Exploration of Nanoporous CuBi Binary Alloy for Potassium Storage

The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are co...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 43
Main Authors Wu, Xuan, Zhang, Wei, Wu, Naiqi, Pang, Su‐Seng, He, Guang, Ding, Yi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi2→Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs. Nanoporous CuBi anodes are fabricated via a facile dealloying approach for potassium ion batteries. Benefiting from the Cu matrix and bicontinuous open structures, the alloy anodes exhibit high discharge capacity and good rate capability. Further studies confirm the formation of fully potassiated K3Bi and the size‐dependent irreversible KBi2→Bi transition that accounts for capacity loss on cycling.
AbstractList The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi2→Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs. Nanoporous CuBi anodes are fabricated via a facile dealloying approach for potassium ion batteries. Benefiting from the Cu matrix and bicontinuous open structures, the alloy anodes exhibit high discharge capacity and good rate capability. Further studies confirm the formation of fully potassiated K3Bi and the size‐dependent irreversible KBi2→Bi transition that accounts for capacity loss on cycling.
The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi 2 →Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs.
The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi2→Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs.
Author Ding, Yi
He, Guang
Pang, Su‐Seng
Wu, Xuan
Wu, Naiqi
Zhang, Wei
Author_xml – sequence: 1
  givenname: Xuan
  surname: Wu
  fullname: Wu, Xuan
  organization: Macau University of Science and Technology
– sequence: 2
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: wzhang@must.edu.mo
  organization: Macau University of Science and Technology
– sequence: 3
  givenname: Naiqi
  surname: Wu
  fullname: Wu, Naiqi
  organization: Macau University of Science and Technology
– sequence: 4
  givenname: Su‐Seng
  surname: Pang
  fullname: Pang, Su‐Seng
  organization: Macau University of Science and Technology
– sequence: 5
  givenname: Guang
  orcidid: 0000-0003-4167-053X
  surname: He
  fullname: He, Guang
  email: heguang@tjut.edu.cn
  organization: Tianjin University of Technology
– sequence: 6
  givenname: Yi
  surname: Ding
  fullname: Ding, Yi
  organization: Tianjin University of Technology
BookMark eNqFkMtOwzAQRS1UJNrClrUl1injRx5epqUFpPKQAImdZSc2SpXGwU4E_XtSFZUlq5nFPTO6Z4JGjWsMQpcEZgSAXqvSbmcUKADLWHaCxiQhScSAZqPjTt7P0CSEDQBJU8bHKF9-t7Xzqqtcg53Fj6pxrfOuD3jRzys8rxrldziva7fD1nn87DoVQtVv8Us3cB_mHJ1aVQdz8Tun6G21fF3cReun2_tFvo4KTmkW6YwTrUpjjQEwgnNOC56KooxTUXIRawZFqXjBeAZca5UmoDWITFgTx1QbNkVXh7utd5-9CZ3cuN43w0tJecyShMPQfIpmh1ThXQjeWNn6ajtUkATkXpPca5JHTQMgDsBXVZvdP2mZ36we_tgfkldtWQ
CitedBy_id crossref_primary_10_1007_s10934_022_01361_8
crossref_primary_10_1002_ange_202112090
crossref_primary_10_1007_s12598_021_01710_7
crossref_primary_10_1002_smll_202102126
crossref_primary_10_1016_j_apsusc_2024_160215
crossref_primary_10_1016_j_jpowsour_2022_232140
crossref_primary_10_1016_j_mattod_2021_02_008
crossref_primary_10_1002_aenm_202003082
crossref_primary_10_1016_j_apsusc_2022_152509
crossref_primary_10_1021_acsnano_1c01918
crossref_primary_10_1002_aenm_202100640
crossref_primary_10_1002_anie_202112090
crossref_primary_10_1002_anie_202100654
crossref_primary_10_1016_j_apsusc_2022_156149
crossref_primary_10_1021_acsmaterialslett_1c00477
crossref_primary_10_1039_D3TA05558B
crossref_primary_10_1002_er_7508
crossref_primary_10_1002_smll_202305562
crossref_primary_10_1016_j_aca_2022_340730
crossref_primary_10_1021_acsanm_2c02918
crossref_primary_10_1002_aenm_202202446
crossref_primary_10_1016_j_apsusc_2021_149868
crossref_primary_10_1016_j_xcrp_2023_101736
crossref_primary_10_1002_adfm_202300582
crossref_primary_10_1002_aenm_202102263
crossref_primary_10_1016_j_est_2024_111631
crossref_primary_10_1002_ange_202100654
crossref_primary_10_1002_tcr_202200098
Cites_doi 10.1002/adfm.201700324
10.1002/ente.201300159
10.1038/nnano.2014.6
10.1002/adfm.201700447
10.1021/nl9019787
10.1039/D0CC00171F
10.1021/acsnano.8b00643
10.1021/nl502759z
10.1021/acsami.6b07989
10.1039/C7TA04264G
10.1002/aenm.201501874
10.1016/j.mtener.2018.11.009
10.1039/C6TA06797B
10.1021/acs.jpcc.8b04575
10.1016/j.nanoen.2014.12.012
10.1002/aenm.201800171
10.1002/adfm.201602248
10.1002/adfm.201301792
10.1002/aenm.201602911
10.1021/jacs.5b06809
10.1039/C6TA02796B
10.1016/j.apsusc.2020.145947
10.1021/nl203193q
10.1021/acsami.6b09619
10.1016/j.apsusc.2020.145954
10.1002/pssr.201900209
10.1002/aenm.201702384
10.1016/j.elecom.2019.02.016
10.1557/mrs2009.156
10.1002/adma.201700104
10.1016/j.jpowsour.2017.12.077
10.1021/acsami.9b06379
10.1038/nchem.1802
10.1016/j.chempr.2019.10.008
10.1016/j.jpowsour.2010.07.020
10.1016/j.jpowsour.2018.01.017
10.1002/aenm.201703288
10.1002/aenm.201900343
10.1021/acs.jpcc.7b07583
10.1007/978-3-319-29749-1
10.1002/adma.200400792
10.1021/jacs.6b12185
10.1021/ja035318g
10.1016/j.elecom.2015.09.002
10.1021/acs.chemmater.6b00491
10.1557/mrs.2017.300
10.1039/C8TA11947C
10.1021/nl2024118
10.1149/1.1393156
10.1007/s12274-015-0973-x
10.1038/ncomms5526
10.1016/j.ensm.2017.09.009
10.1039/C8NR03829E
10.1016/S0039-6028(98)00363-X
10.1007/BF02671972
10.1021/acs.jpcc.5b06386
10.1021/acs.chemmater.5b00616
10.1039/C8SC01848K
10.1016/j.jpowsour.2019.01.062
10.1038/nmat1709
10.1016/0926-860X(95)00110-7
10.1016/j.matt.2019.07.006
10.1038/nmat3741
10.1002/adfm.201809195
10.1016/S0022-0728(03)00144-X
10.1002/aenm.201400317
10.1038/srep02878
10.1002/aenm.201703496
10.1002/advs.201400020
10.1016/j.micromeso.2016.11.036
10.1002/ange.201801389
10.1007/s12274-016-1408-z
10.1021/acsnano.8b08740
10.1021/jp204817h
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202003838
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202003838
ADFM202003838
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2019YFA0205700
– fundername: Science and Technology Development Fund
  funderid: 002/2017/AFJ
– fundername: National Natural Science Foundation of China
  funderid: 51602219; 51671145; 51761165012
– fundername: National Science Fund for Distinguished Young Scholars
  funderid: 51825102
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMNL
AAYXX
ACBWZ
ACRPL
ACYXJ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4228-b841badefee00e94442c479cd579d495b30cda4c34804bba760bb0989fe552be3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Oct 10 20:37:24 EDT 2024
Fri Dec 06 04:20:58 EST 2024
Sat Aug 24 01:04:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4228-b841badefee00e94442c479cd579d495b30cda4c34804bba760bb0989fe552be3
ORCID 0000-0003-4167-053X
PQID 2453664000
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2453664000
crossref_primary_10_1002_adfm_202003838
wiley_primary_10_1002_adfm_202003838_ADFM202003838
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006 2013 2015 2014 2015 2011; 5 12 119 5 5 11
2019; 7
2018; 122
2018 2009 2016; 43 34
2019 2011; 9 11
2019; 11
2003 2004; 125 16
2017; 27
2019; 1
2012 2016 2016; 116 6 26
2014 2015; 14 2
1998; 411
2020; 56
2019 2019; 13 29
2011; 196
2015 2015; 137 60
2016 2015; 4 12
2019; 101
2017; 139
2009 2014 2014; 9 24 2
2016; 4
2018; 130
1993; 14
2018 2018 2017; 30 8 5
2018; 9
2018; 8
2000 2003; 147 546
2017; 10
2013 2014 2015; 5 9 27
2018; 379
2018; 378
2020 2019; 514 5
1995; 129
2020; 514
2019; 415
2018; 12
2018 2017; 11 121
2016; 28
2018; 10
2016; 8
2017 2017 2018; 9 7 8
2016 2018 2013 2017; 9 261 3 27
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_13_1
e_1_2_7_41_3
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_23_3
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_31_3
e_1_2_7_33_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_1
e_1_2_7_27_4
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
e_1_2_7_38_2
e_1_2_7_38_3
e_1_2_7_38_4
e_1_2_7_38_5
e_1_2_7_38_6
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5 9 27
  start-page: 1042 187 3096
  year: 2013 2014 2015
  publication-title: Nat. Chem. Nat. Nanotechnol. Chem. Mater.
– volume: 12
  start-page: 3568
  year: 2018
  publication-title: ACS Nano
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 13 29
  year: 2019 2019
  publication-title: Phys. Status Solidi‐R Adv. Funct. Mater.
– volume: 43 34
  start-page: 43 569
  year: 2018 2009 2016
  publication-title: MRS Bull. MRS Bull.
– volume: 379
  start-page: 1
  year: 2018
  publication-title: J. Power Sources
– volume: 1
  start-page: 1681
  year: 2019
  publication-title: Matter
– volume: 9 11
  start-page: 5421
  year: 2019 2011
  publication-title: Adv. Energy Mater. Nano Lett.
– volume: 9 261 3 27
  start-page: 908 237 2878
  year: 2016 2018 2013 2017
  publication-title: Nano Res. Microporous Mesoporous Mater. Sci. Rep. Adv. Funct. Mater.
– volume: 415
  start-page: 119
  year: 2019
  publication-title: J. Power Sources
– volume: 9 7 8
  start-page: 4404
  year: 2017 2017 2018
  publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater. Adv. Energy Mater.
– volume: 137 60
  start-page: 172
  year: 2015 2015
  publication-title: J. Am. Chem. Soc. Electrochem. Commun.
– volume: 196
  start-page: 13
  year: 2011
  publication-title: J. Power Sources
– volume: 130
  start-page: 4777
  year: 2018
  publication-title: Angew. Chem.
– volume: 4 12
  start-page: 88
  year: 2016 2015
  publication-title: J. Mater. Chem. A Nano Energy
– volume: 9 24 2
  start-page: 3795 312 542
  year: 2009 2014 2014
  publication-title: Nano Lett. Adv. Funct. Mater. Energy Technol.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 129
  start-page: 157
  year: 1995
  publication-title: Appl. Catal., A
– volume: 514 5
  start-page: 3220
  year: 2020 2019
  publication-title: Appl. Surf. Sci. Chem
– volume: 378
  start-page: 460
  year: 2018
  publication-title: J. Power Sources
– volume: 30 8 5
  year: 2018 2018 2017
  publication-title: Adv. Mater. Adv. Energy Mater. J. Mater. Chem. A
– volume: 14 2
  start-page: 6329
  year: 2014 2015
  publication-title: Nano Lett. Adv. Sci.
– volume: 28
  start-page: 2750
  year: 2016
  publication-title: Chem. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 147 546
  start-page: 50 41
  year: 2000 2003
  publication-title: J. Electrochem. Soc. J. Electroanal. Chem.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 4913
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 116 6 26
  start-page: 1380 8103
  year: 2012 2016 2016
  publication-title: J. Phys. Chem. C Adv. Energy Mater. Adv. Funct. Mater.
– volume: 11 121
  start-page: 38
  year: 2018 2017
  publication-title: Energy Storage Mater. J. Phys. Chem. C
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 56
  start-page: 3512
  year: 2020
  publication-title: Chem. Commun.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 510
  year: 1993
  publication-title: J. Phase Equilib.
– volume: 9
  start-page: 6193
  year: 2018
  publication-title: Chem. Sci.
– volume: 125 16
  start-page: 7772 1897
  year: 2003 2004
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 5 12 119 5 5 11
  start-page: 713 1102 4526 3991
  year: 2006 2013 2015 2014 2015 2011
  publication-title: Nat. Mater. Nat. Mater. J. Phys. Chem. C Nat. Commun. Adv. Energy Mater. Nano Lett.
– volume: 139
  start-page: 3316
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 101
  start-page: 68
  year: 2019
  publication-title: Electrochem. Commun.
– volume: 11
  start-page: 182
  year: 2019
  publication-title: Mater. Today Energy
– volume: 411
  start-page: 186
  year: 1998
  publication-title: Surf. Sci.
– volume: 10
  start-page: 2156
  year: 2017
  publication-title: Nano Res.
– volume: 514
  year: 2020
  publication-title: Appl. Surf. Sci.
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.201700324
– ident: e_1_2_7_41_3
  doi: 10.1002/ente.201300159
– ident: e_1_2_7_18_2
  doi: 10.1038/nnano.2014.6
– ident: e_1_2_7_27_4
  doi: 10.1002/adfm.201700447
– ident: e_1_2_7_41_1
  doi: 10.1021/nl9019787
– ident: e_1_2_7_42_1
  doi: 10.1039/D0CC00171F
– ident: e_1_2_7_26_1
  doi: 10.1021/acsnano.8b00643
– ident: e_1_2_7_30_1
  doi: 10.1021/nl502759z
– ident: e_1_2_7_1_1
  doi: 10.1021/acsami.6b07989
– ident: e_1_2_7_6_3
  doi: 10.1039/C7TA04264G
– ident: e_1_2_7_31_2
  doi: 10.1002/aenm.201501874
– ident: e_1_2_7_32_1
  doi: 10.1016/j.mtener.2018.11.009
– ident: e_1_2_7_43_1
  doi: 10.1039/C6TA06797B
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.jpcc.8b04575
– ident: e_1_2_7_35_2
  doi: 10.1016/j.nanoen.2014.12.012
– ident: e_1_2_7_6_2
  doi: 10.1002/aenm.201800171
– ident: e_1_2_7_31_3
  doi: 10.1002/adfm.201602248
– ident: e_1_2_7_41_2
  doi: 10.1002/adfm.201301792
– ident: e_1_2_7_1_2
  doi: 10.1002/aenm.201602911
– ident: e_1_2_7_3_1
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_7_35_1
  doi: 10.1039/C6TA02796B
– ident: e_1_2_7_44_1
  doi: 10.1016/j.apsusc.2020.145947
– ident: e_1_2_7_2_2
  doi: 10.1021/nl203193q
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.6b09619
– ident: e_1_2_7_45_1
  doi: 10.1016/j.apsusc.2020.145954
– ident: e_1_2_7_22_1
  doi: 10.1002/pssr.201900209
– ident: e_1_2_7_1_3
  doi: 10.1002/aenm.201702384
– ident: e_1_2_7_13_1
  doi: 10.1016/j.elecom.2019.02.016
– ident: e_1_2_7_23_2
  doi: 10.1557/mrs2009.156
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201700104
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jpowsour.2017.12.077
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.9b06379
– ident: e_1_2_7_18_1
  doi: 10.1038/nchem.1802
– ident: e_1_2_7_44_2
  doi: 10.1016/j.chempr.2019.10.008
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jpowsour.2010.07.020
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jpowsour.2018.01.017
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.201703288
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201900343
– ident: e_1_2_7_4_2
  doi: 10.1021/acs.jpcc.7b07583
– ident: e_1_2_7_23_3
  doi: 10.1007/978-3-319-29749-1
– ident: e_1_2_7_24_2
  doi: 10.1002/adma.200400792
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.6b12185
– ident: e_1_2_7_24_1
  doi: 10.1021/ja035318g
– ident: e_1_2_7_3_2
  doi: 10.1016/j.elecom.2015.09.002
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.chemmater.6b00491
– ident: e_1_2_7_23_1
  doi: 10.1557/mrs.2017.300
– ident: e_1_2_7_20_1
  doi: 10.1039/C8TA11947C
– ident: e_1_2_7_38_6
  doi: 10.1021/nl2024118
– ident: e_1_2_7_33_1
  doi: 10.1149/1.1393156
– ident: e_1_2_7_27_1
  doi: 10.1007/s12274-015-0973-x
– ident: e_1_2_7_38_4
  doi: 10.1038/ncomms5526
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ensm.2017.09.009
– ident: e_1_2_7_11_1
  doi: 10.1039/C8NR03829E
– ident: e_1_2_7_29_1
  doi: 10.1016/S0039-6028(98)00363-X
– ident: e_1_2_7_14_1
  doi: 10.1007/BF02671972
– ident: e_1_2_7_38_3
  doi: 10.1021/acs.jpcc.5b06386
– ident: e_1_2_7_18_3
  doi: 10.1021/acs.chemmater.5b00616
– ident: e_1_2_7_19_1
  doi: 10.1039/C8SC01848K
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jpowsour.2019.01.062
– ident: e_1_2_7_38_1
  doi: 10.1038/nmat1709
– ident: e_1_2_7_28_1
  doi: 10.1016/0926-860X(95)00110-7
– ident: e_1_2_7_37_1
  doi: 10.1016/j.matt.2019.07.006
– ident: e_1_2_7_38_2
  doi: 10.1038/nmat3741
– ident: e_1_2_7_22_2
  doi: 10.1002/adfm.201809195
– ident: e_1_2_7_33_2
  doi: 10.1016/S0022-0728(03)00144-X
– ident: e_1_2_7_38_5
  doi: 10.1002/aenm.201400317
– ident: e_1_2_7_27_3
  doi: 10.1038/srep02878
– ident: e_1_2_7_34_1
  doi: 10.1002/aenm.201703496
– ident: e_1_2_7_30_2
  doi: 10.1002/advs.201400020
– ident: e_1_2_7_27_2
  doi: 10.1016/j.micromeso.2016.11.036
– ident: e_1_2_7_12_1
  doi: 10.1002/ange.201801389
– ident: e_1_2_7_15_1
  doi: 10.1007/s12274-016-1408-z
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.8b08740
– ident: e_1_2_7_31_1
  doi: 10.1021/jp204817h
SSID ssj0017734
Score 2.5203767
Snippet The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs)....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Anodes
Binary alloys
bismuth anodes
Dealloying
Diffusion rate
Discharge
Electrode materials
Electrodes
high rates
Ion diffusion
Ligaments
Materials science
nanoporous metals
Phase transitions
Potassium
potassium ion batteries
Title Exploration of Nanoporous CuBi Binary Alloy for Potassium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202003838
https://www.proquest.com/docview/2453664000
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4IwoFeUBiSmsndhyPaUtVIRUhoFK3yI4dqaI0iCYD_HrsuOmDBQm2ZHCUnO_xXXz3HQA3mQlDRDPhRcaqTYKCpRdJqj2MpaRBqCivpjWMHsLhmNxP6GSji9_xQ6x-uFnLqPy1NXAhF501aahQme0kt8VVUWC7fXHAbE1f_2nFH4UZc8fKIbYFXnhSszYiv7O9fDsqraHmJmCtIs7gAIj6XV2hyWu7LGQ7_fpB4_ifjzkE-0s4CmOnP0dgR8-Pwd4GSeEJiF2ZXrWDMM-g8ce5Ae15uYC9sjuF3aqjF8azWf4JDQSGj3lhEPm0fIPPJqE3_uoUjAd3L72htxy84KWWEcyTEcFSKJ1pjZDmhBA_JYynijKuTEYlA5QqQdKARIhIKViIpEQ84pmm1Jc6OAONeT7X5wBqRhUmWHOqGFEs4oL7IuR2Ng6LZBg2wW0t-OTd8WskjknZT6xQkpVQmqBV70uytLNF4hOjUKHxQ6gJ_ErAvzwlifuD0eru4i-LLsGuvXYVfS3QKD5KfWWQSSGvK-37Bn3-2WE
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6JQwAMSUyBO7NgeC6Uq0FYIisQWxbEjVZQGQTLAr8dOmj5YkGBMJEfJ2Xf3nfPdZ4DTxKQholnkcOPVpkDB0uGSagdjKakfKCqK0xq6vaD9RG6facUmtL0wpT7EZMPNekYRr62D2w3pi6lqaKQS20pu2VXc54uwbHweW1ZX82GiIIUZK38sB9hSvPBzpdvoehfz4-fz0hRszkLWIue0NkBWb1tSTV7O80yex18_hBz_9TmbsD5GpKhRLqEtWNCjbVib0SncgUbJ1CsmEaUJMiE5Nbg9zT_QVX45QJdFUy9qDIfpJzIoGN2nmQHlg_wVPZqa3oSsXXhqXfev2s747AUntqJgjuQEy0jpRGvX1YIQ4sWEiVhRJpQpqqTvxioisU-4S6SMWOBK6QouEk2pJ7W_B0ujdKT3AWlGFSZYC6oYUYyLSHhRIOzxOIzLIKjBWWX58K2U2AhLMWUvtEYJJ0apQb2amHDsah-hR8yaCkwocmvgFRb-5Slho9nqTq4O_jLoBFba_W4n7Nz07g5h1d4vCX51WMrec31kgEomj4ul-A08kN2C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gOjBt1itugfBUzSb7PNYraU-WkQt9Bay2Q0Ua1O0OeivdzfpSy-CHhPYkMzO45vszDcAp6kNQ8Tw2BPWqm2CgpUnFDUexkrRkGkqi2kNrTZrdshtl3bnuvhLfojpDzdnGYW_dgY-1OnFjDQ01qnrJHfFVSIUi7BMWCAde379cUoghTkvz5UZdhVeuDuhbfSDi-_rv4elGdacR6xFyGlsQDx52bLS5OU8H6nz5PMHj-N_vmYT1sd4FNVKBdqCBTPYhrU5lsIdqJV1esUWoixF1iFnFrVn-Tu6yi976LJo6UW1fj_7QBYDo4dsZCF5L39FTzajtw5rFzqN6-erpjeevOAljhLMU4JgFWuTGuP7RhJCgoRwmWjKpbYplQr9RMckCYnwiVIxZ75SvhQyNZQGyoR7sDTIBmYfkOFUY4KNpJoTzYWMZRAz6YbjcKEYq8DZRPDRsCTYiEoq5SByQommQqlAdbIv0djQ3qOAWI1i1hH5FQgKAf_ylKhWb7SmVwd_WXQCKw_1RnR_0747hFV3u6zuq8LS6C03RxaljNRxoYhfuNDcMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Nanoporous+CuBi+Binary+Alloy+for+Potassium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Wu%2C+Xuan&rft.au=Zhang%2C+Wei&rft.au=Wu%2C+Naiqi&rft.au=Su%E2%80%90Seng+Pang&rft.date=2020-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202003838&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon