Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers

Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 8; no. 4
Main Authors Moulé, Adam J., Gonel, Goktug, Murrey, Tucker L., Ghosh, Raja, Saska, Jan, Shevchenko, Nikolay E., Denti, Ilaria, Fergerson, Alice S., Talbot, Rachel M., Yacoub, Nichole L., Mascal, Mark, Salleo, Alberto, Spano, Frank C.
Format Journal Article
LanguageEnglish
Published United States Wiley Blackwell (John Wiley & Sons) 01.04.2022
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film. Molecular dopants charge transfer with semiconducting polymers, resulting in excited polymer states (polarons) and dopant counterions. This process produces an observable bleach in the optical absorbance of the intrinsic polymer and a simultaneous growth of optical polaron transitions. Quantifying these changes enables estimation of the polaron mole fraction and analysis of optoelectronic coupling as a function of the doping level.
AbstractList Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film.
Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film.
Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film. Molecular dopants charge transfer with semiconducting polymers, resulting in excited polymer states (polarons) and dopant counterions. This process produces an observable bleach in the optical absorbance of the intrinsic polymer and a simultaneous growth of optical polaron transitions. Quantifying these changes enables estimation of the polaron mole fraction and analysis of optoelectronic coupling as a function of the doping level.
Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film.
Author Ghosh, Raja
Moulé, Adam J.
Salleo, Alberto
Gonel, Goktug
Spano, Frank C.
Saska, Jan
Mascal, Mark
Denti, Ilaria
Talbot, Rachel M.
Shevchenko, Nikolay E.
Yacoub, Nichole L.
Murrey, Tucker L.
Fergerson, Alice S.
Author_xml – sequence: 1
  givenname: Adam J.
  surname: Moulé
  fullname: Moulé, Adam J.
  email: amoule@ucdavis.edu
  organization: University of California Davis
– sequence: 2
  givenname: Goktug
  surname: Gonel
  fullname: Gonel, Goktug
  organization: University of California Davis
– sequence: 3
  givenname: Tucker L.
  orcidid: 0000-0002-5947-2892
  surname: Murrey
  fullname: Murrey, Tucker L.
  organization: University of California Davis
– sequence: 4
  givenname: Raja
  surname: Ghosh
  fullname: Ghosh, Raja
  organization: Temple University
– sequence: 5
  givenname: Jan
  surname: Saska
  fullname: Saska, Jan
  organization: University of California Davis
– sequence: 6
  givenname: Nikolay E.
  surname: Shevchenko
  fullname: Shevchenko, Nikolay E.
  organization: University of California Davis
– sequence: 7
  givenname: Ilaria
  surname: Denti
  fullname: Denti, Ilaria
  organization: Stanford University
– sequence: 8
  givenname: Alice S.
  orcidid: 0000-0001-5836-1472
  surname: Fergerson
  fullname: Fergerson, Alice S.
  organization: University of California Davis
– sequence: 9
  givenname: Rachel M.
  surname: Talbot
  fullname: Talbot, Rachel M.
  organization: University of California Davis
– sequence: 10
  givenname: Nichole L.
  surname: Yacoub
  fullname: Yacoub, Nichole L.
  organization: University of California Davis
– sequence: 11
  givenname: Mark
  orcidid: 0000-0001-7841-253X
  surname: Mascal
  fullname: Mascal, Mark
  organization: University of California Davis
– sequence: 12
  givenname: Alberto
  orcidid: 0000-0002-7448-9123
  surname: Salleo
  fullname: Salleo, Alberto
  organization: Stanford University
– sequence: 13
  givenname: Frank C.
  orcidid: 0000-0003-3044-6727
  surname: Spano
  fullname: Spano, Frank C.
  organization: Temple University
BackLink https://www.osti.gov/biblio/1846996$$D View this record in Osti.gov
BookMark eNqFkc1rGzEQxUVJoWmSa8-id7v6Wq32GNykNTi0oQn0JmalWUdmLRlpTdj_vutsSHvraT54vzcw7yM5iykiIZ84W3LGxBfAfr8UTEyDMeYdORe8aRZcs99n__QfyFUpO8YYr7VUlTwn-_sjxCF0Y4hb-jP1kFOkd6lHepvBDSHFQiF6uo4D5kPG4aT7dUA3ZOjp6gniFgsNM-OOE9-P9Gs6oKerFHfHLQxTOxmPe8zlkrzvoC949VovyOPtzcPq-2Lz49t6db1ZOCWEWQD6VhupapTonXBeSBBQC69ULY1wFdTSV0YJ7blrlOJt3chWM2iBoZC1vCDr2dcn2NlDDnvIo00Q7Msi5a2FPATXo-WeV9xpLzrZKSM16FYwh6yWAJXyOHl9nr1SGYItLgzonlyKcfqB5UbpptGTaDmLXE6lZOzejnJmTwHZU0D2LaAJaGbgOfQ4_kdtr282d3_ZP4tUl3Q
CitedBy_id crossref_primary_10_1039_D3TC01569F
crossref_primary_10_1039_D3TC02416D
crossref_primary_10_1021_acs_jpcc_3c06044
crossref_primary_10_1039_D2TC03574J
crossref_primary_10_1021_acs_jpcc_3c01152
crossref_primary_10_1021_acsapm_2c00841
crossref_primary_10_1039_D2SC03793A
Cites_doi 10.1021/ar900233v
10.1146/annurev-physchem-040513-103639
10.1021/ja00418a050
10.1021/acs.chemrev.6b00329
10.1103/PhysRevB.86.035320
10.1038/nmat4634
10.1021/acs.jpclett.0c03620
10.1002/adma.202102988
10.1039/C5TC04207K
10.1002/adfm.201404549
10.1021/acs.chemrev.7b00581
10.1063/5.0054877
10.1021/acsami.8b21865
10.1021/acs.chemmater.9b01549
10.1063/5.0052592
10.1039/C7CP00494J
10.1021/ja00418a051
10.1063/1.523073
10.1021/acs.jpcc.1c06767
10.1039/C9TC04500G
10.1039/C8MH00223A
10.1021/acs.chemmater.8b04150
10.1002/adma.201201795
10.1021/ma991631k
10.1021/cr050156n
10.1002/aelm.202000249
10.1002/adma.201703063
10.1039/D1TC03951B
10.1002/adfm.200900120
10.1103/PhysRevB.74.115318
10.1002/aenm.201900266
10.1021/acs.accounts.5b00438
10.1039/C8TC05652H
10.1039/c3ee00015j
10.1038/ncomms9560
10.1002/adma.201506295
10.1021/acs.accounts.0c00349
10.1021/acs.jpcc.8b03873
10.1063/5.0029193
10.1021/acs.jpcb.0c08757
10.1063/1.3242372
10.1021/acs.chemmater.9b01704
10.1021/acs.chemmater.0c04471
10.1038/s41563-018-0263-6
10.1080/10587259408039274
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.1002/aelm.202100888
DatabaseName CrossRef
OSTI.GOV
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1d151c6d2f3f4836a6b20ce073aa54de
1846996
10_1002_aelm_202100888
AELM202100888
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1636385
– fundername: Basic Energy Sciences
  funderid: DE‐SC0020046
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAYXX
CITATION
AEUQT
OTOTI
ID FETCH-LOGICAL-c4228-aedb68347e3edc2cd23a2a72d447382c5a73d58426d1c9441b793b60aba0e2373
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Tue Oct 22 15:13:46 EDT 2024
Mon Sep 04 05:30:11 EDT 2023
Fri Dec 06 01:25:12 EST 2024
Sat Aug 24 00:56:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4228-aedb68347e3edc2cd23a2a72d447382c5a73d58426d1c9441b793b60aba0e2373
Notes USDOE
ORCID 0000-0001-5836-1472
0000-0001-7841-253X
0000-0002-7448-9123
0000-0003-3044-6727
0000-0002-5947-2892
0000000259472892
0000000330446727
0000000274489123
000000017841253X
0000000158361472
OpenAccessLink https://doaj.org/article/1d151c6d2f3f4836a6b20ce073aa54de
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_1d151c6d2f3f4836a6b20ce073aa54de
osti_scitechconnect_1846996
crossref_primary_10_1002_aelm_202100888
wiley_primary_10_1002_aelm_202100888_AELM202100888
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Advanced electronic materials
PublicationYear 2022
Publisher Wiley Blackwell (John Wiley & Sons)
Wiley-VCH
Publisher_xml – name: Wiley Blackwell (John Wiley & Sons)
– name: Wiley-VCH
References 2021; 9
2019; 7
1994; 256
2018; 122
2019; 9
2007; 107
2015; 6
2006; 74
2013; 25
2019; 31
2019; 11
2021; 125
2019; 18
2017; 29
2020; 124
2016; 15
2013; 6
2014; 65
2016; 4
1976; 98
2020; 6
2010; 43
2015; 25
2009; 95
2018; 5
2021; 12
2021; 33
2020; 53
2021
2020; 153
2018; 118
2000; 33
2021; 118
2017; 19
2016; 116
2021; 155
2009; 19
2016; 28
1976; 17
2016; 49
2012; 86
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 6
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 3454
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 65
  start-page: 477
  year: 2014
  publication-title: Annu. Rev. Phys. Chem.
– year: 2021
  publication-title: Adv. Mater.
– volume: 98
  start-page: 610
  year: 1976
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 118
  start-page: 7069
  year: 2018
  publication-title: Chem. Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 155
  year: 2021
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 1509
  year: 1976
  publication-title: J. Math. Phys.
– volume: 33
  start-page: 3120
  year: 2000
  publication-title: Macromolecules
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 1859
  year: 2013
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1906
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 8069
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 896
  year: 2016
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1684
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 6003
  year: 2016
  publication-title: Adv. Mater.
– volume: 86
  start-page: 3
  year: 2012
  publication-title: Phys. Rev. B
– volume: 18
  start-page: 149
  year: 2019
  publication-title: Nat. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 1500
  year: 2019
  publication-title: Chem. Mater.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 6986
  year: 2019
  publication-title: Chem. Mater.
– volume: 107
  start-page: 1233
  year: 2007
  publication-title: Chem. Rev.
– volume: 98
  start-page: 611
  year: 1976
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 33
  start-page: 2343
  year: 2021
  publication-title: Chem. Mater.
– volume: 25
  start-page: 2701
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 53
  start-page: 2201
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. B
– volume: 256
  start-page: 439
  year: 1994
  publication-title: Molecular. Cryst. Liq. Cryst. Sci. Technol., Sect. A
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 1284
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 49
  start-page: 370
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 655
  year: 2018
  publication-title: Mater. Horiz.
– volume: 153
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 953
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 43
  start-page: 429
  year: 2010
  publication-title: Acc. Chem. Res.
– volume: 31
  start-page: 7033
  year: 2019
  publication-title: Chem. Mater.
– ident: e_1_2_9_43_1
  doi: 10.1021/ar900233v
– ident: e_1_2_9_36_1
  doi: 10.1146/annurev-physchem-040513-103639
– ident: e_1_2_9_25_1
  doi: 10.1021/ja00418a050
– ident: e_1_2_9_17_1
  doi: 10.1021/acs.chemrev.6b00329
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevB.86.035320
– ident: e_1_2_9_4_1
  doi: 10.1038/nmat4634
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.jpclett.0c03620
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.202102988
– ident: e_1_2_9_2_1
  doi: 10.1039/C5TC04207K
– ident: e_1_2_9_32_1
  doi: 10.1002/adfm.201404549
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.chemrev.7b00581
– ident: e_1_2_9_37_1
  doi: 10.1063/5.0054877
– ident: e_1_2_9_27_1
  doi: 10.1021/acsami.8b21865
– ident: e_1_2_9_38_1
  doi: 10.1021/acs.chemmater.9b01549
– ident: e_1_2_9_21_1
  doi: 10.1063/5.0052592
– ident: e_1_2_9_35_1
  doi: 10.1039/C7CP00494J
– ident: e_1_2_9_26_1
  doi: 10.1021/ja00418a051
– ident: e_1_2_9_42_1
  doi: 10.1063/1.523073
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.jpcc.1c06767
– ident: e_1_2_9_29_1
  doi: 10.1039/C9TC04500G
– ident: e_1_2_9_11_1
  doi: 10.1039/C8MH00223A
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.chemmater.8b04150
– ident: e_1_2_9_7_1
  doi: 10.1002/adma.201201795
– ident: e_1_2_9_47_1
  doi: 10.1021/ma991631k
– ident: e_1_2_9_18_1
  doi: 10.1021/cr050156n
– ident: e_1_2_9_3_1
  doi: 10.1002/aelm.202000249
– ident: e_1_2_9_8_1
  doi: 10.1002/adma.201703063
– ident: e_1_2_9_13_1
  doi: 10.1039/D1TC03951B
– ident: e_1_2_9_1_1
  doi: 10.1002/adfm.200900120
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysRevB.74.115318
– ident: e_1_2_9_6_1
  doi: 10.1002/aenm.201900266
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.accounts.5b00438
– ident: e_1_2_9_14_1
  doi: 10.1039/C8TC05652H
– ident: e_1_2_9_34_1
  doi: 10.1039/c3ee00015j
– ident: e_1_2_9_20_1
  doi: 10.1038/ncomms9560
– ident: e_1_2_9_22_1
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.201506295
– ident: e_1_2_9_41_1
  doi: 10.1021/acs.accounts.0c00349
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.jpcc.8b03873
– ident: e_1_2_9_16_1
  doi: 10.1063/5.0029193
– ident: e_1_2_9_15_1
  doi: 10.1021/acs.jpcb.0c08757
– ident: e_1_2_9_19_1
  doi: 10.1063/1.3242372
– ident: e_1_2_9_39_1
  doi: 10.1021/acs.chemmater.9b01704
– ident: e_1_2_9_12_1
  doi: 10.1021/acs.chemmater.0c04471
– ident: e_1_2_9_10_1
  doi: 10.1038/s41563-018-0263-6
– ident: e_1_2_9_45_1
– ident: e_1_2_9_46_1
  doi: 10.1080/10587259408039274
SSID ssj0001763453
Score 2.3105826
Snippet Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near...
Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and...
Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and...
SourceID doaj
osti
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
SubjectTerms Molecular Dopants
Organic Electronics
Polaron Mole Fraction: Conjugated Polymers
Spectroscopy
Title Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202100888
https://www.osti.gov/biblio/1846996
https://doaj.org/article/1d151c6d2f3f4836a6b20ce073aa54de
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EL15EUbE-yh4ET8F0Ntmkx6otIlYUrIiXZXdnC0pNirYH_70zm1r15MVTSJiEZWZn55GZb4Q4Rk02ypWdZDzOyySjYzhxgYIVIGpw6AssuRt5eKMvR9nVY_74Y9QX14Q18MAN4047SDbJa4SxGmel0lY7SH2gnWltnmGIp28KP4KpmF0htcly9YXSmMKpDRNuPAcGs4ljVr6tUATrp0tNSvXbR41GZrApNhbeoew1q9oSK6HaFq93c8slPdyQJG85FK0rOawnQQ7emraEd2krlMv6QabjufKcxJBN-8C7fG7eiWWnkw95UU8DyvO6eplzIg35wx-cw94Ro0H__vwyWUxJSDzDdyU2oNOlyoqgAnrwCMqCLQCzrFAl-NwWCsnNAI0d3yXvx5FKOp1aZ9MAqlC7YrWqq7AnJHQ9BuJqsBy1ed11qDF1GHLLf2KKljj54pqZNmAYpoE9BsP8NUv-tsQZM3VJxSDW8QGJ1ixEa_4SbUscsEgM-QIMaOu58sfPDMWkmqK0loAoqT9WYnr96-Hybv8_1nUg1oGbIGL9zqFYnb3NwxG5JjPXFmu9h9HTqB134ycS1uL0
link.rule.ids 230,314,780,784,864,885,2102,27924,27925,50814,50923
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELZYeYCXCQSIjjH8MImniPScOOljKVTd1iKQKEK8WLbPRUxdgkr7wL_fXdIG9WnSnqJEtmWdc77vznefhfiOmmyUyzvRdJrmUULbcOQCOStArcGhzzDnauTxjR5Okp-P6TqbkGthan6IJuDGmlHt16zgHJC--GANtWHGpeTA9DR5_klsk-1jjLTde5g8TT4CLaRBScVGScrZjTo6flyTN8ZwsTnIhnGqOPzpUZKubULXyvYM9sTnFWiUvXqV98VWKA7En7ul5UwfrlOSt-yhloUcl7MgB_O6WuFN2gJlk1bI7fi6eY5tyLqq4E2-1H2qbNTZu7wqXwPKfln8XnJ8DXngdw5tH4rJ4Pq-P4xWlydEnlm9IhvQ6VwlWVABPXgEZcFmgEmSqRx8ajOFhD5AY8d3CRQ50lSnY-tsHEBl6ki0irIIx0JC12OwaRIsO3Nedx1qjB2G1PIBTdYW52upmdeaI8PUbMhgWL6mkW9bXLJQm1bMbV19KOfPZqUqpoOEQrxGmKppkitttYPYB9qLLE0CQ1uc8JIYggjMc-s5IcgvDLmqmpy3toBqpf4xE9O7Ho2bty__0-lM7AzvxyMz-nHz60TsAtdFVCk9X0VrMV-GU0IrC_dt9T_-BVJ-4xw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELagkxAvCASIbgP8gMRTtOTsOOlj2VaNbZ2GRFHFi2X7HMRUkqprH_bvd5d0GX1C4ilKZFvWOWd_d7nvixCf0NAZ5cssqaq8TDRtw4mPFKwAtQaPocCS2cjTK3M20-fzfP4Xi7_Th-gTbuwZ7X7NDr7E6uhRNNTFBTPJgdVpyvKp2COokemB2Bv_mP2cPeZZyIF0K0ZJvjlKMpPOH7QbUzjaHWTnbGol_OnSkKvtItf26Jm8FC-2mFGOu0V-JZ7E-rX4823juNCHaUrymgPUppbTZhHlZNWRFW6lq1H2VYXcjv82z6kN2ZEKbuXvrk9bjLq4kyfNMqI8buqbDafXkAe-48z2GzGbnH4_Pku2_05IAot6JS6iN6XSRVQRAwQE5cAVgFoXqoSQu0IhgQ8wmIURYSJPjupN6rxLI6hCvRWDuqnjOyFhFDC6XEfHsVwwI48GU48xd_x9phiKzw9Ws8tOIsN2Yshg2b62t-9QfGGj9q1Y2rp90Kx-2a2n2AwJhASDUKlKl8o44yENkbYiR5PAOBQHvCSWEALL3AauBwprS5GqodhtKKBdqX_MxI5PL6f93f7_dPoonl2fTOzl16uLA_EcmBXRFvQcisF6tYnvCaus_Yft63gP_jbiRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+Polaron+Mole+Fractions+and+Interpreting+Spectral+Changes+in+Molecularly+Doped+Conjugated+Polymers&rft.jtitle=Advanced+electronic+materials&rft.au=Moul%C3%A9%2C+Adam+J.&rft.au=Gonel%2C+Goktug&rft.au=Murrey%2C+Tucker+L.&rft.au=Ghosh%2C+Raja&rft.date=2022-04-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1002%2Faelm.202100888&rft.externalDocID=1846996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon