Control of transient, resurgent, and persistent current by open-channel block by Na channel β4 in cultured cerebellar granule neurons

Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The NaVβ4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 27; pp. 12357 - 12362
Main Authors Bant, Jason S, Raman, Indira M
Format Journal Article
LanguageEnglish
Published National Academy of Sciences 06.07.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The NaVβ4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, NaVβ4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b. Knockdown of Scn4b, confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that NaVβ4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, NaVβ4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells.
AbstractList Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The NaVβ4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, NaVβ4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b. Knockdown of Scn4b, confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that NaVβ4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, NaVβ4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells.
Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The Na V β4 ( Scn4b ) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, Na V β4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b . Knockdown of Scn4b , confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that Na V β4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, Na V β4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells.
Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The Na V β4 ( Scn4b ) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, Na V β4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b . Knockdown of Scn4b , confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that Na V β4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, Na V β4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells.
Author Raman, Indira M
Bant, Jason S
Author_xml – sequence: 1
  fullname: Bant, Jason S
– sequence: 2
  fullname: Raman, Indira M
BookMark eNp1Uc1u1DAQtlAR3RbOnBA-ciB07DiOc0FCKyhIFRygZ8t2JluXrL3YCVJfgAfiQXgmnO6WCiROM57vZ2Y8J-QoxICEPGXwikFbn-2CySWDRtZ1KTwgKwYdq6To4IisAHhbKcHFMTnJ-RoAukbBI3LMi0AqCSvyYx3DlOJI40CnZEL2GKaXNGGe0-Y2NaGnO0zZ56m8qZtTWqK9oXGHoXJXJgQcqR2j-7pUPxp6V_v1U1AfimSc5oQ9dZjQ4jiaRDel1zwiDTinGPJj8nAwY8Ynh3hKLt-9_bJ-X118Ov-wfnNROcHLLtJyia1ltqtVx3s0BgcHQnRWOaV67CSqFoG1Q4OcmR6F4Q6MapXrbW95fUpe7313s91i78omyYx6l_zWpBsdjdd_I8Ff6U38rnkHTMimGLw4GKT4bcY86a3PbtkpYJyzZoo3gjVNpwq12VNdijknHLTzk5n88uHGj5qBXm6olxvq-xsW3dk_urvx_q-gh6EW4J7dat5qxutmoTzbU67zFNMfDoeWizJxwZ_v8cFEbTbJZ335mQOrgSkpZEl-A8a4wYk
CitedBy_id crossref_primary_10_1093_brain_aws225
crossref_primary_10_1523_ENEURO_0303_17_2017
crossref_primary_10_1113_JP278148
crossref_primary_10_3389_fncel_2017_00017
crossref_primary_10_1523_ENEURO_0141_19_2019
crossref_primary_10_3389_fnmol_2024_1433981
crossref_primary_10_1186_s12864_019_5871_2
crossref_primary_10_1101_cshperspect_a029264
crossref_primary_10_3389_fnmol_2023_1098211
crossref_primary_10_1016_j_neuropharm_2010_12_019
crossref_primary_10_1152_jn_01028_2011
crossref_primary_10_1016_j_nbd_2021_105275
crossref_primary_10_1016_j_neuroscience_2011_07_061
crossref_primary_10_1113_jphysiol_2014_277582
crossref_primary_10_1523_JNEUROSCI_1271_14_2014
crossref_primary_10_1074_jbc_RA120_014062
crossref_primary_10_3389_fncel_2021_760610
crossref_primary_10_3390_ijms21072454
crossref_primary_10_1186_s12990_015_0063_9
crossref_primary_10_3390_ph15020231
crossref_primary_10_1007_s00424_010_0913_2
crossref_primary_10_1016_j_pestbp_2024_105833
crossref_primary_10_1073_pnas_1118058109
crossref_primary_10_1523_JNEUROSCI_0468_18_2018
crossref_primary_10_1002_cmdc_201200298
crossref_primary_10_3390_cells10071595
crossref_primary_10_1113_JP272205
crossref_primary_10_1523_JNEUROSCI_3026_12_2013
crossref_primary_10_1007_s12035_022_03112_x
crossref_primary_10_1073_pnas_1314557110
crossref_primary_10_1113_JP278952
crossref_primary_10_1523_JNEUROSCI_4051_12_2013
crossref_primary_10_1152_physrev_00007_2016
crossref_primary_10_7554_eLife_77558
crossref_primary_10_1038_srep25974
crossref_primary_10_1002_cne_23831
crossref_primary_10_1124_pharmrev_123_000923
crossref_primary_10_1113_jphysiol_2010_200915
crossref_primary_10_1113_JP275083
crossref_primary_10_1038_ncomms6525
crossref_primary_10_1523_JNEUROSCI_3403_12_2012
crossref_primary_10_1016_j_neuropharm_2017_09_018
crossref_primary_10_1113_JP285166
crossref_primary_10_1177_1744806919837104
crossref_primary_10_3389_fphar_2017_00852
crossref_primary_10_3390_cells10071624
crossref_primary_10_1097_j_pain_0000000000000453
crossref_primary_10_1371_journal_pbio_1002561
crossref_primary_10_1038_s41467_021_26521_3
crossref_primary_10_1016_j_pain_2013_02_027
crossref_primary_10_1371_journal_pone_0133485
crossref_primary_10_1111_gbb_12562
crossref_primary_10_1371_journal_pone_0026268
crossref_primary_10_7554_eLife_70173
crossref_primary_10_1038_ni_2379
crossref_primary_10_1016_j_biopsych_2025_01_027
crossref_primary_10_1085_jgp_201912390
crossref_primary_10_3389_fncel_2016_00268
crossref_primary_10_1085_jgp_201812100
crossref_primary_10_1016_j_celrep_2017_03_068
crossref_primary_10_1016_j_febslet_2014_09_011
crossref_primary_10_1186_1744_8069_8_69
crossref_primary_10_3389_fneur_2024_1471118
crossref_primary_10_1113_jphysiol_2014_283374
crossref_primary_10_3389_fncel_2018_00175
crossref_primary_10_1007_s00018_011_0832_1
crossref_primary_10_1007_s10867_011_9214_z
crossref_primary_10_1152_jn_00305_2011
crossref_primary_10_1124_mol_111_072751
crossref_primary_10_1016_j_isci_2018_10_014
crossref_primary_10_1016_j_toxicon_2011_12_003
crossref_primary_10_1016_j_celrep_2024_114718
crossref_primary_10_1523_JNEUROSCI_5011_13_2014
crossref_primary_10_1016_j_celrep_2020_01_057
crossref_primary_10_1152_jn_01004_2014
crossref_primary_10_1007_s11010_012_1390_z
crossref_primary_10_1111_bph_12051
crossref_primary_10_1523_JNEUROSCI_3275_14_2014
crossref_primary_10_1016_j_bpj_2023_12_016
crossref_primary_10_1085_jgp_201310984
crossref_primary_10_1007_s00018_018_2868_y
crossref_primary_10_1016_j_brainres_2012_04_049
crossref_primary_10_1152_jn_00239_2022
crossref_primary_10_1016_j_lfs_2011_05_016
crossref_primary_10_3390_ijms21082955
crossref_primary_10_26508_lsa_202302232
crossref_primary_10_1007_s00424_016_1911_9
crossref_primary_10_1038_ncomms12895
crossref_primary_10_1073_pnas_1324189111
crossref_primary_10_1074_jbc_M111_322537
crossref_primary_10_1523_JNEUROSCI_1428_11_2011
Cites_doi 10.1016/j.mcn.2008.05.009
10.1523/JNEUROSCI.3807-03.2004
10.1161/CIRCULATIONAHA.106.659086
10.1523/JNEUROSCI.22-08-03100.2002
10.1152/jn.00292.2007
10.1085/jgp.69.3.293
10.1113/jphysiol.2005.097022
10.1016/S0006-3495(01)76052-3
10.1113/jphysiol.2006.106682
10.1523/JNEUROSCI.0376-10.2010
10.1093/nar/gkj439
10.1373/clinchem.2008.112797
10.1016/j.neuron.2004.12.035
10.1152/jn.00261.2004
10.1074/jbc.M410830200
10.1523/JNEUROSCI.3430-07.2007
10.1111/j.1471-4159.2006.03893.x
10.1093/nar/29.9.e45
10.1529/biophysj.106.093500
10.1074/jbc.272.38.24008
10.1016/S1046-2023(02)00023-3
10.1152/jn.01193.2005
10.1111/j.1460-9568.2006.04982.x
10.1089/oli.2009.0213
10.1016/S0896-6273(03)00360-X
10.1093/nar/30.8.1757
10.1007/s00424-005-1514-3
10.1523/JNEUROSCI.23-20-07577.2003
10.1152/jn.01389.2007
10.1523/JNEUROSCI.17-12-04517.1997
10.1523/JNEUROSCI.4531-08.2009
10.1016/S0896-6273(00)80969-1
10.1152/jn.90332.2008
10.1172/JCI40801
10.1038/nmeth911
10.1016/j.febslet.2005.03.009
10.1016/j.bbrc.2007.06.170
10.1523/JNEUROSCI.23-12-04899.2003
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
DBID FBQ
AAYXX
CITATION
7S9
L.6
5PM
DOI 10.1073/pnas.1005633107
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA




CrossRef
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12362
ExternalDocumentID PMC2901465
10_1073_pnas_1005633107
107_27_12357
20724254
US201301864601
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
7S9
L.6
5PM
ID FETCH-LOGICAL-c4227-6b26e7b1b93892deaaefc0449b8c88de96e87e017f5e21ade4a2c0a878cdbdb23
ISSN 0027-8424
IngestDate Thu Aug 21 13:57:37 EDT 2025
Fri Jul 11 10:43:21 EDT 2025
Tue Jul 01 00:46:56 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Wed Nov 11 00:30:48 EST 2020
Thu May 29 08:40:46 EDT 2025
Wed Dec 27 19:06:10 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4227-6b26e7b1b93892deaaefc0449b8c88de96e87e017f5e21ade4a2c0a878cdbdb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.S.B. and I.M.R. designed research; J.S.B. performed research; J.S.B. and I.M.R. analyzed data; and J.S.B. and I.M.R. wrote the paper.
Edited by Richard W. Aldrich, University of Texas, Austin, TX, and approved May 28, 2010 (received for review April 26, 2010)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2901465
PMID 20566860
PQID 1825415598
PQPubID 24069
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1005633107
pnas_primary_107_27_12357
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2901465
proquest_miscellaneous_1825415598
crossref_primary_10_1073_pnas_1005633107
fao_agris_US201301864601
jstor_primary_20724254
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-06
PublicationDateYYYYMMDD 2010-07-06
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-06
  day: 06
PublicationDecade 2010
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_21_2
  doi: 10.1016/j.mcn.2008.05.009
– ident: e_1_3_3_18_2
  doi: 10.1523/JNEUROSCI.3807-03.2004
– ident: e_1_3_3_4_2
  doi: 10.1161/CIRCULATIONAHA.106.659086
– ident: e_1_3_3_33_2
  doi: 10.1523/JNEUROSCI.22-08-03100.2002
– ident: e_1_3_3_9_2
  doi: 10.1152/jn.00292.2007
– ident: e_1_3_3_19_2
  doi: 10.1085/jgp.69.3.293
– ident: e_1_3_3_25_2
  doi: 10.1113/jphysiol.2005.097022
– ident: e_1_3_3_13_2
  doi: 10.1016/S0006-3495(01)76052-3
– ident: e_1_3_3_28_2
  doi: 10.1113/jphysiol.2006.106682
– ident: e_1_3_3_31_2
  doi: 10.1523/JNEUROSCI.0376-10.2010
– ident: e_1_3_3_27_2
  doi: 10.1093/nar/gkj439
– ident: e_1_3_3_37_2
  doi: 10.1373/clinchem.2008.112797
– ident: e_1_3_3_5_2
  doi: 10.1016/j.neuron.2004.12.035
– ident: e_1_3_3_7_2
  doi: 10.1152/jn.00261.2004
– ident: e_1_3_3_23_2
  doi: 10.1074/jbc.M410830200
– ident: e_1_3_3_32_2
  doi: 10.1523/JNEUROSCI.3430-07.2007
– ident: e_1_3_3_2_2
  doi: 10.1111/j.1471-4159.2006.03893.x
– ident: e_1_3_3_39_2
  doi: 10.1093/nar/29.9.e45
– ident: e_1_3_3_29_2
  doi: 10.1529/biophysj.106.093500
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.272.38.24008
– ident: e_1_3_3_36_2
  doi: 10.1016/S1046-2023(02)00023-3
– ident: e_1_3_3_16_2
  doi: 10.1152/jn.01193.2005
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1460-9568.2006.04982.x
– ident: e_1_3_3_20_2
  doi: 10.1016/j.neuron.2004.12.035
– ident: e_1_3_3_35_2
  doi: 10.1089/oli.2009.0213
– ident: e_1_3_3_6_2
  doi: 10.1016/S0896-6273(03)00360-X
– ident: e_1_3_3_26_2
  doi: 10.1093/nar/30.8.1757
– ident: e_1_3_3_24_2
  doi: 10.1007/s00424-005-1514-3
– ident: e_1_3_3_1_2
  doi: 10.1523/JNEUROSCI.23-20-07577.2003
– ident: e_1_3_3_11_2
  doi: 10.1152/jn.01389.2007
– ident: e_1_3_3_12_2
  doi: 10.1523/JNEUROSCI.17-12-04517.1997
– ident: e_1_3_3_22_2
  doi: 10.1523/JNEUROSCI.4531-08.2009
– ident: e_1_3_3_15_2
  doi: 10.1016/S0896-6273(00)80969-1
– ident: e_1_3_3_30_2
  doi: 10.1152/jn.90332.2008
– ident: e_1_3_3_17_2
  doi: 10.1172/JCI40801
– ident: e_1_3_3_34_2
  doi: 10.1038/nmeth911
– ident: e_1_3_3_8_2
  doi: 10.1016/j.febslet.2005.03.009
– ident: e_1_3_3_3_2
  doi: 10.1016/j.bbrc.2007.06.170
– ident: e_1_3_3_14_2
  doi: 10.1523/JNEUROSCI.23-12-04899.2003
SSID ssj0009580
Score 2.3472567
Snippet Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous...
SourceID pubmedcentral
proquest
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12357
SubjectTerms action potentials
Biological Sciences
cerebellum
Cultured cells
Electric current
Electric potential
electric power
heterologous gene expression
Kinetics
Neurons
Neuroscience
phenotype
reverse transcriptase polymerase chain reaction
Small interfering RNA
Sodium
Sodium channels
Transfection
Title Control of transient, resurgent, and persistent current by open-channel block by Na channel β4 in cultured cerebellar granule neurons
URI https://www.jstor.org/stable/20724254
http://www.pnas.org/content/107/27/12357.abstract
https://www.proquest.com/docview/1825415598
https://pubmed.ncbi.nlm.nih.gov/PMC2901465
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBab9NJLadqGuH-o0ECK461Xli3vMV1S0kCWQBLIzcjacRK6eMv-HNoH6AO179Fn6ows_2xIIO3F7Gq9Y1vzWTOSZr5h7H0eTgr0jKNAQAGBBENBADIJtDJhIU0E2laJOBknRxfy-DK-7PV-d6KWVsu8b37cmVfyP1rFNtQrZcn-g2YbodiAn1G_eEQN4_FBOh65OHPa5yebQ7mN1Gc4haZs5-qLZQKgVTHUZ7n0jSNkQreTKmcFlPlbwpQi2M1Xah1rv27bHR3ufhKS1kQqhg70Tg3MgTYr9Ny_wmuupuBbTky36uf83NPGLi7qKIRxvex40CaxuJFl4Qf-6bhTEllXt36sqT7iWb_djHLrtV9KNMXaP-l3Fy1ov52C7LoDsUDjKKv06T5UYy-6LkEiq-qhzeBc1cR1KKxoBNxYS1m-qmO4iUdG3GkVcBijUsalXlBQSJxEUS12jX_7ll1sohXtPr2KMhKQtQI22COBcxNhrUGX6Tmt8p7cE9Z8Uir6eOsO1lyhjULP6phYItrFU9cmPeshux0f6Pwpe-ImL_ygQuIW60H5jG3VSuR7jsP8w3P200GTzwreQHOfN8Dc5whL3sKSO1jy_DvvwpJbWFLrWPO67c8vyW9KXkOSt5DkDpLcQfIFu_h8eD46ClzJj8BIgR2W5CIBlQ_yITrSYgJaQ2FCKYd5atJ0AsMEUgVoRYoYxADRKrUwoU5Vaib5JBfRNtssZyXsMA6RTJMogUGEswQTF9pW0IRYDJUAqcBj_br3M-P48KksyzS7R98e22v-8K2igrn_1B1UZ6av0FBnF2eCwgMGaSKTcOCxbavjRoQIFU37pcc8K6UVrTKhMotyj72rkZDh8E97erqE2QqvSSs8FFqQekytQaQRRATy67-UN9eWSN7GUCTxy4c_2Cv2uH2dX7PN5XwFb9ArX-Zv7VvwF_6q4WU
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+transient%2C+resurgent%2C+and+persistent+current+by+open-channel+block+by+Na+channel+%CE%B24+in+cultured+cerebellar+granule+neurons&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bant%2C+Jason+S.&rft.au=Raman%2C+Indira+M.&rft.date=2010-07-06&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=27&rft.spage=12357&rft.epage=12362&rft_id=info:doi/10.1073%2Fpnas.1005633107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1005633107
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F27.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F27.cover.gif