022_01_062 crossref_primary_10_1039_C9TA04085D crossref_primary_10_1002_adma_202205489 crossref_primary_10_1016_j_jcis_2023_07_208 crossref_primary_10_1002_anie_202215408 crossref_primary_10_1021_acs_jpclett_0c03768 crossref_primary_10_1016_j_ensm_2023_102922 crossref_primary_10_1016_j_pmatsci_2022_100960 crossref_primary_10_1007_s12274_021_3861_6 crossref_primary_10_1021_acsaem_4c03240 crossref_primary_10_1021_acsami_0c04640 crossref_primary_10_20517_microstructures_2024_27 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1016_j_electacta_2020_136677 crossref_primary_10_1007_s40820_023_01160_z crossref_primary_10_1021_acsaem_4c02431 crossref_primary_10_1002_anie_202114681 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1007_s10008_023_05426_9 crossref_primary_10_1002_celc_201901186 crossref_primary_10_1088_2053_1591_ad0af2 crossref_primary_10_1016_j_jpowsour_2023_233110 crossref_primary_10_1021_acsami_1c17433 crossref_primary_10_1016_j_electacta_2023_143302 crossref_primary_10_1021_acsami_9b22081 crossref_primary_10_1039_D2TA00630H crossref_primary_10_1021_acs_jpclett_0c00324 crossref_primary_10_1016_j_carbon_2019_03_080 crossref_primary_10_1016_j_jiec_2020_07_033 crossref_primary_10_1002_est2_132 crossref_primary_10_1016_j_pmatsci_2024_101322 crossref_primary_10_1002_ange_202215408 crossref_primary_10_1016_j_jpowsour_2025_236776 crossref_primary_10_1149_1945_7111_abfb36 crossref_primary_10_1039_D0QI00841A crossref_primary_10_1039_D0EE02104K crossref_primary_10_1016_j_polymer_2021_123707 crossref_primary_10_1002_aenm_202100769 crossref_primary_10_1002_cssc_202400423 crossref_primary_10_1039_D0MA00924E crossref_primary_10_1039_D2SE01744J crossref_primary_10_1002_ange_202114681 crossref_primary_10_1142_S1793604721300036 crossref_primary_10_1016_j_ensm_2024_103545 crossref_primary_10_1002_asia_202100882 crossref_primary_10_1002_celc_202000407 crossref_primary_10_1039_D2EE02998G crossref_primary_10_1002_batt_202400114 crossref_primary_10_1016_j_mtsust_2022_100213 crossref_primary_10_1021_acs_chemmater_9b01556 crossref_primary_10_1039_D0CS01603A crossref_primary_10_1039_D2TA08676J crossref_primary_10_1021_acssuschemeng_9b01454 crossref_primary_10_1016_j_jelechem_2023_117145 crossref_primary_10_1016_j_nanoen_2023_108626 crossref_primary_10_1016_j_ensm_2023_102820 crossref_primary_10_1039_D0TA00216J crossref_primary_10_1002_ente_202400991 crossref_primary_10_1007_s40684_024_00603_1 crossref_primary_10_1016_j_jpowsour_2020_228870 crossref_primary_10_1039_C9TA01550G crossref_primary_10_1002_cey2_425 crossref_primary_10_1016_j_ensm_2024_103538 crossref_primary_10_1039_D2TA09259J crossref_primary_10_1002_adfm_202205562 crossref_primary_10_1002_aenm_202302464 crossref_primary_10_3389_fmats_2020_00015 crossref_primary_10_1016_j_electacta_2021_139786 crossref_primary_10_1039_C9CP00453J crossref_primary_10_1039_D0QI01302A crossref_primary_10_1002_batt_202000312 crossref_primary_10_1016_j_jcis_2021_03_075 crossref_primary_10_1021_acsaem_9b00848 crossref_primary_10_1002_adma_202416755 crossref_primary_10_1002_aenm_201902736 crossref_primary_10_1007_s40820_021_00698_0 crossref_primary_10_1002_adma_202500695 crossref_primary_10_1039_C9SE00941H crossref_primary_10_1007_s42864_020_00068_0 crossref_primary_10_3390_batteries10120454 crossref_primary_10_3390_polym12061336 crossref_primary_10_1007_s11581_019_02955_0 crossref_primary_10_1016_j_est_2024_113686 crossref_primary_10_1007_s11581_019_02983_w crossref_primary_10_1038_s41467_021_22633_y crossref_primary_10_1016_j_jelechem_2019_113374 crossref_primary_10_1016_j_nantod_2022_101588 crossref_primary_10_1021_acsaem_0c02374 crossref_primary_10_1002_aenm_202100785 crossref_primary_10_1016_j_commatsci_2021_110324 crossref_primary_10_1016_j_electacta_2021_137790 crossref_primary_10_1016_j_est_2024_112110 crossref_primary_10_1016_j_ensm_2023_102953 crossref_primary_10_1002_pc_25793 crossref_primary_10_1002_aenm_202303285 crossref_primary_10_1016_j_compscitech_2019_107695 crossref_primary_10_1016_j_jpowsour_2021_230656 crossref_primary_10_1021_acsami_0c03882 crossref_primary_10_1002_cssc_201902846 crossref_primary_10_1016_j_cej_2021_129131 crossref_primary_10_1021_acsami_1c05476 crossref_primary_10_1039_D1RA08067A crossref_primary_10_1016_j_cej_2020_126377 crossref_primary_10_1149_1945_7111_aba5da crossref_primary_10_1039_D0TA07764J crossref_primary_10_3389_fchem_2023_1190102 crossref_primary_10_1016_j_enchem_2020_100049 crossref_primary_10_1016_j_carbon_2019_03_034 crossref_primary_10_1016_j_nanoen_2024_110140 crossref_primary_10_1016_j_rser_2022_112694 crossref_primary_10_1016_j_jpowsour_2021_229839 crossref_primary_10_1002_cnma_201900490 crossref_primary_10_1186_s11671_022_03687_3 crossref_primary_10_1021_acsaem_2c03906 crossref_primary_10_1016_j_jallcom_2019_153285 crossref_primary_10_1002_anie_201912167 crossref_primary_10_1002_adma_202001212 crossref_primary_10_1002_smll_202201362 crossref_primary_10_1016_j_jechem_2020_06_072 crossref_primary_10_1016_j_electacta_2019_135188 crossref_primary_10_1016_j_mtcomm_2020_101641 crossref_primary_10_1016_j_progpolymsci_2021_101474 crossref_primary_10_1021_acs_chemrev_0c01264 crossref_primary_10_1039_C9SE00656G crossref_primary_10_1089_soro_2020_0175 crossref_primary_10_1007_s11581_020_03799_9 crossref_primary_10_1016_j_cej_2019_123594 crossref_primary_10_1016_j_electacta_2019_134805 crossref_primary_10_1016_j_est_2024_111287 crossref_primary_10_1016_j_jechem_2020_08_035 crossref_primary_10_1002_celc_201900883 crossref_primary_10_1016_j_cej_2022_137985 crossref_primary_10_1002_cssc_202001557 crossref_primary_10_1002_adfm_202411395 crossref_primary_10_1002_ente_202100208 crossref_primary_10_1016_j_bios_2020_112410 crossref_primary_10_3390_su142316001 crossref_primary_10_1016_j_jiec_2019_06_001 crossref_primary_10_1021_acsapm_3c02217 crossref_primary_10_1016_j_ensm_2020_08_002 crossref_primary_10_1016_j_progpolymsci_2023_101714 crossref_primary_10_3103_S0003701X22030033 crossref_primary_10_1002_ente_201900528 crossref_primary_10_1039_D3CS00551H crossref_primary_10_1021_acssuschemeng_9b06818 crossref_primary_10_1021_acsmaterialslett_0c00208 crossref_primary_10_1021_acs_energyfuels_2c02453 crossref_primary_10_1002_ange_201912167 crossref_primary_10_1002_cssc_202202297 crossref_primary_10_1021_acsami_0c13057 crossref_primary_10_1021_acsaem_0c00957 crossref_primary_10_1021_acssuschemeng_2c07614 crossref_primary_10_1016_j_ensm_2021_05_019 crossref_primary_10_1002_pssa_202100219 crossref_primary_10_1002_slct_202302287 crossref_primary_10_1016_j_ensm_2021_01_023 crossref_primary_10_1021_acsami_9b03250 crossref_primary_10_1016_j_cej_2021_133135 crossref_primary_10_1016_j_ensm_2019_05_030 crossref_primary_10_1007_s12274_020_2623_1 crossref_primary_10_1149_2_0341910jes crossref_primary_10_1002_adsu_202100418 crossref_primary_10_1039_C9RA09158K crossref_primary_10_1039_C9TA06815E crossref_primary_10_1016_j_cej_2020_124370 crossref_primary_10_3390_s22051996 crossref_primary_10_1021_acsami_3c17059 |
Cites_doi | 10.1016/j.ssi.2008.01.045 10.1016/S0032-3861(03)00189-7 10.1002/adma.201606128 10.1021/acs.inorgchem.5b02744 10.1016/j.electacta.2004.07.014 10.1016/S0378-7753(01)01014-X 10.1016/S0167-2738(98)00114-3 10.1039/C5CC00542F 10.1039/c2ee22987k 10.1016/0301-0104(96)00006-7 10.1016/j.jpowsour.2010.10.089 10.1039/C5CC06643C 10.1039/C6TA09829K 10.1038/nmat3602 10.1016/S0378-7753(98)00193-1 10.1016/j.jpowsour.2013.03.064 10.1016/0038-1098(77)90663-9 10.5539/ijc.v5n4p1 10.1149/2.072310jes 10.1002/adma.201601357 10.1016/j.jpowsour.2005.03.141 10.1016/j.electacta.2006.05.053 10.1021/am4019115 10.1021/ja502133j 10.1002/anie.201306267 10.1021/acsami.5b06420 10.1038/451652a 10.1149/2.114306jes 10.1021/cr500049y 10.1016/j.electacta.2011.08.048 10.1021/jp500593d 10.1016/S0039-9140(00)00585-3 10.1039/c1cc15779e 10.1002/aenm.201600467 10.1038/nature14340 10.1002/aenm.201300654 10.1038/srep03383 10.1039/c0cs00081g 10.1039/C8CC04468F 10.1021/ja029326t 10.1016/0167-2738(82)90072-8 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201806799 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201806799 ADFM201806799 |
Genre | article |
GrantInformation_xml | – fundername: 973 Project funderid: 2015CB932500 – fundername: National Natural Science Foundation of China funderid: 51725401 – fundername: Fundamental Research Funds for the Central Universities funderid: FRF‐TP‐17‐002C2 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4229-81c15a202da5806d5851bf09f76d899d72d51677395a6eb77659aca8605d12ba3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:42:43 EDT 2025 Tue Jul 01 04:11:54 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Aug 20 07:26:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4229-81c15a202da5806d5851bf09f76d899d72d51677395a6eb77659aca8605d12ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9600-752X |
PQID | 2162427209 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2162427209 crossref_citationtrail_10_1002_adfm_201806799 crossref_primary_10_1002_adfm_201806799 wiley_primary_10_1002_adfm_201806799_ADFM201806799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 4, 2019 |
PublicationDateYYYYMMDD | 2019-01-04 |
PublicationDate_xml | – month: 01 year: 2019 text: January 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2017; 5 2013; 3 2006; 52 2015; 3 2002; 110 2015; 51 2015; 520 2011; 40 2016; 52 2011; 57 2017; 29 1977; 23 2011; 196 1998; 110 2013; 5 2015; 7 2013; 160 2014; 114 2014; 136 1996; 206 2016; 55 2016; 6 2004; 50 2014; 4 2005; 146 2013; 12 2013; 239 2013; 52 1982; 7 1999; 77 2011; 47 2008; 179 2016; 28 2003; 125 2008; 451 2018; 54 1998; 32 2012; 5 2003; 44 2001; 54 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Murugan R. (e_1_2_6_34_1) 1998; 32 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Liu S. (e_1_2_6_14_1) 2015; 3 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 114 start-page: 11683 year: 2014 publication-title: Chem. Rev. – volume: 136 start-page: 7395 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9743 year: 2012 publication-title: Energy Environ. Sci. – volume: 28 start-page: 7564 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 75 year: 1982 publication-title: Solid State Ionics – volume: 52 start-page: 292 year: 2016 publication-title: Chem. Commun. – volume: 7 start-page: 24385 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 160 start-page: A1781 year: 2013 publication-title: J. Electrochem. Soc. – volume: 47 start-page: 12610 year: 2011 publication-title: Chem. Commun. – volume: 196 start-page: 6742 year: 2011 publication-title: J. Power Sources – volume: 77 start-page: 183 year: 1999 publication-title: J. Power Sources – volume: 52 start-page: 12582 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 110 start-page: 1 year: 2002 publication-title: J. Power Sources – volume: 55 start-page: 2374 year: 2016 publication-title: Inorg. Chem. – volume: 52 start-page: 675 year: 2006 publication-title: Electrochim. Acta – volume: 54 start-page: 233 year: 2001 publication-title: Talanta – volume: 23 start-page: 117 year: 1977 publication-title: Solid State Commun. – volume: 5 start-page: 1282 year: 2017 publication-title: J. Mater. Chem. A – volume: 57 start-page: 4 year: 2011 publication-title: Electrochim. Acta – volume: 54 start-page: 11725 year: 2018 publication-title: Chem. Commun. – volume: 3 start-page: 3383 year: 2013 publication-title: Sci. Rep. – volume: 40 start-page: 2525 year: 2011 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1 year: 2013 publication-title: Int. J. Chem. – volume: 29 start-page: 1 year: 2017 publication-title: Adv. Mater. – volume: 32 start-page: 505 year: 1998 publication-title: J. Korean Phys. Soc. – volume: 12 start-page: 452 year: 2013 publication-title: Nat. Mater. – volume: 6 start-page: 1600467 year: 2016 publication-title: Adv. Energy Mater. – volume: 206 start-page: 129 year: 1996 publication-title: Chem. Phys. – volume: 179 start-page: 1310 year: 2008 publication-title: Solid State Ionics – volume: 520 start-page: 324 year: 2015 publication-title: Nature – volume: 118 start-page: 5203 year: 2014 publication-title: J. Phys. Chem. C – volume: 110 start-page: 1 year: 1998 publication-title: Solid State Ionics – volume: 160 start-page: A915 year: 2013 publication-title: J. Electrochem. Soc. – volume: 146 start-page: 380 year: 2005 publication-title: J. Power Sources – volume: 5 start-page: 8477 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 69 year: 2004 publication-title: Electrochim. Acta – volume: 51 start-page: 11892 year: 2015 publication-title: Chem. Commun. – volume: 3 start-page: 959 year: 2015 publication-title: J. Phys. Chem. A – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 4 start-page: 1300654 year: 2014 publication-title: Adv. Energy Mater. – volume: 125 start-page: 4619 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 2957 year: 2003 publication-title: Polymer – volume: 239 start-page: 563 year: 2013 publication-title: J. Power Sources – ident: e_1_2_6_39_1 doi: 10.1016/j.ssi.2008.01.045 – ident: e_1_2_6_36_1 doi: 10.1016/S0032-3861(03)00189-7 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201606128 – ident: e_1_2_6_32_1 doi: 10.1021/acs.inorgchem.5b02744 – ident: e_1_2_6_27_1 doi: 10.1016/j.electacta.2004.07.014 – ident: e_1_2_6_1_1 doi: 10.1016/S0378-7753(01)01014-X – ident: e_1_2_6_38_1 doi: 10.1016/S0167-2738(98)00114-3 – volume: 3 start-page: 959 year: 2015 ident: e_1_2_6_14_1 publication-title: J. Phys. Chem. A – ident: e_1_2_6_3_1 doi: 10.1039/C5CC00542F – ident: e_1_2_6_11_1 doi: 10.1039/c2ee22987k – ident: e_1_2_6_31_1 doi: 10.1016/0301-0104(96)00006-7 – ident: e_1_2_6_25_1 doi: 10.1016/j.jpowsour.2010.10.089 – ident: e_1_2_6_30_1 doi: 10.1039/C5CC06643C – ident: e_1_2_6_15_1 doi: 10.1039/C6TA09829K – ident: e_1_2_6_20_1 doi: 10.1038/nmat3602 – ident: e_1_2_6_26_1 doi: 10.1016/S0378-7753(98)00193-1 – ident: e_1_2_6_41_1 doi: 10.1016/j.jpowsour.2013.03.064 – ident: e_1_2_6_43_1 doi: 10.1016/0038-1098(77)90663-9 – ident: e_1_2_6_5_1 doi: 10.5539/ijc.v5n4p1 – ident: e_1_2_6_12_1 doi: 10.1149/2.072310jes – ident: e_1_2_6_17_1 doi: 10.1002/adma.201601357 – ident: e_1_2_6_18_1 doi: 10.1016/j.jpowsour.2005.03.141 – ident: e_1_2_6_42_1 doi: 10.1016/j.electacta.2006.05.053 – ident: e_1_2_6_28_1 doi: 10.1021/am4019115 – ident: e_1_2_6_22_1 doi: 10.1021/ja502133j – ident: e_1_2_6_33_1 doi: 10.1002/anie.201306267 – ident: e_1_2_6_6_1 doi: 10.1021/acsami.5b06420 – ident: e_1_2_6_2_1 doi: 10.1038/451652a – ident: e_1_2_6_9_1 doi: 10.1149/2.114306jes – ident: e_1_2_6_7_1 doi: 10.1021/cr500049y – ident: e_1_2_6_19_1 doi: 10.1016/j.electacta.2011.08.048 – volume: 32 start-page: 505 year: 1998 ident: e_1_2_6_34_1 publication-title: J. Korean Phys. Soc. – ident: e_1_2_6_13_1 doi: 10.1021/jp500593d – ident: e_1_2_6_35_1 doi: 10.1016/S0039-9140(00)00585-3 – ident: e_1_2_6_8_1 doi: 10.1039/c1cc15779e – ident: e_1_2_6_37_1 doi: 10.1002/aenm.201600467 – ident: e_1_2_6_4_1 doi: 10.1038/nature14340 – ident: e_1_2_6_21_1 doi: 10.1002/aenm.201300654 – ident: e_1_2_6_10_1 doi: 10.1038/srep03383 – ident: e_1_2_6_23_1 doi: 10.1039/c0cs00081g – ident: e_1_2_6_29_1 doi: 10.1039/C8CC04468F – ident: e_1_2_6_40_1 doi: 10.1021/ja029326t – ident: e_1_2_6_24_1 doi: 10.1016/0167-2738(82)90072-8 |
SSID | ssj0017734 |
Score | 2.6413195 |
Snippet | Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum aluminum‐ion batteries Current density Deformation Electrochemical analysis Electrodes Electrolytes Energy storage flexible batteries Flux density Lithium-ion batteries Materials science polymer electrolytes Rechargeable batteries Safety Separators solid‐state devices Storage batteries Storage systems |
Title | Flexible Stable Solid‐State Al‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806799 https://www.proquest.com/docview/2162427209 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhRKlQGJKW3s-pGMESUqiDIAlbpFduxIiCpFtF2Y-An8Rn4JvrzaIiEkmOIoduScffF357vPCJ0bZqShiTVTlUddKljqKmmIG2jOiPa9RGnIHR7c8f6Q3ozYaCmLv-CHqB1uoBn5_xoUXKppZ0EaKnUKmeTYB1cIZPBBwBagovuaPwoLUWwrcwwBXnhUsTZ6pLPafHVVWkDNZcCarzjRDpJVX4tAk-f2fKbayds3Gsf_fMwu2i7hqBMW82cPrZlsH20tkRQeIC8Czkw1No4FpvllMn7Sn-8fOU51wrEtXk8yp2DqtIb3IRpGV4-Xfbc8Z8FNKCHgBUwwk8QjWjLbAQ07hSr1glRwbc0xLYhmmAvY0pPcKCE4C2QifWsJaUyU7B6h9WySmWPkECJ9zLQdfamoZlJhyX2vS5WFDWmQ8gZyKznHSUlCDmdhjOOCPpnEIIm4lkQDXdT1Xwr6jR9rNqthi0s1nMYEQ_qLIJ59THL5__KWOOxFg_ru5C-NTtGmLQe5m4Y20frsdW7OLHCZqRbaCHuD24dWPkm_AP4I5lQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MgGCY6D-rBb-N0ag8mnroVVqA9Lmqz6baD2ZLdCBSaGJvO6Hbx5E_wN_pLBPrhZmJM9NQvaOgLlOf9egDgQmHFlR9rNVV4vutTnLiCK-SGkmAkAy8W0uQOD4akO_ZvJ7iMJjS5MDk_RGVwMzPD_q_NBDcG6dYXayiXiUklh4GxhYSrYM1s6221qvuKQQpSmjuWCTQhXnBS8jZ6qLVcf3ld-gKbi5DVrjnRNhBla_NQk8fmfCaa8es3Isd_fc4O2CoQqdPJh9AuWFHZHthc4CncB15kaDNFqhyNTe1hmj7Ij7d3C1WdTqpPe9PMyck6te59AMbRzeiq6xZbLbixj5AxBMYQc-QhybFugDTOQpF4YUKJ1BqZpEhiSKjx6nGiBKUEhzzmgVaGJESCtw9BLZtm6gg4CPEAYqkHABe-xFxATgKv7QuNHJIwIXXgloJmccFDbrbDSFnOoIyYkQSrJFEHl1X5p5yB48eSjbLfWDETXxiCJgOGIk8_RrYDfnkL61xHg-rq-C-VzsF6dzTos35veHcCNvT90Fpt_AaozZ7n6lTjmJk4syP1Ey6T6Ns |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuzid2gfBp25Jlkv7OJxlUzdEHOytJE0KYumGbi8--RP8jf4Sk7brNkEEfeotKenJSfOdc3K-AHChqRaaRMZMlZC4hNPYlUJj11eMYuXBSCqbO9zrs86A3AzpcCGLP-eHKB1udmRk_2s7wMcqbsxJQ4WKbSY58qwrxF8Fa4RBz-p1-6EkkEKc53FlhuwKLzSc0TZC3FiuvzwtzbHmImLNppxgG4hZY_OVJs_16UTWo7dvPI7_-ZodsFXgUaeVK9AuWNHpHthcYCncBzCwpJky0Y5BptlhlDypz_ePDKg6rcScdkepk1N1Gsv7AAyC68erjltstOBGBGPrBowQFRhiJahpgLKhQhlDP-ZMGXtMcawoYtzG9ATTknNGfREJz5hCCmEpmoegko5SfQQcjIWHqDLdLyRRVEgkmAebRBrcEPsxqwJ3JucwKljI7WYYSZjzJ-PQSiIsJVEFl2X5cc6_8WPJ2qzbwmIcvoYY2fwXjqF5jDP5__KWsNUOeuXV8V8qnYP1-3YQ3nX7tydgw9z2M5cNqYHK5GWqTw2ImcizTE-_AJiB55M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Stable+Solid%E2%80%90State+Al%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Yu%2C+Zhijing&rft.au=Jiao%2C+Shuqiang&rft.au=Li%2C+Shijie&rft.au=Chen%2C+Xiaodong&rft.date=2019-01-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201806799&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |