3D Porous Oxidation‐Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High‐Performance Supercapacitors

2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 20
Main Authors Yang, Xue, Wang, Qian, Zhu, Kai, Ye, Ke, Wang, Guiling, Cao, Dianxue, Yan, Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202101087

Cover

Loading…
Abstract 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g−1, superb rate performance (32.7% at 10 V s−1), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg−1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future. A 3D porous oxidation‐resistant MXene/graphene composite is prepared through an efficient and fast self‐assembly route with the assistance of an in situ sacrificial metallic zinc template to suppress the oxidation and self‐restacking of MXene nanosheets. It exhibits excellent ambient stability, a striking specific capacitance of 393 F g–1, a superb rate performance (32.7% at 10 V s–1), and outstanding cycling stability.
AbstractList 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g −1 , superb rate performance (32.7% at 10 V s −1 ), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg −1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future.
2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g−1, superb rate performance (32.7% at 10 V s−1), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg−1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future.
2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self‐restacking of MXene, an efficient and fast self‐assembly route to prepare a 3D porous oxidation‐resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self‐assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG‐5 electrode possesses a striking specific capacitance of 393 F g−1, superb rate performance (32.7% at 10 V s−1), and outstanding cycling stability. Furthermore, the as‐assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg−1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long‐standing significant challenges of MXene in the future. A 3D porous oxidation‐resistant MXene/graphene composite is prepared through an efficient and fast self‐assembly route with the assistance of an in situ sacrificial metallic zinc template to suppress the oxidation and self‐restacking of MXene nanosheets. It exhibits excellent ambient stability, a striking specific capacitance of 393 F g–1, a superb rate performance (32.7% at 10 V s–1), and outstanding cycling stability.
Author Wang, Guiling
Cao, Dianxue
Wang, Qian
Ye, Ke
Yang, Xue
Zhu, Kai
Yan, Jun
Author_xml – sequence: 1
  givenname: Xue
  surname: Yang
  fullname: Yang, Xue
  organization: Harbin Engineering University
– sequence: 2
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  email: wangqianhrb@163.com
  organization: Harbin Engineering University
– sequence: 3
  givenname: Kai
  surname: Zhu
  fullname: Zhu, Kai
  organization: Harbin Engineering University
– sequence: 4
  givenname: Ke
  surname: Ye
  fullname: Ye, Ke
  organization: Harbin Engineering University
– sequence: 5
  givenname: Guiling
  surname: Wang
  fullname: Wang, Guiling
  organization: Harbin Engineering University
– sequence: 6
  givenname: Dianxue
  surname: Cao
  fullname: Cao, Dianxue
  organization: Harbin Engineering University
– sequence: 7
  givenname: Jun
  orcidid: 0000-0002-9967-3912
  surname: Yan
  fullname: Yan, Jun
  email: yanjun198201@vip.163.com
  organization: Harbin Engineering University
BookMark eNqFkEFLwzAUx4MouE2vngOetyVpu6bHsblNcChugngpafrqMrqkJim6mzevfkY_idWJgiCe3v_w_733-LXRvjYaEDqhpEcJYX2RF5seI4wSSni8h1p0QAfdgDC-_53p7SFqO7cmhMZxELbQSzDGV8aa2uHLJ5ULr4x-e369BqecF9rj-S1o6E-tqFZNwEMrV8qD9LUFh891XkvIcbZtIl4oX-M7pSVewqYqhQfszaOwOZ6p-1Wz9QpsYexGaAl4UVdgpaiEVN5Yd4QOClE6OP6aHXQzOVuOZt2Ly-n5aHjRlSFjcXfAskgWABJokkkKsshFHPGAU0oyEPGAs4jnQGQowyjgIVDCksYGj5KAkEwGHXS621tZ81CD8-na1FY3J1MWMU6SIKZh0wp3LWmNcxaKtPny0423QpUpJemH8vRDefqtvMF6v7DKqo2w27-BZAc8qhK2_7TT4Xgy_2HfAQB8mfc
CitedBy_id crossref_primary_10_1002_cssc_202400999
crossref_primary_10_1039_D3NJ00943B
crossref_primary_10_1016_j_matre_2022_100080
crossref_primary_10_1016_j_cej_2023_146913
crossref_primary_10_1021_acs_energyfuels_4c02987
crossref_primary_10_1021_acsanm_3c00220
crossref_primary_10_1007_s12274_023_5532_2
crossref_primary_10_1002_aenm_202101712
crossref_primary_10_1016_j_cej_2024_157533
crossref_primary_10_1039_D4TA02221A
crossref_primary_10_1016_j_jcis_2022_01_021
crossref_primary_10_1002_smll_202301153
crossref_primary_10_1016_j_ceramint_2022_09_238
crossref_primary_10_1016_j_desal_2021_115341
crossref_primary_10_1002_smll_202301276
crossref_primary_10_1039_D3DT04176J
crossref_primary_10_1016_j_ensm_2024_103721
crossref_primary_10_3390_molecules28176292
crossref_primary_10_1016_j_cej_2023_141338
crossref_primary_10_1021_acs_iecr_3c00306
crossref_primary_10_1002_adfm_202310508
crossref_primary_10_1021_acsami_3c01782
crossref_primary_10_1039_D2TA08662J
crossref_primary_10_1039_D2MA00426G
crossref_primary_10_1007_s42114_024_00877_8
crossref_primary_10_1016_j_cej_2024_149598
crossref_primary_10_1016_j_cej_2023_145250
crossref_primary_10_1016_j_jcis_2023_07_043
crossref_primary_10_1039_D2NR01410F
crossref_primary_10_1039_D2TA01140A
crossref_primary_10_1016_j_cej_2024_154937
crossref_primary_10_1002_slct_202300737
crossref_primary_10_1021_acssuschemeng_2c04712
crossref_primary_10_1016_j_cej_2022_137262
crossref_primary_10_1039_D3NH00402C
crossref_primary_10_1016_j_jallcom_2024_174434
crossref_primary_10_1039_D2QI02777A
crossref_primary_10_1016_j_apsusc_2023_157737
crossref_primary_10_1002_adfm_202208049
crossref_primary_10_1002_adfm_202209499
crossref_primary_10_1016_j_jelechem_2021_115973
crossref_primary_10_1016_j_cej_2021_131204
crossref_primary_10_1021_acs_langmuir_4c01431
crossref_primary_10_1002_smll_202204829
crossref_primary_10_3389_fchem_2022_851973
crossref_primary_10_1002_asia_202401181
crossref_primary_10_1039_D2TA00102K
crossref_primary_10_1016_j_jallcom_2024_174426
crossref_primary_10_1021_acsami_4c13288
crossref_primary_10_1021_acsnano_3c10246
crossref_primary_10_1016_j_jallcom_2025_178526
crossref_primary_10_1002_adsu_202200153
crossref_primary_10_1021_acs_energyfuels_3c01420
crossref_primary_10_1002_adem_202101556
crossref_primary_10_1016_j_cej_2022_138808
crossref_primary_10_1016_j_aca_2023_342027
crossref_primary_10_1016_j_jcis_2024_05_124
crossref_primary_10_1039_D1TA10254K
crossref_primary_10_1016_j_cej_2022_137286
crossref_primary_10_1021_acsaem_2c03999
crossref_primary_10_1016_j_est_2024_114136
crossref_primary_10_1016_j_cej_2025_160502
crossref_primary_10_1016_j_pmatsci_2023_101227
crossref_primary_10_1016_j_pmatsci_2023_101105
crossref_primary_10_3390_nano13182608
crossref_primary_10_1002_adfm_202110267
crossref_primary_10_1021_acsnano_1c03516
crossref_primary_10_1016_j_cej_2023_143163
crossref_primary_10_1016_j_jechem_2022_09_035
crossref_primary_10_1016_j_jclepro_2024_141964
crossref_primary_10_1016_j_jece_2024_112762
crossref_primary_10_1016_j_jelechem_2023_117915
crossref_primary_10_1002_smll_202405047
crossref_primary_10_1016_j_apsusc_2024_161281
crossref_primary_10_1021_acsnano_3c01241
crossref_primary_10_1080_15376494_2023_2185705
crossref_primary_10_1016_j_cej_2024_153246
crossref_primary_10_1016_j_jmst_2022_12_064
crossref_primary_10_1002_ente_202200145
crossref_primary_10_1016_j_jallcom_2021_161998
crossref_primary_10_1039_D1QI00797A
crossref_primary_10_1016_j_apsusc_2023_157602
crossref_primary_10_1016_j_jcis_2024_03_179
crossref_primary_10_1039_D4TA01892C
crossref_primary_10_1021_acs_jpcc_4c07497
crossref_primary_10_1016_j_compositesb_2023_110885
crossref_primary_10_1016_j_jece_2024_112319
crossref_primary_10_1039_D3QM00003F
crossref_primary_10_1002_smtd_202201557
crossref_primary_10_1016_j_bios_2021_113943
crossref_primary_10_1002_smtd_202201559
crossref_primary_10_3390_molecules27154909
crossref_primary_10_1016_j_cej_2023_145553
crossref_primary_10_1016_j_matre_2021_100077
crossref_primary_10_1016_j_jcis_2022_04_170
crossref_primary_10_1021_acsami_2c18559
crossref_primary_10_1021_acsanm_3c01273
crossref_primary_10_59400_esc1920
crossref_primary_10_1002_aenm_202301219
crossref_primary_10_1016_j_cej_2024_149502
crossref_primary_10_1002_smll_202404548
crossref_primary_10_1002_adfm_202109479
crossref_primary_10_1039_D4TC00884G
crossref_primary_10_1016_j_cej_2024_157014
crossref_primary_10_1016_j_jallcom_2023_171818
crossref_primary_10_1002_smll_202106673
crossref_primary_10_1088_1361_6463_ac10d8
crossref_primary_10_1016_j_cej_2021_132232
crossref_primary_10_1016_j_cej_2024_149063
crossref_primary_10_1016_j_seppur_2023_125312
crossref_primary_10_1016_j_cej_2024_152804
crossref_primary_10_1016_j_ultsonch_2022_106208
crossref_primary_10_1016_j_apsusc_2023_158228
crossref_primary_10_1021_acsanm_2c04589
crossref_primary_10_1021_acsnano_1c09036
crossref_primary_10_1039_D1TA07919K
crossref_primary_10_1016_j_cej_2024_154097
crossref_primary_10_1016_j_est_2023_110129
crossref_primary_10_1002_adfm_202211057
crossref_primary_10_1007_s10008_024_05848_z
crossref_primary_10_1016_j_microc_2023_108970
crossref_primary_10_1002_adfm_202202319
crossref_primary_10_1039_D2TA01908F
crossref_primary_10_1007_s12274_024_6488_6
crossref_primary_10_3390_mi16030280
crossref_primary_10_1002_adma_202104148
crossref_primary_10_1016_j_jechem_2022_05_040
crossref_primary_10_1002_adma_202107415
crossref_primary_10_15377_2409_5826_2021_08_7
crossref_primary_10_1007_s10853_023_08900_x
crossref_primary_10_1002_smll_202305692
crossref_primary_10_1002_adfm_202303003
crossref_primary_10_1016_j_electacta_2022_141408
crossref_primary_10_1039_D2TA01428A
crossref_primary_10_3389_fbioe_2023_1097631
crossref_primary_10_1002_agt2_522
crossref_primary_10_1016_j_electacta_2024_145510
crossref_primary_10_1039_D4TA08466G
crossref_primary_10_1016_j_nanoen_2024_109332
crossref_primary_10_1021_acs_iecr_4c01924
crossref_primary_10_1002_smll_202400774
crossref_primary_10_1016_j_jcis_2022_10_135
crossref_primary_10_1016_j_jcis_2023_04_155
crossref_primary_10_1016_j_electacta_2023_141818
crossref_primary_10_1021_acsaem_1c03575
crossref_primary_10_1002_adma_202408923
crossref_primary_10_2139_ssrn_4052322
crossref_primary_10_1021_acs_nanolett_4c00093
crossref_primary_10_1016_j_ensm_2024_103379
crossref_primary_10_26599_NRE_2024_9120148
crossref_primary_10_1016_j_cej_2023_145505
crossref_primary_10_1002_smtd_202101537
crossref_primary_10_3389_fchem_2022_933319
crossref_primary_10_1016_j_jallcom_2022_168162
crossref_primary_10_1016_j_susmat_2022_e00490
crossref_primary_10_1039_D3NJ00497J
crossref_primary_10_1016_j_snb_2023_133908
crossref_primary_10_1016_j_nanoen_2023_108754
crossref_primary_10_1016_j_xcrp_2022_101151
crossref_primary_10_1021_acs_chemmater_4c00966
crossref_primary_10_3390_cryst12081099
crossref_primary_10_1016_j_diamond_2023_110273
crossref_primary_10_1002_advs_202206320
crossref_primary_10_1016_j_jcis_2024_05_079
crossref_primary_10_1039_D2DT03467K
crossref_primary_10_1021_acsami_4c23060
crossref_primary_10_1021_acsami_4c09563
crossref_primary_10_1021_acsnano_2c03351
crossref_primary_10_1021_acsnano_3c03381
crossref_primary_10_1016_j_jechem_2021_11_019
crossref_primary_10_1021_acs_langmuir_3c03390
crossref_primary_10_1016_j_cej_2023_143786
crossref_primary_10_1039_D2TA04962G
crossref_primary_10_1039_D2NJ00433J
crossref_primary_10_1007_s11581_022_04511_9
crossref_primary_10_1021_acsnano_3c11547
crossref_primary_10_1016_j_jcis_2022_05_148
crossref_primary_10_1021_acsaem_1c01863
crossref_primary_10_1021_acs_energyfuels_2c00832
crossref_primary_10_1016_j_cej_2025_160320
crossref_primary_10_1002_advs_202204041
crossref_primary_10_1016_j_desal_2023_117187
crossref_primary_10_1002_eom2_12287
crossref_primary_10_1002_smll_202202203
crossref_primary_10_1021_acsanm_2c05054
crossref_primary_10_1039_D1NR04838D
crossref_primary_10_1186_s11671_023_03786_9
crossref_primary_10_1002_aoc_7986
crossref_primary_10_1016_j_jmatprotec_2022_117734
crossref_primary_10_1016_j_cej_2022_139414
crossref_primary_10_1016_j_jpowsour_2025_236347
crossref_primary_10_1002_cey2_501
crossref_primary_10_1007_s40820_021_00781_6
crossref_primary_10_1021_acsnano_2c02841
crossref_primary_10_1039_D3TA07658J
Cites_doi 10.1002/adfm.201803938
10.1016/j.ensm.2019.04.029
10.1016/j.cej.2020.126713
10.1002/ange.201811220
10.1002/adma.201902432
10.1021/acsnano.9b08832
10.1016/j.ensm.2020.04.016
10.1002/aenm.201901872
10.1021/acsnano.8b09548
10.1016/j.ensm.2019.09.026
10.1016/j.nanoen.2019.01.071
10.1021/acs.nanolett.9b03147
10.1038/natrevmats.2016.98
10.1002/adfm.202000815
10.1021/acsnano.9b01762
10.1021/acsnano.8b05739
10.1002/adfm.201905898
10.1002/adfm.201900326
10.1002/advs.201903077
10.1002/adfm.202000922
10.1016/j.nanoen.2020.105360
10.1002/adma.201704561
10.1016/j.ensm.2020.11.035
10.1002/adma.201902977
10.1002/adfm.201701264
10.1002/aenm.202001411
10.1002/smll.201904293
10.1002/aenm.201802087
10.1002/adfm.201903960
10.1002/aenm.201502100
10.1038/nenergy.2017.105
10.1002/aenm.201901839
10.1021/nn500497k
10.1002/anie.202012322
10.1002/adma.202001093
10.1002/adma.201806931
10.1126/science.1241488
10.1002/anie.202009086
10.1016/j.nanoen.2019.103880
10.1016/j.joule.2018.02.018
10.1002/adfm.201910028
10.1016/j.carbon.2020.07.041
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202101087
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202101087
ADFM202101087
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22005076; 21571040
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4227-62b5cfeece19bc1ecfda75838110bea768258de0c4c45384e1029087859300bc3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 10:03:31 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Tue Jul 01 04:12:26 EDT 2025
Wed Jan 22 16:30:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4227-62b5cfeece19bc1ecfda75838110bea768258de0c4c45384e1029087859300bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9967-3912
PQID 2528093714
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2528093714
crossref_citationtrail_10_1002_adfm_202101087
crossref_primary_10_1002_adfm_202101087
wiley_primary_10_1002_adfm_202101087_ADFM202101087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 406
2018; 28
2019; 9
2017; 2
2019; 31
2017; 27
2019; 13
2019; 15
2019; 58
2020; 59
2019; 19
2020; 14
2020; 78
2013; 341
2020; 32
2020; 10
2020; 169
2021; 35
2020; 7
2016; 6
2018; 8
2018; 2
2019; 20
2020; 30
2019; 63
2021
2020; 25
2019; 29
2018; 30
2018; 12
2021; 60
2014; 8
2019; 131
2020; 29
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Yao L. (e_1_2_7_8_1) 2021
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 455
  year: 2019
  publication-title: Nano Energy
– volume: 63
  year: 2019
  publication-title: Nano Energy
– year: 2021
  publication-title: ACS Nano
– volume: 25
  start-page: 563
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 4720
  year: 2014
  publication-title: ACS Nano
– volume: 14
  start-page: 2109
  year: 2020
  publication-title: ACS Nano
– volume: 169
  start-page: 225
  year: 2020
  publication-title: Carbon
– volume: 60
  start-page: 2861
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 6899
  year: 2019
  publication-title: ACS Nano
– volume: 406
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  start-page: 299
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 341
  start-page: 1502
  year: 2013
  publication-title: Science
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 19
  start-page: 7443
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 3448
  year: 2019
  publication-title: ACS Nano
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 778
  year: 2018
  publication-title: Joule
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 131
  start-page: 211
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  start-page: 630
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 163
  year: 2020
  publication-title: Energy Storage Mater.
– ident: e_1_2_7_2_1
  doi: 10.1002/adfm.201803938
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ensm.2019.04.029
– ident: e_1_2_7_40_1
  doi: 10.1016/j.cej.2020.126713
– ident: e_1_2_7_43_1
  doi: 10.1002/ange.201811220
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201902432
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.9b08832
– ident: e_1_2_7_22_1
  doi: 10.1016/j.ensm.2020.04.016
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201901872
– ident: e_1_2_7_15_1
  doi: 10.1021/acsnano.8b09548
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ensm.2019.09.026
– ident: e_1_2_7_39_1
  doi: 10.1016/j.nanoen.2019.01.071
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.nanolett.9b03147
– ident: e_1_2_7_36_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.202000815
– ident: e_1_2_7_37_1
  doi: 10.1021/acsnano.9b01762
– ident: e_1_2_7_34_1
  doi: 10.1021/acsnano.8b05739
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201905898
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.201900326
– ident: e_1_2_7_10_1
  doi: 10.1002/advs.201903077
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.202000922
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2020.105360
– year: 2021
  ident: e_1_2_7_8_1
  publication-title: ACS Nano
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201704561
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ensm.2020.11.035
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201902977
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201701264
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.202001411
– ident: e_1_2_7_21_1
  doi: 10.1002/smll.201904293
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.201802087
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201903960
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.201502100
– ident: e_1_2_7_26_1
  doi: 10.1038/nenergy.2017.105
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201901839
– ident: e_1_2_7_42_1
  doi: 10.1021/nn500497k
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202012322
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.202001093
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201806931
– ident: e_1_2_7_38_1
  doi: 10.1126/science.1241488
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.202009086
– ident: e_1_2_7_16_1
  doi: 10.1016/j.nanoen.2019.103880
– ident: e_1_2_7_32_1
  doi: 10.1016/j.joule.2018.02.018
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.201910028
– ident: e_1_2_7_28_1
  doi: 10.1016/j.carbon.2020.07.041
SSID ssj0017734
Score 2.6928256
Snippet 2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face‐to‐face restacking and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Capacitance
Cycles
Electrical resistivity
Energy storage
Flux density
Graphene
Materials science
MXene
MXenes
Oxidation
Oxidation resistance
Room temperature
self‐assembly
specific capacitance
Stability
Supercapacitors
Zinc
Title 3D Porous Oxidation‐Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High‐Performance Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202101087
https://www.proquest.com/docview/2528093714
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_aQJmlLN4-iQ6AnZy3ZXq2PS9JNKGwa8oClF2ONR7A08S5rG9qccsu1v7G_pDP2rndTCIX2JoMkW9JI88kz840QhwogcGnmPKMj54VxFnhxoAIPjXEkIMppw7HDo_Pe2U34eRyN16L4G36I9ocb74z6vOYNntqiuyINpRdwJDldWZTf53BydthiVHTZ8kcpYxqzck-xg5caL1kbfd192vypVlpBzXXAWmuc4WuRLr-1cTT5dlSV9gju_6Bx_J_BbInNBRyVg0Z-tsULzHfEqzWSwjfiMTiRF9P5tCrkl--TJgXTr4efl1gw9MxLORrTedk9ZeZrKsjBmmmikJwaBDCT9gcV5dWkrOTXSQ7yGu9mt4RzZVn77Ur2N6FeL1ZxDPKqmuEcSJnDhFMCvRU3w0_Xx2feIn2DB6HWxutpG4FDBFSxBYXgstSwlZYQh8WU7jk66mfoQwghHbshEtaJafTMwOb7FoJ3YiOf5vheSEKx6CPJlYl0COCsM5l2fow90r9gso7wlsuXwILbnFNs3CYNK7NOeIKTdoI74mNbf9awejxbc38pDclidxeJjnTfZyLBsCN0vax_6SUZnAxH7dPuvzTaEy-53Pha7ouNcl7hAeGh0n6oZf43hCcFYA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgHIADvyfKBviAxClr7CR1c6wopcA6pq2TKi5R_fIsVYy0ahMJOHHblb9xf8neS5q0Q0JIcHMi24nt9-zP9nvfE-KVAgjcNHWe0ZHzwjgNvDhQgYfGOBIQ5bRh3-HRUWd4Fn6YRLU1IfvCVPwQzYEba0Y5X7OC84F0e8MaSl9gV3Lasyi_a26KWxzWm3Wzf9IwSCljqovljmITLzWpeRt93b5e_vq6tAGb25C1XHMG94Wt_7YyNflyUOT2AH78RuT4X815IO6tEansVSL0UNzA7JG4u8VT-FhcBH15PF_Oi5X89G1WRWG6_PnrBFeMPrNcjiY0ZbbfMfk1JWRv63ZiJTk6CGAq7XdKytNZXsjPswzkGL8uzgnqyrw03ZVsckK1Hm9cGeRpscAl0HoOM44K9EScDd6O3wy9dQQHD0KtjdfRNgKHCKhiCwrBpVPDF7UEOixOaaujo26KPoQQ0swbIsGdmFrPJGy-byHYFTvZPMOnQhKQRR9JtEykQwBnnUm182Ps0BIMJm0Jrx6_BNb05hxl4zypiJl1wh2cNB3cEq-b_IuK2OOPOfdrcUjWCr5KdKS7PnMJhi2hy3H9Sy1Jrz8YNU_P_qXQS3F7OB4dJofvjz7uiTv8vjK93Bc7-bLA5wSPcvuiVIAryRUJeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4am4TgANsAURjgA9JOWWPHiZtjRSkbrKPaD6niEjUvz1LFSKs2kYATN678jfwlPCdt2iEhJDjFiWwntp_9PsfvfQ_gpUQM7DiznlGh9XScBV4cyMAjYywLiLTKON_hwVl0fKXfjsLRhhd_zQ_R_HBzM6Nar90En2W2vSYN5Rc4T3Leski_Y27Bjo746mDReUMgJY2pz5Uj6Sy85GhF2-ir9s3yN9XSGmtuItZK5fTvw3j1sbWlycejskiP8OtvPI7_05pduLfEo6JbC9AebFG-D3c3WAofwPegJ4bT-bRciPefJ3UMpp_ffpzTwmHPvBCDES-Y7TeO-poTortxNrEQLjYIUibSL5wUF5OiFB8mOYpL-jS7ZqArispwVziDE651uHZkEBfljObI2hwnLibQQ7jqv758dewt4zd4qJUyXqTSEC0RkoxTlIQ2Gxt3TMuQI6Uxb3RU2MnIR42a111NDHZibr2jYPP9FINHsJ1Pc3oMgmEs-cSCZUKlEW1qTaasH1PEChhN1gJvNXwJLsnNXYyN66SmZVaJ6-Ck6eAWHDb5ZzWtxx9zHqykIVlO70WiQtXxHZOgboGqhvUvtSTdXn_Q3D35l0Iv4Paw109OT87ePYU77nFtd3kA28W8pGeMjYr0eSX-vwDDqggx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Porous+Oxidation%E2%80%90Resistant+MXene%2FGraphene+Architectures+Induced+by+In+Situ+Zinc+Template+toward+High%E2%80%90Performance+Supercapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Xue&rft.au=Wang%2C+Qian&rft.au=Zhu%2C+Kai&rft.au=Ye%2C+Ke&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202101087&rft.externalDBID=10.1002%252Fadfm.202101087&rft.externalDocID=ADFM202101087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon