Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage
In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance o...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 27 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed.
Heteroatom doping is an effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics. Herein, an overview of recent advancements in understanding the heteroatom doping effect on sodium ion storage is presented. Different doping strategies are reviewed and summarized in detail. Future development trends in doping strategies are analyzed. |
---|---|
AbstractList | In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed. In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed. Heteroatom doping is an effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics. Herein, an overview of recent advancements in understanding the heteroatom doping effect on sodium ion storage is presented. Different doping strategies are reviewed and summarized in detail. Future development trends in doping strategies are analyzed. |
Author | Xia, Xinhui Li, Yu Liang, Xinqi Liu, Bo Zhang, Yan Chen, Minghua |
Author_xml | – sequence: 1 givenname: Yu surname: Li fullname: Li, Yu organization: Harbin University of Science and Technology – sequence: 2 givenname: Minghua surname: Chen fullname: Chen, Minghua email: mhchen@hrbust.edu.cn organization: Harbin University of Science and Technology – sequence: 3 givenname: Bo surname: Liu fullname: Liu, Bo organization: Zhejiang University – sequence: 4 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Zhejiang University – sequence: 5 givenname: Xinqi surname: Liang fullname: Liang, Xinqi organization: Harbin University of Science and Technology – sequence: 6 givenname: Xinhui orcidid: 0000-0002-5976-5337 surname: Xia fullname: Xia, Xinhui email: helloxxh@zju.edu.cn organization: Zhejiang University |
BookMark | eNqFkE1LAzEURYNUsNZuXQdcT83XzGTcSK3VFqouqrgMMfOmpHSSmkmV_nunVCoI4uq9xTn3wj1FHecdIHROyYASwi41uHrACCOEFCw_Ql2aUZFkUpDO4efsBPWbZtkyRBSUcN5F1xOIELyOvsa3fm3d4goPHR5XFZhoPwC_6i2OHt9430Q896Xd1HjqHZ5HH_QCztBxpVcN9L9vD73cjZ9Hk2T2dD8dDWeJEYzlSSorklUEmEwl4QZ0Lkua5sALZkxODSWMSZAiL6SQIDgvwUBq6BvPWrLMeQ9d7HPXwb9voIlq6TfBtZWKCZaKgstMtNRgT5ngmyZApdbB1jpsFSVqt5Pa7aQOO7WC-CUYG3W03sWg7epvrdhrn3YF239K1HD8-PDjfgH2I3yN |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_109880 crossref_primary_10_1039_D3MH00003F crossref_primary_10_1021_acsaem_0c02327 crossref_primary_10_1021_acsami_1c18464 crossref_primary_10_1002_ente_202401211 crossref_primary_10_1002_smll_202203281 crossref_primary_10_1039_D2MA01002J crossref_primary_10_1002_ange_202108605 crossref_primary_10_1002_smm2_1231 crossref_primary_10_1016_j_jpowsour_2024_235508 crossref_primary_10_1016_j_ensm_2022_05_018 crossref_primary_10_1016_j_grets_2024_100152 crossref_primary_10_1021_acsami_1c04194 crossref_primary_10_1016_j_chphma_2024_01_004 crossref_primary_10_1016_j_joule_2024_03_006 crossref_primary_10_1016_j_jallcom_2022_166235 crossref_primary_10_1002_bte2_70006 crossref_primary_10_1002_ange_202312310 crossref_primary_10_1007_s12613_022_2539_8 crossref_primary_10_1016_j_ccr_2022_214715 crossref_primary_10_1016_j_cej_2024_153843 crossref_primary_10_1021_acs_energyfuels_1c02238 crossref_primary_10_1021_acsanm_4c01889 crossref_primary_10_1007_s12274_021_3462_4 crossref_primary_10_1016_j_apsusc_2021_151307 crossref_primary_10_1016_j_jiec_2025_02_051 crossref_primary_10_1039_D1TA05755C crossref_primary_10_1016_j_jclepro_2024_142169 crossref_primary_10_1016_j_materresbull_2021_111425 crossref_primary_10_1002_bte2_20240052 crossref_primary_10_1016_j_diamond_2025_112061 crossref_primary_10_1021_acsami_4c08480 crossref_primary_10_1016_j_jpowsour_2020_229051 crossref_primary_10_1002_asia_202300449 crossref_primary_10_1002_sstr_202100217 crossref_primary_10_1002_eem2_12633 crossref_primary_10_1016_j_jallcom_2022_164279 crossref_primary_10_1021_acsami_3c07504 crossref_primary_10_1063_5_0254535 crossref_primary_10_1002_smtd_202001050 crossref_primary_10_1039_D4TA07393B crossref_primary_10_20517_microstructures_2023_102 crossref_primary_10_1007_s41918_024_00227_8 crossref_primary_10_1016_j_est_2024_114883 crossref_primary_10_1016_j_ijbiomac_2025_140814 crossref_primary_10_1021_acsnano_3c09386 crossref_primary_10_1021_acs_energyfuels_3c00678 crossref_primary_10_1016_j_est_2023_110299 crossref_primary_10_1007_s12274_021_3715_2 crossref_primary_10_1016_j_jallcom_2022_166265 crossref_primary_10_1002_adfm_202007247 crossref_primary_10_1021_acsami_1c15392 crossref_primary_10_1016_j_cej_2025_161953 crossref_primary_10_1016_j_ensm_2022_04_007 crossref_primary_10_1016_j_jallcom_2021_161888 crossref_primary_10_1039_D4QO00683F crossref_primary_10_26599_NRE_2023_9120098 crossref_primary_10_1039_D1SC05715D crossref_primary_10_1002_smll_202308011 crossref_primary_10_3390_batteries9030143 crossref_primary_10_1016_j_jcis_2023_07_082 crossref_primary_10_1039_D3CC02902F crossref_primary_10_1002_smll_202308136 crossref_primary_10_1039_D3CC05341E crossref_primary_10_1002_adfm_202304271 crossref_primary_10_1016_j_apsusc_2021_150380 crossref_primary_10_1016_j_ccr_2021_214147 crossref_primary_10_1016_j_est_2024_110587 crossref_primary_10_1007_s40820_024_01495_1 crossref_primary_10_1021_acsaem_2c02417 crossref_primary_10_1021_acssuschemeng_1c00418 crossref_primary_10_1002_advs_202301160 crossref_primary_10_1039_D1DT00490E crossref_primary_10_3390_ma15124249 crossref_primary_10_1007_s40820_024_01351_2 crossref_primary_10_1016_j_diamond_2022_109382 crossref_primary_10_1016_j_jallcom_2021_159670 crossref_primary_10_1021_acsnano_0c10624 crossref_primary_10_1016_j_apmt_2025_102587 crossref_primary_10_1016_j_jcis_2024_03_056 crossref_primary_10_1016_j_materresbull_2020_111186 crossref_primary_10_1039_D4TA02817A crossref_primary_10_1016_j_est_2024_111565 crossref_primary_10_3390_c10010003 crossref_primary_10_3389_fchem_2022_1002540 crossref_primary_10_1002_adma_202100855 crossref_primary_10_1016_j_cej_2022_139805 crossref_primary_10_1021_acsami_2c20068 crossref_primary_10_1002_aenm_202303064 crossref_primary_10_1016_j_cej_2023_146090 crossref_primary_10_3390_batteries9020144 crossref_primary_10_1088_1361_6463_abc11e crossref_primary_10_1002_anie_202116394 crossref_primary_10_1007_s11581_024_05776_y crossref_primary_10_1016_j_carbon_2024_119354 crossref_primary_10_1021_acsami_2c12685 crossref_primary_10_1016_j_jcis_2025_137299 crossref_primary_10_1021_acsami_1c22817 crossref_primary_10_1039_D1NJ00262G crossref_primary_10_1039_D4CC05773B crossref_primary_10_1016_j_jelechem_2024_118179 crossref_primary_10_1016_j_matlet_2022_132754 crossref_primary_10_1039_D4TA05292G crossref_primary_10_1016_j_vacuum_2024_113738 crossref_primary_10_1007_s10853_024_09918_5 crossref_primary_10_1021_acsami_2c21043 crossref_primary_10_1002_batt_202300613 crossref_primary_10_1016_j_tsf_2020_138439 crossref_primary_10_1002_ange_202116394 crossref_primary_10_26599_NRE_2022_9120142 crossref_primary_10_1007_s11426_022_1550_2 crossref_primary_10_1007_s11581_024_05437_0 crossref_primary_10_54097_hset_v73i_14678 crossref_primary_10_1016_j_apmt_2021_100985 crossref_primary_10_1016_j_jechem_2021_11_040 crossref_primary_10_1002_smll_202300107 crossref_primary_10_1039_D3QI00173C crossref_primary_10_1016_j_jcis_2024_02_112 crossref_primary_10_1039_D3QI01397A crossref_primary_10_1002_adma_202305135 crossref_primary_10_1039_D1RA06427D crossref_primary_10_1016_j_nanoen_2024_110587 crossref_primary_10_1002_adfm_202308392 crossref_primary_10_3390_batteries9010036 crossref_primary_10_1007_s12274_022_4453_9 crossref_primary_10_1039_D3YA00241A crossref_primary_10_1016_j_jcis_2021_02_060 crossref_primary_10_1016_j_jmat_2022_06_004 crossref_primary_10_1016_j_jcis_2021_12_125 crossref_primary_10_1016_j_joule_2024_01_010 crossref_primary_10_1016_j_surfcoat_2023_130169 crossref_primary_10_1016_j_jallcom_2024_174924 crossref_primary_10_1016_j_jcis_2024_06_145 crossref_primary_10_1016_j_jcou_2022_102374 crossref_primary_10_1002_aenm_202303773 crossref_primary_10_1016_j_electacta_2021_138712 crossref_primary_10_20517_cs_2024_53 crossref_primary_10_12677_CES_2023_113095 crossref_primary_10_20517_energymater_2024_28 crossref_primary_10_1021_acsaem_0c01855 crossref_primary_10_1021_acsnano_3c10779 crossref_primary_10_1002_app_53544 crossref_primary_10_1016_j_cej_2025_161574 crossref_primary_10_1016_j_jpowsour_2025_236814 crossref_primary_10_1016_j_jcis_2023_05_062 crossref_primary_10_1021_acsami_0c20721 crossref_primary_10_1016_j_jallcom_2022_165647 crossref_primary_10_1039_D0RA04901H crossref_primary_10_1016_j_jcis_2023_05_077 crossref_primary_10_1002_batt_202400471 crossref_primary_10_1002_tcr_202000182 crossref_primary_10_1002_adfm_202214429 crossref_primary_10_1016_j_ensm_2022_03_007 crossref_primary_10_1016_j_jpowsour_2024_234594 crossref_primary_10_1016_j_est_2024_112986 crossref_primary_10_1016_j_cej_2024_154873 crossref_primary_10_1149_2162_8777_ad5b87 crossref_primary_10_1039_D1TA06708G crossref_primary_10_1021_acsami_2c17789 crossref_primary_10_1039_D3DT00101F crossref_primary_10_1016_j_ccr_2024_216039 crossref_primary_10_1002_smll_202101058 crossref_primary_10_1016_j_cej_2023_144419 crossref_primary_10_1002_qua_26660 crossref_primary_10_1021_acsaem_0c01431 crossref_primary_10_1016_j_ssi_2024_116622 crossref_primary_10_1007_s12598_022_01992_5 crossref_primary_10_1002_cssc_202300435 crossref_primary_10_1039_D1TA07310A crossref_primary_10_1039_D2TA09612A crossref_primary_10_1016_j_ceramint_2024_07_429 crossref_primary_10_1016_j_ijhydene_2022_04_032 crossref_primary_10_1016_j_surfin_2024_105581 crossref_primary_10_1016_j_jechem_2022_07_024 crossref_primary_10_1016_j_cej_2022_136918 crossref_primary_10_1016_j_jcis_2023_05_096 crossref_primary_10_1016_j_electacta_2022_140049 crossref_primary_10_1016_j_ensm_2024_103480 crossref_primary_10_1016_j_ensm_2023_103022 crossref_primary_10_1007_s11664_021_09196_w crossref_primary_10_1002_inf2_12422 crossref_primary_10_1016_j_est_2023_108484 crossref_primary_10_1016_j_jcis_2024_05_073 crossref_primary_10_1039_D4TA02115K crossref_primary_10_3390_batteries11040123 crossref_primary_10_1039_D2TA06793E crossref_primary_10_1016_j_cej_2023_145844 crossref_primary_10_1016_j_esci_2024_100249 crossref_primary_10_1039_D4EE03708A crossref_primary_10_1002_adfm_202103912 crossref_primary_10_1002_celc_202001409 crossref_primary_10_1039_D4TA06625A crossref_primary_10_1016_j_apsusc_2021_149566 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1002_adfm_202102827 crossref_primary_10_1016_j_jcis_2023_02_011 crossref_primary_10_1021_acsnano_3c11785 crossref_primary_10_1016_j_susmat_2022_e00479 crossref_primary_10_1021_acs_iecr_2c04054 crossref_primary_10_1039_D1SE00219H crossref_primary_10_1002_aenm_202202600 crossref_primary_10_1016_j_ssi_2022_116114 crossref_primary_10_1002_adfm_202403648 crossref_primary_10_1016_j_electacta_2022_141157 crossref_primary_10_1016_j_susmat_2022_e00480 crossref_primary_10_1021_acsmaterialslett_4c00244 crossref_primary_10_1016_j_jcis_2022_02_069 crossref_primary_10_1016_j_addr_2022_114314 crossref_primary_10_1016_j_jechem_2021_04_007 crossref_primary_10_1016_j_egyr_2022_09_167 crossref_primary_10_1002_idm2_12132 crossref_primary_10_1016_j_jallcom_2021_162143 crossref_primary_10_1039_D1TA09516A crossref_primary_10_1016_j_mtener_2024_101781 crossref_primary_10_1007_s11664_020_08425_y crossref_primary_10_1016_j_est_2023_107242 crossref_primary_10_1002_adma_202310336 crossref_primary_10_1039_D2RA03601K crossref_primary_10_3390_app12189123 crossref_primary_10_5796_electrochemistry_23_00012 crossref_primary_10_1016_j_mtcomm_2023_107361 crossref_primary_10_1007_s41918_020_00093_0 crossref_primary_10_1016_j_jallcom_2022_164979 crossref_primary_10_1021_acsami_1c14314 crossref_primary_10_1002_adfm_202402178 crossref_primary_10_1016_j_matchemphys_2021_124456 crossref_primary_10_1002_cey2_482 crossref_primary_10_1002_smll_202406332 crossref_primary_10_1039_D3DT01709E crossref_primary_10_1016_j_jallcom_2023_172522 crossref_primary_10_1016_j_ensm_2022_10_049 crossref_primary_10_1002_aesr_202200009 crossref_primary_10_1021_acsami_0c21447 crossref_primary_10_1039_D2CP03740H crossref_primary_10_1021_acsaem_4c00097 crossref_primary_10_1002_batt_202300271 crossref_primary_10_1021_acsami_3c12772 crossref_primary_10_3390_batteries11010028 crossref_primary_10_1016_j_jcis_2023_12_099 crossref_primary_10_1002_cey2_257 crossref_primary_10_1016_j_ensm_2022_08_007 crossref_primary_10_1007_s11664_022_09909_9 crossref_primary_10_1016_j_susmat_2021_e00312 crossref_primary_10_1039_D3NJ05154D crossref_primary_10_1016_j_ensm_2021_07_044 crossref_primary_10_1021_acsaem_2c03051 crossref_primary_10_1039_D4SC00510D crossref_primary_10_1002_nano_202100177 crossref_primary_10_1039_D2TA02937E crossref_primary_10_1021_acsenergylett_1c01855 crossref_primary_10_1039_D3SC05283D crossref_primary_10_3390_inorganics11030118 crossref_primary_10_1016_j_susmat_2024_e01052 crossref_primary_10_1016_j_jpowsour_2024_235043 crossref_primary_10_1016_j_susmat_2024_e01059 crossref_primary_10_1016_j_apsusc_2021_149810 crossref_primary_10_1002_cey2_388 crossref_primary_10_1039_D2NJ03990G crossref_primary_10_1080_10408436_2023_2273465 crossref_primary_10_1016_j_est_2023_107256 crossref_primary_10_26599_NRE_2024_9120142 crossref_primary_10_1002_adfm_202404263 crossref_primary_10_1016_j_carbon_2022_10_036 crossref_primary_10_1016_S1003_6326_24_66677_X crossref_primary_10_1002_aenm_202200715 crossref_primary_10_1002_tcr_202200122 crossref_primary_10_1039_D2TA00608A crossref_primary_10_1016_j_cej_2021_130246 crossref_primary_10_1002_smll_202408792 crossref_primary_10_1016_j_jallcom_2021_163394 crossref_primary_10_1016_j_cej_2022_137286 crossref_primary_10_1039_D0EE03916K crossref_primary_10_1088_1361_6528_aba7e1 crossref_primary_10_1039_D5EE00136F crossref_primary_10_1016_j_jpowsour_2024_235026 crossref_primary_10_1007_s11224_024_02427_w crossref_primary_10_1016_j_susmat_2021_e00255 crossref_primary_10_1007_s42765_021_00088_6 crossref_primary_10_1039_D3TA03215A crossref_primary_10_1002_celc_202100735 crossref_primary_10_1016_j_ensm_2023_02_005 crossref_primary_10_1039_D2TA02584A crossref_primary_10_1016_j_pmatsci_2022_101055 crossref_primary_10_1016_j_gee_2021_03_007 crossref_primary_10_1021_acsaem_3c00229 crossref_primary_10_1016_j_mtener_2022_101196 crossref_primary_10_1039_D1TA10439J crossref_primary_10_1016_S1872_5805_25_60953_X crossref_primary_10_1038_s41467_024_50899_5 crossref_primary_10_1016_j_carbon_2023_118778 crossref_primary_10_1016_j_renene_2022_10_102 crossref_primary_10_1039_D0TA12417F crossref_primary_10_1021_acssuschemeng_1c04341 crossref_primary_10_3390_molecules27196516 crossref_primary_10_1016_j_cej_2024_153230 crossref_primary_10_1039_D2RA08135K crossref_primary_10_1039_D3RA04706G crossref_primary_10_1007_s12274_021_3873_2 crossref_primary_10_1021_acsami_4c06305 crossref_primary_10_1002_adfm_202310256 crossref_primary_10_1016_j_susmat_2021_e00357 crossref_primary_10_1016_j_mtener_2024_101642 crossref_primary_10_1002_smll_202007652 crossref_primary_10_1016_j_apsusc_2022_153612 crossref_primary_10_1021_acsami_2c18433 crossref_primary_10_1016_j_susmat_2021_e00342 crossref_primary_10_1016_j_nanoms_2024_10_003 crossref_primary_10_1002_adfm_202110853 crossref_primary_10_1016_j_compositesb_2022_109912 crossref_primary_10_1016_j_indcrop_2024_118060 crossref_primary_10_1021_acssuschemeng_2c02710 crossref_primary_10_1016_j_est_2022_106395 crossref_primary_10_1016_j_mtphys_2023_101099 crossref_primary_10_1016_j_est_2024_114213 crossref_primary_10_1007_s11581_023_04958_4 crossref_primary_10_1002_advs_202307995 crossref_primary_10_1016_j_jpowsour_2022_232517 crossref_primary_10_1021_acs_chemmater_3c02981 crossref_primary_10_1016_j_apsusc_2022_154481 crossref_primary_10_1039_D4CC03352C crossref_primary_10_1002_eem2_12573 crossref_primary_10_1039_D1QM00052G crossref_primary_10_1002_advs_202206924 crossref_primary_10_1039_D0NR06614A crossref_primary_10_1002_cey2_641 crossref_primary_10_1007_s11664_020_08600_1 crossref_primary_10_1016_j_electacta_2020_136832 crossref_primary_10_1021_acsami_4c07348 crossref_primary_10_1039_D1MA00315A crossref_primary_10_1016_j_apsusc_2022_154118 crossref_primary_10_1002_advs_202106067 crossref_primary_10_1016_j_jcis_2025_01_168 crossref_primary_10_1016_j_jcis_2025_01_169 crossref_primary_10_1002_anie_202312310 crossref_primary_10_1016_j_seppur_2024_131019 crossref_primary_10_12677_JAPC_2023_124039 crossref_primary_10_1039_D1TA05432E crossref_primary_10_1039_D3EE01344H crossref_primary_10_1002_advs_202305558 crossref_primary_10_1021_acs_energyfuels_4c00031 crossref_primary_10_1016_j_carbon_2024_119276 crossref_primary_10_1016_j_jechem_2023_10_008 crossref_primary_10_1002_smtd_202201370 crossref_primary_10_1016_j_jallcom_2021_162511 crossref_primary_10_1016_j_jechem_2022_01_048 crossref_primary_10_1016_j_jallcom_2023_171808 crossref_primary_10_1016_j_aej_2025_01_121 crossref_primary_10_1002_anie_202108605 crossref_primary_10_1016_j_ijhydene_2023_07_306 crossref_primary_10_1016_j_electacta_2022_141755 crossref_primary_10_1016_j_jallcom_2023_170601 crossref_primary_10_1016_j_jallcom_2024_174266 crossref_primary_10_1039_D3SC05593K crossref_primary_10_1016_j_ceramint_2024_05_143 crossref_primary_10_1021_acs_energyfuels_3c00056 crossref_primary_10_3390_mi13050806 crossref_primary_10_1002_smll_202101974 crossref_primary_10_1063_5_0097264 crossref_primary_10_1002_ente_202100547 crossref_primary_10_1002_aenm_202100667 crossref_primary_10_1016_j_jcis_2021_04_047 crossref_primary_10_1016_j_cej_2023_145183 crossref_primary_10_1016_j_cej_2021_133922 crossref_primary_10_1016_j_jcis_2022_07_094 crossref_primary_10_1016_j_mtener_2021_100898 crossref_primary_10_1016_S1872_5805_22_60630_9 crossref_primary_10_1016_j_ensm_2022_06_012 crossref_primary_10_1007_s10853_025_10662_7 crossref_primary_10_1016_j_jechem_2023_04_035 crossref_primary_10_3390_ma17133327 crossref_primary_10_1039_D2TA05092G crossref_primary_10_3390_nano12193530 crossref_primary_10_1002_advs_202200341 crossref_primary_10_1016_j_jechem_2023_10_023 crossref_primary_10_1016_j_electacta_2022_141813 crossref_primary_10_1080_15435075_2025_2483447 crossref_primary_10_34133_research_0209 crossref_primary_10_1007_s40820_024_01526_x crossref_primary_10_1002_aenm_202204259 crossref_primary_10_1016_j_matlet_2022_133542 crossref_primary_10_1093_mam_ozae044_591 crossref_primary_10_1016_j_jelechem_2021_115669 crossref_primary_10_1016_j_ensm_2022_08_035 crossref_primary_10_1002_adfm_202107718 crossref_primary_10_1002_batt_202300233 crossref_primary_10_1016_j_carbon_2021_03_022 crossref_primary_10_1002_batt_202100022 crossref_primary_10_1016_j_ensm_2025_104041 crossref_primary_10_1016_j_jallcom_2023_169314 crossref_primary_10_1016_j_jcis_2022_06_062 crossref_primary_10_1016_j_cej_2024_158761 crossref_primary_10_1039_D4NA00416G crossref_primary_10_1016_j_pmatsci_2023_101166 crossref_primary_10_1016_j_mtnano_2023_100321 crossref_primary_10_1007_s12613_023_2685_7 crossref_primary_10_1021_acs_energyfuels_4c03980 crossref_primary_10_3390_molecules28031409 crossref_primary_10_1016_j_est_2023_109921 crossref_primary_10_1002_adma_202407359 crossref_primary_10_1021_acsaem_4c02485 crossref_primary_10_1016_j_scib_2022_09_021 crossref_primary_10_1002_adfm_202408657 crossref_primary_10_1088_1361_6528_ac1131 crossref_primary_10_1093_mam_ozae044_253 crossref_primary_10_1002_aenm_202202052 crossref_primary_10_1039_D1QM00471A crossref_primary_10_1002_cey2_503 crossref_primary_10_1016_j_cej_2021_131758 crossref_primary_10_1016_j_jcis_2024_09_152 crossref_primary_10_1016_j_est_2023_107614 crossref_primary_10_1021_acsanm_1c01264 |
Cites_doi | 10.1039/C7TA06577A 10.1016/S1003-6326(08)60060-6 10.1039/C6TA00236F 10.1016/j.cej.2019.01.158 10.1021/acsami.6b09898 10.1142/S1793604719500498 10.1016/j.solidstatesciences.2019.04.014 10.1016/j.materresbull.2015.12.005 10.1002/anie.201602202 10.1016/j.jechem.2019.06.016 10.1039/C7TA08261D 10.1016/j.nanoen.2019.104219 10.1039/C7TA01480E 10.1002/smll.201600606 10.1016/j.carbon.2012.12.072 10.1002/adma.201405370 10.1002/adma.201700210 10.1039/C8CC01631C 10.1021/acssuschemeng.9b05948 10.1016/j.jpowsour.2019.227514 10.1007/s11581-016-1919-3 10.1039/D0TA02922J 10.1021/ja907098f 10.1016/j.nanoen.2017.12.042 10.1039/C9TA02710F 10.1016/j.jallcom.2018.11.257 10.1039/C6TA09195D 10.1016/j.matlet.2019.127064 10.1039/C7EE01628J 10.1021/nl803279t 10.1039/C5EE01985K 10.1002/cey2.8 10.1016/j.electacta.2018.04.006 10.1039/C4EE03361B 10.1039/C9TA02107H 10.1016/j.electacta.2015.02.055 10.1039/C4CP01045K 10.1002/adfm.201700522 10.1039/C8TA02067A 10.1039/C3EE44004D 10.1021/acsami.8b21257 10.1002/chem.201703375 10.1002/adma.201604108 10.1039/C5TA03519H 10.1016/j.jpowsour.2013.05.040 10.1016/j.matlet.2016.02.121 10.1021/acs.chemmater.6b04769 10.1002/smll.201600101 10.1021/acsami.8b15940 10.1016/j.jpowsour.2017.11.043 10.1016/j.jpowsour.2020.228110 10.1016/j.electacta.2016.01.105 10.1016/j.carbon.2018.08.071 10.1021/acsami.7b01986 10.1016/j.nanoen.2019.02.074 10.1021/cr400407a 10.1021/acsami.9b07865 10.1016/j.scib.2017.12.024 10.1039/C5CC06266G 10.1021/acs.inorgchem.8b00284 10.1039/C6TA08472A 10.1016/j.jallcom.2016.01.101 10.1016/j.jallcom.2019.04.271 10.1016/j.jpowsour.2018.09.103 10.1016/j.ceramint.2018.06.163 10.1149/2.1061807jes 10.1002/adma.201605820 10.1016/j.jechem.2019.02.005 10.1039/C7RA09349G 10.1039/C8TA10980J 10.1039/C4CS00141A 10.1016/j.jallcom.2019.03.127 10.1038/s41467-019-13945-1 10.1016/j.ensm.2018.01.005 10.1021/acsami.8b00614 10.1016/j.matlet.2020.127403 10.1016/j.jpowsour.2015.03.164 10.1021/acssuschemeng.8b06326 10.1002/anie.201310679 10.1002/adma.201503221 10.1039/C6RA16515J 10.1039/C9CC01018A 10.1002/advs.201600243 10.1007/s10853-019-03416-9 10.1039/C8TA12540F 10.1038/s41467-019-11960-w 10.1016/j.electacta.2016.12.094 10.1002/adma.201502864 10.1016/j.electacta.2016.12.019 10.1016/j.apcatb.2018.02.034 10.1021/acsnano.6b05653 10.1002/cey2.14 10.1039/C4TA03948C 10.1016/j.electacta.2016.10.016 10.1016/j.ensm.2017.03.006 10.1002/aenm.201700189 10.1021/nl3016957 10.1016/j.electacta.2019.02.067 10.1002/advs.201500031 10.1002/aenm.201602898 10.1149/2.0041505eel 10.1016/j.electacta.2017.05.090 10.1016/j.materresbull.2017.03.016 10.1021/acssuschemeng.8b06385 10.1016/j.electacta.2018.05.174 10.1016/j.apsusc.2013.02.035 10.1021/acsami.9b05667 10.1039/C6TA08364A 10.1016/j.jelechem.2019.113392 10.1016/j.jallcom.2019.01.125 10.1039/C8QI00285A 10.1016/j.electacta.2018.09.192 10.1021/acsami.9b08378 10.1002/aenm.201802379 10.1016/j.carbon.2016.05.052 10.1016/j.electacta.2015.04.125 10.1002/celc.201801760 10.1002/cssc.201701664 10.1039/C6TA10577G 10.1002/aenm.201500658 10.1039/C7TA08970H 10.1039/C7NR01280B 10.1021/acsami.8b05618 10.1021/acsami.8b19637 10.1039/C9NR02277E 10.1039/C9TA04450G 10.1039/C6TA07109K 10.1002/smll.201905452 10.1039/C8TA00117K 10.1016/j.materresbull.2015.08.035 10.1016/j.jpowsour.2019.227586 10.1002/smll.201602742 10.1016/j.cclet.2019.06.044 10.1039/C7RA03628K 10.1002/adfm.201800394 10.1016/j.apsusc.2018.09.035 10.1016/j.jpowsour.2005.12.079 10.1002/smtd.201800323 10.1007/s10854-019-00965-2 10.1002/adfm.201402833 10.1016/j.ensm.2017.09.003 10.1016/j.jpowsour.2016.10.067 10.1039/C5CC02564H 10.1039/C7TA00690J 10.1016/j.apsusc.2019.143717 10.1063/1674-0068/31/cjcp1802013 10.1039/c2ra01367c 10.1016/j.commatsci.2013.12.052 10.1002/adfm.201901912 10.1016/j.jpowsour.2019.03.031 10.1002/aenm.201803342 10.1039/C9TA09502K 10.1021/jp9731821 10.1039/C6TA04592H 10.1088/1361-6528/aab120 10.1002/cey2.24 10.1039/C5CP05212B 10.1039/C3NR05374A 10.1002/cey2.29 10.1039/C6EE01750A 10.1039/C9RA10485B 10.1002/adma.201700748 10.1002/advs.201600112 10.1002/adma.201504412 10.1039/C9TA00869A 10.1021/acs.chemmater.7b03903 10.1016/j.ssi.2019.01.025 10.1021/acsami.9b02555 10.1002/cey2.21 10.1038/srep02260 10.20964/2018.02.62 10.1002/advs.201700880 10.1002/cey2.28 10.1002/adma.201400719 10.1021/nl301409h 10.1021/acs.chemmater.6b01935 10.1007/s11581-018-2830-x 10.1016/j.ensm.2020.04.003 10.1021/acs.jpclett.7b02012 10.1002/adfm.201100854 10.1002/cssc.201802948 10.1016/j.jechem.2018.11.007 10.1016/j.matlet.2017.04.001 10.1021/acsami.7b18226 10.1002/smll.201802218 10.1002/aenm.201601329 10.1016/j.jpowsour.2017.01.014 10.1016/j.fuproc.2018.05.007 10.1038/s41467-018-07646-4 10.1002/advs.201500286 10.1016/j.electacta.2016.09.003 10.1002/adma.201503015 10.1016/j.carbon.2015.06.076 10.1039/C8TA11890F 10.1039/C8TA06232C 10.1039/C8CC04426K 10.1016/j.jallcom.2017.09.020 10.1039/C8TA11915E 10.1002/aenm.201501929 10.1002/cey2.1 10.1021/acs.chemmater.5b04557 10.1016/j.electacta.2019.04.059 10.1039/C6TA04906K 10.1002/advs.201900151 10.1021/acsami.7b06290 10.1002/aenm.201601804 10.1016/j.carbon.2017.02.057 10.1016/j.electacta.2018.10.150 10.1039/C8TA06412A 10.1021/am4060222 10.1002/cey2.22 10.1002/ppsc.201600315 10.1002/smll.201700762 10.1016/j.electacta.2016.07.089 10.1002/adma.201706668 10.1002/aenm.201602894 10.1039/C9TA02268F 10.1021/acsami.9b14249 10.1016/j.jpowsour.2017.12.028 10.1007/s10800-018-1196-0 10.1016/j.matlet.2016.11.110 10.1039/C6TA10494K 10.1016/j.carbon.2017.01.101 10.1002/aenm.201502217 10.1002/smll.201805427 10.1039/C8TA11578H 10.1039/C8TA09247H 10.1016/j.carbon.2015.12.066 10.1149/1.1393348 10.1002/anie.201407898 10.1021/nl504038s 10.1016/j.nanoen.2014.08.011 10.1039/C6TA04929J 10.1007/s11581-017-2122-x 10.1016/j.jpowsour.2014.09.046 10.1016/j.mtener.2018.02.001 10.1016/j.jcis.2019.11.085 10.1039/C4RA01200C 10.1016/j.carbon.2017.07.056 10.1002/advs.201800241 10.1039/C8CC00365C 10.1039/C7TA00880E 10.1016/j.nanoen.2016.11.023 10.1088/0957-4484/27/17/175402 10.1002/adfm.201606232 10.1016/j.jpowsour.2017.04.076 10.1039/C8TA06905K 10.1016/j.ensm.2020.02.033 10.1002/adma.201802035 10.1007/s40843-017-9045-9 10.1039/C6TA02139E 10.1002/advs.201500195 10.1021/acsami.9b08987 10.1039/C4EE03759F 10.1149/2.1041910jes 10.1021/acs.nanolett.6b00057 10.1002/cssc.201200680 10.1016/j.ssi.2018.07.006 10.1016/j.electacta.2013.10.211 10.1016/j.electacta.2018.05.082 10.1016/j.ceramint.2017.05.063 10.1021/acsami.8b08380 10.1002/cey2.19 10.1038/nchem.281 10.1016/j.ensm.2019.03.011 10.1039/C5TA03528G 10.1039/C5RA19717A 10.1039/c2ee21802j 10.1021/acsami.7b16077 10.1016/j.ensm.2017.11.008 10.1039/c1cc14419g 10.1021/acsami.7b15659 10.1002/aenm.201900036 10.1021/acsami.5b00594 10.1016/j.carbon.2017.05.072 10.1016/j.nanoen.2015.05.038 10.1016/j.electacta.2016.05.013 10.1166/jctn.2008.1123 10.1016/j.carbon.2018.06.035 10.1016/j.cej.2019.122457 10.1016/j.carbon.2015.04.049 10.1021/acs.jpcc.5b05443 10.1016/j.jpowsour.2017.10.019 10.1016/j.electacta.2018.06.074 10.1039/c3ta00184a 10.1016/j.synthmet.2016.07.011 10.1088/1674-1056/23/11/118202 10.1039/C6RA24386J 10.1016/j.carbon.2018.01.053 10.1021/nn203393d 10.1002/celc.201901829 10.1021/acsami.7b18195 10.1039/C7SE00134G 10.1016/j.ceramint.2018.05.233 10.1007/s12274-017-1649-5 10.1002/aenm.201501489 10.1016/j.jallcom.2019.04.338 10.1142/S1793292016501241 10.1016/j.electacta.2018.04.216 10.1039/C7TA02194A 10.1016/j.ceramint.2019.03.074 10.1039/C7RA00469A 10.1039/C6TA08667E 10.1016/j.jallcom.2018.01.350 10.1002/advs.201600468 10.1002/celc.201700554 10.1007/s11706-018-0414-3 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202000927 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202000927 AENM202000927 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Science and Technology Development by Central Government of China funderid: ZY18C04 – fundername: National Natural Science Foundation of China funderid: 51502063; 51772272 – fundername: Fundamental Research Foundation for Universities of Heilongjiang Province funderid: LGYC2018JQ006 – fundername: Young Innovative Talents of HUST funderid: 201505 – fundername: National Youth Talent Support Program of China – fundername: Natural Science Funds for Distinguished Young Scholar of Zhejiang Province funderid: LR20E020001 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4227-58f06f0e285803cea78d157e392cc71c10228e8479848e433dece5c1b3678dd73 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:03:31 EDT 2025 Tue Jul 01 01:43:35 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Wed Jan 22 16:34:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4227-58f06f0e285803cea78d157e392cc71c10228e8479848e433dece5c1b3678dd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5976-5337 |
PQID | 2425493864 |
PQPubID | 886389 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2425493864 crossref_primary_10_1002_aenm_202000927 crossref_citationtrail_10_1002_aenm_202000927 wiley_primary_10_1002_aenm_202000927_AENM202000927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2019; 10 2019; 12 2019; 15 2018; 324 2016; 666 2020; 11 2013; 241 2020; 10 2012; 12 2019; 166 2017; 728 2013; 55 2019; 23 2019; 25 2019; 29 2017; 60 2020; 42 2019; 30 2020; 261 2016; 207 2020; 40 2019; 35 2020; 380 2016; 10 2017; 370 2020; 265 2016; 16 2016; 12 2016; 11 2016; 4 2018; 230 2016; 6 2016; 3 2020; 31 2016; 219 2019; 45 2020; 28 2019; 850 2015; 119 2016; 216 2016; 336 2016; 213 2016; 28 2019; 295 2016; 27 2016; 8 2016; 9 2020; 29 2019; 55 2016; 107 2018; 404 2019; 54 2017; 43 2016; 220 2008; 5 2017; 356 2017; 116 2020; 8 2020; 7 2017; 31 2019; 60 2014; 4 2015; 170 2020; 2 2014; 2 2017; 34 2017; 120 2014; 9 2017; 123 2017; 244 2014; 7 2014; 6 2014; 53 2015; 2 2015; 160 2019; 1900223 2015; 5 2015; 4 2015; 3 2017; 27 2020; 461 2015; 94 2019; 309 2015; 286 2017; 23 2019; 303 2019; 784 2019; 422 2018; 63 2017; 29 2014; 85 2015; 8 2015; 7 2000; 147 2020 2017; 10 2017; 13 2009; 9 2019; 779 2020; 67 2017; 342 2018; 54 2009; 1 2017; 223 2017; 224 2018; 57 2018; 165 2013; 3 2019; 93 2018; 281 2013; 1 2018; 282 2014; 26 2020; 448 2020; 562 2018; 45 2018; 44 2013; 6 2014; 23 2020; 449 2018; 48 2018; 6 2018; 177 2018; 8 2018; 292 2018; 5 2014; 16 2019; 795 2018; 30 2015; 91 2006; 160 2019; 790 2018; 31 2019; 794 2019; 7 2018; 29 2019; 9 2018; 28 2019; 3 2019; 6 2018; 743 2015; 51 2019; 1 2014; 272 2019; 464 2014; 43 2016; 99 2019; 333 2018; 12 2018; 11 2018; 10 2018; 14 2016; 172 2018; 13 2017; 5 2017; 7 2017; 8 2017; 1 2017; 4 2016; 76 2016; 73 2017; 198 2017; 9 2019; 364 2018; 130 2018; 375 2018; 139 2018; 378 2011; 21 2013; 273 2016; 191 2015; 15 2014; 116 2015; 17 2018; 140 2008; 18 2009; 131 2014; 114 2016; 55 2018; 273 2015; 25 2017; 96 2012; 2 2015; 27 2018; 277 2018; 279 2011; 47 2017; 188 2012; 6 1998; 102 2012; 5 2019; 496 e_1_2_7_3_1 e_1_2_7_311_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_297_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_263_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_285_1 e_1_2_7_307_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_214_1 e_1_2_7_275_1 e_1_2_7_252_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_296_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_310_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_249_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 e_1_2_7_117_1 e_1_2_7_284_1 e_1_2_7_306_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_295_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_283_1 e_1_2_7_305_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 Guo L. (e_1_2_7_180_1) 2020 e_1_2_7_294_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_279_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_282_1 e_1_2_7_91_1 e_1_2_7_304_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_270_1 e_1_2_7_108_1 e_1_2_7_293_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_278_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 Su Z. (e_1_2_7_177_1) 2020 e_1_2_7_267_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_281_1 e_1_2_7_303_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_289_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_271_1 e_1_2_7_292_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_277_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_280_1 e_1_2_7_302_1 e_1_2_7_113_1 e_1_2_7_288_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_257_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_272_1 e_1_2_7_291_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_276_1 e_1_2_7_299_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_261_1 e_1_2_7_301_1 e_1_2_7_114_1 e_1_2_7_287_1 e_1_2_7_73_1 e_1_2_7_50_1 Ren J. (e_1_2_7_181_1) 2020 Zhu H. (e_1_2_7_53_1) 2019; 1900223 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_309_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_290_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_298_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_262_1 e_1_2_7_300_1 e_1_2_7_115_1 e_1_2_7_286_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 e_1_2_7_308_1 e_1_2_7_138_1 e_1_2_7_274_1 e_1_2_7_251_1 |
References_xml | – volume: 94 start-page: 189 year: 2015 publication-title: Carbon – volume: 191 start-page: 385 year: 2016 publication-title: Electrochim. Acta – volume: 213 start-page: 496 year: 2016 publication-title: Electrochim. Acta – volume: 54 start-page: 3500 year: 2018 publication-title: Chem. Commun. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 4660 year: 2019 publication-title: J. Mater. Chem. A – volume: 99 start-page: 556 year: 2016 publication-title: Carbon – volume: 7 start-page: 229 year: 2017 publication-title: Energy Storage Mater. – volume: 34 year: 2017 publication-title: Part. Part. Syst. Charact. – volume: 449 year: 2020 publication-title: J. Power Sources – volume: 44 year: 2018 publication-title: Ceram. Int. – volume: 21 start-page: 3859 year: 2011 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 6670 year: 2015 publication-title: Adv. Mater. – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 172 start-page: 56 year: 2016 publication-title: Mater. Lett. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 917 year: 2019 publication-title: ChemElectroChem – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 9 start-page: 3240 year: 2016 publication-title: Energy Environ. Sci. – volume: 35 start-page: 132 year: 2019 publication-title: J. Energy Chem. – volume: 31 start-page: 673 year: 2018 publication-title: Chin. J. Chem. Phys. – volume: 12 start-page: 2559 year: 2016 publication-title: Small – volume: 303 start-page: 140 year: 2019 publication-title: Electrochim. Acta – volume: 188 start-page: 355 year: 2017 publication-title: Mater. Lett. – volume: 63 start-page: 126 year: 2018 publication-title: Sci. Bull. – volume: 265 year: 2020 publication-title: Mater. Lett. – volume: 7 start-page: 201 year: 2020 publication-title: ChemElectroChem – volume: 130 start-page: 574 year: 2018 publication-title: Carbon – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 364 year: 2014 publication-title: Nano Energy – volume: 23 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 6277 year: 2017 publication-title: J. Mater. Chem. A – volume: 140 start-page: 276 year: 2018 publication-title: Carbon – volume: 790 start-page: 203 year: 2019 publication-title: J. Alloys Compd. – volume: 779 start-page: 147 year: 2019 publication-title: J. Alloys Compd. – volume: 8 start-page: 1309 year: 2015 publication-title: Energy Environ. Sci. – volume: 496 year: 2019 publication-title: Appl. Surf. Sci. – volume: 55 start-page: 328 year: 2013 publication-title: Carbon – volume: 25 start-page: 1105 year: 2019 publication-title: Ionics – volume: 85 start-page: 179 year: 2014 publication-title: Comput. Mater. Sci. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 261 year: 2020 publication-title: Mater. Lett. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 28 start-page: 2259 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 45 year: 2019 publication-title: Ceram. Int. – volume: 244 start-page: 86 year: 2017 publication-title: Electrochim. Acta – volume: 11 year: 2016 publication-title: Nano – volume: 29 start-page: 52 year: 2020 publication-title: Energy Storage Mater. – volume: 18 start-page: 346 year: 2008 publication-title: Trans. Nonferrous Met. Soc. China – volume: 29 start-page: 1623 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 2877 year: 2017 publication-title: ChemElectroChem – volume: 13 year: 2017 publication-title: Small – volume: 5 start-page: 4467 year: 2017 publication-title: J. Mater. Chem. A – volume: 170 start-page: 171 year: 2015 publication-title: Electrochim. Acta – volume: 464 start-page: 422 year: 2019 publication-title: Appl. Surf. Sci. – volume: 461 year: 2020 publication-title: J. Power Sources – year: 2020 publication-title: Carbon Energy – volume: 40 start-page: 1 year: 2020 publication-title: J. Energy Chem. – volume: 54 start-page: 4317 year: 2018 publication-title: Chem. Commun. – volume: 336 start-page: 186 year: 2016 publication-title: J. Power Sources – volume: 54 start-page: 8504 year: 2019 publication-title: J. Mater. Sci. – volume: 784 start-page: 939 year: 2019 publication-title: J. Alloys Compd. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 12 start-page: 3522 year: 2016 publication-title: Small – volume: 216 start-page: 51 year: 2016 publication-title: Electrochim. Acta – volume: 27 start-page: 2042 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 1587 year: 2018 publication-title: Inorg. Chem. Front. – volume: 26 start-page: 5794 year: 2014 publication-title: Adv. Mater. – volume: 23 start-page: 3057 year: 2017 publication-title: Ionics – volume: 8 start-page: 2916 year: 2015 publication-title: Energy Environ. Sci. – volume: 27 start-page: 6702 year: 2015 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 23 start-page: 610 year: 2019 publication-title: Energy Storage Mater. – volume: 241 start-page: 680 year: 2013 publication-title: J. Power Sources – volume: 12 start-page: 3783 year: 2012 publication-title: Nano Lett. – volume: 1 start-page: 200 year: 2019 publication-title: Carbon Energy – volume: 286 start-page: 330 year: 2015 publication-title: J. Power Sources – volume: 10 year: 2016 publication-title: ACS Nano – volume: 309 start-page: 177 year: 2019 publication-title: Electrochim. Acta – volume: 272 start-page: 880 year: 2014 publication-title: J. Power Sources – volume: 380 year: 2020 publication-title: Chem. Eng. J. – volume: 7 start-page: 7693 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 448 year: 2020 publication-title: J. Power Sources – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 28 start-page: 55 year: 2020 publication-title: Energy Storage Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 850 year: 2019 publication-title: J. Electroanal. Chem. – volume: 7 start-page: 4395 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 2802 year: 2017 publication-title: J. Mater. Chem. A – volume: 28 start-page: 539 year: 2016 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 43 year: 2017 publication-title: Ceram. Int. – volume: 224 start-page: 446 year: 2017 publication-title: Electrochim. Acta – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 6 year: 2020 publication-title: Carbon Energy – volume: 1 start-page: 6441 year: 2013 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 116 start-page: 300 year: 2014 publication-title: Electrochim. Acta – volume: 96 start-page: 315 year: 2017 publication-title: Mater. Res. Bull. – volume: 10 start-page: 2637 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 5021 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 378 start-page: 105 year: 2018 publication-title: J. Power Sources – volume: 282 start-page: 510 year: 2018 publication-title: Electrochim. Acta – volume: 375 start-page: 82 year: 2018 publication-title: J. Power Sources – volume: 12 start-page: 1 year: 2019 publication-title: ChemSusChem – volume: 356 start-page: 80 year: 2017 publication-title: J. Power Sources – volume: 15 year: 2019 publication-title: Small – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 292 start-page: 871 year: 2018 publication-title: Electrochim. Acta – volume: 9 start-page: 6048 year: 2017 publication-title: Nanoscale – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 333 start-page: 93 year: 2019 publication-title: Solid State Ionics. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 3 year: 2019 publication-title: Small Methods – volume: 273 start-page: 63 year: 2018 publication-title: Electrochim. Acta – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 134 year: 2018 publication-title: Energy Storage Mater. – volume: 6 start-page: 8558 year: 2018 publication-title: J. Mater. Chem. A – volume: 23 start-page: 1097 year: 2017 publication-title: Ionics – volume: 2 start-page: 4498 year: 2012 publication-title: RSC Adv. – volume: 1 start-page: 173 year: 2019 publication-title: Carbon Energy – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 28 start-page: 2041 year: 2016 publication-title: Chem. Mater. – volume: 10 start-page: 6342 year: 2020 publication-title: RSC Adv. – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 1237 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1234 year: 2018 publication-title: J. Mater. Chem. A – volume: 67 year: 2020 publication-title: Nano Energy – volume: 55 start-page: 7445 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: A41 year: 2015 publication-title: ECS Electrochem. Lett. – volume: 160 start-page: 698 year: 2006 publication-title: J. Power Sources – volume: 14 year: 2018 publication-title: Small – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 3 start-page: 2260 year: 2013 publication-title: Sci. Rep. – volume: 31 start-page: 64 year: 2017 publication-title: Nano Energy – volume: 295 start-page: 262 year: 2019 publication-title: Electrochim. Acta – volume: 116 start-page: 338 year: 2017 publication-title: Carbon – volume: 10 start-page: 1757 year: 2017 publication-title: Energy Environ. Sci. – volume: 5 start-page: 7936 year: 2012 publication-title: Energy Environ. Sci. – volume: 277 start-page: 88 year: 2018 publication-title: Electrochim. Acta – volume: 198 start-page: 106 year: 2017 publication-title: Mater. Lett. – volume: 1 start-page: 219 year: 2019 publication-title: Carbon Energy – volume: 5 start-page: 9322 year: 2017 publication-title: J. Mater. Chem. A – volume: 30 start-page: 2498 year: 2018 publication-title: Chem. Mater. – volume: 6 start-page: 7084 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 143 year: 2020 publication-title: Carbon Energy – volume: 324 start-page: 183 year: 2018 publication-title: Solid State Ionics. – volume: 422 start-page: 1 year: 2019 publication-title: J. Power Sources – volume: 6 start-page: 205 year: 2012 publication-title: ACS Nano – volume: 5 start-page: 5858 year: 2017 publication-title: J. Mater. Chem. A – volume: 48 start-page: 793 year: 2018 publication-title: J. Appl. Electrochem. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 13 start-page: 2010 year: 2018 publication-title: Int. J. Electrochem. Sci. – volume: 5 start-page: 8752 year: 2017 publication-title: J. Mater. Chem. A – volume: 31 start-page: 846 year: 2020 publication-title: Chin. Chem. Lett. – volume: 10 start-page: 4244 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 8630 year: 2016 publication-title: J. Mater. Chem. A – volume: 8 start-page: 37 year: 2018 publication-title: Mater. Today Energy – volume: 370 start-page: 114 year: 2017 publication-title: J. Power Sources – volume: 9 start-page: 1752 year: 2009 publication-title: Nano Lett. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 12 start-page: 37 year: 2018 publication-title: Energy Storage Mater. – volume: 6 start-page: 56 year: 2013 publication-title: ChemSusChem – volume: 364 start-page: 208 year: 2019 publication-title: Chem. Eng. J. – volume: 57 start-page: 5249 year: 2018 publication-title: Inorg. Chem. – volume: 160 start-page: 15 year: 2015 publication-title: Electrochim. Acta – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 47 year: 2011 publication-title: Chem. Commun. – volume: 23 year: 2014 publication-title: Chin. Phys. B – volume: 25 start-page: 481 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3116 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 12 year: 2019 publication-title: Funct. Mater. Lett. – volume: 6 start-page: 1390 year: 2018 publication-title: J. Mater. Chem. A – volume: 15 start-page: 565 year: 2015 publication-title: Nano Lett. – volume: 230 start-page: 58 year: 2018 publication-title: Appl. Catal., B – volume: 10 start-page: 704 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 3134 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 53 year: 2018 publication-title: Front. Mater. Sci. – volume: 279 start-page: 186 year: 2018 publication-title: Electrochim. Acta – volume: 10 start-page: 4337 year: 2017 publication-title: Nano Res. – volume: 91 start-page: 88 year: 2015 publication-title: Carbon – volume: 102 start-page: 4477 year: 1998 publication-title: J. Phys. Chem. B – volume: 1 start-page: 276 year: 2019 publication-title: Carbon Energy – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 223 start-page: 92 year: 2017 publication-title: Electrochim. Acta – volume: 15 start-page: 746 year: 2015 publication-title: Nano Energy – volume: 73 start-page: 125 year: 2016 publication-title: Mater. Res. Bull. – volume: 93 start-page: 62 year: 2019 publication-title: Solid State Sci. – volume: 114 start-page: 5057 year: 2014 publication-title: Chem. Rev. – volume: 7 start-page: 9807 year: 2019 publication-title: J. Mater. Chem. A – volume: 728 start-page: 976 year: 2017 publication-title: J. Alloys Compd. – volume: 28 start-page: 5087 year: 2016 publication-title: Chem. Mater. – volume: 794 start-page: 509 year: 2019 publication-title: J. Alloys Compd. – volume: 743 start-page: 377 year: 2018 publication-title: J. Alloys Compd. – volume: 6 start-page: 1384 year: 2014 publication-title: Nanoscale – volume: 281 start-page: 208 year: 2018 publication-title: Electrochim. Acta – volume: 55 start-page: 3614 year: 2019 publication-title: Chem. Commun. – volume: 8 start-page: 9068 year: 2020 publication-title: J. Mater. Chem. A – volume: 342 start-page: 964 year: 2017 publication-title: J. Power Sources – volume: 60 start-page: 162 year: 2019 publication-title: Nano Energy – volume: 43 start-page: 7067 year: 2014 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 1497 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 120 start-page: 380 year: 2017 publication-title: Carbon – volume: 404 start-page: 39 year: 2018 publication-title: J. Power Sources – volume: 10 start-page: 3562 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 506 year: 2018 publication-title: ChemSusChem – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 139 start-page: 1117 year: 2018 publication-title: Carbon – volume: 1 start-page: 246 year: 2019 publication-title: Carbon Energy – volume: 5 start-page: 2221 year: 2008 publication-title: J. Comput. Theor. Nanosci. – volume: 207 start-page: 266 year: 2016 publication-title: Electrochim. Acta – volume: 1 start-page: 253 year: 2019 publication-title: Carbon Energy – volume: 10 start-page: 5203 year: 2019 publication-title: Nat. Commun. – volume: 76 start-page: 113 year: 2016 publication-title: Mater. Res. Bull. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 219 start-page: 227 year: 2016 publication-title: Electrochim. Acta – volume: 42 start-page: 91 year: 2020 publication-title: J. Energy Chem. – volume: 123 start-page: 250 year: 2017 publication-title: Carbon – volume: 7 start-page: 1643 year: 2014 publication-title: Energy Environ. Sci. – volume: 177 start-page: 328 year: 2018 publication-title: Fuel Process. Technol. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 666 start-page: 254 year: 2016 publication-title: J. Alloys Compd. – volume: 107 start-page: 67 year: 2016 publication-title: Carbon – volume: 7 start-page: 8585 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 273 start-page: 302 year: 2013 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 403 year: 2009 publication-title: Nat. Chem. – volume: 562 start-page: 511 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 1900223 start-page: 1 year: 2019 publication-title: Small Methods – volume: 147 start-page: 1271 year: 2000 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 4399 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 7 start-page: 6644 year: 2019 publication-title: J. Mater. Chem. A – volume: 60 start-page: 629 year: 2017 publication-title: Sci. China Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 4 start-page: 5428 year: 2016 publication-title: J. Mater. Chem. A – volume: 45 start-page: 220 year: 2018 publication-title: Nano Energy – volume: 795 start-page: 223 year: 2019 publication-title: J. Alloys Compd. – volume: 12 start-page: 4025 year: 2012 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 116 start-page: 686 year: 2017 publication-title: Carbon – volume: 220 start-page: 524 year: 2016 publication-title: Synth. Met. – volume: 1 start-page: 32 year: 2019 publication-title: Carbon Energy – volume: 30 start-page: 6583 year: 2019 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 5 start-page: 8334 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 4209 year: 2018 publication-title: J. Mater. Chem. A – volume: 16 start-page: 2054 year: 2016 publication-title: Nano Lett. – volume: 11 start-page: 132 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 1130 year: 2017 publication-title: Sustainable Energy Fuels – volume: 11 start-page: 274 year: 2018 publication-title: Energy Storage Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 4705 year: 2019 publication-title: J. Mater. Chem. A – ident: e_1_2_7_152_1 doi: 10.1039/C7TA06577A – ident: e_1_2_7_242_1 doi: 10.1016/S1003-6326(08)60060-6 – ident: e_1_2_7_111_1 doi: 10.1039/C6TA00236F – ident: e_1_2_7_199_1 doi: 10.1016/j.cej.2019.01.158 – ident: e_1_2_7_218_1 doi: 10.1021/acsami.6b09898 – ident: e_1_2_7_50_1 doi: 10.1142/S1793604719500498 – ident: e_1_2_7_211_1 doi: 10.1016/j.solidstatesciences.2019.04.014 – ident: e_1_2_7_21_1 doi: 10.1016/j.materresbull.2015.12.005 – ident: e_1_2_7_232_1 doi: 10.1002/anie.201602202 – ident: e_1_2_7_42_1 doi: 10.1016/j.jechem.2019.06.016 – ident: e_1_2_7_121_1 doi: 10.1039/C7TA08261D – ident: e_1_2_7_186_1 doi: 10.1016/j.nanoen.2019.104219 – ident: e_1_2_7_185_1 doi: 10.1039/C7TA01480E – ident: e_1_2_7_94_1 doi: 10.1002/smll.201600606 – ident: e_1_2_7_76_1 doi: 10.1016/j.carbon.2012.12.072 – ident: e_1_2_7_92_1 doi: 10.1002/adma.201405370 – ident: e_1_2_7_236_1 doi: 10.1002/adma.201700210 – ident: e_1_2_7_129_1 doi: 10.1039/C8CC01631C – ident: e_1_2_7_170_1 doi: 10.1021/acssuschemeng.9b05948 – ident: e_1_2_7_200_1 doi: 10.1016/j.jpowsour.2019.227514 – ident: e_1_2_7_224_1 doi: 10.1007/s11581-016-1919-3 – ident: e_1_2_7_307_1 doi: 10.1039/D0TA02922J – ident: e_1_2_7_68_1 doi: 10.1021/ja907098f – ident: e_1_2_7_72_1 doi: 10.1016/j.nanoen.2017.12.042 – ident: e_1_2_7_240_1 doi: 10.1039/C9TA02710F – ident: e_1_2_7_161_1 doi: 10.1016/j.jallcom.2018.11.257 – ident: e_1_2_7_47_1 doi: 10.1039/C6TA09195D – ident: e_1_2_7_182_1 doi: 10.1016/j.matlet.2019.127064 – ident: e_1_2_7_84_1 doi: 10.1039/C7EE01628J – ident: e_1_2_7_105_1 doi: 10.1021/nl803279t – ident: e_1_2_7_124_1 doi: 10.1039/C5EE01985K – ident: e_1_2_7_173_1 doi: 10.1002/cey2.8 – ident: e_1_2_7_274_1 doi: 10.1016/j.electacta.2018.04.006 – year: 2020 ident: e_1_2_7_180_1 publication-title: Carbon Energy – ident: e_1_2_7_34_1 doi: 10.1039/C4EE03361B – ident: e_1_2_7_187_1 doi: 10.1039/C9TA02107H – ident: e_1_2_7_48_1 doi: 10.1016/j.electacta.2015.02.055 – ident: e_1_2_7_144_1 doi: 10.1039/C4CP01045K – ident: e_1_2_7_205_1 doi: 10.1002/adfm.201700522 – ident: e_1_2_7_213_1 doi: 10.1039/C8TA02067A – ident: e_1_2_7_35_1 doi: 10.1039/C3EE44004D – ident: e_1_2_7_220_1 doi: 10.1021/acsami.8b21257 – ident: e_1_2_7_131_1 doi: 10.1002/chem.201703375 – ident: e_1_2_7_150_1 doi: 10.1002/adma.201604108 – ident: e_1_2_7_196_1 doi: 10.1039/C5TA03519H – ident: e_1_2_7_1_1 doi: 10.1016/j.jpowsour.2013.05.040 – ident: e_1_2_7_30_1 doi: 10.1016/j.matlet.2016.02.121 – ident: e_1_2_7_279_1 doi: 10.1021/acs.chemmater.6b04769 – ident: e_1_2_7_145_1 doi: 10.1002/smll.201600101 – ident: e_1_2_7_151_1 doi: 10.1021/acsami.8b15940 – ident: e_1_2_7_273_1 doi: 10.1016/j.jpowsour.2017.11.043 – ident: e_1_2_7_44_1 doi: 10.1016/j.jpowsour.2020.228110 – ident: e_1_2_7_114_1 doi: 10.1016/j.electacta.2016.01.105 – ident: e_1_2_7_98_1 doi: 10.1016/j.carbon.2018.08.071 – ident: e_1_2_7_137_1 doi: 10.1021/acsami.7b01986 – ident: e_1_2_7_266_1 doi: 10.1016/j.nanoen.2019.02.074 – ident: e_1_2_7_115_1 doi: 10.1021/cr400407a – ident: e_1_2_7_149_1 doi: 10.1021/acsami.9b07865 – ident: e_1_2_7_154_1 doi: 10.1016/j.scib.2017.12.024 – ident: e_1_2_7_62_1 doi: 10.1039/C5CC06266G – ident: e_1_2_7_246_1 doi: 10.1021/acs.inorgchem.8b00284 – ident: e_1_2_7_64_1 doi: 10.1039/C6TA08472A – ident: e_1_2_7_304_1 doi: 10.1016/j.jallcom.2016.01.101 – volume: 1900223 start-page: 1 year: 2019 ident: e_1_2_7_53_1 publication-title: Small Methods – ident: e_1_2_7_288_1 doi: 10.1016/j.jallcom.2019.04.271 – ident: e_1_2_7_235_1 doi: 10.1016/j.jpowsour.2018.09.103 – ident: e_1_2_7_133_1 doi: 10.1016/j.ceramint.2018.06.163 – ident: e_1_2_7_70_1 doi: 10.1149/2.1061807jes – ident: e_1_2_7_110_1 doi: 10.1002/adma.201605820 – ident: e_1_2_7_262_1 doi: 10.1016/j.jechem.2019.02.005 – ident: e_1_2_7_197_1 doi: 10.1039/C7RA09349G – ident: e_1_2_7_249_1 doi: 10.1039/C8TA10980J – ident: e_1_2_7_97_1 doi: 10.1039/C4CS00141A – ident: e_1_2_7_285_1 doi: 10.1016/j.jallcom.2019.03.127 – ident: e_1_2_7_52_1 doi: 10.1038/s41467-019-13945-1 – ident: e_1_2_7_198_1 doi: 10.1016/j.ensm.2018.01.005 – ident: e_1_2_7_278_1 doi: 10.1021/acsami.8b00614 – ident: e_1_2_7_26_1 doi: 10.1016/j.matlet.2020.127403 – ident: e_1_2_7_2_1 doi: 10.1016/j.jpowsour.2015.03.164 – ident: e_1_2_7_257_1 doi: 10.1021/acssuschemeng.8b06326 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201310679 – ident: e_1_2_7_82_1 doi: 10.1002/adma.201503221 – ident: e_1_2_7_287_1 doi: 10.1039/C6RA16515J – ident: e_1_2_7_253_1 doi: 10.1039/C9CC01018A – ident: e_1_2_7_136_1 doi: 10.1002/advs.201600243 – ident: e_1_2_7_294_1 doi: 10.1007/s10853-019-03416-9 – ident: e_1_2_7_169_1 doi: 10.1039/C8TA12540F – ident: e_1_2_7_310_1 doi: 10.1038/s41467-019-11960-w – ident: e_1_2_7_293_1 doi: 10.1016/j.electacta.2016.12.094 – ident: e_1_2_7_55_1 doi: 10.1002/adma.201502864 – ident: e_1_2_7_289_1 doi: 10.1016/j.electacta.2016.12.019 – ident: e_1_2_7_140_1 doi: 10.1016/j.apcatb.2018.02.034 – ident: e_1_2_7_130_1 doi: 10.1021/acsnano.6b05653 – ident: e_1_2_7_175_1 doi: 10.1002/cey2.14 – ident: e_1_2_7_283_1 doi: 10.1039/C4TA03948C – ident: e_1_2_7_300_1 doi: 10.1016/j.electacta.2016.10.016 – ident: e_1_2_7_91_1 doi: 10.1016/j.ensm.2017.03.006 – ident: e_1_2_7_267_1 doi: 10.1002/aenm.201700189 – ident: e_1_2_7_41_1 doi: 10.1021/nl3016957 – ident: e_1_2_7_206_1 doi: 10.1016/j.electacta.2019.02.067 – ident: e_1_2_7_229_1 doi: 10.1002/advs.201500031 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_7_214_1 doi: 10.1149/2.0041505eel – ident: e_1_2_7_194_1 doi: 10.1016/j.electacta.2017.05.090 – ident: e_1_2_7_22_1 doi: 10.1016/j.materresbull.2017.03.016 – ident: e_1_2_7_212_1 doi: 10.1021/acssuschemeng.8b06385 – ident: e_1_2_7_259_1 doi: 10.1016/j.electacta.2018.05.174 – ident: e_1_2_7_66_1 doi: 10.1016/j.apsusc.2013.02.035 – ident: e_1_2_7_61_1 doi: 10.1021/acsami.9b05667 – ident: e_1_2_7_303_1 doi: 10.1039/C6TA08364A – ident: e_1_2_7_204_1 doi: 10.1016/j.jelechem.2019.113392 – ident: e_1_2_7_284_1 doi: 10.1016/j.jallcom.2019.01.125 – ident: e_1_2_7_301_1 doi: 10.1039/C8QI00285A – ident: e_1_2_7_291_1 doi: 10.1016/j.electacta.2018.09.192 – ident: e_1_2_7_17_1 doi: 10.1021/acsami.9b08378 – ident: e_1_2_7_209_1 doi: 10.1002/aenm.201802379 – ident: e_1_2_7_191_1 doi: 10.1016/j.carbon.2016.05.052 – ident: e_1_2_7_222_1 doi: 10.1016/j.electacta.2015.04.125 – ident: e_1_2_7_298_1 doi: 10.1002/celc.201801760 – ident: e_1_2_7_8_1 doi: 10.1002/cssc.201701664 – ident: e_1_2_7_33_1 doi: 10.1039/C6TA10577G – ident: e_1_2_7_141_1 doi: 10.1002/aenm.201500658 – ident: e_1_2_7_227_1 doi: 10.1039/C7TA08970H – ident: e_1_2_7_159_1 doi: 10.1039/C7NR01280B – ident: e_1_2_7_193_1 doi: 10.1021/acsami.8b05618 – ident: e_1_2_7_148_1 doi: 10.1021/acsami.8b19637 – ident: e_1_2_7_168_1 doi: 10.1039/C9NR02277E – ident: e_1_2_7_244_1 doi: 10.1039/C9TA04450G – ident: e_1_2_7_45_1 doi: 10.1039/C6TA07109K – ident: e_1_2_7_103_1 doi: 10.1002/smll.201905452 – ident: e_1_2_7_292_1 doi: 10.1039/C8TA00117K – ident: e_1_2_7_113_1 doi: 10.1016/j.materresbull.2015.08.035 – ident: e_1_2_7_207_1 doi: 10.1016/j.jpowsour.2019.227586 – ident: e_1_2_7_28_1 doi: 10.1002/smll.201602742 – ident: e_1_2_7_27_1 doi: 10.1016/j.cclet.2019.06.044 – ident: e_1_2_7_163_1 doi: 10.1039/C7RA03628K – ident: e_1_2_7_127_1 doi: 10.1002/adfm.201800394 – ident: e_1_2_7_195_1 doi: 10.1016/j.apsusc.2018.09.035 – ident: e_1_2_7_225_1 doi: 10.1016/j.jpowsour.2005.12.079 – ident: e_1_2_7_71_1 doi: 10.1002/smtd.201800323 – ident: e_1_2_7_178_1 doi: 10.1007/s10854-019-00965-2 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201402833 – ident: e_1_2_7_158_1 doi: 10.1016/j.ensm.2017.09.003 – ident: e_1_2_7_256_1 doi: 10.1016/j.jpowsour.2016.10.067 – ident: e_1_2_7_14_1 doi: 10.1039/C5CC02564H – ident: e_1_2_7_74_1 doi: 10.1039/C7TA00690J – ident: e_1_2_7_183_1 doi: 10.1016/j.apsusc.2019.143717 – ident: e_1_2_7_239_1 doi: 10.1063/1674-0068/31/cjcp1802013 – ident: e_1_2_7_107_1 doi: 10.1039/c2ra01367c – ident: e_1_2_7_99_1 doi: 10.1016/j.commatsci.2013.12.052 – ident: e_1_2_7_234_1 doi: 10.1002/adfm.201901912 – ident: e_1_2_7_223_1 doi: 10.1016/j.jpowsour.2019.03.031 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.201803342 – ident: e_1_2_7_309_1 doi: 10.1039/C9TA09502K – ident: e_1_2_7_117_1 doi: 10.1021/jp9731821 – ident: e_1_2_7_156_1 doi: 10.1039/C6TA04592H – ident: e_1_2_7_296_1 doi: 10.1088/1361-6528/aab120 – ident: e_1_2_7_264_1 doi: 10.1002/cey2.24 – ident: e_1_2_7_96_1 doi: 10.1039/C5CP05212B – ident: e_1_2_7_63_1 doi: 10.1039/C3NR05374A – ident: e_1_2_7_3_1 doi: 10.1002/cey2.29 – ident: e_1_2_7_231_1 doi: 10.1039/C6EE01750A – ident: e_1_2_7_59_1 doi: 10.1039/C9RA10485B – ident: e_1_2_7_101_1 doi: 10.1002/adma.201700748 – ident: e_1_2_7_139_1 doi: 10.1002/advs.201600112 – ident: e_1_2_7_119_1 doi: 10.1002/adma.201504412 – ident: e_1_2_7_261_1 doi: 10.1039/C9TA00869A – ident: e_1_2_7_233_1 doi: 10.1021/acs.chemmater.7b03903 – ident: e_1_2_7_290_1 doi: 10.1016/j.ssi.2019.01.025 – ident: e_1_2_7_32_1 doi: 10.1021/acsami.9b02555 – ident: e_1_2_7_306_1 doi: 10.1002/cey2.21 – ident: e_1_2_7_106_1 doi: 10.1038/srep02260 – ident: e_1_2_7_237_1 doi: 10.20964/2018.02.62 – ident: e_1_2_7_122_1 doi: 10.1002/advs.201700880 – ident: e_1_2_7_305_1 doi: 10.1002/cey2.28 – ident: e_1_2_7_51_1 doi: 10.1002/adma.201400719 – ident: e_1_2_7_95_1 doi: 10.1021/nl301409h – ident: e_1_2_7_215_1 doi: 10.1021/acs.chemmater.6b01935 – ident: e_1_2_7_250_1 doi: 10.1007/s11581-018-2830-x – ident: e_1_2_7_88_1 doi: 10.1016/j.ensm.2020.04.003 – ident: e_1_2_7_245_1 doi: 10.1021/acs.jpclett.7b02012 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.201100854 – ident: e_1_2_7_23_1 doi: 10.1002/cssc.201802948 – ident: e_1_2_7_16_1 doi: 10.1016/j.jechem.2018.11.007 – ident: e_1_2_7_65_1 doi: 10.1016/j.matlet.2017.04.001 – ident: e_1_2_7_221_1 doi: 10.1021/acsami.7b18226 – ident: e_1_2_7_201_1 doi: 10.1002/smll.201802218 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201601329 – ident: e_1_2_7_49_1 doi: 10.1016/j.jpowsour.2017.01.014 – ident: e_1_2_7_79_1 doi: 10.1016/j.fuproc.2018.05.007 – ident: e_1_2_7_260_1 doi: 10.1038/s41467-018-07646-4 – ident: e_1_2_7_31_1 doi: 10.1002/advs.201500286 – ident: e_1_2_7_282_1 doi: 10.1016/j.electacta.2016.09.003 – ident: e_1_2_7_73_1 doi: 10.1002/adma.201503015 – ident: e_1_2_7_78_1 doi: 10.1016/j.carbon.2015.06.076 – ident: e_1_2_7_254_1 doi: 10.1039/C8TA11890F – ident: e_1_2_7_18_1 doi: 10.1039/C8TA06232C – ident: e_1_2_7_25_1 doi: 10.1039/C8CC04426K – ident: e_1_2_7_277_1 doi: 10.1016/j.jallcom.2017.09.020 – ident: e_1_2_7_251_1 doi: 10.1039/C8TA11915E – ident: e_1_2_7_157_1 doi: 10.1002/aenm.201501929 – ident: e_1_2_7_308_1 doi: 10.1002/cey2.1 – ident: e_1_2_7_281_1 doi: 10.1021/acs.chemmater.5b04557 – ident: e_1_2_7_255_1 doi: 10.1016/j.electacta.2019.04.059 – ident: e_1_2_7_297_1 doi: 10.1039/C6TA04906K – ident: e_1_2_7_5_1 doi: 10.1002/advs.201900151 – year: 2020 ident: e_1_2_7_181_1 publication-title: Carbon Energy – ident: e_1_2_7_299_1 doi: 10.1021/acsami.7b06290 – ident: e_1_2_7_109_1 doi: 10.1002/aenm.201601804 – ident: e_1_2_7_112_1 doi: 10.1016/j.carbon.2017.02.057 – ident: e_1_2_7_286_1 doi: 10.1016/j.electacta.2018.10.150 – ident: e_1_2_7_4_1 doi: 10.1039/C8TA06412A – ident: e_1_2_7_46_1 doi: 10.1021/am4060222 – ident: e_1_2_7_54_1 doi: 10.1002/cey2.22 – ident: e_1_2_7_192_1 doi: 10.1002/ppsc.201600315 – ident: e_1_2_7_125_1 doi: 10.1002/smll.201700762 – ident: e_1_2_7_210_1 doi: 10.1016/j.electacta.2016.07.089 – ident: e_1_2_7_265_1 doi: 10.1002/adma.201706668 – ident: e_1_2_7_60_1 doi: 10.1002/aenm.201602894 – ident: e_1_2_7_135_1 doi: 10.1039/C9TA02268F – ident: e_1_2_7_269_1 doi: 10.1021/acsami.9b14249 – ident: e_1_2_7_86_1 doi: 10.1016/j.jpowsour.2017.12.028 – ident: e_1_2_7_275_1 doi: 10.1007/s10800-018-1196-0 – ident: e_1_2_7_9_1 doi: 10.1016/j.matlet.2016.11.110 – ident: e_1_2_7_138_1 doi: 10.1039/C6TA10494K – ident: e_1_2_7_165_1 doi: 10.1016/j.carbon.2017.01.101 – ident: e_1_2_7_75_1 doi: 10.1002/aenm.201502217 – ident: e_1_2_7_174_1 doi: 10.1002/smll.201805427 – ident: e_1_2_7_58_1 doi: 10.1039/C8TA11578H – ident: e_1_2_7_184_1 doi: 10.1039/C8TA09247H – ident: e_1_2_7_167_1 doi: 10.1016/j.carbon.2015.12.066 – ident: e_1_2_7_40_1 doi: 10.1149/1.1393348 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201407898 – ident: e_1_2_7_20_1 doi: 10.1021/nl504038s – ident: e_1_2_7_57_1 doi: 10.1016/j.nanoen.2014.08.011 – ident: e_1_2_7_153_1 doi: 10.1039/C6TA04929J – year: 2020 ident: e_1_2_7_177_1 publication-title: Carbon Energy – ident: e_1_2_7_280_1 doi: 10.1007/s11581-017-2122-x – ident: e_1_2_7_38_1 doi: 10.1016/j.jpowsour.2014.09.046 – ident: e_1_2_7_160_1 doi: 10.1016/j.mtener.2018.02.001 – ident: e_1_2_7_226_1 doi: 10.1016/j.jcis.2019.11.085 – ident: e_1_2_7_77_1 doi: 10.1039/C4RA01200C – ident: e_1_2_7_126_1 doi: 10.1016/j.carbon.2017.07.056 – ident: e_1_2_7_172_1 doi: 10.1002/advs.201800241 – ident: e_1_2_7_37_1 doi: 10.1039/C8CC00365C – ident: e_1_2_7_230_1 doi: 10.1039/C7TA00880E – ident: e_1_2_7_252_1 doi: 10.1016/j.nanoen.2016.11.023 – ident: e_1_2_7_102_1 doi: 10.1088/0957-4484/27/17/175402 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.201606232 – ident: e_1_2_7_270_1 doi: 10.1016/j.jpowsour.2017.04.076 – ident: e_1_2_7_11_1 doi: 10.1039/C8TA06905K – ident: e_1_2_7_100_1 doi: 10.1016/j.ensm.2020.02.033 – ident: e_1_2_7_123_1 doi: 10.1002/adma.201802035 – ident: e_1_2_7_147_1 doi: 10.1007/s40843-017-9045-9 – ident: e_1_2_7_87_1 doi: 10.1039/C6TA02139E – ident: e_1_2_7_189_1 doi: 10.1002/advs.201500195 – ident: e_1_2_7_216_1 doi: 10.1021/acsami.9b08987 – ident: e_1_2_7_12_1 doi: 10.1039/C4EE03759F – ident: e_1_2_7_248_1 doi: 10.1149/2.1041910jes – ident: e_1_2_7_81_1 doi: 10.1021/acs.nanolett.6b00057 – ident: e_1_2_7_85_1 doi: 10.1002/cssc.201200680 – ident: e_1_2_7_217_1 doi: 10.1016/j.ssi.2018.07.006 – ident: e_1_2_7_276_1 doi: 10.1016/j.electacta.2013.10.211 – ident: e_1_2_7_132_1 doi: 10.1016/j.electacta.2018.05.082 – ident: e_1_2_7_295_1 doi: 10.1016/j.ceramint.2017.05.063 – ident: e_1_2_7_302_1 doi: 10.1021/acsami.8b08380 – ident: e_1_2_7_179_1 doi: 10.1002/cey2.19 – ident: e_1_2_7_118_1 doi: 10.1038/nchem.281 – ident: e_1_2_7_311_1 doi: 10.1016/j.ensm.2019.03.011 – ident: e_1_2_7_243_1 doi: 10.1039/C5TA03528G – ident: e_1_2_7_24_1 doi: 10.1039/C5RA19717A – ident: e_1_2_7_104_1 doi: 10.1039/c2ee21802j – ident: e_1_2_7_238_1 doi: 10.1021/acsami.7b16077 – ident: e_1_2_7_120_1 doi: 10.1016/j.ensm.2017.11.008 – ident: e_1_2_7_108_1 doi: 10.1039/c1cc14419g – ident: e_1_2_7_162_1 doi: 10.1021/acsami.7b15659 – ident: e_1_2_7_202_1 doi: 10.1002/aenm.201900036 – ident: e_1_2_7_219_1 doi: 10.1021/acsami.5b00594 – ident: e_1_2_7_155_1 doi: 10.1016/j.carbon.2017.05.072 – ident: e_1_2_7_128_1 doi: 10.1016/j.nanoen.2015.05.038 – ident: e_1_2_7_143_1 doi: 10.1016/j.electacta.2016.05.013 – ident: e_1_2_7_69_1 doi: 10.1166/jctn.2008.1123 – ident: e_1_2_7_164_1 doi: 10.1016/j.carbon.2018.06.035 – ident: e_1_2_7_208_1 doi: 10.1016/j.cej.2019.122457 – ident: e_1_2_7_83_1 doi: 10.1016/j.carbon.2015.04.049 – ident: e_1_2_7_146_1 doi: 10.1021/acs.jpcc.5b05443 – ident: e_1_2_7_268_1 doi: 10.1016/j.jpowsour.2017.10.019 – ident: e_1_2_7_272_1 doi: 10.1016/j.electacta.2018.06.074 – ident: e_1_2_7_29_1 doi: 10.1039/c3ta00184a – ident: e_1_2_7_142_1 doi: 10.1016/j.synthmet.2016.07.011 – ident: e_1_2_7_247_1 doi: 10.1088/1674-1056/23/11/118202 – ident: e_1_2_7_67_1 doi: 10.1039/C6RA24386J – ident: e_1_2_7_89_1 doi: 10.1016/j.carbon.2018.01.053 – ident: e_1_2_7_116_1 doi: 10.1021/nn203393d – ident: e_1_2_7_176_1 doi: 10.1002/celc.201901829 – ident: e_1_2_7_203_1 doi: 10.1021/acsami.7b18195 – ident: e_1_2_7_43_1 doi: 10.1039/C7SE00134G – ident: e_1_2_7_188_1 doi: 10.1016/j.ceramint.2018.05.233 – ident: e_1_2_7_80_1 doi: 10.1007/s12274-017-1649-5 – ident: e_1_2_7_56_1 doi: 10.1002/aenm.201501489 – ident: e_1_2_7_190_1 doi: 10.1016/j.jallcom.2019.04.338 – ident: e_1_2_7_90_1 doi: 10.1142/S1793292016501241 – ident: e_1_2_7_258_1 doi: 10.1016/j.electacta.2018.04.216 – ident: e_1_2_7_134_1 doi: 10.1039/C7TA02194A – ident: e_1_2_7_241_1 doi: 10.1016/j.ceramint.2019.03.074 – ident: e_1_2_7_93_1 doi: 10.1039/C7RA00469A – ident: e_1_2_7_271_1 doi: 10.1039/C6TA08667E – ident: e_1_2_7_263_1 doi: 10.1016/j.jallcom.2018.01.350 – ident: e_1_2_7_166_1 doi: 10.1002/advs.201600468 – ident: e_1_2_7_171_1 doi: 10.1002/celc.201700554 – ident: e_1_2_7_228_1 doi: 10.1007/s11706-018-0414-3 |
SSID | ssj0000491033 |
Score | 2.6953104 |
SecondaryResourceType | review_article |
Snippet | In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum anodes Boron cathodes Crystal structure Doping Electrochemical analysis Electrode materials Electrodes Energy storage Fluorine heteroatoms Ion storage Lithium-ion batteries Magnesium Nitrogen Power management Power sources Reaction kinetics Rechargeable batteries Sodium Sodium-ion batteries Storage batteries Titanium |
Title | Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000927 https://www.proquest.com/docview/2425493864 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXocmkPFdBWXbogH5B6WKXNh504XFCARUvV5QKocIoSx0srQYJKcumvZ_wRJxG0UC5R5HWSjefZfuPMPCO0Q2jB4uWSOB4VATgoInJyFocOTM0Zj0gc-pmK8j0J5-fk2wW96OJ0VXZJnX_hfx7NK3mJVaEM7CqzZP_DsvamUADnYF84goXh-Cwbz2UsSwVu8w0Q4VuTupyUUy1JLGOCfmSKXe5X1V09Pa2KX83N9FgOEeBqZ8MwoKSNBhA6HRCorH4HG7OjPvxfNl1EgDCR9-XVzybrqjUKNNWDNelLg0SzyAAeZRuQ2o6LMIs7ITNLkaJfptWW7GDq9kCjs_7NvGpnnQeDthaBzUQplQFk6lDcXthXx7Y16b_rajHf2cnC_v4KrfrgRMAouJocLr6f2jU48I48N1A5GO37tbqerv91-JAhb-mckb5LozjJ2Rp6a5wJnGhkrKMVUW6gNz2JyXdor8MI1hjZxUmJLUIwIATXFVYIwRohGBCCDULeo_Oj2dnB3DGbZjic-H7kULZ0w6UrfEaZG3CRRazwaCSAB3MeeVx6-EwAJ4kZYYIEQSG4oNzLA6AtRREFH9CorErxEWFGCfTwSJLakDA3zIBMyzheFhNXbuQ4Rk7bJCk3ivJyY5PrVGth-6lswtQ24Rh9tvVvtZbKX2tO2hZOTX-7S6VzTGL5X8bIV63-xF3SAQo2X3LRJ_S66w4TNKp_N2ILWGidbxsw3QMacnkP |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom+Doping%3A+An+Effective+Way+to+Boost+Sodium+Ion+Storage&rft.jtitle=Advanced+energy+materials&rft.au=Li%2C+Yu&rft.au=Chen%2C+Minghua&rft.au=Liu%2C+Bo&rft.au=Zhang%2C+Yan&rft.date=2020-07-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000927&rft.externalDBID=10.1002%252Faenm.202000927&rft.externalDocID=AENM202000927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |