3D Porous Oxidation‐Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High‐Performance Supercapacitors
2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, a...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 20 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202101087 |
Cover
Loading…
Abstract | 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g−1, superb rate performance (32.7% at 10 V s−1), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg−1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future.
A 3D porous oxidation‐resistant MXene/graphene composite is prepared through an efficient and fast self‐assembly route with the assistance of an in situ sacrificial metallic zinc template to suppress the oxidation and self‐restacking of MXene nanosheets. It exhibits excellent ambient stability, a striking specific capacitance of 393 F g–1, a superb rate performance (32.7% at 10 V s–1), and outstanding cycling stability. |
---|---|
AbstractList | 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g
−1
, superb rate performance (32.7% at 10 V s
−1
), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg
−1
and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future. 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g−1, superb rate performance (32.7% at 10 V s−1), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg−1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future. 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g−1, superb rate performance (32.7% at 10 V s−1), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg−1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future. A 3D porous oxidation‐resistant MXene/graphene composite is prepared through an efficient and fast self‐assembly route with the assistance of an in situ sacrificial metallic zinc template to suppress the oxidation and self‐restacking of MXene nanosheets. It exhibits excellent ambient stability, a striking specific capacitance of 393 F g–1, a superb rate performance (32.7% at 10 V s–1), and outstanding cycling stability. |
Author | Wang, Guiling Cao, Dianxue Wang, Qian Ye, Ke Yang, Xue Zhu, Kai Yan, Jun |
Author_xml | – sequence: 1 givenname: Xue surname: Yang fullname: Yang, Xue organization: Harbin Engineering University – sequence: 2 givenname: Qian surname: Wang fullname: Wang, Qian email: wangqianhrb@163.com organization: Harbin Engineering University – sequence: 3 givenname: Kai surname: Zhu fullname: Zhu, Kai organization: Harbin Engineering University – sequence: 4 givenname: Ke surname: Ye fullname: Ye, Ke organization: Harbin Engineering University – sequence: 5 givenname: Guiling surname: Wang fullname: Wang, Guiling organization: Harbin Engineering University – sequence: 6 givenname: Dianxue surname: Cao fullname: Cao, Dianxue organization: Harbin Engineering University – sequence: 7 givenname: Jun orcidid: 0000-0002-9967-3912 surname: Yan fullname: Yan, Jun email: yanjun198201@vip.163.com organization: Harbin Engineering University |
BookMark | eNqFkEFLwzAUx4MouE2vngOetyVpu6bHsblNcChugngpafrqMrqkJim6mzevfkY_idWJgiCe3v_w_733-LXRvjYaEDqhpEcJYX2RF5seI4wSSni8h1p0QAfdgDC-_53p7SFqO7cmhMZxELbQSzDGV8aa2uHLJ5ULr4x-e369BqecF9rj-S1o6E-tqFZNwEMrV8qD9LUFh891XkvIcbZtIl4oX-M7pSVewqYqhQfszaOwOZ6p-1Wz9QpsYexGaAl4UVdgpaiEVN5Yd4QOClE6OP6aHXQzOVuOZt2Ly-n5aHjRlSFjcXfAskgWABJokkkKsshFHPGAU0oyEPGAs4jnQGQowyjgIVDCksYGj5KAkEwGHXS621tZ81CD8-na1FY3J1MWMU6SIKZh0wp3LWmNcxaKtPny0423QpUpJemH8vRDefqtvMF6v7DKqo2w27-BZAc8qhK2_7TT4Xgy_2HfAQB8mfc |
CitedBy_id | crossref_primary_10_1002_cssc_202400999 crossref_primary_10_1039_D3NJ00943B crossref_primary_10_1016_j_matre_2022_100080 crossref_primary_10_1016_j_cej_2023_146913 crossref_primary_10_1021_acs_energyfuels_4c02987 crossref_primary_10_1021_acsanm_3c00220 crossref_primary_10_1007_s12274_023_5532_2 crossref_primary_10_1002_aenm_202101712 crossref_primary_10_1016_j_cej_2024_157533 crossref_primary_10_1039_D4TA02221A crossref_primary_10_1016_j_jcis_2022_01_021 crossref_primary_10_1002_smll_202301153 crossref_primary_10_1016_j_ceramint_2022_09_238 crossref_primary_10_1016_j_desal_2021_115341 crossref_primary_10_1002_smll_202301276 crossref_primary_10_1039_D3DT04176J crossref_primary_10_1016_j_ensm_2024_103721 crossref_primary_10_3390_molecules28176292 crossref_primary_10_1016_j_cej_2023_141338 crossref_primary_10_1021_acs_iecr_3c00306 crossref_primary_10_1002_adfm_202310508 crossref_primary_10_1021_acsami_3c01782 crossref_primary_10_1039_D2TA08662J crossref_primary_10_1039_D2MA00426G crossref_primary_10_1007_s42114_024_00877_8 crossref_primary_10_1016_j_cej_2024_149598 crossref_primary_10_1016_j_cej_2023_145250 crossref_primary_10_1016_j_jcis_2023_07_043 crossref_primary_10_1039_D2NR01410F crossref_primary_10_1039_D2TA01140A crossref_primary_10_1016_j_cej_2024_154937 crossref_primary_10_1002_slct_202300737 crossref_primary_10_1021_acssuschemeng_2c04712 crossref_primary_10_1016_j_cej_2022_137262 crossref_primary_10_1039_D3NH00402C crossref_primary_10_1016_j_jallcom_2024_174434 crossref_primary_10_1039_D2QI02777A crossref_primary_10_1016_j_apsusc_2023_157737 crossref_primary_10_1002_adfm_202208049 crossref_primary_10_1002_adfm_202209499 crossref_primary_10_1016_j_jelechem_2021_115973 crossref_primary_10_1016_j_cej_2021_131204 crossref_primary_10_1021_acs_langmuir_4c01431 crossref_primary_10_1002_smll_202204829 crossref_primary_10_3389_fchem_2022_851973 crossref_primary_10_1002_asia_202401181 crossref_primary_10_1039_D2TA00102K crossref_primary_10_1016_j_jallcom_2024_174426 crossref_primary_10_1021_acsami_4c13288 crossref_primary_10_1021_acsnano_3c10246 crossref_primary_10_1016_j_jallcom_2025_178526 crossref_primary_10_1002_adsu_202200153 crossref_primary_10_1021_acs_energyfuels_3c01420 crossref_primary_10_1002_adem_202101556 crossref_primary_10_1016_j_cej_2022_138808 crossref_primary_10_1016_j_aca_2023_342027 crossref_primary_10_1016_j_jcis_2024_05_124 crossref_primary_10_1039_D1TA10254K crossref_primary_10_1016_j_cej_2022_137286 crossref_primary_10_1021_acsaem_2c03999 crossref_primary_10_1016_j_est_2024_114136 crossref_primary_10_1016_j_cej_2025_160502 crossref_primary_10_1016_j_pmatsci_2023_101227 crossref_primary_10_1016_j_pmatsci_2023_101105 crossref_primary_10_3390_nano13182608 crossref_primary_10_1002_adfm_202110267 crossref_primary_10_1021_acsnano_1c03516 crossref_primary_10_1016_j_cej_2023_143163 crossref_primary_10_1016_j_jechem_2022_09_035 crossref_primary_10_1016_j_jclepro_2024_141964 crossref_primary_10_1016_j_jece_2024_112762 crossref_primary_10_1016_j_jelechem_2023_117915 crossref_primary_10_1002_smll_202405047 crossref_primary_10_1016_j_apsusc_2024_161281 crossref_primary_10_1021_acsnano_3c01241 crossref_primary_10_1080_15376494_2023_2185705 crossref_primary_10_1016_j_cej_2024_153246 crossref_primary_10_1016_j_jmst_2022_12_064 crossref_primary_10_1002_ente_202200145 crossref_primary_10_1016_j_jallcom_2021_161998 crossref_primary_10_1039_D1QI00797A crossref_primary_10_1016_j_apsusc_2023_157602 crossref_primary_10_1016_j_jcis_2024_03_179 crossref_primary_10_1039_D4TA01892C crossref_primary_10_1021_acs_jpcc_4c07497 crossref_primary_10_1016_j_compositesb_2023_110885 crossref_primary_10_1016_j_jece_2024_112319 crossref_primary_10_1039_D3QM00003F crossref_primary_10_1002_smtd_202201557 crossref_primary_10_1016_j_bios_2021_113943 crossref_primary_10_1002_smtd_202201559 crossref_primary_10_3390_molecules27154909 crossref_primary_10_1016_j_cej_2023_145553 crossref_primary_10_1016_j_matre_2021_100077 crossref_primary_10_1016_j_jcis_2022_04_170 crossref_primary_10_1021_acsami_2c18559 crossref_primary_10_1021_acsanm_3c01273 crossref_primary_10_59400_esc1920 crossref_primary_10_1002_aenm_202301219 crossref_primary_10_1016_j_cej_2024_149502 crossref_primary_10_1002_smll_202404548 crossref_primary_10_1002_adfm_202109479 crossref_primary_10_1039_D4TC00884G crossref_primary_10_1016_j_cej_2024_157014 crossref_primary_10_1016_j_jallcom_2023_171818 crossref_primary_10_1002_smll_202106673 crossref_primary_10_1088_1361_6463_ac10d8 crossref_primary_10_1016_j_cej_2021_132232 crossref_primary_10_1016_j_cej_2024_149063 crossref_primary_10_1016_j_seppur_2023_125312 crossref_primary_10_1016_j_cej_2024_152804 crossref_primary_10_1016_j_ultsonch_2022_106208 crossref_primary_10_1016_j_apsusc_2023_158228 crossref_primary_10_1021_acsanm_2c04589 crossref_primary_10_1021_acsnano_1c09036 crossref_primary_10_1039_D1TA07919K crossref_primary_10_1016_j_cej_2024_154097 crossref_primary_10_1016_j_est_2023_110129 crossref_primary_10_1002_adfm_202211057 crossref_primary_10_1007_s10008_024_05848_z crossref_primary_10_1016_j_microc_2023_108970 crossref_primary_10_1002_adfm_202202319 crossref_primary_10_1039_D2TA01908F crossref_primary_10_1007_s12274_024_6488_6 crossref_primary_10_3390_mi16030280 crossref_primary_10_1002_adma_202104148 crossref_primary_10_1016_j_jechem_2022_05_040 crossref_primary_10_1002_adma_202107415 crossref_primary_10_15377_2409_5826_2021_08_7 crossref_primary_10_1007_s10853_023_08900_x crossref_primary_10_1002_smll_202305692 crossref_primary_10_1002_adfm_202303003 crossref_primary_10_1016_j_electacta_2022_141408 crossref_primary_10_1039_D2TA01428A crossref_primary_10_3389_fbioe_2023_1097631 crossref_primary_10_1002_agt2_522 crossref_primary_10_1016_j_electacta_2024_145510 crossref_primary_10_1039_D4TA08466G crossref_primary_10_1016_j_nanoen_2024_109332 crossref_primary_10_1021_acs_iecr_4c01924 crossref_primary_10_1002_smll_202400774 crossref_primary_10_1016_j_jcis_2022_10_135 crossref_primary_10_1016_j_jcis_2023_04_155 crossref_primary_10_1016_j_electacta_2023_141818 crossref_primary_10_1021_acsaem_1c03575 crossref_primary_10_1002_adma_202408923 crossref_primary_10_2139_ssrn_4052322 crossref_primary_10_1021_acs_nanolett_4c00093 crossref_primary_10_1016_j_ensm_2024_103379 crossref_primary_10_26599_NRE_2024_9120148 crossref_primary_10_1016_j_cej_2023_145505 crossref_primary_10_1002_smtd_202101537 crossref_primary_10_3389_fchem_2022_933319 crossref_primary_10_1016_j_jallcom_2022_168162 crossref_primary_10_1016_j_susmat_2022_e00490 crossref_primary_10_1039_D3NJ00497J crossref_primary_10_1016_j_snb_2023_133908 crossref_primary_10_1016_j_nanoen_2023_108754 crossref_primary_10_1016_j_xcrp_2022_101151 crossref_primary_10_1021_acs_chemmater_4c00966 crossref_primary_10_3390_cryst12081099 crossref_primary_10_1016_j_diamond_2023_110273 crossref_primary_10_1002_advs_202206320 crossref_primary_10_1016_j_jcis_2024_05_079 crossref_primary_10_1039_D2DT03467K crossref_primary_10_1021_acsami_4c23060 crossref_primary_10_1021_acsami_4c09563 crossref_primary_10_1021_acsnano_2c03351 crossref_primary_10_1021_acsnano_3c03381 crossref_primary_10_1016_j_jechem_2021_11_019 crossref_primary_10_1021_acs_langmuir_3c03390 crossref_primary_10_1016_j_cej_2023_143786 crossref_primary_10_1039_D2TA04962G crossref_primary_10_1039_D2NJ00433J crossref_primary_10_1007_s11581_022_04511_9 crossref_primary_10_1021_acsnano_3c11547 crossref_primary_10_1016_j_jcis_2022_05_148 crossref_primary_10_1021_acsaem_1c01863 crossref_primary_10_1021_acs_energyfuels_2c00832 crossref_primary_10_1016_j_cej_2025_160320 crossref_primary_10_1002_advs_202204041 crossref_primary_10_1016_j_desal_2023_117187 crossref_primary_10_1002_eom2_12287 crossref_primary_10_1002_smll_202202203 crossref_primary_10_1021_acsanm_2c05054 crossref_primary_10_1039_D1NR04838D crossref_primary_10_1186_s11671_023_03786_9 crossref_primary_10_1002_aoc_7986 crossref_primary_10_1016_j_jmatprotec_2022_117734 crossref_primary_10_1016_j_cej_2022_139414 crossref_primary_10_1016_j_jpowsour_2025_236347 crossref_primary_10_1002_cey2_501 crossref_primary_10_1007_s40820_021_00781_6 crossref_primary_10_1021_acsnano_2c02841 crossref_primary_10_1039_D3TA07658J |
Cites_doi | 10.1002/adfm.201803938 10.1016/j.ensm.2019.04.029 10.1016/j.cej.2020.126713 10.1002/ange.201811220 10.1002/adma.201902432 10.1021/acsnano.9b08832 10.1016/j.ensm.2020.04.016 10.1002/aenm.201901872 10.1021/acsnano.8b09548 10.1016/j.ensm.2019.09.026 10.1016/j.nanoen.2019.01.071 10.1021/acs.nanolett.9b03147 10.1038/natrevmats.2016.98 10.1002/adfm.202000815 10.1021/acsnano.9b01762 10.1021/acsnano.8b05739 10.1002/adfm.201905898 10.1002/adfm.201900326 10.1002/advs.201903077 10.1002/adfm.202000922 10.1016/j.nanoen.2020.105360 10.1002/adma.201704561 10.1016/j.ensm.2020.11.035 10.1002/adma.201902977 10.1002/adfm.201701264 10.1002/aenm.202001411 10.1002/smll.201904293 10.1002/aenm.201802087 10.1002/adfm.201903960 10.1002/aenm.201502100 10.1038/nenergy.2017.105 10.1002/aenm.201901839 10.1021/nn500497k 10.1002/anie.202012322 10.1002/adma.202001093 10.1002/adma.201806931 10.1126/science.1241488 10.1002/anie.202009086 10.1016/j.nanoen.2019.103880 10.1016/j.joule.2018.02.018 10.1002/adfm.201910028 10.1016/j.carbon.2020.07.041 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202101087 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202101087 ADFM202101087 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22005076; 21571040 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4227-62b5cfeece19bc1ecfda75838110bea768258de0c4c45384e1029087859300bc3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 10:03:31 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Tue Jul 01 04:12:26 EDT 2025 Wed Jan 22 16:30:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4227-62b5cfeece19bc1ecfda75838110bea768258de0c4c45384e1029087859300bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9967-3912 |
PQID | 2528093714 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2528093714 crossref_citationtrail_10_1002_adfm_202101087 crossref_primary_10_1002_adfm_202101087 wiley_primary_10_1002_adfm_202101087_ADFM202101087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 406 2018; 28 2019; 9 2017; 2 2019; 31 2017; 27 2019; 13 2019; 15 2019; 58 2020; 59 2019; 19 2020; 14 2020; 78 2013; 341 2020; 32 2020; 10 2020; 169 2021; 35 2020; 7 2016; 6 2018; 8 2018; 2 2019; 20 2020; 30 2019; 63 2021 2020; 25 2019; 29 2018; 30 2018; 12 2021; 60 2014; 8 2019; 131 2020; 29 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Yao L. (e_1_2_7_8_1) 2021 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 58 start-page: 455 year: 2019 publication-title: Nano Energy – volume: 63 year: 2019 publication-title: Nano Energy – year: 2021 publication-title: ACS Nano – volume: 25 start-page: 563 year: 2020 publication-title: Energy Storage Mater. – volume: 8 start-page: 4720 year: 2014 publication-title: ACS Nano – volume: 14 start-page: 2109 year: 2020 publication-title: ACS Nano – volume: 169 start-page: 225 year: 2020 publication-title: Carbon – volume: 60 start-page: 2861 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 6899 year: 2019 publication-title: ACS Nano – volume: 406 year: 2021 publication-title: Chem. Eng. J. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 20 start-page: 299 year: 2019 publication-title: Energy Storage Mater. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 12 year: 2018 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 341 start-page: 1502 year: 2013 publication-title: Science – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 19 start-page: 7443 year: 2019 publication-title: Nano Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 13 start-page: 3448 year: 2019 publication-title: ACS Nano – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 2 start-page: 778 year: 2018 publication-title: Joule – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 131 start-page: 211 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 35 start-page: 630 year: 2021 publication-title: Energy Storage Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 163 year: 2020 publication-title: Energy Storage Mater. – ident: e_1_2_7_2_1 doi: 10.1002/adfm.201803938 – ident: e_1_2_7_9_1 doi: 10.1016/j.ensm.2019.04.029 – ident: e_1_2_7_40_1 doi: 10.1016/j.cej.2020.126713 – ident: e_1_2_7_43_1 doi: 10.1002/ange.201811220 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201902432 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.9b08832 – ident: e_1_2_7_22_1 doi: 10.1016/j.ensm.2020.04.016 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201901872 – ident: e_1_2_7_15_1 doi: 10.1021/acsnano.8b09548 – ident: e_1_2_7_13_1 doi: 10.1016/j.ensm.2019.09.026 – ident: e_1_2_7_39_1 doi: 10.1016/j.nanoen.2019.01.071 – ident: e_1_2_7_30_1 doi: 10.1021/acs.nanolett.9b03147 – ident: e_1_2_7_36_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.202000815 – ident: e_1_2_7_37_1 doi: 10.1021/acsnano.9b01762 – ident: e_1_2_7_34_1 doi: 10.1021/acsnano.8b05739 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201905898 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.201900326 – ident: e_1_2_7_10_1 doi: 10.1002/advs.201903077 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.202000922 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2020.105360 – year: 2021 ident: e_1_2_7_8_1 publication-title: ACS Nano – ident: e_1_2_7_3_1 doi: 10.1002/adma.201704561 – ident: e_1_2_7_5_1 doi: 10.1016/j.ensm.2020.11.035 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201902977 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201701264 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.202001411 – ident: e_1_2_7_21_1 doi: 10.1002/smll.201904293 – ident: e_1_2_7_24_1 doi: 10.1002/aenm.201802087 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201903960 – ident: e_1_2_7_41_1 doi: 10.1002/aenm.201502100 – ident: e_1_2_7_26_1 doi: 10.1038/nenergy.2017.105 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201901839 – ident: e_1_2_7_42_1 doi: 10.1021/nn500497k – ident: e_1_2_7_31_1 doi: 10.1002/anie.202012322 – ident: e_1_2_7_1_1 doi: 10.1002/adma.202001093 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201806931 – ident: e_1_2_7_38_1 doi: 10.1126/science.1241488 – ident: e_1_2_7_11_1 doi: 10.1002/anie.202009086 – ident: e_1_2_7_16_1 doi: 10.1016/j.nanoen.2019.103880 – ident: e_1_2_7_32_1 doi: 10.1016/j.joule.2018.02.018 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.201910028 – ident: e_1_2_7_28_1 doi: 10.1016/j.carbon.2020.07.041 |
SSID | ssj0017734 |
Score | 2.6928256 |
Snippet | 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Capacitance Cycles Electrical resistivity Energy storage Flux density Graphene Materials science MXene MXenes Oxidation Oxidation resistance Room temperature self‐assembly specific capacitance Stability Supercapacitors Zinc |
Title | 3D Porous Oxidation‐Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High‐Performance Supercapacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202101087 https://www.proquest.com/docview/2528093714 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_aQJmlLN4-iQ6AnZy3ZXq2PS9JNKGwa8oClF2ONR7A08S5rG9qccsu1v7G_pDP2rndTCIX2JoMkW9JI88kz840QhwogcGnmPKMj54VxFnhxoAIPjXEkIMppw7HDo_Pe2U34eRyN16L4G36I9ocb74z6vOYNntqiuyINpRdwJDldWZTf53BydthiVHTZ8kcpYxqzck-xg5caL1kbfd192vypVlpBzXXAWmuc4WuRLr-1cTT5dlSV9gju_6Bx_J_BbInNBRyVg0Z-tsULzHfEqzWSwjfiMTiRF9P5tCrkl--TJgXTr4efl1gw9MxLORrTedk9ZeZrKsjBmmmikJwaBDCT9gcV5dWkrOTXSQ7yGu9mt4RzZVn77Ur2N6FeL1ZxDPKqmuEcSJnDhFMCvRU3w0_Xx2feIn2DB6HWxutpG4FDBFSxBYXgstSwlZYQh8WU7jk66mfoQwghHbshEtaJafTMwOb7FoJ3YiOf5vheSEKx6CPJlYl0COCsM5l2fow90r9gso7wlsuXwILbnFNs3CYNK7NOeIKTdoI74mNbf9awejxbc38pDclidxeJjnTfZyLBsCN0vax_6SUZnAxH7dPuvzTaEy-53Pha7ouNcl7hAeGh0n6oZf43hCcFYA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgHIADvyfKBviAxClr7CR1c6wopcA6pq2TKi5R_fIsVYy0ahMJOHHblb9xf8neS5q0Q0JIcHMi24nt9-zP9nvfE-KVAgjcNHWe0ZHzwjgNvDhQgYfGOBIQ5bRh3-HRUWd4Fn6YRLU1IfvCVPwQzYEba0Y5X7OC84F0e8MaSl9gV3Lasyi_a26KWxzWm3Wzf9IwSCljqovljmITLzWpeRt93b5e_vq6tAGb25C1XHMG94Wt_7YyNflyUOT2AH78RuT4X815IO6tEansVSL0UNzA7JG4u8VT-FhcBH15PF_Oi5X89G1WRWG6_PnrBFeMPrNcjiY0ZbbfMfk1JWRv63ZiJTk6CGAq7XdKytNZXsjPswzkGL8uzgnqyrw03ZVsckK1Hm9cGeRpscAl0HoOM44K9EScDd6O3wy9dQQHD0KtjdfRNgKHCKhiCwrBpVPDF7UEOixOaaujo26KPoQQ0swbIsGdmFrPJGy-byHYFTvZPMOnQhKQRR9JtEykQwBnnUm182Ps0BIMJm0Jrx6_BNb05hxl4zypiJl1wh2cNB3cEq-b_IuK2OOPOfdrcUjWCr5KdKS7PnMJhi2hy3H9Sy1Jrz8YNU_P_qXQS3F7OB4dJofvjz7uiTv8vjK93Bc7-bLA5wSPcvuiVIAryRUJeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4am4TgANsAURjgA9JOWWPHiZtjRSkbrKPaD6niEjUvz1LFSKs2kYATN678jfwlPCdt2iEhJDjFiWwntp_9PsfvfQ_gpUQM7DiznlGh9XScBV4cyMAjYywLiLTKON_hwVl0fKXfjsLRhhd_zQ_R_HBzM6Nar90En2W2vSYN5Rc4T3Leski_Y27Bjo746mDReUMgJY2pz5Uj6Sy85GhF2-ir9s3yN9XSGmtuItZK5fTvw3j1sbWlycejskiP8OtvPI7_05pduLfEo6JbC9AebFG-D3c3WAofwPegJ4bT-bRciPefJ3UMpp_ffpzTwmHPvBCDES-Y7TeO-poTortxNrEQLjYIUibSL5wUF5OiFB8mOYpL-jS7ZqArispwVziDE651uHZkEBfljObI2hwnLibQQ7jqv758dewt4zd4qJUyXqTSEC0RkoxTlIQ2Gxt3TMuQI6Uxb3RU2MnIR42a111NDHZibr2jYPP9FINHsJ1Pc3oMgmEs-cSCZUKlEW1qTaasH1PEChhN1gJvNXwJLsnNXYyN66SmZVaJ6-Ck6eAWHDb5ZzWtxx9zHqykIVlO70WiQtXxHZOgboGqhvUvtSTdXn_Q3D35l0Iv4Paw109OT87ePYU77nFtd3kA28W8pGeMjYr0eSX-vwDDqggx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Porous+Oxidation%E2%80%90Resistant+MXene%2FGraphene+Architectures+Induced+by+In+Situ+Zinc+Template+toward+High%E2%80%90Performance+Supercapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Xue&rft.au=Wang%2C+Qian&rft.au=Zhu%2C+Kai&rft.au=Ye%2C+Ke&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202101087&rft.externalDBID=10.1002%252Fadfm.202101087&rft.externalDocID=ADFM202101087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |