Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries
Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilita...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 13 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries.
A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer. |
---|---|
AbstractList | Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries.
A highly reversible Zn anode is achieved through controllable nucleation sites for Zn2+ and fast Zn2+ transportation under the favorable Maxwell–Wagner polarization, in which a low polarization (24 mV), high Coulombic efficiency (99.36%), and long cycle life (over 3800 h) are obtained by employing a ZrO2‐coating layer. Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO2 coating layer, which contributes to the controllable nucleation sites for Zn2+ and fast Zn2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm−2), high Coulombic efficiency (99.36% at 20 mA cm−2), and long cycle life (over 3800 h at 0.25 mA cm−2) can be obtained for the ZrO2‐coated Zn anode. It is believed that the ZrO2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries. Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO densification have compromised their application in rechargeable Zn‐based batteries. In this paper, a straightforward strategy is employed to facilitate the uniform Zn stripping/plating of the Zn anode through using a ZrO 2 coating layer, which contributes to the controllable nucleation sites for Zn 2+ and fast Zn 2+ transportation through the favorable Maxwell–Wagner polarization. As a result, the low polarization (24 mV at 0.25 mA cm −2 ), high Coulombic efficiency (99.36% at 20 mA cm −2 ), and long cycle life (over 3800 h at 0.25 mA cm −2 ) can be obtained for the ZrO 2 ‐coated Zn anode. It is believed that the ZrO 2 coating layer can also act as an inert physical barrier to decrease the contact of the anode and electrolyte, thus reducing both the Zn corrosion and formation of ZnO densification, and then improve the reversibility of Zn anode. The results demonstrated in this work provide an appealing strategy for the future development of rechargeable Zn‐based batteries. |
Author | Liu, Xiaoyu Wu, Kai Wang, Yonggang Liu, Yuyu Cui, Jin Wang, Zhuo Zhang, Jiujun Yi, Jin Xia, Yongyao Liang, Pengcheng |
Author_xml | – sequence: 1 givenname: Pengcheng surname: Liang fullname: Liang, Pengcheng organization: Shanghai University – sequence: 2 givenname: Jin surname: Yi fullname: Yi, Jin email: jin.yi@shu.edu.cn organization: Shanghai University – sequence: 3 givenname: Xiaoyu surname: Liu fullname: Liu, Xiaoyu organization: Shanghai University – sequence: 4 givenname: Kai surname: Wu fullname: Wu, Kai organization: Shanghai University – sequence: 5 givenname: Zhuo surname: Wang fullname: Wang, Zhuo organization: Fudan University – sequence: 6 givenname: Jin surname: Cui fullname: Cui, Jin organization: Shanghai University – sequence: 7 givenname: Yuyu surname: Liu fullname: Liu, Yuyu organization: Shanghai University – sequence: 8 givenname: Yonggang surname: Wang fullname: Wang, Yonggang organization: Fudan University – sequence: 9 givenname: Yongyao orcidid: 0000-0001-6379-9655 surname: Xia fullname: Xia, Yongyao email: yyxia@fudan.edu.cn organization: Fudan University – sequence: 10 givenname: Jiujun surname: Zhang fullname: Zhang, Jiujun organization: Shanghai University |
BookMark | eNqFkE1LAzEQhoMo2FavngOeW_OxH9ljW1srVAU_QLws2WSiKdtNTbZKb_4Ef6O_xK2VCoJ4mnmH95lh3jbarVwFCB1R0qOEsBOpzbzHCM2IiJnYQS2a0KTLCRO7257e76N2CDNCaJryqIXsxD4-lSt8DS_ggy1KwA8V7ldOAx5VstEaFys8dFXtXVmuB3js_FzW1lXYGXy5VCVs1I2tIWDjfLPi4-19IEMDD2Rdg7cQDtCekWWAw-_aQXfj0e1w0p1enZ0P-9OuihgTXZWZxGSRBlCglUjiRnCdaZCZYpJyoaXQseFMFJyQTOg0VSKOVSENTQSnvIOON3sX3j0vIdT5zC191ZzMGW8MqWA0bVzRxqW8C8GDyZWtv96ovbRlTkm-DjVfh5pvQ22w3i9s4e1c-tXfQLYBXm0Jq3_cef90fPHDfgJLVo5c |
CitedBy_id | crossref_primary_10_1039_D4EE01313A crossref_primary_10_1016_j_carbpol_2023_121075 crossref_primary_10_3390_batteries9030174 crossref_primary_10_1021_acs_langmuir_4c03380 crossref_primary_10_1007_s40820_023_01227_x crossref_primary_10_1007_s11426_022_1324_0 crossref_primary_10_1002_ange_202308182 crossref_primary_10_1016_j_cej_2024_151542 crossref_primary_10_1038_s41467_022_35618_2 crossref_primary_10_1557_s43581_022_00033_z crossref_primary_10_1002_adfm_202010213 crossref_primary_10_1016_j_est_2024_112790 crossref_primary_10_1016_j_cej_2021_134378 crossref_primary_10_1016_j_ensm_2023_102911 crossref_primary_10_1039_D0CC07526D crossref_primary_10_1021_acsaem_2c03838 crossref_primary_10_1002_aenm_202100982 crossref_primary_10_1002_anie_202304503 crossref_primary_10_1002_aenm_202003065 crossref_primary_10_1016_j_ensm_2022_06_054 crossref_primary_10_1002_adfm_202207732 crossref_primary_10_1016_j_ensm_2022_06_057 crossref_primary_10_1016_j_matchemphys_2025_130445 crossref_primary_10_1016_j_matt_2022_07_015 crossref_primary_10_1021_acsami_1c06002 crossref_primary_10_1002_adfm_202001867 crossref_primary_10_1021_acsami_1c06131 crossref_primary_10_1002_adfm_202100398 crossref_primary_10_1039_D2TA00697A crossref_primary_10_1002_adma_202209288 crossref_primary_10_1016_j_cej_2023_142308 crossref_primary_10_1016_j_chempr_2023_03_033 crossref_primary_10_1002_ente_202300885 crossref_primary_10_1002_anie_202312145 crossref_primary_10_1021_acsami_4c09002 crossref_primary_10_1002_cssc_202400076 crossref_primary_10_1016_j_cej_2025_161884 crossref_primary_10_1021_acsnano_3c08197 crossref_primary_10_1021_jacs_0c11753 crossref_primary_10_1002_ente_202100297 crossref_primary_10_1007_s40820_021_00782_5 crossref_primary_10_1016_j_cej_2022_136607 crossref_primary_10_1039_D1TA10245A crossref_primary_10_1002_adfm_202301912 crossref_primary_10_1002_smll_202501293 crossref_primary_10_1021_acsenergylett_3c00367 crossref_primary_10_1002_advs_202002173 crossref_primary_10_1007_s10008_023_05403_2 crossref_primary_10_1007_s40820_021_00599_2 crossref_primary_10_1021_acsenergylett_3c01206 crossref_primary_10_1002_slct_202200926 crossref_primary_10_1016_j_cej_2024_157190 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1021_acsanm_3c06229 crossref_primary_10_1002_eom2_12416 crossref_primary_10_1007_s41871_023_00194_6 crossref_primary_10_1016_j_cej_2021_134032 crossref_primary_10_1039_D4TA01262C crossref_primary_10_1016_j_jallcom_2022_165231 crossref_primary_10_1016_j_nanoen_2022_107805 crossref_primary_10_1021_acsmaterialslett_3c01385 crossref_primary_10_1016_j_cej_2021_134277 crossref_primary_10_1021_acsami_1c22873 crossref_primary_10_1021_acsami_4c07396 crossref_primary_10_1002_adma_202004240 crossref_primary_10_2139_ssrn_4167597 crossref_primary_10_1039_D2SC04945G crossref_primary_10_1016_j_mattod_2020_08_021 crossref_primary_10_1002_aenm_202102707 crossref_primary_10_1002_anie_202210567 crossref_primary_10_1002_adfm_202207751 crossref_primary_10_2139_ssrn_3968767 crossref_primary_10_1021_acsenergylett_2c01958 crossref_primary_10_1002_smtd_202300009 crossref_primary_10_1002_gch2_202400105 crossref_primary_10_1021_acsenergylett_2c01960 crossref_primary_10_1002_smll_202401589 crossref_primary_10_1039_D2CE00470D crossref_primary_10_1007_s40843_021_1778_2 crossref_primary_10_1021_acsami_1c18255 crossref_primary_10_1016_j_electacta_2022_140702 crossref_primary_10_1016_j_est_2024_113434 crossref_primary_10_1016_j_est_2024_113550 crossref_primary_10_1016_j_cej_2022_134688 crossref_primary_10_1021_acsnano_0c07041 crossref_primary_10_1021_acssuschemeng_3c04018 crossref_primary_10_1016_j_esci_2023_100153 crossref_primary_10_1002_ente_202301400 crossref_primary_10_1021_acsenergylett_1c02299 crossref_primary_10_1039_D0TA06622B crossref_primary_10_1002_adfm_202103850 crossref_primary_10_1002_smll_202205667 crossref_primary_10_1039_D3DT03975G crossref_primary_10_1039_D2EE04023A crossref_primary_10_1016_j_jechem_2023_02_037 crossref_primary_10_1039_D4CC03597F crossref_primary_10_1002_adfm_202304280 crossref_primary_10_1039_D2EE02931F crossref_primary_10_3390_nano11102746 crossref_primary_10_1002_adfm_202302098 crossref_primary_10_1021_acssuschemeng_3c05796 crossref_primary_10_1002_smtd_202200560 crossref_primary_10_1016_j_mtchem_2024_102429 crossref_primary_10_1002_anie_202000162 crossref_primary_10_1002_adfm_202419492 crossref_primary_10_1002_adma_202109872 crossref_primary_10_1002_aenm_202403153 crossref_primary_10_2139_ssrn_4052219 crossref_primary_10_1016_j_jallcom_2021_161886 crossref_primary_10_1002_smsc_202400015 crossref_primary_10_1002_adma_202410947 crossref_primary_10_1021_acsnano_4c06008 crossref_primary_10_1021_acsaem_0c00183 crossref_primary_10_1002_smsc_202300007 crossref_primary_10_1016_j_surfcoat_2021_127367 crossref_primary_10_1002_chem_202402020 crossref_primary_10_1002_ente_202200944 crossref_primary_10_1021_acsnano_2c09977 crossref_primary_10_1039_D0QM00693A crossref_primary_10_1002_aenm_202300269 crossref_primary_10_1002_smll_202101798 crossref_primary_10_1021_acsami_3c06206 crossref_primary_10_1002_adfm_202103514 crossref_primary_10_1016_j_est_2024_112898 crossref_primary_10_1039_D3RA05177C crossref_primary_10_1002_adfm_202006495 crossref_primary_10_1039_D1EE01861B crossref_primary_10_1002_batt_202100417 crossref_primary_10_1002_aenm_202202683 crossref_primary_10_1016_j_nanoen_2020_105584 crossref_primary_10_1021_acsami_2c13536 crossref_primary_10_1021_acsenergylett_2c02735 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1016_j_nanoen_2025_110700 crossref_primary_10_1039_D1TA03620C crossref_primary_10_1002_smll_202311407 crossref_primary_10_1016_j_nanoen_2021_106839 crossref_primary_10_1002_eem2_12826 crossref_primary_10_1039_D0EE03898A crossref_primary_10_1002_aenm_202500430 crossref_primary_10_1039_D2EE00209D crossref_primary_10_1002_smtd_202301411 crossref_primary_10_1021_acsami_2c20075 crossref_primary_10_1088_2752_5724_ad50f1 crossref_primary_10_1016_j_apsusc_2023_157704 crossref_primary_10_1002_ange_202000162 crossref_primary_10_1007_s11426_023_1698_6 crossref_primary_10_1007_s40843_023_2646_0 crossref_primary_10_1016_j_cej_2023_142276 crossref_primary_10_1002_batt_202300099 crossref_primary_10_1016_j_ceramint_2023_06_026 crossref_primary_10_1039_D5EE00075K crossref_primary_10_26599_NRE_2022_9120025 crossref_primary_10_1002_bte2_20220029 crossref_primary_10_1016_j_jpowsour_2024_235596 crossref_primary_10_1016_j_ccr_2025_216478 crossref_primary_10_1016_j_jcis_2020_06_120 crossref_primary_10_1021_acsami_2c05887 crossref_primary_10_1021_acsenergylett_0c02569 crossref_primary_10_1039_D0TA05253A crossref_primary_10_1039_D1TA02775A crossref_primary_10_1016_j_cej_2021_133440 crossref_primary_10_1016_j_nanoen_2022_107505 crossref_primary_10_1021_acselectrochem_4c00086 crossref_primary_10_1038_s41467_025_56011_9 crossref_primary_10_1007_s11706_023_0639_7 crossref_primary_10_1016_j_cej_2023_142270 crossref_primary_10_1016_j_cej_2023_146741 crossref_primary_10_1016_j_nanoen_2023_109096 crossref_primary_10_1002_adfm_202400032 crossref_primary_10_1007_s12274_022_5270_x crossref_primary_10_1016_j_ensm_2021_09_012 crossref_primary_10_1016_j_cej_2020_127704 crossref_primary_10_1039_D4RA03632H crossref_primary_10_1016_j_jpowsour_2022_232072 crossref_primary_10_1016_j_electacta_2021_137740 crossref_primary_10_1002_adma_202202382 crossref_primary_10_1002_adma_202200085 crossref_primary_10_1126_sciadv_abm5766 crossref_primary_10_1016_j_enchem_2024_100117 crossref_primary_10_1016_j_cej_2022_140145 crossref_primary_10_1016_j_ceramint_2021_12_097 crossref_primary_10_3390_batteries9010041 crossref_primary_10_1002_anie_202217945 crossref_primary_10_1002_smll_202302995 crossref_primary_10_1016_j_ensm_2023_103075 crossref_primary_10_1039_D2EE02416K crossref_primary_10_1016_j_electacta_2022_141081 crossref_primary_10_3390_batteries9060328 crossref_primary_10_1002_ange_202012322 crossref_primary_10_1002_adfm_202300656 crossref_primary_10_1002_batt_202000250 crossref_primary_10_1016_j_surfcoat_2021_127699 crossref_primary_10_1002_anie_202112304 crossref_primary_10_1021_acsami_0c18433 crossref_primary_10_1016_j_jpowsour_2024_235570 crossref_primary_10_1016_j_apmate_2022_100093 crossref_primary_10_1002_smll_202402266 crossref_primary_10_1002_cssc_202301942 crossref_primary_10_1002_adfm_202003187 crossref_primary_10_1002_ente_202400624 crossref_primary_10_1016_j_jechem_2022_05_033 crossref_primary_10_1002_adfm_202413495 crossref_primary_10_1021_acs_nanolett_1c04353 crossref_primary_10_1021_acs_nanolett_2c03277 crossref_primary_10_1021_acsami_1c02065 crossref_primary_10_1002_eom2_12482 crossref_primary_10_1021_acsnano_1c05934 crossref_primary_10_1039_D0TA09111A crossref_primary_10_1016_j_cej_2024_159088 crossref_primary_10_1002_adfm_202211274 crossref_primary_10_1007_s11581_023_05046_3 crossref_primary_10_1002_eom2_12125 crossref_primary_10_26599_NR_2025_94907156 crossref_primary_10_1016_j_est_2024_111530 crossref_primary_10_1021_acsami_3c12369 crossref_primary_10_1002_sus2_53 crossref_primary_10_1002_adma_202306015 crossref_primary_10_1016_j_ensm_2022_04_031 crossref_primary_10_1016_j_nanoen_2022_107990 crossref_primary_10_1039_D3TA01904G crossref_primary_10_1007_s40820_021_00594_7 crossref_primary_10_1021_acssuschemeng_2c03328 crossref_primary_10_1002_anie_202309601 crossref_primary_10_1002_aenm_202001599 crossref_primary_10_1016_j_cej_2023_145981 crossref_primary_10_1016_j_scib_2023_05_015 crossref_primary_10_1039_D3DT01352A crossref_primary_10_1016_j_cej_2023_141388 crossref_primary_10_1021_acssuschemeng_2c04772 crossref_primary_10_1002_aenm_202003419 crossref_primary_10_1021_acsenergylett_1c01249 crossref_primary_10_1002_adfm_202305098 crossref_primary_10_1039_D4EE00721B crossref_primary_10_1021_acsami_3c05651 crossref_primary_10_1002_cssc_202401251 crossref_primary_10_1002_adfm_202312855 crossref_primary_10_1002_adfm_202204306 crossref_primary_10_1002_adma_202101649 crossref_primary_10_1002_smll_202001736 crossref_primary_10_1016_j_cej_2022_135822 crossref_primary_10_1016_j_nantod_2022_101463 crossref_primary_10_1149_1945_7111_acdd9e crossref_primary_10_1002_adfm_202301964 crossref_primary_10_2139_ssrn_3995086 crossref_primary_10_1002_tcr_202200088 crossref_primary_10_1002_ange_202116560 crossref_primary_10_1016_j_cej_2023_145730 crossref_primary_10_1021_acs_nanolett_3c03161 crossref_primary_10_1002_tcr_202200079 crossref_primary_10_1002_smll_202310293 crossref_primary_10_1016_j_jpowsour_2021_229677 crossref_primary_10_1002_smll_202103345 crossref_primary_10_1002_inf2_12306 crossref_primary_10_1002_adma_202202188 crossref_primary_10_26599_EMD_2023_9370023 crossref_primary_10_1016_j_esci_2023_100093 crossref_primary_10_1002_adma_202203153 crossref_primary_10_1002_ange_202405048 crossref_primary_10_1002_ange_202304503 crossref_primary_10_1002_smll_202403380 crossref_primary_10_1016_j_cej_2025_161327 crossref_primary_10_1039_D2EE03952D crossref_primary_10_23919_IEN_2024_0003 crossref_primary_10_1016_j_electacta_2025_146053 crossref_primary_10_1002_batt_202200468 crossref_primary_10_1021_acsami_1c04797 crossref_primary_10_1016_j_jcis_2023_03_184 crossref_primary_10_1002_anie_202215324 crossref_primary_10_1021_acsenergylett_3c01017 crossref_primary_10_1002_ange_202210567 crossref_primary_10_1002_ange_202416271 crossref_primary_10_1002_adma_202300620 crossref_primary_10_1002_slct_202400620 crossref_primary_10_1039_D4EE03708A crossref_primary_10_1002_eom2_12173 crossref_primary_10_1021_acsami_2c09909 crossref_primary_10_1002_ange_202312145 crossref_primary_10_1021_acs_jpcc_1c10867 crossref_primary_10_1021_acsmaterialslett_3c00368 crossref_primary_10_1149_1945_7111_acd8fc crossref_primary_10_1016_j_nanoen_2022_107724 crossref_primary_10_1016_j_jechem_2022_06_028 crossref_primary_10_1039_D1EE03882F crossref_primary_10_1002_aenm_202302493 crossref_primary_10_1002_batt_202200237 crossref_primary_10_1021_acsami_2c13499 crossref_primary_10_1039_D4EE01978D crossref_primary_10_1007_s40843_022_2239_8 crossref_primary_10_1021_acsaem_2c01512 crossref_primary_10_1021_acsami_3c13144 crossref_primary_10_1002_aenm_202301049 crossref_primary_10_1016_j_ensm_2022_10_060 crossref_primary_10_2139_ssrn_4093943 crossref_primary_10_1016_j_nanoen_2024_109374 crossref_primary_10_1021_acssuschemeng_2c03653 crossref_primary_10_1016_j_jpowsour_2021_229655 crossref_primary_10_1016_j_jechem_2021_04_016 crossref_primary_10_1002_aenm_202200665 crossref_primary_10_1002_batt_202000060 crossref_primary_10_59717_j_xinn_mater_2023_100029 crossref_primary_10_20517_energymater_2024_51 crossref_primary_10_1002_celc_202001426 crossref_primary_10_1002_smll_202408848 crossref_primary_10_1016_j_cej_2021_134227 crossref_primary_10_1039_D3TA01706K crossref_primary_10_1016_j_nanoen_2022_107830 crossref_primary_10_1002_smll_202302650 crossref_primary_10_1038_s41467_021_23352_0 crossref_primary_10_1021_acsami_1c24288 crossref_primary_10_1002_adma_202100445 crossref_primary_10_1016_j_nanoen_2021_106322 crossref_primary_10_1016_j_electacta_2024_144179 crossref_primary_10_1002_smll_202100722 crossref_primary_10_1016_j_ensm_2022_02_034 crossref_primary_10_1021_acsenergylett_2c01255 crossref_primary_10_1002_adfm_202301129 crossref_primary_10_1039_D3EE03040G crossref_primary_10_1002_anie_202114789 crossref_primary_10_1039_D3EE04360F crossref_primary_10_1021_acsami_4c17415 crossref_primary_10_1016_j_jechem_2021_08_022 crossref_primary_10_1007_s11581_024_05602_5 crossref_primary_10_34133_energymatadv_0035 crossref_primary_10_1021_acsaem_1c03864 crossref_primary_10_1016_j_elecom_2020_106898 crossref_primary_10_1002_ange_202112304 crossref_primary_10_1016_j_ensm_2023_03_005 crossref_primary_10_1016_j_ensm_2024_103844 crossref_primary_10_1016_j_matlet_2022_133354 crossref_primary_10_3390_molecules28062721 crossref_primary_10_1002_smll_202303457 crossref_primary_10_1016_j_ensm_2022_02_022 crossref_primary_10_1016_S1872_5805_25_60950_4 crossref_primary_10_1002_cnl2_155 crossref_primary_10_1016_j_jcis_2024_05_153 crossref_primary_10_1007_s12274_022_4688_5 crossref_primary_10_1002_aenm_202101299 crossref_primary_10_1002_smll_202200567 crossref_primary_10_1002_adfm_202213510 crossref_primary_10_1016_j_enchem_2022_100075 crossref_primary_10_1039_D1SE01317C crossref_primary_10_1016_j_enchem_2022_100076 crossref_primary_10_1039_D1TA08620K crossref_primary_10_1002_adfm_202417546 crossref_primary_10_1016_j_nanoen_2022_107333 crossref_primary_10_1002_asia_202200289 crossref_primary_10_1016_j_apsusc_2023_159008 crossref_primary_10_1002_adfm_202406568 crossref_primary_10_1016_j_ensm_2020_05_028 crossref_primary_10_1021_jacs_3c08986 crossref_primary_10_1002_tcr_202200309 crossref_primary_10_1002_asia_202000946 crossref_primary_10_1007_s40843_020_1570_5 crossref_primary_10_1039_D2TA06830C crossref_primary_10_34133_energymatadv_0139 crossref_primary_10_1021_acsenergylett_0c02028 crossref_primary_10_1016_j_jpowsour_2022_232262 crossref_primary_10_1002_aenm_202400033 crossref_primary_10_1039_D1EE02021H crossref_primary_10_1016_j_cej_2022_138116 crossref_primary_10_1002_aenm_202401118 crossref_primary_10_1002_smll_202304640 crossref_primary_10_1016_j_ensm_2023_03_029 crossref_primary_10_1016_j_ensm_2022_10_016 crossref_primary_10_1021_acsaem_1c01306 crossref_primary_10_1021_acsnano_1c02928 crossref_primary_10_1016_j_jpowsour_2023_233504 crossref_primary_10_1016_j_jcis_2023_11_178 crossref_primary_10_1002_ange_202217945 crossref_primary_10_1002_ange_202309601 crossref_primary_10_1002_adfm_202208288 crossref_primary_10_1002_smll_202101901 crossref_primary_10_1016_j_ensm_2021_07_044 crossref_primary_10_1002_aenm_202003823 crossref_primary_10_1007_s40820_022_01007_z crossref_primary_10_1016_j_surfin_2022_101972 crossref_primary_10_1021_acs_langmuir_4c01674 crossref_primary_10_1039_D2CS00684G crossref_primary_10_1016_j_cej_2022_139335 crossref_primary_10_1016_j_cej_2022_139577 crossref_primary_10_1038_s41467_023_39947_8 crossref_primary_10_1016_j_ensm_2023_103000 crossref_primary_10_1016_j_jpowsour_2024_234194 crossref_primary_10_1002_aenm_202203189 crossref_primary_10_1016_j_cej_2024_157743 crossref_primary_10_1002_smll_202107398 crossref_primary_10_1016_j_jpowsour_2023_233755 crossref_primary_10_1021_acsaem_1c00224 crossref_primary_10_1002_aenm_202300606 crossref_primary_10_1002_smll_202300274 crossref_primary_10_1016_j_cej_2020_128096 crossref_primary_10_1002_smll_202302334 crossref_primary_10_1021_acsami_3c10101 crossref_primary_10_1016_j_cej_2023_143054 crossref_primary_10_1016_j_ensm_2022_10_029 crossref_primary_10_1002_eem2_12265 crossref_primary_10_1021_acs_langmuir_4c00354 crossref_primary_10_1039_D4CS00474D crossref_primary_10_1016_j_jpowsour_2023_233887 crossref_primary_10_1016_j_ensm_2022_11_031 crossref_primary_10_1002_smll_202406481 crossref_primary_10_1039_D0EE02162H crossref_primary_10_1016_j_jcis_2023_11_117 crossref_primary_10_1021_acsami_4c20613 crossref_primary_10_1038_s41560_020_0674_x crossref_primary_10_1002_smll_202306406 crossref_primary_10_1002_tcr_202200114 crossref_primary_10_1016_j_mtcomm_2022_103939 crossref_primary_10_1002_aenm_202003927 crossref_primary_10_1016_j_cej_2022_138265 crossref_primary_10_1039_D1EE00030F crossref_primary_10_1002_ange_202114789 crossref_primary_10_1016_j_matre_2024_100272 crossref_primary_10_1016_j_est_2025_115886 crossref_primary_10_1016_j_jpowsour_2022_232152 crossref_primary_10_1016_j_jechem_2021_08_057 crossref_primary_10_1021_acsami_3c15973 crossref_primary_10_1002_smll_202307848 crossref_primary_10_2139_ssrn_4167849 crossref_primary_10_1007_s42114_024_01122_y crossref_primary_10_1016_j_jpowsour_2023_233894 crossref_primary_10_1021_acsami_2c19863 crossref_primary_10_1021_acs_jpclett_4c01780 crossref_primary_10_1016_j_cej_2024_157729 crossref_primary_10_1002_adma_202105951 crossref_primary_10_1016_j_jcis_2021_05_134 crossref_primary_10_1016_j_jcis_2023_09_151 crossref_primary_10_1016_j_mtener_2024_101513 crossref_primary_10_20964_2022_09_09 crossref_primary_10_1002_adfm_202405318 crossref_primary_10_1002_advs_202103952 crossref_primary_10_1002_cnl2_54 crossref_primary_10_1002_adfm_202213882 crossref_primary_10_1002_aenm_202403739 crossref_primary_10_1021_acsnano_3c06245 crossref_primary_10_1016_j_cej_2021_132576 crossref_primary_10_1016_j_corsci_2022_110619 crossref_primary_10_1002_advs_202102612 crossref_primary_10_1002_anie_202401507 crossref_primary_10_1039_D0EE02079F crossref_primary_10_1039_D2TA03550B crossref_primary_10_1016_j_est_2021_103744 crossref_primary_10_1021_acsami_3c10154 crossref_primary_10_1016_j_compositesb_2023_110516 crossref_primary_10_1002_adfm_202109749 crossref_primary_10_1002_advs_202202380 crossref_primary_10_1002_ange_202401507 crossref_primary_10_1007_s10008_023_05703_7 crossref_primary_10_1016_j_ensm_2024_103981 crossref_primary_10_1021_acs_energyfuels_3c01058 crossref_primary_10_1002_aenm_202100186 crossref_primary_10_1038_s41467_025_57666_0 crossref_primary_10_1002_adfm_202108533 crossref_primary_10_1007_s12274_022_4477_1 crossref_primary_10_1016_j_jpowsour_2022_232173 crossref_primary_10_1016_j_mtcomm_2024_108606 crossref_primary_10_1016_j_jpowsour_2022_232044 crossref_primary_10_1002_adfm_202301530 crossref_primary_10_1002_adma_202207209 crossref_primary_10_1016_j_mtener_2022_101056 crossref_primary_10_1007_s12598_023_02571_y crossref_primary_10_1016_j_jallcom_2023_171337 crossref_primary_10_1002_cssc_202100299 crossref_primary_10_1016_j_apmate_2021_10_002 crossref_primary_10_1016_S1872_5805_22_60623_1 crossref_primary_10_1002_advs_202100309 crossref_primary_10_1016_j_ensm_2024_103616 crossref_primary_10_1016_j_mtener_2024_101659 crossref_primary_10_1016_j_apsusc_2022_154932 crossref_primary_10_1016_j_gee_2022_04_008 crossref_primary_10_1016_j_xcrp_2023_101344 crossref_primary_10_1016_j_cej_2024_149503 crossref_primary_10_1039_D4GC01812E crossref_primary_10_1039_D0TA02486D crossref_primary_10_1002_smll_202401713 crossref_primary_10_1002_adfm_202112091 crossref_primary_10_1016_j_jechem_2022_01_037 crossref_primary_10_1016_j_ccr_2023_215142 crossref_primary_10_1016_j_surfin_2024_104735 crossref_primary_10_1002_smll_202203327 crossref_primary_10_1002_adma_202308086 crossref_primary_10_1021_acsami_1c23422 crossref_primary_10_1002_smm2_1194 crossref_primary_10_1002_anie_202405048 crossref_primary_10_1021_acsaem_1c03223 crossref_primary_10_1016_j_nanoen_2023_108799 crossref_primary_10_1002_adfm_202411976 crossref_primary_10_1002_adfm_202314157 crossref_primary_10_1021_acsami_2c12744 crossref_primary_10_1021_acs_chemrev_2c00289 crossref_primary_10_1002_adfm_202106417 crossref_primary_10_1021_acs_iecr_2c03462 crossref_primary_10_1039_D3QI01981K crossref_primary_10_1021_acs_nanolett_1c04709 crossref_primary_10_1002_smll_202200168 crossref_primary_10_1002_sstr_202000128 crossref_primary_10_1016_j_ensm_2021_10_020 crossref_primary_10_1002_adfm_202407347 crossref_primary_10_2139_ssrn_4156523 crossref_primary_10_1016_j_jpowsour_2020_228808 crossref_primary_10_1002_adma_202300019 crossref_primary_10_1039_D1TA00256B crossref_primary_10_1002_smll_202106441 crossref_primary_10_1016_j_ensm_2023_01_006 crossref_primary_10_7316_KHNES_2021_32_5_401 crossref_primary_10_1002_smtd_202201225 crossref_primary_10_1016_j_cej_2022_137653 crossref_primary_10_1021_acsnano_3c05640 crossref_primary_10_1039_D0TA07348B crossref_primary_10_1002_adfm_202104361 crossref_primary_10_1002_anie_202116560 crossref_primary_10_1016_j_jelechem_2022_116851 crossref_primary_10_1039_D1NR06058A crossref_primary_10_1016_j_jpowsour_2022_231659 crossref_primary_10_1007_s43979_023_00073_5 crossref_primary_10_1002_eem2_12480 crossref_primary_10_1016_j_cej_2023_148479 crossref_primary_10_1021_acsnano_1c08638 crossref_primary_10_1002_aenm_202000962 crossref_primary_10_1002_smll_202203583 crossref_primary_10_1002_adma_202500596 crossref_primary_10_1016_j_cej_2024_158443 crossref_primary_10_1016_j_electacta_2024_144799 crossref_primary_10_1016_j_enchem_2021_100055 crossref_primary_10_1002_smll_202408138 crossref_primary_10_1016_j_cej_2022_135246 crossref_primary_10_1021_acsenergylett_1c00939 crossref_primary_10_1016_j_enchem_2021_100052 crossref_primary_10_1016_j_electacta_2023_141928 crossref_primary_10_1002_anie_202308182 crossref_primary_10_1016_j_cej_2022_136217 crossref_primary_10_1016_j_est_2024_112176 crossref_primary_10_1002_adfm_202106550 crossref_primary_10_1002_adfm_202000599 crossref_primary_10_1002_smll_202305217 crossref_primary_10_1016_j_ensm_2021_10_016 crossref_primary_10_1016_j_nxener_2023_100048 crossref_primary_10_1002_batt_202300544 crossref_primary_10_1002_adma_202003425 crossref_primary_10_1002_aenm_202300331 crossref_primary_10_1016_j_electacta_2020_136937 crossref_primary_10_1039_D3TA01415K crossref_primary_10_2139_ssrn_3989390 crossref_primary_10_1002_anie_202012322 crossref_primary_10_1002_smll_202407153 crossref_primary_10_1016_j_coelec_2021_100801 crossref_primary_10_1016_j_matpr_2022_09_247 crossref_primary_10_1039_D3DT03398H crossref_primary_10_1007_s40820_021_00764_7 crossref_primary_10_1016_j_cej_2023_141707 crossref_primary_10_1016_j_cej_2022_138769 crossref_primary_10_1007_s40820_021_00788_z crossref_primary_10_1021_acsaem_1c02487 crossref_primary_10_1039_D2CC02553A crossref_primary_10_1039_D1NR02620H crossref_primary_10_1039_D3EE03584K crossref_primary_10_1007_s12598_024_02834_2 crossref_primary_10_1016_j_jallcom_2024_177775 crossref_primary_10_1039_D0EE02620D crossref_primary_10_1016_j_matt_2025_102013 crossref_primary_10_1016_j_mtener_2020_100523 crossref_primary_10_1002_adsu_202000082 crossref_primary_10_1002_smll_202200131 crossref_primary_10_1039_D3YA00400G crossref_primary_10_1039_D3SE00565H crossref_primary_10_1002_adma_202202733 crossref_primary_10_1016_j_matt_2022_08_025 crossref_primary_10_3390_molecules29133229 crossref_primary_10_1002_ente_202201084 crossref_primary_10_1016_j_cej_2022_136231 crossref_primary_10_1016_j_electacta_2021_139334 crossref_primary_10_1002_adfm_202303466 crossref_primary_10_1016_j_joule_2022_04_017 crossref_primary_10_1002_aenm_202204365 crossref_primary_10_1016_j_nanoen_2022_107269 crossref_primary_10_1002_anie_202416271 crossref_primary_10_1002_smll_202101728 crossref_primary_10_1021_acsaem_4c02586 crossref_primary_10_1021_acsami_0c10321 crossref_primary_10_1016_j_jelechem_2022_116927 crossref_primary_10_1039_D3TA01421E crossref_primary_10_1002_eem2_12410 crossref_primary_10_1002_smll_202200006 crossref_primary_10_1002_adma_202203710 crossref_primary_10_1039_D0DT03459B crossref_primary_10_1016_j_ensm_2022_07_046 crossref_primary_10_1016_j_ensm_2023_01_040 crossref_primary_10_1016_j_cej_2022_136247 crossref_primary_10_1021_acs_energyfuels_1c01108 crossref_primary_10_1002_aenm_202100676 crossref_primary_10_1002_adfm_202403196 crossref_primary_10_1002_cey2_67 crossref_primary_10_2139_ssrn_4143133 crossref_primary_10_1002_eem2_12769 crossref_primary_10_1016_j_ensm_2022_06_001 crossref_primary_10_1021_acs_energyfuels_3c02557 crossref_primary_10_1021_acsaem_3c02385 crossref_primary_10_1002_aenm_202301835 crossref_primary_10_1126_sciadv_abe0219 crossref_primary_10_1016_j_ensm_2025_104162 crossref_primary_10_1016_j_esci_2022_08_004 crossref_primary_10_1016_j_jallcom_2023_169678 crossref_primary_10_1021_acsnano_3c07848 crossref_primary_10_1039_D2EE00617K crossref_primary_10_1016_j_ensm_2022_07_036 crossref_primary_10_1016_j_jpowsour_2022_231122 crossref_primary_10_1002_aenm_202201074 crossref_primary_10_1016_j_electacta_2022_140876 crossref_primary_10_1002_ange_202215324 crossref_primary_10_1016_j_jallcom_2025_178959 crossref_primary_10_1039_D3TA07497H crossref_primary_10_6023_A24010006 crossref_primary_10_1002_aenm_202100201 crossref_primary_10_1002_smll_202411463 crossref_primary_10_1016_j_cej_2021_128584 crossref_primary_10_1021_acsami_5c00853 crossref_primary_10_1002_cnl2_109 crossref_primary_10_3390_ma16113957 crossref_primary_10_1038_s41467_022_29954_6 crossref_primary_10_1002_cnma_202100267 crossref_primary_10_1039_D4EE01225A crossref_primary_10_1002_adfm_202102035 crossref_primary_10_1002_adfm_202207397 crossref_primary_10_1002_smll_202401789 crossref_primary_10_2139_ssrn_4074405 crossref_primary_10_1002_adma_202306734 crossref_primary_10_1007_s12274_022_4458_4 crossref_primary_10_1016_j_apsusc_2024_160320 crossref_primary_10_3390_molecules28124789 crossref_primary_10_1002_batt_202100394 crossref_primary_10_1088_2515_7655_ac774d crossref_primary_10_3390_batteries10120420 crossref_primary_10_1016_j_est_2025_115821 crossref_primary_10_1016_j_electacta_2021_139468 crossref_primary_10_3390_batteries10120416 crossref_primary_10_1016_j_est_2024_114442 crossref_primary_10_1016_j_cej_2021_133931 crossref_primary_10_1016_j_mtener_2020_100563 |
Cites_doi | 10.1021/acsanm.9b00156 10.1039/C8EE01651H 10.1039/C9EE00596J 10.1021/acssuschemeng.8b00639 10.1002/anie.201907830 10.1016/j.jpowsour.2014.09.136 10.1038/s41467-018-04949-4 10.1021/jacs.7b04471 10.1016/j.jpowsour.2014.12.145 10.1016/j.nanoen.2019.05.005 10.1021/jacs.6b05958 10.1002/adma.201903778 10.1002/anie.201702099 10.1007/s41918-019-00035-5 10.1007/s12633-015-9322-7 10.1002/pssb.201600442 10.1002/aenm.201801090 10.1016/j.apsusc.2009.03.030 10.1116/1.591472 10.1007/s41918-018-0002-3 10.1016/j.mtnano.2019.100032 10.1063/1.1613031 10.1016/j.joule.2018.11.002 10.1016/j.ces.2018.06.048 10.1002/anie.201811955 10.1002/anie.201813223 10.1007/BF01077547 10.1038/s41467-017-00467-x 10.1063/1.1361065 10.1021/acs.organomet.8b00508 10.1002/adma.201705830 10.1016/j.joule.2019.02.012 10.1080/00150198608008191 10.1002/adma.201900668 10.1038/s41560-017-0047-2 10.1149/1.2128826 10.1016/j.electacta.2019.03.087 10.1016/j.nanoen.2018.12.086 10.1039/C8EE01991F 10.1016/j.electacta.2015.01.217 10.1021/acsami.7b13110 10.1016/j.apsusc.2017.06.033 10.1002/adfm.201808375 10.1016/j.electacta.2013.07.023 10.1002/adma.201903675 10.1039/C8CC07730D 10.1016/j.apsusc.2013.12.143 10.1016/j.joule.2017.06.004 10.1002/adma.201703725 10.1016/j.jpowsour.2018.10.070 10.1021/acs.chemrev.7b00115 10.1002/anie.201808714 10.1039/c3cs60177c 10.1002/aenm.201802470 10.1016/j.electacta.2011.01.006 10.1016/j.joule.2018.03.008 10.1002/adfm.201904481 10.1039/C9EE01473J 10.1016/j.electacta.2017.05.072 10.1002/anie.201106307 10.1126/science.aax6873 10.1002/adma.201504117 10.1063/1.1421033 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201908528 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201908528 ADFM201908528 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Plan funderid: 2016YFB0901503 – fundername: Shanghai Sailing Program funderid: 17YF1406500 – fundername: National Natural Science Foundation of China funderid: 21935003; 21805182 – fundername: Shanghai Pujiang Program funderid: 18PJ1403800 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 23:14:14 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Jul 01 04:12:09 EDT 2025 Wed Jan 22 16:36:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4228-c9f6f94deecedc865f943d9dea9c2a138da8d5f328b30098d77c855cbaf168313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6379-9655 |
PQID | 2383178217 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2383178217 crossref_citationtrail_10_1002_adfm_201908528 crossref_primary_10_1002_adfm_201908528 wiley_primary_10_1002_adfm_201908528_ADFM201908528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 1 2019; 57 2019; 12 2019; 58 2019; 366 2011; 56 2001; 89 2017; 9 2017; 117 2012; 51 2018; 6 2018; 9 2018; 8 2018; 3 2019; 410–411 2000; 18 2018; 2 2019; 61 2018; 1 2019; 29 2018; 30 2002; 91 2003; 83 2017; 244 2019; 194 1979; 126 2019; 3 2019; 6 2013; 109 2019; 31 2019; 2 2013; 42 2019; 38 2009; 255 2019; 306 2017; 254 2017; 139 2015; 273 2015; 159 2015; 279 1986; 69 2017; 56 2016; 138 2018; 11 2016; 28 2018; 54 1992; 22 2017; 422 2016; 8 2018; 57 2014; 300 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 3 start-page: 485 year: 2019 publication-title: Joule – volume: 28 start-page: 2155 year: 2016 publication-title: Adv. Mater. – volume: 194 start-page: 142 year: 2019 publication-title: Chem. Eng. Sci. – volume: 159 start-page: 198 year: 2015 publication-title: Electrochim. Acta – volume: 83 start-page: 2647 year: 2003 publication-title: Appl. Phys. Lett. – volume: 6 year: 2019 publication-title: Mater. Today Nano – volume: 2 start-page: 2679 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 2 start-page: 395 year: 2019 publication-title: Electrochem. Energy Rev. – volume: 306 start-page: 307 year: 2019 publication-title: Electrochim. Acta – volume: 6 start-page: 5598 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 244 start-page: 172 year: 2017 publication-title: Electrochim. Acta – volume: 3 start-page: 16 year: 2018 publication-title: Nat. Energy – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 4378 year: 2011 publication-title: Electrochim. Acta – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 91 start-page: 794 year: 2002 publication-title: J. Appl. Phys. – volume: 22 start-page: 443 year: 1992 publication-title: J. Appl. Electrochem. – volume: 300 start-page: 1 year: 2014 publication-title: Appl. Surf. Sci. – volume: 126 start-page: 1914 year: 1979 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 2741 year: 2019 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 279 start-page: 114 year: 2015 publication-title: J. Power Sources – volume: 1 start-page: 1 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 410–411 start-page: 10 year: 2019 publication-title: J. Power Sources – volume: 18 start-page: 1785 year: 2000 publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer. Struct. – volume: 42 start-page: 9011 year: 2013 publication-title: Chem. Soc. Rev. – volume: 273 start-page: 894 year: 2015 publication-title: J. Power Sources – volume: 57 start-page: 625 year: 2019 publication-title: Nano Energy – volume: 366 start-page: 645 year: 2019 publication-title: Science – volume: 3 start-page: 1289 year: 2019 publication-title: Joule – volume: 69 start-page: 179 year: 1986 publication-title: Ferroelectrics – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 255 start-page: 6989 year: 2009 publication-title: Appl. Surf. Sci. – volume: 254 year: 2017 publication-title: Phys. Status Solidi B – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 617 year: 2019 publication-title: Nano Energy – volume: 38 start-page: 1186 year: 2019 publication-title: Organometallics – volume: 11 start-page: 3157 year: 2018 publication-title: Energy Environ. Sci. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 1 start-page: 563 year: 2017 publication-title: Joule – volume: 109 start-page: 110 year: 2013 publication-title: Electrochim. Acta – volume: 58 start-page: 1094 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 833 year: 2018 publication-title: Joule – volume: 8 start-page: 345 year: 2016 publication-title: Silicon – volume: 89 start-page: 5243 year: 2001 publication-title: J. Appl. Phys. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 139 start-page: 9775 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3075 year: 2018 publication-title: Energy Environ. Sci. – volume: 422 start-page: 406 year: 2017 publication-title: Appl. Surf. Sci. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_57_1 doi: 10.1021/acsanm.9b00156 – ident: e_1_2_7_18_1 doi: 10.1039/C8EE01651H – ident: e_1_2_7_37_1 doi: 10.1039/C9EE00596J – ident: e_1_2_7_52_1 doi: 10.1021/acssuschemeng.8b00639 – ident: e_1_2_7_30_1 doi: 10.1002/anie.201907830 – ident: e_1_2_7_49_1 doi: 10.1016/j.jpowsour.2014.09.136 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.7b04471 – ident: e_1_2_7_27_1 doi: 10.1016/j.jpowsour.2014.12.145 – ident: e_1_2_7_19_1 doi: 10.1016/j.nanoen.2019.05.005 – ident: e_1_2_7_60_1 doi: 10.1021/jacs.6b05958 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201903778 – ident: e_1_2_7_53_1 doi: 10.1002/anie.201702099 – ident: e_1_2_7_10_1 doi: 10.1007/s41918-019-00035-5 – ident: e_1_2_7_45_1 doi: 10.1007/s12633-015-9322-7 – ident: e_1_2_7_65_1 doi: 10.1002/pssb.201600442 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_7_44_1 doi: 10.1016/j.apsusc.2009.03.030 – ident: e_1_2_7_48_1 doi: 10.1116/1.591472 – ident: e_1_2_7_13_1 doi: 10.1007/s41918-018-0002-3 – ident: e_1_2_7_41_1 doi: 10.1016/j.mtnano.2019.100032 – ident: e_1_2_7_46_1 doi: 10.1063/1.1613031 – ident: e_1_2_7_32_1 doi: 10.1016/j.joule.2018.11.002 – ident: e_1_2_7_58_1 doi: 10.1016/j.ces.2018.06.048 – ident: e_1_2_7_2_1 doi: 10.1002/anie.201811955 – ident: e_1_2_7_33_1 doi: 10.1002/anie.201813223 – ident: e_1_2_7_51_1 doi: 10.1007/BF01077547 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_7_47_1 doi: 10.1063/1.1361065 – ident: e_1_2_7_11_1 doi: 10.1021/acs.organomet.8b00508 – ident: e_1_2_7_54_1 doi: 10.1002/adma.201705830 – ident: e_1_2_7_9_1 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_7_42_1 doi: 10.1080/00150198608008191 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201900668 – ident: e_1_2_7_6_1 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_7_28_1 doi: 10.1149/1.2128826 – ident: e_1_2_7_7_1 doi: 10.1039/C9EE00596J – ident: e_1_2_7_64_1 doi: 10.1016/j.electacta.2019.03.087 – ident: e_1_2_7_35_1 doi: 10.1016/j.nanoen.2018.12.086 – ident: e_1_2_7_24_1 doi: 10.1039/C8EE01991F – ident: e_1_2_7_26_1 doi: 10.1016/j.electacta.2015.01.217 – ident: e_1_2_7_17_1 doi: 10.1021/acsami.7b13110 – ident: e_1_2_7_50_1 doi: 10.1016/j.apsusc.2017.06.033 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201808375 – ident: e_1_2_7_15_1 doi: 10.1016/j.electacta.2013.07.023 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201903675 – ident: e_1_2_7_36_1 doi: 10.1039/C8CC07730D – ident: e_1_2_7_59_1 doi: 10.1016/j.apsusc.2013.12.143 – ident: e_1_2_7_55_1 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_7_62_1 doi: 10.1002/adma.201703725 – ident: e_1_2_7_14_1 doi: 10.1016/j.jpowsour.2018.10.070 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_3_1 doi: 10.1002/anie.201808714 – ident: e_1_2_7_25_1 doi: 10.1039/c3cs60177c – ident: e_1_2_7_40_1 doi: 10.1002/aenm.201802470 – ident: e_1_2_7_63_1 doi: 10.1021/acsami.7b13110 – ident: e_1_2_7_16_1 doi: 10.1016/j.electacta.2011.01.006 – ident: e_1_2_7_4_1 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201904481 – ident: e_1_2_7_1_1 doi: 10.1039/C9EE01473J – ident: e_1_2_7_61_1 doi: 10.1016/j.electacta.2017.05.072 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201106307 – ident: e_1_2_7_29_1 doi: 10.1126/science.aax6873 – ident: e_1_2_7_56_1 doi: 10.1002/adma.201504117 – ident: e_1_2_7_43_1 doi: 10.1063/1.1421033 |
SSID | ssj0017734 |
Score | 2.712034 |
Snippet | Aqueous Zn batteries have drawn tremendous attention for their several advantages. However, the challenges of Zn anodes such as the corrosion and ZnO... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Anodic coatings Barriers controllable nucleation Densification Electrode polarization Materials science Nucleation Rechargeable batteries surface modification Zinc oxide Zirconium dioxide Zn anodes Zn corrosion Zn‐based batteries |
Title | Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201908528 https://www.proquest.com/docview/2383178217 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6iFz34Lc6PkYPgqWqapkmPdXOIuB02B8NLyVdBLJ247aAnf4K_0V9i0rTdFETQ41uS0CZv-j5v-7xPADgJtUkKBJaez4nygihIPZOrcE9LwlIiaCS4LU7u9sLrYXAzIqOFKn6nD1F_cLM7o3hf2w3OxeR8LhrKVWoryU1AY8S31b6WsGVRUb_Wj0KUut_KIbIELzSqVBsv_POv3b9GpTnUXASsRcTpbABe3asjmjyezabiTL5-k3H8z8NsgvUSjsLY-c8WWNL5NlhbECncAQ-WCpK9wL4uGBwi0_A-h3E-VhpeFZVXCooX2HKc98xegJ2qJBKOU9izksnOGhiAO4EGJ5shPt7eL00IVdBJfJqMfRcMO1d3rWuvPKDBk1Y5zJNRGqZRoLSWWkkWEmNgFSnNI-lzhJniTJEU-0xgK1yqKJWMECl4ikKGEd4Dy_k41_sAChRQaeCHUDQMJFWRcRIcSaQRwvSCsAbwqgVKZKlebg_RyBKnu-wndgqTegob4LRu_-R0O35seVStd1Lu30ligIwBVszkaw3gFwv3yyhJ3O50a-vgL50Owapvk_mC4HYElqfPM31sEM9UNMFK3O7eDpqFd38CgcL7EA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCuA4jp1jKa3K0h5KkRCXKF4iIaoU0fZQTnwC38iXYMdNWCSEBEdHtpV47Mwb-80zwEGoTVAgiPT8hCoviILUM7FK4mlJeUoFi0Rik5Nb7bB5E1zc0oJNaHNhnD5EueFmV0b-v7YL3G5IH3-ohiYqtankxqNx6vNpmLXXeudRVadUkMKMuYPlEFuKF74tdBtP_OOv7b_6pQ-w-Rmy5j6nsQSieFtHNXk4Gg3FkXz-JuT4r89ZhsUJIkVVN4VWYEpnq7DwSadwDe4tG6Q3Rh2dkzhET6O7DFWzvtKonidfKSTGqOZo7z37ADWKrEjUT1Hbqia70rXBuANkoLLp4u3l9dR4UYWcyqcJ2tfhplHv1pre5I4GT1rxME9GaZhGgdJaaiV5SE2BqEjpJJJ-gglXCVc0JT4XxGqXKsYkp1SKJMUhJ5hswEzWz_QmIIEDJg0CEYqFgWQqMvOERBJrjAk7obwCXmGhWE4EzO09Gr3YSS_7sR3CuBzCChyW9R-ddMePNXcKg8eTJTyIDZYx2IqbkK0Cfm65X3qJq2eNVlna-kujfZhrdltX8dV5-3Ib5n0b2-d8tx2YGT6N9K4BQEOxl0_xd0i9_Zc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VrYTgAOWlLt0WHypxCqzjOHaOC0tEC6wqHtKKS-SnhLrKIlgOcOIn9Df2l9SON2FBqpDgOJFtJZ6ZzDfJzGeA76lxSYEkKooF1VGSJTZyuYqIjKLcUskyKXxz8skgPbxIfg7pcKaLP_BDNB_cvGdU72vv4Nfa7j6RhgptfSe5C2icxnwOPiZpl3u77p82BFKYsfBfOcW-wgsPa9rGbrz7fP7zsPSENWcRaxVy8mUQ9c2GSpPfO3cTuaMeXvA4vudpPsHSFI-iXjCgFfhgylVYnGEpXIMrXwsyukenpirhkCODLkvUK8faoIOq9UojeY_2Q9H7yF9Aed0TicYWDTxncpDOHMK9RQ4ouyX-Pv7ZczFUo8Dx6VL2dbjID873D6PpCQ2R8tRhkcpsarNEG6OMVjylTiA600ZkKhaYcC24ppbEXBLPXKoZU5xSJYXFKSeYbECrHJfmMyCJE6Yc_pCapYliOnNWQjKFDcaEdSlvQ1QrqFBT-nJ_isaoCMTLceG3sGi2sA3bzfjrQNzx35GdWt_F1IFvC4dkHLLiLmFrQ1wp7pVVil4_P2mkzbdM2oL5X_28OP4xOPoCC7FP7Ktitw60Jjd35qtDPxP5rTLwf2no_E8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Reversible+Zn+Anode+Enabled+by+Controllable+Formation+of+Nucleation+Sites+for+Zn%E2%80%90Based+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Liang%2C+Pengcheng&rft.au=Jin%2C+Yi&rft.au=Liu%2C+Xiaoyu&rft.au=Wu%2C+Kai&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=13&rft_id=info:doi/10.1002%2Fadfm.201908528&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |