Control of transient, resurgent, and persistent current by open-channel block by Na channel β4 in cultured cerebellar granule neurons
Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The NaVβ4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 27; pp. 12357 - 12362 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
National Academy of Sciences
06.07.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The NaVβ4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, NaVβ4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b. Knockdown of Scn4b, confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that NaVβ4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, NaVβ4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells. |
---|---|
AbstractList | Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The NaVβ4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, NaVβ4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b. Knockdown of Scn4b, confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that NaVβ4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, NaVβ4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells. Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The Na V β4 ( Scn4b ) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, Na V β4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b . Knockdown of Scn4b , confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that Na V β4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, Na V β4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells. Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The Na V β4 ( Scn4b ) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the β4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, Na V β4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b . Knockdown of Scn4b , confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the β4 peptide. The simplest interpretation is that Na V β4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, Na V β4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells. |
Author | Raman, Indira M Bant, Jason S |
Author_xml | – sequence: 1 fullname: Bant, Jason S – sequence: 2 fullname: Raman, Indira M |
BookMark | eNp1Uc1u1DAQtlAR3RbOnBA-ciB07DiOc0FCKyhIFRygZ8t2JluXrL3YCVJfgAfiQXgmnO6WCiROM57vZ2Y8J-QoxICEPGXwikFbn-2CySWDRtZ1KTwgKwYdq6To4IisAHhbKcHFMTnJ-RoAukbBI3LMi0AqCSvyYx3DlOJI40CnZEL2GKaXNGGe0-Y2NaGnO0zZ56m8qZtTWqK9oXGHoXJXJgQcqR2j-7pUPxp6V_v1U1AfimSc5oQ9dZjQ4jiaRDel1zwiDTinGPJj8nAwY8Ynh3hKLt-9_bJ-X118Ov-wfnNROcHLLtJyia1ltqtVx3s0BgcHQnRWOaV67CSqFoG1Q4OcmR6F4Q6MapXrbW95fUpe7313s91i78omyYx6l_zWpBsdjdd_I8Ff6U38rnkHTMimGLw4GKT4bcY86a3PbtkpYJyzZoo3gjVNpwq12VNdijknHLTzk5n88uHGj5qBXm6olxvq-xsW3dk_urvx_q-gh6EW4J7dat5qxutmoTzbU67zFNMfDoeWizJxwZ_v8cFEbTbJZ335mQOrgSkpZEl-A8a4wYk |
CitedBy_id | crossref_primary_10_1093_brain_aws225 crossref_primary_10_1523_ENEURO_0303_17_2017 crossref_primary_10_1113_JP278148 crossref_primary_10_3389_fncel_2017_00017 crossref_primary_10_1523_ENEURO_0141_19_2019 crossref_primary_10_3389_fnmol_2024_1433981 crossref_primary_10_1186_s12864_019_5871_2 crossref_primary_10_1101_cshperspect_a029264 crossref_primary_10_3389_fnmol_2023_1098211 crossref_primary_10_1016_j_neuropharm_2010_12_019 crossref_primary_10_1152_jn_01028_2011 crossref_primary_10_1016_j_nbd_2021_105275 crossref_primary_10_1016_j_neuroscience_2011_07_061 crossref_primary_10_1113_jphysiol_2014_277582 crossref_primary_10_1523_JNEUROSCI_1271_14_2014 crossref_primary_10_1074_jbc_RA120_014062 crossref_primary_10_3389_fncel_2021_760610 crossref_primary_10_3390_ijms21072454 crossref_primary_10_1186_s12990_015_0063_9 crossref_primary_10_3390_ph15020231 crossref_primary_10_1007_s00424_010_0913_2 crossref_primary_10_1016_j_pestbp_2024_105833 crossref_primary_10_1073_pnas_1118058109 crossref_primary_10_1523_JNEUROSCI_0468_18_2018 crossref_primary_10_1002_cmdc_201200298 crossref_primary_10_3390_cells10071595 crossref_primary_10_1113_JP272205 crossref_primary_10_1523_JNEUROSCI_3026_12_2013 crossref_primary_10_1007_s12035_022_03112_x crossref_primary_10_1073_pnas_1314557110 crossref_primary_10_1113_JP278952 crossref_primary_10_1523_JNEUROSCI_4051_12_2013 crossref_primary_10_1152_physrev_00007_2016 crossref_primary_10_7554_eLife_77558 crossref_primary_10_1038_srep25974 crossref_primary_10_1002_cne_23831 crossref_primary_10_1124_pharmrev_123_000923 crossref_primary_10_1113_jphysiol_2010_200915 crossref_primary_10_1113_JP275083 crossref_primary_10_1038_ncomms6525 crossref_primary_10_1523_JNEUROSCI_3403_12_2012 crossref_primary_10_1016_j_neuropharm_2017_09_018 crossref_primary_10_1113_JP285166 crossref_primary_10_1177_1744806919837104 crossref_primary_10_3389_fphar_2017_00852 crossref_primary_10_3390_cells10071624 crossref_primary_10_1097_j_pain_0000000000000453 crossref_primary_10_1371_journal_pbio_1002561 crossref_primary_10_1038_s41467_021_26521_3 crossref_primary_10_1016_j_pain_2013_02_027 crossref_primary_10_1371_journal_pone_0133485 crossref_primary_10_1111_gbb_12562 crossref_primary_10_1371_journal_pone_0026268 crossref_primary_10_7554_eLife_70173 crossref_primary_10_1038_ni_2379 crossref_primary_10_1016_j_biopsych_2025_01_027 crossref_primary_10_1085_jgp_201912390 crossref_primary_10_3389_fncel_2016_00268 crossref_primary_10_1085_jgp_201812100 crossref_primary_10_1016_j_celrep_2017_03_068 crossref_primary_10_1016_j_febslet_2014_09_011 crossref_primary_10_1186_1744_8069_8_69 crossref_primary_10_3389_fneur_2024_1471118 crossref_primary_10_1113_jphysiol_2014_283374 crossref_primary_10_3389_fncel_2018_00175 crossref_primary_10_1007_s00018_011_0832_1 crossref_primary_10_1007_s10867_011_9214_z crossref_primary_10_1152_jn_00305_2011 crossref_primary_10_1124_mol_111_072751 crossref_primary_10_1016_j_isci_2018_10_014 crossref_primary_10_1016_j_toxicon_2011_12_003 crossref_primary_10_1016_j_celrep_2024_114718 crossref_primary_10_1523_JNEUROSCI_5011_13_2014 crossref_primary_10_1016_j_celrep_2020_01_057 crossref_primary_10_1152_jn_01004_2014 crossref_primary_10_1007_s11010_012_1390_z crossref_primary_10_1111_bph_12051 crossref_primary_10_1523_JNEUROSCI_3275_14_2014 crossref_primary_10_1016_j_bpj_2023_12_016 crossref_primary_10_1085_jgp_201310984 crossref_primary_10_1007_s00018_018_2868_y crossref_primary_10_1016_j_brainres_2012_04_049 crossref_primary_10_1152_jn_00239_2022 crossref_primary_10_1016_j_lfs_2011_05_016 crossref_primary_10_3390_ijms21082955 crossref_primary_10_26508_lsa_202302232 crossref_primary_10_1007_s00424_016_1911_9 crossref_primary_10_1038_ncomms12895 crossref_primary_10_1073_pnas_1324189111 crossref_primary_10_1074_jbc_M111_322537 crossref_primary_10_1523_JNEUROSCI_1428_11_2011 |
Cites_doi | 10.1016/j.mcn.2008.05.009 10.1523/JNEUROSCI.3807-03.2004 10.1161/CIRCULATIONAHA.106.659086 10.1523/JNEUROSCI.22-08-03100.2002 10.1152/jn.00292.2007 10.1085/jgp.69.3.293 10.1113/jphysiol.2005.097022 10.1016/S0006-3495(01)76052-3 10.1113/jphysiol.2006.106682 10.1523/JNEUROSCI.0376-10.2010 10.1093/nar/gkj439 10.1373/clinchem.2008.112797 10.1016/j.neuron.2004.12.035 10.1152/jn.00261.2004 10.1074/jbc.M410830200 10.1523/JNEUROSCI.3430-07.2007 10.1111/j.1471-4159.2006.03893.x 10.1093/nar/29.9.e45 10.1529/biophysj.106.093500 10.1074/jbc.272.38.24008 10.1016/S1046-2023(02)00023-3 10.1152/jn.01193.2005 10.1111/j.1460-9568.2006.04982.x 10.1089/oli.2009.0213 10.1016/S0896-6273(03)00360-X 10.1093/nar/30.8.1757 10.1007/s00424-005-1514-3 10.1523/JNEUROSCI.23-20-07577.2003 10.1152/jn.01389.2007 10.1523/JNEUROSCI.17-12-04517.1997 10.1523/JNEUROSCI.4531-08.2009 10.1016/S0896-6273(00)80969-1 10.1152/jn.90332.2008 10.1172/JCI40801 10.1038/nmeth911 10.1016/j.febslet.2005.03.009 10.1016/j.bbrc.2007.06.170 10.1523/JNEUROSCI.23-12-04899.2003 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America |
DBID | FBQ AAYXX CITATION 7S9 L.6 5PM |
DOI | 10.1073/pnas.1005633107 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12362 |
ExternalDocumentID | PMC2901465 10_1073_pnas_1005633107 107_27_12357 20724254 US201301864601 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4227-6b26e7b1b93892deaaefc0449b8c88de96e87e017f5e21ade4a2c0a878cdbdb23 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 13:57:37 EDT 2025 Fri Jul 11 10:43:21 EDT 2025 Tue Jul 01 00:46:56 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 Wed Nov 11 00:30:48 EST 2020 Thu May 29 08:40:46 EDT 2025 Wed Dec 27 19:06:10 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4227-6b26e7b1b93892deaaefc0449b8c88de96e87e017f5e21ade4a2c0a878cdbdb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: J.S.B. and I.M.R. designed research; J.S.B. performed research; J.S.B. and I.M.R. analyzed data; and J.S.B. and I.M.R. wrote the paper. Edited by Richard W. Aldrich, University of Texas, Austin, TX, and approved May 28, 2010 (received for review April 26, 2010) |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2901465 |
PMID | 20566860 |
PQID | 1825415598 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1005633107 pnas_primary_107_27_12357 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2901465 proquest_miscellaneous_1825415598 crossref_primary_10_1073_pnas_1005633107 fao_agris_US201301864601 jstor_primary_20724254 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-07-06 |
PublicationDateYYYYMMDD | 2010-07-06 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_21_2 doi: 10.1016/j.mcn.2008.05.009 – ident: e_1_3_3_18_2 doi: 10.1523/JNEUROSCI.3807-03.2004 – ident: e_1_3_3_4_2 doi: 10.1161/CIRCULATIONAHA.106.659086 – ident: e_1_3_3_33_2 doi: 10.1523/JNEUROSCI.22-08-03100.2002 – ident: e_1_3_3_9_2 doi: 10.1152/jn.00292.2007 – ident: e_1_3_3_19_2 doi: 10.1085/jgp.69.3.293 – ident: e_1_3_3_25_2 doi: 10.1113/jphysiol.2005.097022 – ident: e_1_3_3_13_2 doi: 10.1016/S0006-3495(01)76052-3 – ident: e_1_3_3_28_2 doi: 10.1113/jphysiol.2006.106682 – ident: e_1_3_3_31_2 doi: 10.1523/JNEUROSCI.0376-10.2010 – ident: e_1_3_3_27_2 doi: 10.1093/nar/gkj439 – ident: e_1_3_3_37_2 doi: 10.1373/clinchem.2008.112797 – ident: e_1_3_3_5_2 doi: 10.1016/j.neuron.2004.12.035 – ident: e_1_3_3_7_2 doi: 10.1152/jn.00261.2004 – ident: e_1_3_3_23_2 doi: 10.1074/jbc.M410830200 – ident: e_1_3_3_32_2 doi: 10.1523/JNEUROSCI.3430-07.2007 – ident: e_1_3_3_2_2 doi: 10.1111/j.1471-4159.2006.03893.x – ident: e_1_3_3_39_2 doi: 10.1093/nar/29.9.e45 – ident: e_1_3_3_29_2 doi: 10.1529/biophysj.106.093500 – ident: e_1_3_3_38_2 doi: 10.1074/jbc.272.38.24008 – ident: e_1_3_3_36_2 doi: 10.1016/S1046-2023(02)00023-3 – ident: e_1_3_3_16_2 doi: 10.1152/jn.01193.2005 – ident: e_1_3_3_10_2 doi: 10.1111/j.1460-9568.2006.04982.x – ident: e_1_3_3_20_2 doi: 10.1016/j.neuron.2004.12.035 – ident: e_1_3_3_35_2 doi: 10.1089/oli.2009.0213 – ident: e_1_3_3_6_2 doi: 10.1016/S0896-6273(03)00360-X – ident: e_1_3_3_26_2 doi: 10.1093/nar/30.8.1757 – ident: e_1_3_3_24_2 doi: 10.1007/s00424-005-1514-3 – ident: e_1_3_3_1_2 doi: 10.1523/JNEUROSCI.23-20-07577.2003 – ident: e_1_3_3_11_2 doi: 10.1152/jn.01389.2007 – ident: e_1_3_3_12_2 doi: 10.1523/JNEUROSCI.17-12-04517.1997 – ident: e_1_3_3_22_2 doi: 10.1523/JNEUROSCI.4531-08.2009 – ident: e_1_3_3_15_2 doi: 10.1016/S0896-6273(00)80969-1 – ident: e_1_3_3_30_2 doi: 10.1152/jn.90332.2008 – ident: e_1_3_3_17_2 doi: 10.1172/JCI40801 – ident: e_1_3_3_34_2 doi: 10.1038/nmeth911 – ident: e_1_3_3_8_2 doi: 10.1016/j.febslet.2005.03.009 – ident: e_1_3_3_3_2 doi: 10.1016/j.bbrc.2007.06.170 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.23-12-04899.2003 |
SSID | ssj0009580 |
Score | 2.3472567 |
Snippet | Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous... |
SourceID | pubmedcentral proquest crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12357 |
SubjectTerms | action potentials Biological Sciences cerebellum Cultured cells Electric current Electric potential electric power heterologous gene expression Kinetics Neurons Neuroscience phenotype reverse transcriptase polymerase chain reaction Small interfering RNA Sodium Sodium channels Transfection |
Title | Control of transient, resurgent, and persistent current by open-channel block by Na channel β4 in cultured cerebellar granule neurons |
URI | https://www.jstor.org/stable/20724254 http://www.pnas.org/content/107/27/12357.abstract https://www.proquest.com/docview/1825415598 https://pubmed.ncbi.nlm.nih.gov/PMC2901465 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBab9NJLadqGuH-o0ECK461Xli3vMV1S0kCWQBLIzcjacRK6eMv-HNoH6AO179Fn6ows_2xIIO3F7Gq9Y1vzWTOSZr5h7H0eTgr0jKNAQAGBBENBADIJtDJhIU0E2laJOBknRxfy-DK-7PV-d6KWVsu8b37cmVfyP1rFNtQrZcn-g2YbodiAn1G_eEQN4_FBOh65OHPa5yebQ7mN1Gc4haZs5-qLZQKgVTHUZ7n0jSNkQreTKmcFlPlbwpQi2M1Xah1rv27bHR3ufhKS1kQqhg70Tg3MgTYr9Ny_wmuupuBbTky36uf83NPGLi7qKIRxvex40CaxuJFl4Qf-6bhTEllXt36sqT7iWb_djHLrtV9KNMXaP-l3Fy1ov52C7LoDsUDjKKv06T5UYy-6LkEiq-qhzeBc1cR1KKxoBNxYS1m-qmO4iUdG3GkVcBijUsalXlBQSJxEUS12jX_7ll1sohXtPr2KMhKQtQI22COBcxNhrUGX6Tmt8p7cE9Z8Uir6eOsO1lyhjULP6phYItrFU9cmPeshux0f6Pwpe-ImL_ygQuIW60H5jG3VSuR7jsP8w3P200GTzwreQHOfN8Dc5whL3sKSO1jy_DvvwpJbWFLrWPO67c8vyW9KXkOSt5DkDpLcQfIFu_h8eD46ClzJj8BIgR2W5CIBlQ_yITrSYgJaQ2FCKYd5atJ0AsMEUgVoRYoYxADRKrUwoU5Vaib5JBfRNtssZyXsMA6RTJMogUGEswQTF9pW0IRYDJUAqcBj_br3M-P48KksyzS7R98e22v-8K2igrn_1B1UZ6av0FBnF2eCwgMGaSKTcOCxbavjRoQIFU37pcc8K6UVrTKhMotyj72rkZDh8E97erqE2QqvSSs8FFqQekytQaQRRATy67-UN9eWSN7GUCTxy4c_2Cv2uH2dX7PN5XwFb9ArX-Zv7VvwF_6q4WU |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+transient%2C+resurgent%2C+and+persistent+current+by+open-channel+block+by+Na+channel+%CE%B24+in+cultured+cerebellar+granule+neurons&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bant%2C+Jason+S.&rft.au=Raman%2C+Indira+M.&rft.date=2010-07-06&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=27&rft.spage=12357&rft.epage=12362&rft_id=info:doi/10.1073%2Fpnas.1005633107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1005633107 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F27.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F27.cover.gif |