Visualization in Bayesian workflow
Bayesian data analysis is about more than just computing a posterior distribution, and Bayesian visualization is about more than trace plots of Markov chains. Practical Bayesian data analysis, like all data analysis, is an iterative process of model building, inference, model checking and evaluation...
Saved in:
Published in | Journal of the Royal Statistical Society. Series A, Statistics in society Vol. 182; no. 2; pp. 389 - 402 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley
01.02.2019
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bayesian data analysis is about more than just computing a posterior distribution, and Bayesian visualization is about more than trace plots of Markov chains. Practical Bayesian data analysis, like all data analysis, is an iterative process of model building, inference, model checking and evaluation, and model expansion. Visualization is helpful in each of these stages of the Bayesian workflow and it is indispensable when drawing inferences from the types of modern, high dimensional models that are used by applied researchers. |
---|---|
AbstractList | Bayesian data analysis is about more than just computing a posterior distribution, and Bayesian visualization is about more than trace plots of Markov chains. Practical Bayesian data analysis, like all data analysis, is an iterative process of model building, inference, model checking and evaluation, and model expansion. Visualization is helpful in each of these stages of the Bayesian workflow and it is indispensable when drawing inferences from the types of modern, high dimensional models that are used by applied researchers. |
Author | Gabry, Jonah Betancourt, Michael Gelman, Andrew Simpson, Daniel Vehtari, Aki |
Author_xml | – sequence: 1 givenname: Jonah surname: Gabry fullname: Gabry, Jonah – sequence: 2 givenname: Daniel surname: Simpson fullname: Simpson, Daniel – sequence: 3 givenname: Aki surname: Vehtari fullname: Vehtari, Aki – sequence: 4 givenname: Michael surname: Betancourt fullname: Betancourt, Michael – sequence: 5 givenname: Andrew surname: Gelman fullname: Gelman, Andrew |
BookMark | eNp9kM1LwzAYh4NMcJtevAtFb0JnPpvmOIdfMBCcireQpgmk1mYmHWP-9XarehDxvfwuz_O-L78RGDS-MQAcIzhB3VyEGNUEYcLzPTBENOOpyNnLAAyhyGiKhMgPwCjGCm6H8yE4fXZxpWr3oVrnm8Q1yaXamOhUk6x9eLW1Xx-CfavqaI6-cgyerq8eZ7fp_P7mbjadp5pinKeIZNgqyoSBheCWaYVzQQzUWFtDqOnC8rJEFipecM2LsrQGm6KEkEFMSzIGZ_3eZfDvKxNbWflVaLqTEqOMIw4J4x0Fe0oHH2MwVmrX7p5vg3K1RFBum5DbJuSuiU45_6Usg3tTYfM3jHp47Wqz-YeUD4vF9Ns56Z0qtj78ODRnLKMYkk8Um3qr |
CitedBy_id | crossref_primary_10_1177_0093854819862010 crossref_primary_10_1016_j_applanim_2022_105747 crossref_primary_10_1126_sciadv_adk3222 crossref_primary_10_1371_journal_pone_0291153 crossref_primary_10_3389_fmicb_2021_638231 crossref_primary_10_1007_s10329_024_01172_2 crossref_primary_10_1111_rssa_12872 crossref_primary_10_3354_meps12946 crossref_primary_10_1016_j_eja_2024_127227 crossref_primary_10_3758_s13428_023_02204_3 crossref_primary_10_1016_j_socnet_2019_10_001 crossref_primary_10_1073_pnas_2112521118 crossref_primary_10_1016_j_chb_2021_106948 crossref_primary_10_1093_qopen_qoac015 crossref_primary_10_1016_j_foodres_2022_111565 crossref_primary_10_1111_add_14900 crossref_primary_10_1002_wics_1523 crossref_primary_10_3758_s13428_022_02020_1 crossref_primary_10_1007_s42978_020_00087_w crossref_primary_10_1038_s41467_024_53608_4 crossref_primary_10_1515_lingty_2021_0002 crossref_primary_10_1186_s13063_020_04602_w crossref_primary_10_1016_j_msksp_2025_103307 crossref_primary_10_1111_aec_13572 crossref_primary_10_1016_j_anbehav_2022_10_006 crossref_primary_10_21105_joss_03395 crossref_primary_10_1098_rspb_2023_1910 crossref_primary_10_1002_psp4_12455 crossref_primary_10_1016_j_spasta_2021_100544 crossref_primary_10_1016_j_evolhumbehav_2024_04_001 crossref_primary_10_1007_s10940_019_09430_z crossref_primary_10_1017_S0142716423000267 crossref_primary_10_1038_s41586_020_2395_5 crossref_primary_10_1111_1365_2664_13883 crossref_primary_10_1016_j_neuroimage_2022_119195 crossref_primary_10_1097_PR9_0000000000000963 crossref_primary_10_1111_ele_14389 crossref_primary_10_3390_w15132353 crossref_primary_10_3758_s13415_021_00960_3 crossref_primary_10_7717_peerj_9383 crossref_primary_10_1016_j_fishres_2022_106250 crossref_primary_10_1017_ehs_2024_43 crossref_primary_10_1093_icesjms_fsz059 crossref_primary_10_1016_j_epidem_2019_100367 crossref_primary_10_3758_s13421_022_01288_0 crossref_primary_10_1016_j_cortex_2022_05_015 crossref_primary_10_1111_faf_12878 crossref_primary_10_1371_journal_pone_0225872 crossref_primary_10_1111_vox_13639 crossref_primary_10_1016_j_bandc_2021_105811 crossref_primary_10_3390_en13123183 crossref_primary_10_3390_plants11060801 crossref_primary_10_1080_21678421_2021_1908362 crossref_primary_10_3389_fpsyg_2020_611963 crossref_primary_10_1016_j_jocd_2020_05_003 crossref_primary_10_1111_1365_2656_70007 crossref_primary_10_1111_1365_2656_13532 crossref_primary_10_3758_s13415_022_01047_3 crossref_primary_10_1111_1365_2656_13779 crossref_primary_10_5334_labphon_213 crossref_primary_10_1111_jbi_14760 crossref_primary_10_1126_sciadv_abn3999 crossref_primary_10_1097_JSM_0000000000001102 crossref_primary_10_1177_14738716241265120 crossref_primary_10_1186_s40359_025_02517_2 crossref_primary_10_1016_j_dcn_2024_101459 crossref_primary_10_1111_gcb_15862 crossref_primary_10_1080_24733938_2021_2013522 crossref_primary_10_3389_fvets_2022_937904 crossref_primary_10_1088_1748_9326_acf8db crossref_primary_10_1088_1361_6560_ab3a5a crossref_primary_10_1016_j_jmp_2020_102474 crossref_primary_10_1111_ele_14008 crossref_primary_10_1002_dev_22226 crossref_primary_10_1002_jnr_24771 crossref_primary_10_3389_fspor_2022_1042494 crossref_primary_10_1111_mec_16081 crossref_primary_10_1136_bmjopen_2024_085406 crossref_primary_10_1016_j_neuropsychologia_2021_107834 crossref_primary_10_1029_2020GL087972 crossref_primary_10_1027_1864_9335_a000542 crossref_primary_10_1098_rsos_201092 crossref_primary_10_1016_j_ijforecast_2025_02_005 crossref_primary_10_1007_s00148_024_01043_6 crossref_primary_10_7717_peerj_16117 crossref_primary_10_1111_oik_08393 crossref_primary_10_7554_eLife_77632 crossref_primary_10_1126_science_adh8830 crossref_primary_10_1016_j_yhbeh_2024_105604 crossref_primary_10_1214_20_AOAS1372 crossref_primary_10_1002_esp_5192 crossref_primary_10_1007_s12187_024_10143_4 crossref_primary_10_1080_24733938_2020_1862419 crossref_primary_10_1111_jzo_12846 crossref_primary_10_1111_oik_08278 crossref_primary_10_3389_fevo_2022_910121 crossref_primary_10_1142_S0219525923400015 crossref_primary_10_1038_s41559_024_02381_0 crossref_primary_10_1038_s41559_023_02298_0 crossref_primary_10_1002_ece3_9901 crossref_primary_10_1080_01621459_2021_1938081 crossref_primary_10_1016_j_ecoenv_2023_115406 crossref_primary_10_1371_journal_pcbi_1010082 crossref_primary_10_1080_08982112_2023_2276779 crossref_primary_10_1002_pst_2266 crossref_primary_10_1080_10409289_2020_1749492 crossref_primary_10_12688_openreseurope_17749_1 crossref_primary_10_1177_87552930211067817 crossref_primary_10_1007_s11222_023_10295_3 crossref_primary_10_3354_dao03812 crossref_primary_10_1111_btp_12981 crossref_primary_10_1038_s41562_024_01988_4 crossref_primary_10_1214_23_BA1381 crossref_primary_10_1093_jnci_djab186 crossref_primary_10_1021_acs_est_0c06268 crossref_primary_10_3390_plants12173040 crossref_primary_10_1111_oik_10495 crossref_primary_10_1109_TVCG_2021_3073466 crossref_primary_10_3389_fmars_2024_1452984 crossref_primary_10_1016_j_foreco_2023_121305 crossref_primary_10_1002_aqc_70013 crossref_primary_10_1128_aem_01419_23 crossref_primary_10_1111_1365_2656_13618 crossref_primary_10_1080_10888438_2019_1642341 crossref_primary_10_1111_1365_2435_14287 crossref_primary_10_1371_journal_pone_0233282 crossref_primary_10_1016_j_therwi_2022_100010 crossref_primary_10_1111_acv_12915 crossref_primary_10_1061__ASCE_CO_1943_7862_0001930 crossref_primary_10_1177_1477370821997323 crossref_primary_10_2118_209203_PA crossref_primary_10_1002_ece3_8030 crossref_primary_10_1111_nph_20358 crossref_primary_10_7759_cureus_59482 crossref_primary_10_1038_s41467_022_33570_9 crossref_primary_10_1111_nph_18150 crossref_primary_10_1371_journal_pone_0253043 crossref_primary_10_2139_ssrn_4350792 crossref_primary_10_1111_1365_2745_14154 crossref_primary_10_3847_1538_4357_abc41a crossref_primary_10_1088_1748_9326_ad0c88 crossref_primary_10_1177_19367244231172144 crossref_primary_10_1515_hsz_2023_0205 crossref_primary_10_1002_wsb_1504 crossref_primary_10_1038_s41586_024_07980_2 crossref_primary_10_1094_PHYTO_10_21_0430_PER crossref_primary_10_1214_21_AOAS1587 crossref_primary_10_1002_ajp_23674 crossref_primary_10_1214_21_AOAS1580 crossref_primary_10_1021_acs_jproteome_3c00297 crossref_primary_10_7554_eLife_62714 crossref_primary_10_7717_peerj_9436 crossref_primary_10_1371_journal_pcbi_1011575 crossref_primary_10_1016_j_scitotenv_2023_164223 crossref_primary_10_1111_1365_2435_14340 crossref_primary_10_1186_s12879_021_06757_6 crossref_primary_10_1007_s10531_023_02713_9 crossref_primary_10_1016_j_gecco_2022_e02109 crossref_primary_10_1111_jzo_12877 crossref_primary_10_1007_s00180_022_01231_6 crossref_primary_10_1007_s40003_020_00465_4 crossref_primary_10_3389_fcomp_2020_567344 crossref_primary_10_1126_science_abf2343 crossref_primary_10_1038_s41559_022_01893_x crossref_primary_10_3389_fpsyg_2021_672927 crossref_primary_10_1002_jcc_26556 crossref_primary_10_1002_pbc_29036 crossref_primary_10_1111_2041_210X_13974 crossref_primary_10_1145_3490953 crossref_primary_10_1016_j_fishres_2024_107024 crossref_primary_10_1016_j_specom_2024_103121 crossref_primary_10_3389_fpsyg_2024_1281857 crossref_primary_10_1177_03611981221125215 crossref_primary_10_1016_j_fishres_2021_106002 crossref_primary_10_1214_22_AOAS1711 crossref_primary_10_1242_jeb_229609 crossref_primary_10_3847_1538_4357_ab9607 crossref_primary_10_1002_smj_3665 crossref_primary_10_1111_ejn_14611 crossref_primary_10_1111_jeb_14222 crossref_primary_10_1080_00273171_2020_1805582 crossref_primary_10_1371_journal_pbio_3001389 crossref_primary_10_3758_s13423_019_01637_2 crossref_primary_10_1016_j_quageo_2024_101502 crossref_primary_10_1016_j_wocn_2021_101116 crossref_primary_10_3389_fgene_2021_657375 crossref_primary_10_1002_ajb2_16076 crossref_primary_10_1111_ddi_13680 crossref_primary_10_1002_ail2_22 crossref_primary_10_1093_g3journal_jkae013 crossref_primary_10_1093_mnras_staf238 crossref_primary_10_1007_s40273_024_01387_7 crossref_primary_10_1016_j_neuroimage_2023_120393 crossref_primary_10_1098_rspb_2024_2941 crossref_primary_10_1521_jscp_2025_44_1_003 crossref_primary_10_21105_joss_04716 crossref_primary_10_1016_j_trf_2020_11_002 crossref_primary_10_1214_21_STS839 crossref_primary_10_1111_fog_12707 crossref_primary_10_3389_fneur_2021_804139 crossref_primary_10_1007_s10584_024_03763_w crossref_primary_10_1086_726785 crossref_primary_10_1002_asmb_2832 crossref_primary_10_1007_s11104_022_05329_0 crossref_primary_10_1002_ecs2_4798 crossref_primary_10_1111_gcb_15650 crossref_primary_10_1111_1365_2664_14764 crossref_primary_10_1002_nafm_10724 crossref_primary_10_1145_3476980 crossref_primary_10_1186_s13690_022_01002_1 crossref_primary_10_1186_s42408_023_00183_6 crossref_primary_10_1007_s10816_023_09611_y crossref_primary_10_1007_s42113_023_00168_3 crossref_primary_10_1088_1361_6471_abc3a5 crossref_primary_10_1051_0004_6361_201937347 crossref_primary_10_1109_TVCG_2022_3226463 crossref_primary_10_1123_ijspp_2019_0534 crossref_primary_10_1016_j_addbeh_2022_107330 crossref_primary_10_1016_j_jglr_2024_102424 crossref_primary_10_1051_0004_6361_202039461 crossref_primary_10_1007_s10584_021_03022_2 crossref_primary_10_6339_23_JDS1113 crossref_primary_10_1111_2041_210X_13407 crossref_primary_10_7717_peerj_9511 crossref_primary_10_2196_45321 crossref_primary_10_1038_s41893_024_01494_5 crossref_primary_10_1038_s41598_021_03405_6 crossref_primary_10_1002_2688_8319_12116 crossref_primary_10_3390_psych5020027 crossref_primary_10_1002_ecs2_4543 crossref_primary_10_1017_aae_2021_25 crossref_primary_10_1002_nafm_10739 crossref_primary_10_1016_j_jmp_2022_102695 crossref_primary_10_1002_joc_8793 crossref_primary_10_1016_j_jfp_2023_100138 crossref_primary_10_1162_nol_a_00094 crossref_primary_10_1093_jssam_smaa008 crossref_primary_10_1016_j_foreco_2023_120969 crossref_primary_10_1371_journal_pcbi_1012777 crossref_primary_10_1002_ajpa_25048 crossref_primary_10_1038_s41598_024_72812_2 crossref_primary_10_1080_02640414_2025_2482367 crossref_primary_10_1111_2041_210X_13774 crossref_primary_10_3847_1538_4357_adb8df crossref_primary_10_1016_j_conctc_2021_100709 crossref_primary_10_1002_aps3_11503 crossref_primary_10_1002_pan3_10502 crossref_primary_10_1038_s41598_022_14662_4 crossref_primary_10_1051_0004_6361_202245191 crossref_primary_10_1063_5_0154773 crossref_primary_10_1214_23_SS145 crossref_primary_10_1098_rsif_2024_0255 crossref_primary_10_1080_10705511_2021_1915146 crossref_primary_10_1111_plb_13469 crossref_primary_10_1371_journal_pcbi_1008039 crossref_primary_10_3389_fmars_2021_719956 crossref_primary_10_1371_journal_pcbi_1009001 crossref_primary_10_1002_jclp_23139 crossref_primary_10_1038_s41559_024_02533_2 crossref_primary_10_1002_ecy_3475 crossref_primary_10_3310_hsdr09130 crossref_primary_10_1016_j_jfp_2023_100135 crossref_primary_10_3847_1538_4357_ad53c7 crossref_primary_10_1016_j_ecoinf_2023_102271 crossref_primary_10_1016_j_anbehav_2024_09_009 crossref_primary_10_1186_s41235_022_00387_5 crossref_primary_10_1643_i2024024 crossref_primary_10_1080_00336297_2024_2364608 crossref_primary_10_1371_journal_pone_0252227 crossref_primary_10_1002_eap_70016 crossref_primary_10_1093_bioinformatics_btac134 crossref_primary_10_1111_mec_17532 crossref_primary_10_1016_j_neuroimage_2020_116922 crossref_primary_10_1093_jeb_voaf010 crossref_primary_10_1098_rspb_2023_2101 crossref_primary_10_1098_rstb_2019_0732 crossref_primary_10_1111_bmsp_12302 crossref_primary_10_1007_s11336_023_09924_7 crossref_primary_10_1038_s41598_024_57426_y crossref_primary_10_1093_jac_dkab255 crossref_primary_10_1109_TVCG_2021_3114824 crossref_primary_10_2196_50023 crossref_primary_10_1016_j_anbehav_2024_09_001 crossref_primary_10_1038_s43586_020_00001_2 crossref_primary_10_1002_ecm_1557 crossref_primary_10_1002_ecs2_3546 crossref_primary_10_1080_02640414_2023_2203484 crossref_primary_10_1111_cdev_13950 crossref_primary_10_1007_s42113_019_00051_0 crossref_primary_10_1109_TSE_2019_2935974 crossref_primary_10_1029_2021GB007160 crossref_primary_10_1111_eth_13129 crossref_primary_10_1007_s10764_022_00342_7 crossref_primary_10_1111_jiec_13339 crossref_primary_10_1111_mec_16436 crossref_primary_10_1016_j_oneear_2023_12_001 crossref_primary_10_1016_j_ecoinf_2023_102375 crossref_primary_10_1111_rec_13652 crossref_primary_10_1016_j_chest_2024_08_055 crossref_primary_10_1016_j_earlhumdev_2020_105272 crossref_primary_10_3758_s13428_024_02370_y crossref_primary_10_1111_1365_2435_14743 crossref_primary_10_1038_s41386_020_0725_9 crossref_primary_10_1080_00401706_2023_2190770 crossref_primary_10_1186_s12874_022_01813_4 crossref_primary_10_3390_axioms10040276 crossref_primary_10_7554_eLife_82996 crossref_primary_10_1109_TVCG_2024_3456402 crossref_primary_10_1007_s10826_023_02610_3 crossref_primary_10_1017_S1366728924000828 crossref_primary_10_1371_journal_pone_0276336 crossref_primary_10_1017_S1355617722000054 crossref_primary_10_17531_ein_2022_2_6 crossref_primary_10_1002_ece3_70201 crossref_primary_10_1080_03610918_2022_2025841 crossref_primary_10_1080_10705511_2021_1971527 crossref_primary_10_1093_ofid_ofab235 crossref_primary_10_1016_j_biocon_2023_110085 crossref_primary_10_1038_s41558_024_02093_0 crossref_primary_10_1111_emr_70001 crossref_primary_10_1111_sms_13701 crossref_primary_10_18332_tid_183804 crossref_primary_10_1002_evl3_245 crossref_primary_10_1002_env_2894 crossref_primary_10_1146_annurev_statistics_033121_110134 crossref_primary_10_1186_s12889_024_19889_6 crossref_primary_10_1002_sim_9164 crossref_primary_10_1038_s41598_024_73612_4 crossref_primary_10_1016_j_ecolecon_2020_106712 crossref_primary_10_1007_s10980_024_01912_1 crossref_primary_10_1017_dce_2021_18 crossref_primary_10_1177_03611981221119189 crossref_primary_10_3389_fgene_2023_1143395 crossref_primary_10_3390_d14100858 crossref_primary_10_1186_s12874_024_02333_z crossref_primary_10_1097_AJP_0000000000000987 crossref_primary_10_3354_meps13447 crossref_primary_10_1186_s13741_023_00324_0 crossref_primary_10_1371_journal_pone_0231982 crossref_primary_10_1002_ecy_3677 crossref_primary_10_1089_neur_2022_0092 crossref_primary_10_1214_23_STS907 crossref_primary_10_1177_14761270211072248 crossref_primary_10_1155_2024_9719635 crossref_primary_10_1111_lnc3_12439 crossref_primary_10_1177_01427237231169398 crossref_primary_10_1007_s10764_024_00468_w crossref_primary_10_1002_ecs2_3739 crossref_primary_10_1002_jwmg_22725 crossref_primary_10_3390_mca25030041 crossref_primary_10_3758_s13423_021_01986_x crossref_primary_10_1080_24694452_2020_1756207 crossref_primary_10_5194_hess_28_4685_2024 crossref_primary_10_1007_s10641_022_01296_8 crossref_primary_10_1186_s12874_023_01963_z crossref_primary_10_1007_s00431_020_03818_x crossref_primary_10_1093_jrsssc_qlae044 crossref_primary_10_1016_j_fcr_2022_108477 crossref_primary_10_1080_02664763_2024_2338404 crossref_primary_10_2139_ssrn_4993829 crossref_primary_10_1093_cid_ciab678 crossref_primary_10_1515_lingty_2023_0076 crossref_primary_10_1111_geb_13591 crossref_primary_10_1093_jrsssa_qnae023 crossref_primary_10_1038_s41541_024_00951_8 crossref_primary_10_1038_s41598_022_06875_4 crossref_primary_10_1080_10705511_2022_2046475 crossref_primary_10_1214_22_AOAS1657 crossref_primary_10_1016_j_foreco_2024_122149 crossref_primary_10_3354_meps14382 crossref_primary_10_3390_insects16010064 crossref_primary_10_1214_23_AOAS1791 crossref_primary_10_1002_psp4_12812 crossref_primary_10_1111_jzo_13012 crossref_primary_10_3390_asi2030024 crossref_primary_10_3390_jfmk6020036 crossref_primary_10_3233_SJI_220965 crossref_primary_10_7554_eLife_84602 crossref_primary_10_1016_j_neuropsychologia_2021_108120 crossref_primary_10_1016_j_simpa_2020_100016 crossref_primary_10_1016_j_ecoinf_2024_102865 crossref_primary_10_1002_bimj_202200095 crossref_primary_10_1016_j_apergo_2022_103739 crossref_primary_10_1002_mcf2_10225 crossref_primary_10_1016_j_jen_2020_11_008 crossref_primary_10_1177_00220426221098986 crossref_primary_10_1111_1365_2664_14497 crossref_primary_10_1111_1365_2664_14014 crossref_primary_10_1111_fme_12638 crossref_primary_10_1016_j_fishres_2025_107307 crossref_primary_10_1016_j_strusafe_2024_102503 crossref_primary_10_1021_acs_chemmater_3c02751 crossref_primary_10_1016_j_agee_2023_108765 crossref_primary_10_1021_acs_est_4c09395 crossref_primary_10_1098_rsos_210274 crossref_primary_10_1016_j_anbehav_2023_06_014 crossref_primary_10_7717_peerj_14726 crossref_primary_10_1080_15305058_2023_2214647 crossref_primary_10_1071_MF23088 crossref_primary_10_1093_sysbio_syae044 crossref_primary_10_1093_jrsssc_qlae067 crossref_primary_10_5194_nhess_21_1599_2021 crossref_primary_10_1029_2020WR027897 crossref_primary_10_1007_s10530_021_02712_3 crossref_primary_10_3354_meps13894 crossref_primary_10_1016_j_cub_2025_02_016 crossref_primary_10_3390_ani10112009 crossref_primary_10_1098_rspb_2023_2480 crossref_primary_10_1126_science_add8606 crossref_primary_10_1146_annurev_astro_052920_103508 crossref_primary_10_1007_s00442_021_04853_7 crossref_primary_10_3390_v16081315 crossref_primary_10_1038_s41467_020_20455_y crossref_primary_10_1016_j_neurobiolaging_2024_08_001 crossref_primary_10_1111_meca_12366 crossref_primary_10_1371_journal_pone_0310021 crossref_primary_10_1016_j_jenvrad_2022_107077 crossref_primary_10_1038_s41598_022_12312_3 crossref_primary_10_1038_s41598_023_36974_9 crossref_primary_10_1186_s13063_021_05759_8 crossref_primary_10_26508_lsa_202201855 crossref_primary_10_1590_rbce_45_e20240015 crossref_primary_10_1139_cjfas_2022_0024 crossref_primary_10_1177_17479541221116881 crossref_primary_10_1002_2688_8319_12293 crossref_primary_10_1007_s40865_022_00204_z crossref_primary_10_1093_jxb_erae290 crossref_primary_10_1109_TVCG_2023_3326516 crossref_primary_10_1016_j_patter_2020_100079 crossref_primary_10_1007_s11129_024_09289_w crossref_primary_10_1214_24_AOAS1934 crossref_primary_10_1007_s10661_022_10022_x crossref_primary_10_1016_j_jss_2023_111909 crossref_primary_10_1039_D1JA00407G crossref_primary_10_1111_1759_3441_12383 crossref_primary_10_3391_ai_2024_19_1_116040 crossref_primary_10_1002_cjs_11637 crossref_primary_10_1007_s13253_024_00639_5 crossref_primary_10_1007_s00265_021_03111_3 crossref_primary_10_1002_ece3_11531 crossref_primary_10_1038_s41562_021_01211_8 crossref_primary_10_1111_fog_12469 crossref_primary_10_1214_22_BA1327 crossref_primary_10_3390_app142210411 crossref_primary_10_1098_rstb_2021_0299 crossref_primary_10_1139_cjfas_2021_0224 crossref_primary_10_1017_S0954579423001335 crossref_primary_10_3390_urbansci8040176 crossref_primary_10_1080_02640414_2019_1612505 crossref_primary_10_1016_j_jcp_2023_112210 crossref_primary_10_1111_jfb_14181 crossref_primary_10_1007_s12662_024_00998_8 crossref_primary_10_1080_02705060_2022_2085199 crossref_primary_10_1038_s41559_021_01442_y crossref_primary_10_1093_treephys_tpad136 crossref_primary_10_1016_j_rama_2024_04_001 crossref_primary_10_1073_pnas_2221961120 crossref_primary_10_1109_TCCN_2021_3066566 crossref_primary_10_1111_1365_2656_13834 crossref_primary_10_1093_toxsci_kfae159 crossref_primary_10_1109_TVCG_2020_3030335 crossref_primary_10_1002_hbm_26107 crossref_primary_10_1017_nps_2021_71 crossref_primary_10_24072_pcjournal_347 crossref_primary_10_1017_ice_2021_530 crossref_primary_10_1016_j_baae_2022_08_004 crossref_primary_10_3389_fvets_2022_1027883 crossref_primary_10_1126_science_abn7829 crossref_primary_10_2139_ssrn_4468022 crossref_primary_10_1016_j_spasta_2020_100450 crossref_primary_10_1016_j_neuroimage_2022_119149 crossref_primary_10_1027_1015_5759_a000624 crossref_primary_10_1371_journal_pone_0252527 crossref_primary_10_1002_wlb3_01340 crossref_primary_10_1038_s41598_023_48980_y crossref_primary_10_1109_TVCG_2019_2934287 crossref_primary_10_3390_jintelligence13030026 crossref_primary_10_1016_j_anbehav_2023_05_003 crossref_primary_10_1155_2022_5636449 crossref_primary_10_1002_ecs2_70090 crossref_primary_10_1016_j_learninstruc_2025_102102 crossref_primary_10_1002_hbm_70052 crossref_primary_10_1016_j_jfoodeng_2021_110634 crossref_primary_10_1016_j_epidem_2023_100715 crossref_primary_10_1016_j_ecolind_2023_110564 crossref_primary_10_1371_journal_pone_0298736 crossref_primary_10_1016_j_tranpol_2021_01_013 crossref_primary_10_1002_sdr_1693 crossref_primary_10_1371_journal_pone_0265730 crossref_primary_10_1080_00949655_2024_2449534 crossref_primary_10_1016_j_neuroimage_2020_117708 crossref_primary_10_1002_mar_22095 crossref_primary_10_1016_j_crpvbd_2023_100125 crossref_primary_10_1007_s00227_022_04054_7 crossref_primary_10_1002_hbm_26490 crossref_primary_10_1038_s41598_024_68175_3 crossref_primary_10_3389_fnagi_2023_1225816 crossref_primary_10_1097_ALN_0000000000004510 crossref_primary_10_1109_JSEN_2023_3272907 crossref_primary_10_2196_24266 crossref_primary_10_3354_meps13286 crossref_primary_10_1016_j_jsr_2023_09_006 crossref_primary_10_1021_acs_jproteome_1c00859 crossref_primary_10_4236_ape_2021_111008 crossref_primary_10_1002_eap_2552 crossref_primary_10_1016_j_ocecoaman_2021_105947 crossref_primary_10_1155_2019_4784909 crossref_primary_10_1007_s10661_022_10024_9 crossref_primary_10_1038_s41550_019_0998_2 crossref_primary_10_1038_s41598_021_91437_3 crossref_primary_10_1038_s41586_023_06113_5 crossref_primary_10_1002_ecy_3804 crossref_primary_10_1214_20_EJS1711 crossref_primary_10_1080_02640414_2020_1766177 crossref_primary_10_1002_ar_25639 crossref_primary_10_1001_jamanetworkopen_2023_44399 crossref_primary_10_1007_s10914_022_09624_6 crossref_primary_10_1111_jbi_14599 crossref_primary_10_1186_s40658_023_00537_8 crossref_primary_10_1017_ice_2021_323 crossref_primary_10_1111_faf_12730 crossref_primary_10_1098_rsos_210537 crossref_primary_10_1186_s12889_021_10690_3 crossref_primary_10_3389_fvets_2020_00345 crossref_primary_10_1214_23_BA1404 crossref_primary_10_1016_j_marpolbul_2024_117487 crossref_primary_10_1186_s40249_023_01065_4 crossref_primary_10_1016_j_csda_2023_107795 crossref_primary_10_1002_ecm_1515 crossref_primary_10_1111_gcb_16067 crossref_primary_10_3390_stats6010011 crossref_primary_10_1186_s12874_024_02149_x crossref_primary_10_3389_fpsyg_2021_742577 crossref_primary_10_1002_aur_2728 crossref_primary_10_1007_s00477_023_02615_w crossref_primary_10_1073_pnas_2108731119 crossref_primary_10_1080_02626667_2022_2095207 crossref_primary_10_7717_peerj_17721 crossref_primary_10_1016_j_chemosphere_2025_144287 crossref_primary_10_1016_j_anbehav_2024_05_016 crossref_primary_10_1016_j_anbehav_2024_11_006 crossref_primary_10_1080_02640414_2024_2329846 crossref_primary_10_1126_sciadv_adr0278 crossref_primary_10_1214_24_STS949 crossref_primary_10_1515_jqas_2022_0021 crossref_primary_10_1002_ecs2_70083 crossref_primary_10_1007_s42113_023_00173_6 crossref_primary_10_1080_01446193_2024_2309890 crossref_primary_10_1093_cz_zoac016 crossref_primary_10_1111_ssqu_13190 crossref_primary_10_1007_s00265_024_03492_1 crossref_primary_10_1007_s41666_021_00094_8 crossref_primary_10_1017_ehs_2021_14 crossref_primary_10_2118_209234_PA crossref_primary_10_1109_TVCG_2021_3114684 crossref_primary_10_24072_pcjournal_294 crossref_primary_10_1111_rssc_12595 crossref_primary_10_1029_2023WR036076 crossref_primary_10_1002_sim_9480 crossref_primary_10_1177_0956797619830649 crossref_primary_10_3847_1538_4357_acea7c crossref_primary_10_1002_mpr_1868 crossref_primary_10_1002_edn3_312 crossref_primary_10_1098_rsos_201848 crossref_primary_10_1177_00315125221150476 crossref_primary_10_1182_bloodadvances_2021005710 crossref_primary_10_1177_00953997251317523 crossref_primary_10_1145_3656409 crossref_primary_10_1007_s11222_023_10325_0 |
Cites_doi | 10.1201/b16018 10.1214/08-AOAS191 10.1016/S0140-6736(15)00128-2 10.1198/106186004X11435 10.1511/2014.111.460 10.1093/oso/9780198522669.003.0009 10.1214/16-STS576 10.3390/e19100555 10.1007/978-0-387-98141-3 10.1007/s11222-016-9696-4 |
ContentType | Journal Article |
Copyright | 2019 Royal Statistical Society Copyright © 2019 The Royal Statistical Society and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2019 Royal Statistical Society – notice: Copyright © 2019 The Royal Statistical Society and John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
DOI | 10.1111/rssa.12378 |
DatabaseName | CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-985X |
EndPage | 402 |
ExternalDocumentID | 10_1111_rssa_12378 RSSA12378 48556420 |
Genre | article |
GrantInformation_xml | – fundername: Columbia University – fundername: US National Science Foundation – fundername: Institute for Education Sciences – fundername: Sloan Foundation – fundername: Defense Advanced Research Projects Agency – fundername: Office of Naval Research |
GroupedDBID | -~X .3N .GA 05W 10A 1OC 29L 2AX 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 66C 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAONW AASGY AAUAY AAXRX AAZKR ABBHK ABCQN ABCUV ABDFA ABEML ABFAN ABIVO ABPFR ABPQH ABPTD ABWST ABXSQ ABYWD ACAHQ ACCZN ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADODI ADOZA ADRDM ADVEK ADZMN AEGXH AEIMD AEMOZ AEUPB AFBPY AFEBI AFGKR AFVYC AFXHP AFZJQ AHQJS AIURR AJAOE AJNCP AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EJD EMK EOH F00 F5P G-S G.N GODZA H.T H.X HQ6 HZI HZ~ IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NU- O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K ROL ROX RX1 SA0 SUPJJ TH9 TN5 UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WYISQ XBAML XG1 YF5 YQT ZL0 ZZTAW ~IA ~WT .Y3 07C 1OB 1OL 3-9 31~ AAHHS AANHP AARHZ ABYAD ACBWZ ACCFJ ACFRR ACRPL ACTWD ACUBG ACYXJ ADNMO ADQBN ADULT AEEZP AELPN AEQDE AEUQT AFPWT AIWBW AJBDE ANFBD ASPBG AS~ ATGXG AVWKF AZFZN COF FEDTE FVMVE H13 HF~ HGD HVGLF H~9 IHE JSODD LW6 MVM RJQFR RNS VUG ZGI AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4228-1362fa459e0b97f5ca2893e0c2cfe34e2cff7dd1f0a7b7c7bddfe2ebd005024d3 |
IEDL.DBID | DR2 |
ISSN | 0964-1998 |
IngestDate | Wed Aug 13 09:53:39 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Tue Jul 01 00:50:56 EDT 2025 Wed Jan 22 16:34:03 EST 2025 Thu Jul 03 21:54:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4228-1362fa459e0b97f5ca2893e0c2cfe34e2cff7dd1f0a7b7c7bddfe2ebd005024d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2167170357 |
PQPubID | 105636 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2167170357 crossref_citationtrail_10_1111_rssa_12378 crossref_primary_10_1111_rssa_12378 wiley_primary_10_1111_rssa_12378_RSSA12378 jstor_primary_48556420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of the Royal Statistical Society. Series A, Statistics in society |
PublicationYear | 2019 |
Publisher | Wiley Oxford University Press |
Publisher_xml | – name: Wiley – name: Oxford University Press |
References | 2017c 2017b 2017a 2017b; 27 2015; 386 2017; 32 2004; 13 2009 2018; 80 2017 2017; 19 1992 2013 2008; 2 2009; 367 2014; 102 2018; 68 R Core Team (2023030719372669700_) 2017 Gelman (2023030719372669700_) 2008; 2 Wickham (2023030719372669700_) 2009 Gelman (2023030719372669700_) 2017; 19 Gabry (2023030719372669700_) 2017 Stan Development Team (2023030719372669700_) 2017 Betancourt (2023030719372669700_) 2017 Gelman (2023030719372669700_) 2013 Shaddick (2023030719372669700_) 2018; 68 Gelman (2023030719372669700_) 2014; 102 Vehtari (2023030719372669700_) 2017 Simpson (2023030719372669700_) 2017; 32 Gelfand (2023030719372669700_) 1992 Vehtari (2023030719372669700_) 2017; 27 Forouzanfar (2023030719372669700_) 2015; 386 Yao (2023030719372669700_) 2018; 80 Buja (2023030719372669700_) 2009; 367 Gelman (2023030719372669700_) 2004; 13 |
References_xml | – year: 2009 – volume: 68 start-page: 231 year: 2018 end-page: 253 article-title: Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution publication-title: Appl. Statist. – start-page: 147 year: 1992 end-page: 167 – volume: 32 start-page: 1 year: 2017 end-page: 28 article-title: Penalising model component complexity: a principled, practical approach to constructing priors publication-title: Statist. Sci. – year: 2017c – volume: 2 start-page: 1360 year: 2008 end-page: 1383 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann. Appl. Statist. – year: 2017a – volume: 80 start-page: 5581 year: 2018 end-page: 5590 article-title: Yes, but did it work?: Evaluating variational inference publication-title: Proc. Mach. Learn. Res. – year: 2017b – year: 2017 – volume: 386 start-page: 2287 year: 2015 end-page: 2323 article-title: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 publication-title: Lancet – volume: 13 start-page: 755 year: 2004 end-page: 779 article-title: Exploratory data analysis for complex models publication-title: J. Computnl Graph. Statist. – volume: 367 start-page: 4361 year: 2009 end-page: 4383 article-title: Statistical inference for exploratory data analysis and model diagnostics publication-title: Phil. Trans. R. Soc. Lond. – volume: 19 start-page: 555 year: 2017 article-title: The prior can often only be understood in the context of the likelihood publication-title: Entropy – year: 2013 – volume: 102 start-page: 460 year: 2014 article-title: The statistical crisis in science: data‐dependent analysis—a “garden of forking paths”—explains why many statistically significant comparisons don’t hold up publication-title: Am. Scient. – volume: 27 start-page: 1413 year: 2017b end-page: 1432 article-title: Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC publication-title: Statist. Comput. – volume-title: Bayesian Data Analysis year: 2013 ident: 2023030719372669700_ doi: 10.1201/b16018 – volume: 2 start-page: 1360 year: 2008 ident: 2023030719372669700_ article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann. Appl. Statist. doi: 10.1214/08-AOAS191 – volume: 386 start-page: 2287 year: 2015 ident: 2023030719372669700_ article-title: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 publication-title: Lancet doi: 10.1016/S0140-6736(15)00128-2 – volume: 13 start-page: 755 year: 2004 ident: 2023030719372669700_ article-title: Exploratory data analysis for complex models publication-title: J. Computnl Graph. Statist. doi: 10.1198/106186004X11435 – volume: 102 start-page: 460 year: 2014 ident: 2023030719372669700_ article-title: The statistical crisis in science: data-dependent analysis—a “garden of forking paths”—explains why many statistically significant comparisons don’t hold up publication-title: Am. Scient. doi: 10.1511/2014.111.460 – start-page: 147 volume-title: Bayesian Statistics 4 year: 1992 ident: 2023030719372669700_ doi: 10.1093/oso/9780198522669.003.0009 – volume: 367 start-page: 4361 year: 2009 ident: 2023030719372669700_ article-title: Statistical inference for exploratory data analysis and model diagnostics publication-title: Phil. Trans. R. Soc. Lond. – volume-title: loo: efficient leave-one-out cross-validation and WAIC for Bayesian models year: 2017 ident: 2023030719372669700_ – volume-title: Pareto smoothed importance sampling year: 2017 ident: 2023030719372669700_ – volume-title: A conceptual introduction to Hamiltonian Monte Carlo year: 2017 ident: 2023030719372669700_ – volume: 32 start-page: 1 year: 2017 ident: 2023030719372669700_ article-title: Penalising model component complexity: a principled, practical approach to constructing priors publication-title: Statist. Sci. doi: 10.1214/16-STS576 – volume-title: RStan: the R interface to Stan year: 2017 ident: 2023030719372669700_ – volume-title: Stan Modeling Language User's Guide and Reference Manual year: 2017 ident: 2023030719372669700_ – volume: 19 start-page: 555 year: 2017 ident: 2023030719372669700_ article-title: The prior can often only be understood in the context of the likelihood publication-title: Entropy doi: 10.3390/e19100555 – volume-title: bayesplot: plotting for Bayesian models year: 2017 ident: 2023030719372669700_ – volume: 80 start-page: 5581 year: 2018 ident: 2023030719372669700_ article-title: Yes, but did it work?: Evaluating variational inference publication-title: Proc. Mach. Learn. Res. – volume-title: ggplot2: Elegant Graphics for Data Analysis year: 2009 ident: 2023030719372669700_ doi: 10.1007/978-0-387-98141-3 – volume: 68 start-page: 231 year: 2018 ident: 2023030719372669700_ article-title: Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution publication-title: Appl. Statist. – volume: 27 start-page: 1413 year: 2017 ident: 2023030719372669700_ article-title: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC publication-title: Statist. Comput. doi: 10.1007/s11222-016-9696-4 – volume-title: R: a Language and Environment for Statistical Computing year: 2017 ident: 2023030719372669700_ |
SSID | ssj0000077 |
Score | 2.6633675 |
Snippet | Bayesian data analysis is about more than just computing a posterior distribution, and Bayesian visualization is about more than trace plots of Markov chains.... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 389 |
SubjectTerms | Bayesian analysis Bayesian data analysis Data analysis Iterative methods Markov chains Original Articles Statistical graphics Statistical workflow Visualization Workflow |
Title | Visualization in Bayesian workflow |
URI | https://www.jstor.org/stable/48556420 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12378 https://www.proquest.com/docview/2167170357 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KT_Xgo1qsVgnqRSFlm-w2CXipYilCPbRWepGwTyiWVpoW0V_v7uZhKyLoKTlMXjM7u9-Eb74FuMAYSe4J6iKBmIv1IuEyXUi4bS9EDPki4pZV2X9o90b4fkzGJbjOe2FSfYjih5vJDDtfmwSnLFlL8kWS0KaedwPT6WvIWgYRDda0o5DddlFDdGzYFGGmTWpoPF-XbqxGKSFxA2quA1a74nR34Dl_15Ro8tJcLVmTf3yTcfzvx-zCdgZFnU46dvagJGdV2OoXOq5JFSoGi6ZSzvtw9jRJTAtm2rjpTGbODX2XpgnTMewuNZ2_HcCoe_d423OzLRZcbrS_XO03T1FMIolYFCjCqS7AfIm4x5X0sdQHFQjRUogGLOABE0JJTzJhdGM8LPwalGfzmTwEJyIYK1-GnDCKOSZhRDyiRBvrLFeMojpc5q6OeaY_brbBmMZ5HWKcEFsn1OG8sH1NVTd-tKrZiBUmRuhG11P6UY08hHGWkknstdq6dEU-CepwZWPxy63jwXDYsWdHfzE-hooGVFHK6m5AeblYyRMNWpbs1A7OT5xL5vo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0oHtSD30QUtVEvmpQs7S5tj2gkqOBB0Xhrul8JkYChEKO_3p1tQTDGRE_tYdqmuzs7bzZv3gCcUkqU8GTiEkm4S02QcLlJJNyaFxJOfBkJy6ps39Waj_TmmT3n3Byshcn0IaYHbugZdr9GB8cD6RkvH6ZpUjEbbxAuwhK29LYZ1f2MehSxjRcNSKfIpwhzdVIk8nw9OxePMkriHNichaw25jTWs8aqqZUqRKrJS2U84hXx8U3I8d-_swFrORp16tny2YQF1d-C1fZUyjXdghWEo5ma8zYcP3VTrMLMajedbt-5SN4V1mE6SPDSvcHbDjw2rjqXTTfvsuAKlP9yqyaE6YSySBEeBZqJxORgviLCE1r5VJmLDqSsapIEPBABl1IrT3GJ0jEelX4RCv1BX-2CEzFKta9CwXhCBWVhxDymZY0aR9c8ISU4m4x1LHIJcuyE0YsnqQgOQmwHoQQnU9vXTHjjR6uinbKpCWrdmJTKfKo8mcM498o09qo1k70SnwUlOLeT8cur4_uHh7q92_uL8REsNzvtVty6vrvdhxWDr6KM5F2Gwmg4VgcGw4z4oV2pnw4Q6xU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qBakP3sV6BvVFIWWb7OYAX7xKPVqktdIXCdkLilLFtIj-enc3SW1FBH1KHibX7M7ON-GbbwEOMEaCOTy2EUfUxipJ2FQVErbnBIgil4fMsCqbLa_RxVc90ivAcd4Lk-pDjH-46cgw67UO8BcuJ4L8NUniqlp3_WAGZrGHAj2nz9sT4lHI7LuoMDrWdIogEyfVPJ6va6fSUcpInMKak4jVpJz6IjzkL5syTR6royGtso9vOo7__ZolWMiwqHWSTp5lKIjBCsw3x0KuyQqUNBhNtZxXYe--n-gezLRz0-oPrNP4XeguTEvTu-TT89sadOsXd2cNO9tjwWZa_MuuqQQmY0xCgWjoS8JiVYG5AjGHSeFioQ7S57wmUexTn_mUcykcQbkWjnEwd8tQHDwPxDpYIcFYuiJghMaYYRKExCGSe1iFuaQxqsBh7uqIZQLkeh-MpygvRLQTIuOECuyPbV9S2Y0frcpmxMYmWulGFVTqUVv5EEZZTCaRU_NU7Ypc4lfgyIzFL7eO2p3OiTnb-IvxLszdntejm8vW9SaUFLgKU4b3FhSHryOxrQDMkO6YefoJeyjpzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+in+Bayesian+workflow&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Gabry%2C+Jonah&rft.au=Simpson%2C+Daniel&rft.au=Vehtari%2C+Aki&rft.au=Betancourt%2C+Michael&rft.date=2019-02-01&rft.pub=Wiley&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=182&rft.issue=2&rft.spage=389&rft.epage=402&rft_id=info:doi/10.1111%2Frssa.12378&rft.externalDocID=48556420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon |