Exploration of Nanoporous CuBi Binary Alloy for Potassium Storage
The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are co...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 43 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi2→Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs.
Nanoporous CuBi anodes are fabricated via a facile dealloying approach for potassium ion batteries. Benefiting from the Cu matrix and bicontinuous open structures, the alloy anodes exhibit high discharge capacity and good rate capability. Further studies confirm the formation of fully potassiated K3Bi and the size‐dependent irreversible KBi2→Bi transition that accounts for capacity loss on cycling. |
---|---|
AbstractList | The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi2→Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs.
Nanoporous CuBi anodes are fabricated via a facile dealloying approach for potassium ion batteries. Benefiting from the Cu matrix and bicontinuous open structures, the alloy anodes exhibit high discharge capacity and good rate capability. Further studies confirm the formation of fully potassiated K3Bi and the size‐dependent irreversible KBi2→Bi transition that accounts for capacity loss on cycling. The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi 2 →Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs. The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs). Herein, 3D nanoporous CuBi anodes are fabricated through a facile chemical dealloying process. The ligaments of this nanoporous alloy are composed of interconnected Bi serving as the active material and Cu decoration as a highly conductive matrix. Such a typical bicontinuous ligament‐channel structure is beneficial to overcome the slow K‐ion diffusion kinetics as well as electrode expansion on cycling, as evidenced by the high discharge capacity and good rate capability in PIBs. Potassium storage mechanisms in the Bi anodes are investigated through combined techniques to identify the multiple step postassiation process and the charge/discharge products at each stage. Furthermore, it is the first time to report the irreversible phase transition of KBi2→Bi upon charge, which seems associated with the ligament pulverization process. These results provide critical insights into the capacity degradation mechanisms of Bi anodes in PIBs. Also, dealloying is proved to be an efficient technology for the rational design of metal/alloy materials for high performance PIBs. |
Author | Ding, Yi He, Guang Pang, Su‐Seng Wu, Xuan Wu, Naiqi Zhang, Wei |
Author_xml | – sequence: 1 givenname: Xuan surname: Wu fullname: Wu, Xuan organization: Macau University of Science and Technology – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei email: wzhang@must.edu.mo organization: Macau University of Science and Technology – sequence: 3 givenname: Naiqi surname: Wu fullname: Wu, Naiqi organization: Macau University of Science and Technology – sequence: 4 givenname: Su‐Seng surname: Pang fullname: Pang, Su‐Seng organization: Macau University of Science and Technology – sequence: 5 givenname: Guang orcidid: 0000-0003-4167-053X surname: He fullname: He, Guang email: heguang@tjut.edu.cn organization: Tianjin University of Technology – sequence: 6 givenname: Yi surname: Ding fullname: Ding, Yi organization: Tianjin University of Technology |
BookMark | eNqFkMtOwzAQRS1UJNrClrUl1injRx5epqUFpPKQAImdZSc2SpXGwU4E_XtSFZUlq5nFPTO6Z4JGjWsMQpcEZgSAXqvSbmcUKADLWHaCxiQhScSAZqPjTt7P0CSEDQBJU8bHKF9-t7Xzqqtcg53Fj6pxrfOuD3jRzys8rxrldziva7fD1nn87DoVQtVv8Us3cB_mHJ1aVQdz8Tun6G21fF3cReun2_tFvo4KTmkW6YwTrUpjjQEwgnNOC56KooxTUXIRawZFqXjBeAZca5UmoDWITFgTx1QbNkVXh7utd5-9CZ3cuN43w0tJecyShMPQfIpmh1ThXQjeWNn6ajtUkATkXpPca5JHTQMgDsBXVZvdP2mZ36we_tgfkldtWQ |
CitedBy_id | crossref_primary_10_1007_s10934_022_01361_8 crossref_primary_10_1002_ange_202112090 crossref_primary_10_1007_s12598_021_01710_7 crossref_primary_10_1002_smll_202102126 crossref_primary_10_1016_j_apsusc_2024_160215 crossref_primary_10_1016_j_jpowsour_2022_232140 crossref_primary_10_1016_j_mattod_2021_02_008 crossref_primary_10_1002_aenm_202003082 crossref_primary_10_1016_j_apsusc_2022_152509 crossref_primary_10_1021_acsnano_1c01918 crossref_primary_10_1002_aenm_202100640 crossref_primary_10_1002_anie_202112090 crossref_primary_10_1002_anie_202100654 crossref_primary_10_1016_j_apsusc_2022_156149 crossref_primary_10_1021_acsmaterialslett_1c00477 crossref_primary_10_1039_D3TA05558B crossref_primary_10_1002_er_7508 crossref_primary_10_1002_smll_202305562 crossref_primary_10_1016_j_aca_2022_340730 crossref_primary_10_1021_acsanm_2c02918 crossref_primary_10_1002_aenm_202202446 crossref_primary_10_1016_j_apsusc_2021_149868 crossref_primary_10_1016_j_xcrp_2023_101736 crossref_primary_10_1002_adfm_202300582 crossref_primary_10_1002_aenm_202102263 crossref_primary_10_1016_j_est_2024_111631 crossref_primary_10_1002_ange_202100654 crossref_primary_10_1002_tcr_202200098 |
Cites_doi | 10.1002/adfm.201700324 10.1002/ente.201300159 10.1038/nnano.2014.6 10.1002/adfm.201700447 10.1021/nl9019787 10.1039/D0CC00171F 10.1021/acsnano.8b00643 10.1021/nl502759z 10.1021/acsami.6b07989 10.1039/C7TA04264G 10.1002/aenm.201501874 10.1016/j.mtener.2018.11.009 10.1039/C6TA06797B 10.1021/acs.jpcc.8b04575 10.1016/j.nanoen.2014.12.012 10.1002/aenm.201800171 10.1002/adfm.201602248 10.1002/adfm.201301792 10.1002/aenm.201602911 10.1021/jacs.5b06809 10.1039/C6TA02796B 10.1016/j.apsusc.2020.145947 10.1021/nl203193q 10.1021/acsami.6b09619 10.1016/j.apsusc.2020.145954 10.1002/pssr.201900209 10.1002/aenm.201702384 10.1016/j.elecom.2019.02.016 10.1557/mrs2009.156 10.1002/adma.201700104 10.1016/j.jpowsour.2017.12.077 10.1021/acsami.9b06379 10.1038/nchem.1802 10.1016/j.chempr.2019.10.008 10.1016/j.jpowsour.2010.07.020 10.1016/j.jpowsour.2018.01.017 10.1002/aenm.201703288 10.1002/aenm.201900343 10.1021/acs.jpcc.7b07583 10.1007/978-3-319-29749-1 10.1002/adma.200400792 10.1021/jacs.6b12185 10.1021/ja035318g 10.1016/j.elecom.2015.09.002 10.1021/acs.chemmater.6b00491 10.1557/mrs.2017.300 10.1039/C8TA11947C 10.1021/nl2024118 10.1149/1.1393156 10.1007/s12274-015-0973-x 10.1038/ncomms5526 10.1016/j.ensm.2017.09.009 10.1039/C8NR03829E 10.1016/S0039-6028(98)00363-X 10.1007/BF02671972 10.1021/acs.jpcc.5b06386 10.1021/acs.chemmater.5b00616 10.1039/C8SC01848K 10.1016/j.jpowsour.2019.01.062 10.1038/nmat1709 10.1016/0926-860X(95)00110-7 10.1016/j.matt.2019.07.006 10.1038/nmat3741 10.1002/adfm.201809195 10.1016/S0022-0728(03)00144-X 10.1002/aenm.201400317 10.1038/srep02878 10.1002/aenm.201703496 10.1002/advs.201400020 10.1016/j.micromeso.2016.11.036 10.1002/ange.201801389 10.1007/s12274-016-1408-z 10.1021/acsnano.8b08740 10.1021/jp204817h |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202003838 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202003838 ADFM202003838 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2019YFA0205700 – fundername: Science and Technology Development Fund funderid: 002/2017/AFJ – fundername: National Natural Science Foundation of China funderid: 51602219; 51671145; 51761165012 – fundername: National Science Fund for Distinguished Young Scholars funderid: 51825102 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AAYXX ACBWZ ACRPL ACYXJ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4228-b841badefee00e94442c479cd579d495b30cda4c34804bba760bb0989fe552be3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 20:37:24 EDT 2024 Fri Dec 06 04:20:58 EST 2024 Sat Aug 24 01:04:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4228-b841badefee00e94442c479cd579d495b30cda4c34804bba760bb0989fe552be3 |
ORCID | 0000-0003-4167-053X |
PQID | 2453664000 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2453664000 crossref_primary_10_1002_adfm_202003838 wiley_primary_10_1002_adfm_202003838_ADFM202003838 |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2006 2013 2015 2014 2015 2011; 5 12 119 5 5 11 2019; 7 2018; 122 2018 2009 2016; 43 34 2019 2011; 9 11 2019; 11 2003 2004; 125 16 2017; 27 2019; 1 2012 2016 2016; 116 6 26 2014 2015; 14 2 1998; 411 2020; 56 2019 2019; 13 29 2011; 196 2015 2015; 137 60 2016 2015; 4 12 2019; 101 2017; 139 2009 2014 2014; 9 24 2 2016; 4 2018; 130 1993; 14 2018 2018 2017; 30 8 5 2018; 9 2018; 8 2000 2003; 147 546 2017; 10 2013 2014 2015; 5 9 27 2018; 379 2018; 378 2020 2019; 514 5 1995; 129 2020; 514 2019; 415 2018; 12 2018 2017; 11 121 2016; 28 2018; 10 2016; 8 2017 2017 2018; 9 7 8 2016 2018 2013 2017; 9 261 3 27 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_41_3 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_23_3 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_31_3 e_1_2_7_33_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_1 e_1_2_7_27_4 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 e_1_2_7_38_2 e_1_2_7_38_3 e_1_2_7_38_4 e_1_2_7_38_5 e_1_2_7_38_6 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 9 27 start-page: 1042 187 3096 year: 2013 2014 2015 publication-title: Nat. Chem. Nat. Nanotechnol. Chem. Mater. – volume: 12 start-page: 3568 year: 2018 publication-title: ACS Nano – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 13 29 year: 2019 2019 publication-title: Phys. Status Solidi‐R Adv. Funct. Mater. – volume: 43 34 start-page: 43 569 year: 2018 2009 2016 publication-title: MRS Bull. MRS Bull. – volume: 379 start-page: 1 year: 2018 publication-title: J. Power Sources – volume: 1 start-page: 1681 year: 2019 publication-title: Matter – volume: 9 11 start-page: 5421 year: 2019 2011 publication-title: Adv. Energy Mater. Nano Lett. – volume: 9 261 3 27 start-page: 908 237 2878 year: 2016 2018 2013 2017 publication-title: Nano Res. Microporous Mesoporous Mater. Sci. Rep. Adv. Funct. Mater. – volume: 415 start-page: 119 year: 2019 publication-title: J. Power Sources – volume: 9 7 8 start-page: 4404 year: 2017 2017 2018 publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater. Adv. Energy Mater. – volume: 137 60 start-page: 172 year: 2015 2015 publication-title: J. Am. Chem. Soc. Electrochem. Commun. – volume: 196 start-page: 13 year: 2011 publication-title: J. Power Sources – volume: 130 start-page: 4777 year: 2018 publication-title: Angew. Chem. – volume: 4 12 start-page: 88 year: 2016 2015 publication-title: J. Mater. Chem. A Nano Energy – volume: 9 24 2 start-page: 3795 312 542 year: 2009 2014 2014 publication-title: Nano Lett. Adv. Funct. Mater. Energy Technol. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 12 year: 2018 publication-title: ACS Nano – volume: 129 start-page: 157 year: 1995 publication-title: Appl. Catal., A – volume: 514 5 start-page: 3220 year: 2020 2019 publication-title: Appl. Surf. Sci. Chem – volume: 378 start-page: 460 year: 2018 publication-title: J. Power Sources – volume: 30 8 5 year: 2018 2018 2017 publication-title: Adv. Mater. Adv. Energy Mater. J. Mater. Chem. A – volume: 14 2 start-page: 6329 year: 2014 2015 publication-title: Nano Lett. Adv. Sci. – volume: 28 start-page: 2750 year: 2016 publication-title: Chem. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 147 546 start-page: 50 41 year: 2000 2003 publication-title: J. Electrochem. Soc. J. Electroanal. Chem. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 4913 year: 2019 publication-title: J. Mater. Chem. A – volume: 116 6 26 start-page: 1380 8103 year: 2012 2016 2016 publication-title: J. Phys. Chem. C Adv. Energy Mater. Adv. Funct. Mater. – volume: 11 121 start-page: 38 year: 2018 2017 publication-title: Energy Storage Mater. J. Phys. Chem. C – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 56 start-page: 3512 year: 2020 publication-title: Chem. Commun. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 510 year: 1993 publication-title: J. Phase Equilib. – volume: 9 start-page: 6193 year: 2018 publication-title: Chem. Sci. – volume: 125 16 start-page: 7772 1897 year: 2003 2004 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 5 12 119 5 5 11 start-page: 713 1102 4526 3991 year: 2006 2013 2015 2014 2015 2011 publication-title: Nat. Mater. Nat. Mater. J. Phys. Chem. C Nat. Commun. Adv. Energy Mater. Nano Lett. – volume: 139 start-page: 3316 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 101 start-page: 68 year: 2019 publication-title: Electrochem. Commun. – volume: 11 start-page: 182 year: 2019 publication-title: Mater. Today Energy – volume: 411 start-page: 186 year: 1998 publication-title: Surf. Sci. – volume: 10 start-page: 2156 year: 2017 publication-title: Nano Res. – volume: 514 year: 2020 publication-title: Appl. Surf. Sci. – ident: e_1_2_7_5_1 doi: 10.1002/adfm.201700324 – ident: e_1_2_7_41_3 doi: 10.1002/ente.201300159 – ident: e_1_2_7_18_2 doi: 10.1038/nnano.2014.6 – ident: e_1_2_7_27_4 doi: 10.1002/adfm.201700447 – ident: e_1_2_7_41_1 doi: 10.1021/nl9019787 – ident: e_1_2_7_42_1 doi: 10.1039/D0CC00171F – ident: e_1_2_7_26_1 doi: 10.1021/acsnano.8b00643 – ident: e_1_2_7_30_1 doi: 10.1021/nl502759z – ident: e_1_2_7_1_1 doi: 10.1021/acsami.6b07989 – ident: e_1_2_7_6_3 doi: 10.1039/C7TA04264G – ident: e_1_2_7_31_2 doi: 10.1002/aenm.201501874 – ident: e_1_2_7_32_1 doi: 10.1016/j.mtener.2018.11.009 – ident: e_1_2_7_43_1 doi: 10.1039/C6TA06797B – ident: e_1_2_7_16_1 doi: 10.1021/acs.jpcc.8b04575 – ident: e_1_2_7_35_2 doi: 10.1016/j.nanoen.2014.12.012 – ident: e_1_2_7_6_2 doi: 10.1002/aenm.201800171 – ident: e_1_2_7_31_3 doi: 10.1002/adfm.201602248 – ident: e_1_2_7_41_2 doi: 10.1002/adfm.201301792 – ident: e_1_2_7_1_2 doi: 10.1002/aenm.201602911 – ident: e_1_2_7_3_1 doi: 10.1021/jacs.5b06809 – ident: e_1_2_7_35_1 doi: 10.1039/C6TA02796B – ident: e_1_2_7_44_1 doi: 10.1016/j.apsusc.2020.145947 – ident: e_1_2_7_2_2 doi: 10.1021/nl203193q – ident: e_1_2_7_40_1 doi: 10.1021/acsami.6b09619 – ident: e_1_2_7_45_1 doi: 10.1016/j.apsusc.2020.145954 – ident: e_1_2_7_22_1 doi: 10.1002/pssr.201900209 – ident: e_1_2_7_1_3 doi: 10.1002/aenm.201702384 – ident: e_1_2_7_13_1 doi: 10.1016/j.elecom.2019.02.016 – ident: e_1_2_7_23_2 doi: 10.1557/mrs2009.156 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201700104 – ident: e_1_2_7_9_1 doi: 10.1016/j.jpowsour.2017.12.077 – ident: e_1_2_7_21_1 doi: 10.1021/acsami.9b06379 – ident: e_1_2_7_18_1 doi: 10.1038/nchem.1802 – ident: e_1_2_7_44_2 doi: 10.1016/j.chempr.2019.10.008 – ident: e_1_2_7_7_1 doi: 10.1016/j.jpowsour.2010.07.020 – ident: e_1_2_7_36_1 doi: 10.1016/j.jpowsour.2018.01.017 – ident: e_1_2_7_17_1 doi: 10.1002/aenm.201703288 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201900343 – ident: e_1_2_7_4_2 doi: 10.1021/acs.jpcc.7b07583 – ident: e_1_2_7_23_3 doi: 10.1007/978-3-319-29749-1 – ident: e_1_2_7_24_2 doi: 10.1002/adma.200400792 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.6b12185 – ident: e_1_2_7_24_1 doi: 10.1021/ja035318g – ident: e_1_2_7_3_2 doi: 10.1016/j.elecom.2015.09.002 – ident: e_1_2_7_39_1 doi: 10.1021/acs.chemmater.6b00491 – ident: e_1_2_7_23_1 doi: 10.1557/mrs.2017.300 – ident: e_1_2_7_20_1 doi: 10.1039/C8TA11947C – ident: e_1_2_7_38_6 doi: 10.1021/nl2024118 – ident: e_1_2_7_33_1 doi: 10.1149/1.1393156 – ident: e_1_2_7_27_1 doi: 10.1007/s12274-015-0973-x – ident: e_1_2_7_38_4 doi: 10.1038/ncomms5526 – ident: e_1_2_7_4_1 doi: 10.1016/j.ensm.2017.09.009 – ident: e_1_2_7_11_1 doi: 10.1039/C8NR03829E – ident: e_1_2_7_29_1 doi: 10.1016/S0039-6028(98)00363-X – ident: e_1_2_7_14_1 doi: 10.1007/BF02671972 – ident: e_1_2_7_38_3 doi: 10.1021/acs.jpcc.5b06386 – ident: e_1_2_7_18_3 doi: 10.1021/acs.chemmater.5b00616 – ident: e_1_2_7_19_1 doi: 10.1039/C8SC01848K – ident: e_1_2_7_8_1 doi: 10.1016/j.jpowsour.2019.01.062 – ident: e_1_2_7_38_1 doi: 10.1038/nmat1709 – ident: e_1_2_7_28_1 doi: 10.1016/0926-860X(95)00110-7 – ident: e_1_2_7_37_1 doi: 10.1016/j.matt.2019.07.006 – ident: e_1_2_7_38_2 doi: 10.1038/nmat3741 – ident: e_1_2_7_22_2 doi: 10.1002/adfm.201809195 – ident: e_1_2_7_33_2 doi: 10.1016/S0022-0728(03)00144-X – ident: e_1_2_7_38_5 doi: 10.1002/aenm.201400317 – ident: e_1_2_7_27_3 doi: 10.1038/srep02878 – ident: e_1_2_7_34_1 doi: 10.1002/aenm.201703496 – ident: e_1_2_7_30_2 doi: 10.1002/advs.201400020 – ident: e_1_2_7_27_2 doi: 10.1016/j.micromeso.2016.11.036 – ident: e_1_2_7_12_1 doi: 10.1002/ange.201801389 – ident: e_1_2_7_15_1 doi: 10.1007/s12274-016-1408-z – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.8b08740 – ident: e_1_2_7_31_1 doi: 10.1021/jp204817h |
SSID | ssj0017734 |
Score | 2.5203767 |
Snippet | The exploration of advanced electrode materials with appropriate structures and compositions is the primary task for nonaqueous potassium ion batteries (PIBs).... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Anodes Binary alloys bismuth anodes Dealloying Diffusion rate Discharge Electrode materials Electrodes high rates Ion diffusion Ligaments Materials science nanoporous metals Phase transitions Potassium potassium ion batteries |
Title | Exploration of Nanoporous CuBi Binary Alloy for Potassium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202003838 https://www.proquest.com/docview/2453664000 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4IwoFeUBiSmsndhyPaUtVIRUhoFK3yI4dqaI0iCYD_HrsuOmDBQm2ZHCUnO_xXXz3HQA3mQlDRDPhRcaqTYKCpRdJqj2MpaRBqCivpjWMHsLhmNxP6GSji9_xQ6x-uFnLqPy1NXAhF501aahQme0kt8VVUWC7fXHAbE1f_2nFH4UZc8fKIbYFXnhSszYiv7O9fDsqraHmJmCtIs7gAIj6XV2hyWu7LGQ7_fpB4_ifjzkE-0s4CmOnP0dgR8-Pwd4GSeEJiF2ZXrWDMM-g8ce5Ae15uYC9sjuF3aqjF8azWf4JDQSGj3lhEPm0fIPPJqE3_uoUjAd3L72htxy84KWWEcyTEcFSKJ1pjZDmhBA_JYynijKuTEYlA5QqQdKARIhIKViIpEQ84pmm1Jc6OAONeT7X5wBqRhUmWHOqGFEs4oL7IuR2Ng6LZBg2wW0t-OTd8WskjknZT6xQkpVQmqBV70uytLNF4hOjUKHxQ6gJ_ErAvzwlifuD0eru4i-LLsGuvXYVfS3QKD5KfWWQSSGvK-37Bn3-2WE |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6JQwAMSUyBO7NgeC6Uq0FYIisQWxbEjVZQGQTLAr8dOmj5YkGBMJEfJ2Xf3nfPdZ4DTxKQholnkcOPVpkDB0uGSagdjKakfKCqK0xq6vaD9RG6facUmtL0wpT7EZMPNekYRr62D2w3pi6lqaKQS20pu2VXc54uwbHweW1ZX82GiIIUZK38sB9hSvPBzpdvoehfz4-fz0hRszkLWIue0NkBWb1tSTV7O80yex18_hBz_9TmbsD5GpKhRLqEtWNCjbVib0SncgUbJ1CsmEaUJMiE5Nbg9zT_QVX45QJdFUy9qDIfpJzIoGN2nmQHlg_wVPZqa3oSsXXhqXfev2s747AUntqJgjuQEy0jpRGvX1YIQ4sWEiVhRJpQpqqTvxioisU-4S6SMWOBK6QouEk2pJ7W_B0ujdKT3AWlGFSZYC6oYUYyLSHhRIOzxOIzLIKjBWWX58K2U2AhLMWUvtEYJJ0apQb2amHDsah-hR8yaCkwocmvgFRb-5Slho9nqTq4O_jLoBFba_W4n7Nz07g5h1d4vCX51WMrec31kgEomj4ul-A08kN2C |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gOjBt1itugfBUzSb7PNYraU-WkQt9Bay2Q0Ua1O0OeivdzfpSy-CHhPYkMzO45vszDcAp6kNQ8Tw2BPWqm2CgpUnFDUexkrRkGkqi2kNrTZrdshtl3bnuvhLfojpDzdnGYW_dgY-1OnFjDQ01qnrJHfFVSIUi7BMWCAde379cUoghTkvz5UZdhVeuDuhbfSDi-_rv4elGdacR6xFyGlsQDx52bLS5OU8H6nz5PMHj-N_vmYT1sd4FNVKBdqCBTPYhrU5lsIdqJV1esUWoixF1iFnFrVn-Tu6yi976LJo6UW1fj_7QBYDo4dsZCF5L39FTzajtw5rFzqN6-erpjeevOAljhLMU4JgFWuTGuP7RhJCgoRwmWjKpbYplQr9RMckCYnwiVIxZ75SvhQyNZQGyoR7sDTIBmYfkOFUY4KNpJoTzYWMZRAz6YbjcKEYq8DZRPDRsCTYiEoq5SByQommQqlAdbIv0djQ3qOAWI1i1hH5FQgKAf_ylKhWb7SmVwd_WXQCKw_1RnR_0747hFV3u6zuq8LS6C03RxaljNRxoYhfuNDcMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Nanoporous+CuBi+Binary+Alloy+for+Potassium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Wu%2C+Xuan&rft.au=Zhang%2C+Wei&rft.au=Wu%2C+Naiqi&rft.au=Su%E2%80%90Seng+Pang&rft.date=2020-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.202003838&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |