Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers
Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a...
Saved in:
Published in | Advanced electronic materials Vol. 8; no. 4 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Blackwell (John Wiley & Sons)
01.04.2022
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film.
Molecular dopants charge transfer with semiconducting polymers, resulting in excited polymer states (polarons) and dopant counterions. This process produces an observable bleach in the optical absorbance of the intrinsic polymer and a simultaneous growth of optical polaron transitions. Quantifying these changes enables estimation of the polaron mole fraction and analysis of optoelectronic coupling as a function of the doping level. |
---|---|
AbstractList | Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film. Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film. Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film. Molecular dopants charge transfer with semiconducting polymers, resulting in excited polymer states (polarons) and dopant counterions. This process produces an observable bleach in the optical absorbance of the intrinsic polymer and a simultaneous growth of optical polaron transitions. Quantifying these changes enables estimation of the polaron mole fraction and analysis of optoelectronic coupling as a function of the doping level. Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film. |
Author | Ghosh, Raja Moulé, Adam J. Salleo, Alberto Gonel, Goktug Spano, Frank C. Saska, Jan Mascal, Mark Denti, Ilaria Talbot, Rachel M. Shevchenko, Nikolay E. Yacoub, Nichole L. Murrey, Tucker L. Fergerson, Alice S. |
Author_xml | – sequence: 1 givenname: Adam J. surname: Moulé fullname: Moulé, Adam J. email: amoule@ucdavis.edu organization: University of California Davis – sequence: 2 givenname: Goktug surname: Gonel fullname: Gonel, Goktug organization: University of California Davis – sequence: 3 givenname: Tucker L. orcidid: 0000-0002-5947-2892 surname: Murrey fullname: Murrey, Tucker L. organization: University of California Davis – sequence: 4 givenname: Raja surname: Ghosh fullname: Ghosh, Raja organization: Temple University – sequence: 5 givenname: Jan surname: Saska fullname: Saska, Jan organization: University of California Davis – sequence: 6 givenname: Nikolay E. surname: Shevchenko fullname: Shevchenko, Nikolay E. organization: University of California Davis – sequence: 7 givenname: Ilaria surname: Denti fullname: Denti, Ilaria organization: Stanford University – sequence: 8 givenname: Alice S. orcidid: 0000-0001-5836-1472 surname: Fergerson fullname: Fergerson, Alice S. organization: University of California Davis – sequence: 9 givenname: Rachel M. surname: Talbot fullname: Talbot, Rachel M. organization: University of California Davis – sequence: 10 givenname: Nichole L. surname: Yacoub fullname: Yacoub, Nichole L. organization: University of California Davis – sequence: 11 givenname: Mark orcidid: 0000-0001-7841-253X surname: Mascal fullname: Mascal, Mark organization: University of California Davis – sequence: 12 givenname: Alberto orcidid: 0000-0002-7448-9123 surname: Salleo fullname: Salleo, Alberto organization: Stanford University – sequence: 13 givenname: Frank C. orcidid: 0000-0003-3044-6727 surname: Spano fullname: Spano, Frank C. organization: Temple University |
BackLink | https://www.osti.gov/biblio/1846996$$D View this record in Osti.gov |
BookMark | eNqFkc1rGzEQxUVJoWmSa8-id7v6Wq32GNykNTi0oQn0JmalWUdmLRlpTdj_vutsSHvraT54vzcw7yM5iykiIZ84W3LGxBfAfr8UTEyDMeYdORe8aRZcs99n__QfyFUpO8YYr7VUlTwn-_sjxCF0Y4hb-jP1kFOkd6lHepvBDSHFQiF6uo4D5kPG4aT7dUA3ZOjp6gniFgsNM-OOE9-P9Gs6oKerFHfHLQxTOxmPe8zlkrzvoC949VovyOPtzcPq-2Lz49t6db1ZOCWEWQD6VhupapTonXBeSBBQC69ULY1wFdTSV0YJ7blrlOJt3chWM2iBoZC1vCDr2dcn2NlDDnvIo00Q7Msi5a2FPATXo-WeV9xpLzrZKSM16FYwh6yWAJXyOHl9nr1SGYItLgzonlyKcfqB5UbpptGTaDmLXE6lZOzejnJmTwHZU0D2LaAJaGbgOfQ4_kdtr282d3_ZP4tUl3Q |
CitedBy_id | crossref_primary_10_1039_D3TC01569F crossref_primary_10_1039_D3TC02416D crossref_primary_10_1021_acs_jpcc_3c06044 crossref_primary_10_1039_D2TC03574J crossref_primary_10_1021_acs_jpcc_3c01152 crossref_primary_10_1021_acsapm_2c00841 crossref_primary_10_1039_D2SC03793A |
Cites_doi | 10.1021/ar900233v 10.1146/annurev-physchem-040513-103639 10.1021/ja00418a050 10.1021/acs.chemrev.6b00329 10.1103/PhysRevB.86.035320 10.1038/nmat4634 10.1021/acs.jpclett.0c03620 10.1002/adma.202102988 10.1039/C5TC04207K 10.1002/adfm.201404549 10.1021/acs.chemrev.7b00581 10.1063/5.0054877 10.1021/acsami.8b21865 10.1021/acs.chemmater.9b01549 10.1063/5.0052592 10.1039/C7CP00494J 10.1021/ja00418a051 10.1063/1.523073 10.1021/acs.jpcc.1c06767 10.1039/C9TC04500G 10.1039/C8MH00223A 10.1021/acs.chemmater.8b04150 10.1002/adma.201201795 10.1021/ma991631k 10.1021/cr050156n 10.1002/aelm.202000249 10.1002/adma.201703063 10.1039/D1TC03951B 10.1002/adfm.200900120 10.1103/PhysRevB.74.115318 10.1002/aenm.201900266 10.1021/acs.accounts.5b00438 10.1039/C8TC05652H 10.1039/c3ee00015j 10.1038/ncomms9560 10.1002/adma.201506295 10.1021/acs.accounts.0c00349 10.1021/acs.jpcc.8b03873 10.1063/5.0029193 10.1021/acs.jpcb.0c08757 10.1063/1.3242372 10.1021/acs.chemmater.9b01704 10.1021/acs.chemmater.0c04471 10.1038/s41563-018-0263-6 10.1080/10587259408039274 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION OTOTI DOA |
DOI | 10.1002/aelm.202100888 |
DatabaseName | CrossRef OSTI.GOV Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_1d151c6d2f3f4836a6b20ce073aa54de 1846996 10_1002_aelm_202100888 AELM202100888 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1636385 – fundername: Basic Energy Sciences funderid: DE‐SC0020046 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAYXX CITATION AEUQT OTOTI |
ID | FETCH-LOGICAL-c4228-aedb68347e3edc2cd23a2a72d447382c5a73d58426d1c9441b793b60aba0e2373 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Tue Oct 22 15:13:46 EDT 2024 Mon Sep 04 05:30:11 EDT 2023 Fri Dec 06 01:25:12 EST 2024 Sat Aug 24 00:56:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4228-aedb68347e3edc2cd23a2a72d447382c5a73d58426d1c9441b793b60aba0e2373 |
Notes | USDOE |
ORCID | 0000-0001-5836-1472 0000-0001-7841-253X 0000-0002-7448-9123 0000-0003-3044-6727 0000-0002-5947-2892 0000000259472892 0000000330446727 0000000274489123 000000017841253X 0000000158361472 |
OpenAccessLink | https://doaj.org/article/1d151c6d2f3f4836a6b20ce073aa54de |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d151c6d2f3f4836a6b20ce073aa54de osti_scitechconnect_1846996 crossref_primary_10_1002_aelm_202100888 wiley_primary_10_1002_aelm_202100888_AELM202100888 |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2022 |
Publisher | Wiley Blackwell (John Wiley & Sons) Wiley-VCH |
Publisher_xml | – name: Wiley Blackwell (John Wiley & Sons) – name: Wiley-VCH |
References | 2021; 9 2019; 7 1994; 256 2018; 122 2019; 9 2007; 107 2015; 6 2006; 74 2013; 25 2019; 31 2019; 11 2021; 125 2019; 18 2017; 29 2020; 124 2016; 15 2013; 6 2014; 65 2016; 4 1976; 98 2020; 6 2010; 43 2015; 25 2009; 95 2018; 5 2021; 12 2021; 33 2020; 53 2021 2020; 153 2018; 118 2000; 33 2021; 118 2017; 19 2016; 116 2021; 155 2009; 19 2016; 28 1976; 17 2016; 49 2012; 86 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 6 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 3454 year: 2016 publication-title: J. Mater. Chem. C – volume: 65 start-page: 477 year: 2014 publication-title: Annu. Rev. Phys. Chem. – year: 2021 publication-title: Adv. Mater. – volume: 98 start-page: 610 year: 1976 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 118 start-page: 7069 year: 2018 publication-title: Chem. Rev. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 155 year: 2021 publication-title: J. Chem. Phys. – volume: 17 start-page: 1509 year: 1976 publication-title: J. Math. Phys. – volume: 33 start-page: 3120 year: 2000 publication-title: Macromolecules – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 1859 year: 2013 publication-title: Adv. Mater. – volume: 19 start-page: 1906 year: 2009 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 8069 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 896 year: 2016 publication-title: Nat. Mater. – volume: 6 start-page: 1684 year: 2013 publication-title: Energy Environ. Sci. – volume: 28 start-page: 6003 year: 2016 publication-title: Adv. Mater. – volume: 86 start-page: 3 year: 2012 publication-title: Phys. Rev. B – volume: 18 start-page: 149 year: 2019 publication-title: Nat. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 31 start-page: 1500 year: 2019 publication-title: Chem. Mater. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 6986 year: 2019 publication-title: Chem. Mater. – volume: 107 start-page: 1233 year: 2007 publication-title: Chem. Rev. – volume: 98 start-page: 611 year: 1976 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 33 start-page: 2343 year: 2021 publication-title: Chem. Mater. – volume: 25 start-page: 2701 year: 2015 publication-title: Adv. Funct. Mater. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 53 start-page: 2201 year: 2020 publication-title: Acc. Chem. Res. – volume: 124 year: 2020 publication-title: J. Phys. Chem. B – volume: 256 start-page: 439 year: 1994 publication-title: Molecular. Cryst. Liq. Cryst. Sci. Technol., Sect. A – volume: 74 year: 2006 publication-title: Phys. Rev. B – volume: 12 start-page: 1284 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 49 start-page: 370 year: 2016 publication-title: Acc. Chem. Res. – volume: 5 start-page: 655 year: 2018 publication-title: Mater. Horiz. – volume: 153 year: 2020 publication-title: J. Chem. Phys. – volume: 7 start-page: 953 year: 2019 publication-title: J. Mater. Chem. C – volume: 9 year: 2021 publication-title: J. Mater. Chem. C – volume: 43 start-page: 429 year: 2010 publication-title: Acc. Chem. Res. – volume: 31 start-page: 7033 year: 2019 publication-title: Chem. Mater. – ident: e_1_2_9_43_1 doi: 10.1021/ar900233v – ident: e_1_2_9_36_1 doi: 10.1146/annurev-physchem-040513-103639 – ident: e_1_2_9_25_1 doi: 10.1021/ja00418a050 – ident: e_1_2_9_17_1 doi: 10.1021/acs.chemrev.6b00329 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevB.86.035320 – ident: e_1_2_9_4_1 doi: 10.1038/nmat4634 – ident: e_1_2_9_30_1 doi: 10.1021/acs.jpclett.0c03620 – ident: e_1_2_9_5_1 doi: 10.1002/adma.202102988 – ident: e_1_2_9_2_1 doi: 10.1039/C5TC04207K – ident: e_1_2_9_32_1 doi: 10.1002/adfm.201404549 – ident: e_1_2_9_44_1 doi: 10.1021/acs.chemrev.7b00581 – ident: e_1_2_9_37_1 doi: 10.1063/5.0054877 – ident: e_1_2_9_27_1 doi: 10.1021/acsami.8b21865 – ident: e_1_2_9_38_1 doi: 10.1021/acs.chemmater.9b01549 – ident: e_1_2_9_21_1 doi: 10.1063/5.0052592 – ident: e_1_2_9_35_1 doi: 10.1039/C7CP00494J – ident: e_1_2_9_26_1 doi: 10.1021/ja00418a051 – ident: e_1_2_9_42_1 doi: 10.1063/1.523073 – ident: e_1_2_9_23_1 doi: 10.1021/acs.jpcc.1c06767 – ident: e_1_2_9_29_1 doi: 10.1039/C9TC04500G – ident: e_1_2_9_11_1 doi: 10.1039/C8MH00223A – ident: e_1_2_9_28_1 doi: 10.1021/acs.chemmater.8b04150 – ident: e_1_2_9_7_1 doi: 10.1002/adma.201201795 – ident: e_1_2_9_47_1 doi: 10.1021/ma991631k – ident: e_1_2_9_18_1 doi: 10.1021/cr050156n – ident: e_1_2_9_3_1 doi: 10.1002/aelm.202000249 – ident: e_1_2_9_8_1 doi: 10.1002/adma.201703063 – ident: e_1_2_9_13_1 doi: 10.1039/D1TC03951B – ident: e_1_2_9_1_1 doi: 10.1002/adfm.200900120 – ident: e_1_2_9_33_1 doi: 10.1103/PhysRevB.74.115318 – ident: e_1_2_9_6_1 doi: 10.1002/aenm.201900266 – ident: e_1_2_9_9_1 doi: 10.1021/acs.accounts.5b00438 – ident: e_1_2_9_14_1 doi: 10.1039/C8TC05652H – ident: e_1_2_9_34_1 doi: 10.1039/c3ee00015j – ident: e_1_2_9_20_1 doi: 10.1038/ncomms9560 – ident: e_1_2_9_22_1 – ident: e_1_2_9_24_1 doi: 10.1002/adma.201506295 – ident: e_1_2_9_41_1 doi: 10.1021/acs.accounts.0c00349 – ident: e_1_2_9_40_1 doi: 10.1021/acs.jpcc.8b03873 – ident: e_1_2_9_16_1 doi: 10.1063/5.0029193 – ident: e_1_2_9_15_1 doi: 10.1021/acs.jpcb.0c08757 – ident: e_1_2_9_19_1 doi: 10.1063/1.3242372 – ident: e_1_2_9_39_1 doi: 10.1021/acs.chemmater.9b01704 – ident: e_1_2_9_12_1 doi: 10.1021/acs.chemmater.0c04471 – ident: e_1_2_9_10_1 doi: 10.1038/s41563-018-0263-6 – ident: e_1_2_9_45_1 – ident: e_1_2_9_46_1 doi: 10.1080/10587259408039274 |
SSID | ssj0001763453 |
Score | 2.3105826 |
Snippet | Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near... Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and... Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and... |
SourceID | doaj osti crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
SubjectTerms | Molecular Dopants Organic Electronics Polaron Mole Fraction: Conjugated Polymers Spectroscopy |
Title | Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202100888 https://www.osti.gov/biblio/1846996 https://doaj.org/article/1d151c6d2f3f4836a6b20ce073aa54de |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EL15EUbE-yh4ET8F0Ntmkx6otIlYUrIiXZXdnC0pNirYH_70zm1r15MVTSJiEZWZn55GZb4Q4Rk02ypWdZDzOyySjYzhxgYIVIGpw6AssuRt5eKMvR9nVY_74Y9QX14Q18MAN4047SDbJa4SxGmel0lY7SH2gnWltnmGIp28KP4KpmF0htcly9YXSmMKpDRNuPAcGs4ljVr6tUATrp0tNSvXbR41GZrApNhbeoew1q9oSK6HaFq93c8slPdyQJG85FK0rOawnQQ7emraEd2krlMv6QabjufKcxJBN-8C7fG7eiWWnkw95UU8DyvO6eplzIg35wx-cw94Ro0H__vwyWUxJSDzDdyU2oNOlyoqgAnrwCMqCLQCzrFAl-NwWCsnNAI0d3yXvx5FKOp1aZ9MAqlC7YrWqq7AnJHQ9BuJqsBy1ed11qDF1GHLLf2KKljj54pqZNmAYpoE9BsP8NUv-tsQZM3VJxSDW8QGJ1ixEa_4SbUscsEgM-QIMaOu58sfPDMWkmqK0loAoqT9WYnr96-Hybv8_1nUg1oGbIGL9zqFYnb3NwxG5JjPXFmu9h9HTqB134ycS1uL0 |
link.rule.ids | 230,314,780,784,864,885,2102,27924,27925,50814,50923 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELZYeYCXCQSIjjH8MImniPScOOljKVTd1iKQKEK8WLbPRUxdgkr7wL_fXdIG9WnSnqJEtmWdc77vznefhfiOmmyUyzvRdJrmUULbcOQCOStArcGhzzDnauTxjR5Okp-P6TqbkGthan6IJuDGmlHt16zgHJC--GANtWHGpeTA9DR5_klsk-1jjLTde5g8TT4CLaRBScVGScrZjTo6flyTN8ZwsTnIhnGqOPzpUZKubULXyvYM9sTnFWiUvXqV98VWKA7En7ul5UwfrlOSt-yhloUcl7MgB_O6WuFN2gJlk1bI7fi6eY5tyLqq4E2-1H2qbNTZu7wqXwPKfln8XnJ8DXngdw5tH4rJ4Pq-P4xWlydEnlm9IhvQ6VwlWVABPXgEZcFmgEmSqRx8ajOFhD5AY8d3CRQ50lSnY-tsHEBl6ki0irIIx0JC12OwaRIsO3Nedx1qjB2G1PIBTdYW52upmdeaI8PUbMhgWL6mkW9bXLJQm1bMbV19KOfPZqUqpoOEQrxGmKppkitttYPYB9qLLE0CQ1uc8JIYggjMc-s5IcgvDLmqmpy3toBqpf4xE9O7Ho2bty__0-lM7AzvxyMz-nHz60TsAtdFVCk9X0VrMV-GU0IrC_dt9T_-BVJ-4xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELagkxAvCASIbgP8gMRTtOTsOOlj2VaNbZ2GRFHFi2X7HMRUkqprH_bvd5d0GX1C4ilKZFvWOWd_d7nvixCf0NAZ5cssqaq8TDRtw4mPFKwAtQaPocCS2cjTK3M20-fzfP4Xi7_Th-gTbuwZ7X7NDr7E6uhRNNTFBTPJgdVpyvKp2COokemB2Bv_mP2cPeZZyIF0K0ZJvjlKMpPOH7QbUzjaHWTnbGol_OnSkKvtItf26Jm8FC-2mFGOu0V-JZ7E-rX4823juNCHaUrymgPUppbTZhHlZNWRFW6lq1H2VYXcjv82z6kN2ZEKbuXvrk9bjLq4kyfNMqI8buqbDafXkAe-48z2GzGbnH4_Pku2_05IAot6JS6iN6XSRVQRAwQE5cAVgFoXqoSQu0IhgQ8wmIURYSJPjupN6rxLI6hCvRWDuqnjOyFhFDC6XEfHsVwwI48GU48xd_x9phiKzw9Ws8tOIsN2Yshg2b62t-9QfGGj9q1Y2rp90Kx-2a2n2AwJhASDUKlKl8o44yENkbYiR5PAOBQHvCSWEALL3AauBwprS5GqodhtKKBdqX_MxI5PL6f93f7_dPoonl2fTOzl16uLA_EcmBXRFvQcisF6tYnvCaus_Yft63gP_jbiRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+Polaron+Mole+Fractions+and+Interpreting+Spectral+Changes+in+Molecularly+Doped+Conjugated+Polymers&rft.jtitle=Advanced+electronic+materials&rft.au=Moul%C3%A9%2C+Adam+J.&rft.au=Gonel%2C+Goktug&rft.au=Murrey%2C+Tucker+L.&rft.au=Ghosh%2C+Raja&rft.date=2022-04-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1002%2Faelm.202100888&rft.externalDocID=1846996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |