Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage

In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 27
Main Authors Li, Yu, Chen, Minghua, Liu, Bo, Zhang, Yan, Liang, Xinqi, Xia, Xinhui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed. Heteroatom doping is an effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics. Herein, an overview of recent advancements in understanding the heteroatom doping effect on sodium ion storage is presented. Different doping strategies are reviewed and summarized in detail. Future development trends in doping strategies are analyzed.
AbstractList In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed.
In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed. Heteroatom doping is an effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics. Herein, an overview of recent advancements in understanding the heteroatom doping effect on sodium ion storage is presented. Different doping strategies are reviewed and summarized in detail. Future development trends in doping strategies are analyzed.
Author Xia, Xinhui
Li, Yu
Liang, Xinqi
Liu, Bo
Zhang, Yan
Chen, Minghua
Author_xml – sequence: 1
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  organization: Harbin University of Science and Technology
– sequence: 2
  givenname: Minghua
  surname: Chen
  fullname: Chen, Minghua
  email: mhchen@hrbust.edu.cn
  organization: Harbin University of Science and Technology
– sequence: 3
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Zhejiang University
– sequence: 4
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Zhejiang University
– sequence: 5
  givenname: Xinqi
  surname: Liang
  fullname: Liang, Xinqi
  organization: Harbin University of Science and Technology
– sequence: 6
  givenname: Xinhui
  orcidid: 0000-0002-5976-5337
  surname: Xia
  fullname: Xia, Xinhui
  email: helloxxh@zju.edu.cn
  organization: Zhejiang University
BookMark eNqFkE1LAzEURYNUsNZuXQdcT83XzGTcSK3VFqouqrgMMfOmpHSSmkmV_nunVCoI4uq9xTn3wj1FHecdIHROyYASwi41uHrACCOEFCw_Ql2aUZFkUpDO4efsBPWbZtkyRBSUcN5F1xOIELyOvsa3fm3d4goPHR5XFZhoPwC_6i2OHt9430Q896Xd1HjqHZ5HH_QCztBxpVcN9L9vD73cjZ9Hk2T2dD8dDWeJEYzlSSorklUEmEwl4QZ0Lkua5sALZkxODSWMSZAiL6SQIDgvwUBq6BvPWrLMeQ9d7HPXwb9voIlq6TfBtZWKCZaKgstMtNRgT5ngmyZApdbB1jpsFSVqt5Pa7aQOO7WC-CUYG3W03sWg7epvrdhrn3YF239K1HD8-PDjfgH2I3yN
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_109880
crossref_primary_10_1039_D3MH00003F
crossref_primary_10_1021_acsaem_0c02327
crossref_primary_10_1021_acsami_1c18464
crossref_primary_10_1002_ente_202401211
crossref_primary_10_1002_smll_202203281
crossref_primary_10_1039_D2MA01002J
crossref_primary_10_1002_ange_202108605
crossref_primary_10_1002_smm2_1231
crossref_primary_10_1016_j_jpowsour_2024_235508
crossref_primary_10_1016_j_ensm_2022_05_018
crossref_primary_10_1016_j_grets_2024_100152
crossref_primary_10_1021_acsami_1c04194
crossref_primary_10_1016_j_chphma_2024_01_004
crossref_primary_10_1016_j_joule_2024_03_006
crossref_primary_10_1016_j_jallcom_2022_166235
crossref_primary_10_1002_bte2_70006
crossref_primary_10_1002_ange_202312310
crossref_primary_10_1007_s12613_022_2539_8
crossref_primary_10_1016_j_ccr_2022_214715
crossref_primary_10_1016_j_cej_2024_153843
crossref_primary_10_1021_acs_energyfuels_1c02238
crossref_primary_10_1021_acsanm_4c01889
crossref_primary_10_1007_s12274_021_3462_4
crossref_primary_10_1016_j_apsusc_2021_151307
crossref_primary_10_1016_j_jiec_2025_02_051
crossref_primary_10_1039_D1TA05755C
crossref_primary_10_1016_j_jclepro_2024_142169
crossref_primary_10_1016_j_materresbull_2021_111425
crossref_primary_10_1002_bte2_20240052
crossref_primary_10_1016_j_diamond_2025_112061
crossref_primary_10_1021_acsami_4c08480
crossref_primary_10_1016_j_jpowsour_2020_229051
crossref_primary_10_1002_asia_202300449
crossref_primary_10_1002_sstr_202100217
crossref_primary_10_1002_eem2_12633
crossref_primary_10_1016_j_jallcom_2022_164279
crossref_primary_10_1021_acsami_3c07504
crossref_primary_10_1063_5_0254535
crossref_primary_10_1002_smtd_202001050
crossref_primary_10_1039_D4TA07393B
crossref_primary_10_20517_microstructures_2023_102
crossref_primary_10_1007_s41918_024_00227_8
crossref_primary_10_1016_j_est_2024_114883
crossref_primary_10_1016_j_ijbiomac_2025_140814
crossref_primary_10_1021_acsnano_3c09386
crossref_primary_10_1021_acs_energyfuels_3c00678
crossref_primary_10_1016_j_est_2023_110299
crossref_primary_10_1007_s12274_021_3715_2
crossref_primary_10_1016_j_jallcom_2022_166265
crossref_primary_10_1002_adfm_202007247
crossref_primary_10_1021_acsami_1c15392
crossref_primary_10_1016_j_cej_2025_161953
crossref_primary_10_1016_j_ensm_2022_04_007
crossref_primary_10_1016_j_jallcom_2021_161888
crossref_primary_10_1039_D4QO00683F
crossref_primary_10_26599_NRE_2023_9120098
crossref_primary_10_1039_D1SC05715D
crossref_primary_10_1002_smll_202308011
crossref_primary_10_3390_batteries9030143
crossref_primary_10_1016_j_jcis_2023_07_082
crossref_primary_10_1039_D3CC02902F
crossref_primary_10_1002_smll_202308136
crossref_primary_10_1039_D3CC05341E
crossref_primary_10_1002_adfm_202304271
crossref_primary_10_1016_j_apsusc_2021_150380
crossref_primary_10_1016_j_ccr_2021_214147
crossref_primary_10_1016_j_est_2024_110587
crossref_primary_10_1007_s40820_024_01495_1
crossref_primary_10_1021_acsaem_2c02417
crossref_primary_10_1021_acssuschemeng_1c00418
crossref_primary_10_1002_advs_202301160
crossref_primary_10_1039_D1DT00490E
crossref_primary_10_3390_ma15124249
crossref_primary_10_1007_s40820_024_01351_2
crossref_primary_10_1016_j_diamond_2022_109382
crossref_primary_10_1016_j_jallcom_2021_159670
crossref_primary_10_1021_acsnano_0c10624
crossref_primary_10_1016_j_apmt_2025_102587
crossref_primary_10_1016_j_jcis_2024_03_056
crossref_primary_10_1016_j_materresbull_2020_111186
crossref_primary_10_1039_D4TA02817A
crossref_primary_10_1016_j_est_2024_111565
crossref_primary_10_3390_c10010003
crossref_primary_10_3389_fchem_2022_1002540
crossref_primary_10_1002_adma_202100855
crossref_primary_10_1016_j_cej_2022_139805
crossref_primary_10_1021_acsami_2c20068
crossref_primary_10_1002_aenm_202303064
crossref_primary_10_1016_j_cej_2023_146090
crossref_primary_10_3390_batteries9020144
crossref_primary_10_1088_1361_6463_abc11e
crossref_primary_10_1002_anie_202116394
crossref_primary_10_1007_s11581_024_05776_y
crossref_primary_10_1016_j_carbon_2024_119354
crossref_primary_10_1021_acsami_2c12685
crossref_primary_10_1016_j_jcis_2025_137299
crossref_primary_10_1021_acsami_1c22817
crossref_primary_10_1039_D1NJ00262G
crossref_primary_10_1039_D4CC05773B
crossref_primary_10_1016_j_jelechem_2024_118179
crossref_primary_10_1016_j_matlet_2022_132754
crossref_primary_10_1039_D4TA05292G
crossref_primary_10_1016_j_vacuum_2024_113738
crossref_primary_10_1007_s10853_024_09918_5
crossref_primary_10_1021_acsami_2c21043
crossref_primary_10_1002_batt_202300613
crossref_primary_10_1016_j_tsf_2020_138439
crossref_primary_10_1002_ange_202116394
crossref_primary_10_26599_NRE_2022_9120142
crossref_primary_10_1007_s11426_022_1550_2
crossref_primary_10_1007_s11581_024_05437_0
crossref_primary_10_54097_hset_v73i_14678
crossref_primary_10_1016_j_apmt_2021_100985
crossref_primary_10_1016_j_jechem_2021_11_040
crossref_primary_10_1002_smll_202300107
crossref_primary_10_1039_D3QI00173C
crossref_primary_10_1016_j_jcis_2024_02_112
crossref_primary_10_1039_D3QI01397A
crossref_primary_10_1002_adma_202305135
crossref_primary_10_1039_D1RA06427D
crossref_primary_10_1016_j_nanoen_2024_110587
crossref_primary_10_1002_adfm_202308392
crossref_primary_10_3390_batteries9010036
crossref_primary_10_1007_s12274_022_4453_9
crossref_primary_10_1039_D3YA00241A
crossref_primary_10_1016_j_jcis_2021_02_060
crossref_primary_10_1016_j_jmat_2022_06_004
crossref_primary_10_1016_j_jcis_2021_12_125
crossref_primary_10_1016_j_joule_2024_01_010
crossref_primary_10_1016_j_surfcoat_2023_130169
crossref_primary_10_1016_j_jallcom_2024_174924
crossref_primary_10_1016_j_jcis_2024_06_145
crossref_primary_10_1016_j_jcou_2022_102374
crossref_primary_10_1002_aenm_202303773
crossref_primary_10_1016_j_electacta_2021_138712
crossref_primary_10_20517_cs_2024_53
crossref_primary_10_12677_CES_2023_113095
crossref_primary_10_20517_energymater_2024_28
crossref_primary_10_1021_acsaem_0c01855
crossref_primary_10_1021_acsnano_3c10779
crossref_primary_10_1002_app_53544
crossref_primary_10_1016_j_cej_2025_161574
crossref_primary_10_1016_j_jpowsour_2025_236814
crossref_primary_10_1016_j_jcis_2023_05_062
crossref_primary_10_1021_acsami_0c20721
crossref_primary_10_1016_j_jallcom_2022_165647
crossref_primary_10_1039_D0RA04901H
crossref_primary_10_1016_j_jcis_2023_05_077
crossref_primary_10_1002_batt_202400471
crossref_primary_10_1002_tcr_202000182
crossref_primary_10_1002_adfm_202214429
crossref_primary_10_1016_j_ensm_2022_03_007
crossref_primary_10_1016_j_jpowsour_2024_234594
crossref_primary_10_1016_j_est_2024_112986
crossref_primary_10_1016_j_cej_2024_154873
crossref_primary_10_1149_2162_8777_ad5b87
crossref_primary_10_1039_D1TA06708G
crossref_primary_10_1021_acsami_2c17789
crossref_primary_10_1039_D3DT00101F
crossref_primary_10_1016_j_ccr_2024_216039
crossref_primary_10_1002_smll_202101058
crossref_primary_10_1016_j_cej_2023_144419
crossref_primary_10_1002_qua_26660
crossref_primary_10_1021_acsaem_0c01431
crossref_primary_10_1016_j_ssi_2024_116622
crossref_primary_10_1007_s12598_022_01992_5
crossref_primary_10_1002_cssc_202300435
crossref_primary_10_1039_D1TA07310A
crossref_primary_10_1039_D2TA09612A
crossref_primary_10_1016_j_ceramint_2024_07_429
crossref_primary_10_1016_j_ijhydene_2022_04_032
crossref_primary_10_1016_j_surfin_2024_105581
crossref_primary_10_1016_j_jechem_2022_07_024
crossref_primary_10_1016_j_cej_2022_136918
crossref_primary_10_1016_j_jcis_2023_05_096
crossref_primary_10_1016_j_electacta_2022_140049
crossref_primary_10_1016_j_ensm_2024_103480
crossref_primary_10_1016_j_ensm_2023_103022
crossref_primary_10_1007_s11664_021_09196_w
crossref_primary_10_1002_inf2_12422
crossref_primary_10_1016_j_est_2023_108484
crossref_primary_10_1016_j_jcis_2024_05_073
crossref_primary_10_1039_D4TA02115K
crossref_primary_10_3390_batteries11040123
crossref_primary_10_1039_D2TA06793E
crossref_primary_10_1016_j_cej_2023_145844
crossref_primary_10_1016_j_esci_2024_100249
crossref_primary_10_1039_D4EE03708A
crossref_primary_10_1002_adfm_202103912
crossref_primary_10_1002_celc_202001409
crossref_primary_10_1039_D4TA06625A
crossref_primary_10_1016_j_apsusc_2021_149566
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1002_adfm_202102827
crossref_primary_10_1016_j_jcis_2023_02_011
crossref_primary_10_1021_acsnano_3c11785
crossref_primary_10_1016_j_susmat_2022_e00479
crossref_primary_10_1021_acs_iecr_2c04054
crossref_primary_10_1039_D1SE00219H
crossref_primary_10_1002_aenm_202202600
crossref_primary_10_1016_j_ssi_2022_116114
crossref_primary_10_1002_adfm_202403648
crossref_primary_10_1016_j_electacta_2022_141157
crossref_primary_10_1016_j_susmat_2022_e00480
crossref_primary_10_1021_acsmaterialslett_4c00244
crossref_primary_10_1016_j_jcis_2022_02_069
crossref_primary_10_1016_j_addr_2022_114314
crossref_primary_10_1016_j_jechem_2021_04_007
crossref_primary_10_1016_j_egyr_2022_09_167
crossref_primary_10_1002_idm2_12132
crossref_primary_10_1016_j_jallcom_2021_162143
crossref_primary_10_1039_D1TA09516A
crossref_primary_10_1016_j_mtener_2024_101781
crossref_primary_10_1007_s11664_020_08425_y
crossref_primary_10_1016_j_est_2023_107242
crossref_primary_10_1002_adma_202310336
crossref_primary_10_1039_D2RA03601K
crossref_primary_10_3390_app12189123
crossref_primary_10_5796_electrochemistry_23_00012
crossref_primary_10_1016_j_mtcomm_2023_107361
crossref_primary_10_1007_s41918_020_00093_0
crossref_primary_10_1016_j_jallcom_2022_164979
crossref_primary_10_1021_acsami_1c14314
crossref_primary_10_1002_adfm_202402178
crossref_primary_10_1016_j_matchemphys_2021_124456
crossref_primary_10_1002_cey2_482
crossref_primary_10_1002_smll_202406332
crossref_primary_10_1039_D3DT01709E
crossref_primary_10_1016_j_jallcom_2023_172522
crossref_primary_10_1016_j_ensm_2022_10_049
crossref_primary_10_1002_aesr_202200009
crossref_primary_10_1021_acsami_0c21447
crossref_primary_10_1039_D2CP03740H
crossref_primary_10_1021_acsaem_4c00097
crossref_primary_10_1002_batt_202300271
crossref_primary_10_1021_acsami_3c12772
crossref_primary_10_3390_batteries11010028
crossref_primary_10_1016_j_jcis_2023_12_099
crossref_primary_10_1002_cey2_257
crossref_primary_10_1016_j_ensm_2022_08_007
crossref_primary_10_1007_s11664_022_09909_9
crossref_primary_10_1016_j_susmat_2021_e00312
crossref_primary_10_1039_D3NJ05154D
crossref_primary_10_1016_j_ensm_2021_07_044
crossref_primary_10_1021_acsaem_2c03051
crossref_primary_10_1039_D4SC00510D
crossref_primary_10_1002_nano_202100177
crossref_primary_10_1039_D2TA02937E
crossref_primary_10_1021_acsenergylett_1c01855
crossref_primary_10_1039_D3SC05283D
crossref_primary_10_3390_inorganics11030118
crossref_primary_10_1016_j_susmat_2024_e01052
crossref_primary_10_1016_j_jpowsour_2024_235043
crossref_primary_10_1016_j_susmat_2024_e01059
crossref_primary_10_1016_j_apsusc_2021_149810
crossref_primary_10_1002_cey2_388
crossref_primary_10_1039_D2NJ03990G
crossref_primary_10_1080_10408436_2023_2273465
crossref_primary_10_1016_j_est_2023_107256
crossref_primary_10_26599_NRE_2024_9120142
crossref_primary_10_1002_adfm_202404263
crossref_primary_10_1016_j_carbon_2022_10_036
crossref_primary_10_1016_S1003_6326_24_66677_X
crossref_primary_10_1002_aenm_202200715
crossref_primary_10_1002_tcr_202200122
crossref_primary_10_1039_D2TA00608A
crossref_primary_10_1016_j_cej_2021_130246
crossref_primary_10_1002_smll_202408792
crossref_primary_10_1016_j_jallcom_2021_163394
crossref_primary_10_1016_j_cej_2022_137286
crossref_primary_10_1039_D0EE03916K
crossref_primary_10_1088_1361_6528_aba7e1
crossref_primary_10_1039_D5EE00136F
crossref_primary_10_1016_j_jpowsour_2024_235026
crossref_primary_10_1007_s11224_024_02427_w
crossref_primary_10_1016_j_susmat_2021_e00255
crossref_primary_10_1007_s42765_021_00088_6
crossref_primary_10_1039_D3TA03215A
crossref_primary_10_1002_celc_202100735
crossref_primary_10_1016_j_ensm_2023_02_005
crossref_primary_10_1039_D2TA02584A
crossref_primary_10_1016_j_pmatsci_2022_101055
crossref_primary_10_1016_j_gee_2021_03_007
crossref_primary_10_1021_acsaem_3c00229
crossref_primary_10_1016_j_mtener_2022_101196
crossref_primary_10_1039_D1TA10439J
crossref_primary_10_1016_S1872_5805_25_60953_X
crossref_primary_10_1038_s41467_024_50899_5
crossref_primary_10_1016_j_carbon_2023_118778
crossref_primary_10_1016_j_renene_2022_10_102
crossref_primary_10_1039_D0TA12417F
crossref_primary_10_1021_acssuschemeng_1c04341
crossref_primary_10_3390_molecules27196516
crossref_primary_10_1016_j_cej_2024_153230
crossref_primary_10_1039_D2RA08135K
crossref_primary_10_1039_D3RA04706G
crossref_primary_10_1007_s12274_021_3873_2
crossref_primary_10_1021_acsami_4c06305
crossref_primary_10_1002_adfm_202310256
crossref_primary_10_1016_j_susmat_2021_e00357
crossref_primary_10_1016_j_mtener_2024_101642
crossref_primary_10_1002_smll_202007652
crossref_primary_10_1016_j_apsusc_2022_153612
crossref_primary_10_1021_acsami_2c18433
crossref_primary_10_1016_j_susmat_2021_e00342
crossref_primary_10_1016_j_nanoms_2024_10_003
crossref_primary_10_1002_adfm_202110853
crossref_primary_10_1016_j_compositesb_2022_109912
crossref_primary_10_1016_j_indcrop_2024_118060
crossref_primary_10_1021_acssuschemeng_2c02710
crossref_primary_10_1016_j_est_2022_106395
crossref_primary_10_1016_j_mtphys_2023_101099
crossref_primary_10_1016_j_est_2024_114213
crossref_primary_10_1007_s11581_023_04958_4
crossref_primary_10_1002_advs_202307995
crossref_primary_10_1016_j_jpowsour_2022_232517
crossref_primary_10_1021_acs_chemmater_3c02981
crossref_primary_10_1016_j_apsusc_2022_154481
crossref_primary_10_1039_D4CC03352C
crossref_primary_10_1002_eem2_12573
crossref_primary_10_1039_D1QM00052G
crossref_primary_10_1002_advs_202206924
crossref_primary_10_1039_D0NR06614A
crossref_primary_10_1002_cey2_641
crossref_primary_10_1007_s11664_020_08600_1
crossref_primary_10_1016_j_electacta_2020_136832
crossref_primary_10_1021_acsami_4c07348
crossref_primary_10_1039_D1MA00315A
crossref_primary_10_1016_j_apsusc_2022_154118
crossref_primary_10_1002_advs_202106067
crossref_primary_10_1016_j_jcis_2025_01_168
crossref_primary_10_1016_j_jcis_2025_01_169
crossref_primary_10_1002_anie_202312310
crossref_primary_10_1016_j_seppur_2024_131019
crossref_primary_10_12677_JAPC_2023_124039
crossref_primary_10_1039_D1TA05432E
crossref_primary_10_1039_D3EE01344H
crossref_primary_10_1002_advs_202305558
crossref_primary_10_1021_acs_energyfuels_4c00031
crossref_primary_10_1016_j_carbon_2024_119276
crossref_primary_10_1016_j_jechem_2023_10_008
crossref_primary_10_1002_smtd_202201370
crossref_primary_10_1016_j_jallcom_2021_162511
crossref_primary_10_1016_j_jechem_2022_01_048
crossref_primary_10_1016_j_jallcom_2023_171808
crossref_primary_10_1016_j_aej_2025_01_121
crossref_primary_10_1002_anie_202108605
crossref_primary_10_1016_j_ijhydene_2023_07_306
crossref_primary_10_1016_j_electacta_2022_141755
crossref_primary_10_1016_j_jallcom_2023_170601
crossref_primary_10_1016_j_jallcom_2024_174266
crossref_primary_10_1039_D3SC05593K
crossref_primary_10_1016_j_ceramint_2024_05_143
crossref_primary_10_1021_acs_energyfuels_3c00056
crossref_primary_10_3390_mi13050806
crossref_primary_10_1002_smll_202101974
crossref_primary_10_1063_5_0097264
crossref_primary_10_1002_ente_202100547
crossref_primary_10_1002_aenm_202100667
crossref_primary_10_1016_j_jcis_2021_04_047
crossref_primary_10_1016_j_cej_2023_145183
crossref_primary_10_1016_j_cej_2021_133922
crossref_primary_10_1016_j_jcis_2022_07_094
crossref_primary_10_1016_j_mtener_2021_100898
crossref_primary_10_1016_S1872_5805_22_60630_9
crossref_primary_10_1016_j_ensm_2022_06_012
crossref_primary_10_1007_s10853_025_10662_7
crossref_primary_10_1016_j_jechem_2023_04_035
crossref_primary_10_3390_ma17133327
crossref_primary_10_1039_D2TA05092G
crossref_primary_10_3390_nano12193530
crossref_primary_10_1002_advs_202200341
crossref_primary_10_1016_j_jechem_2023_10_023
crossref_primary_10_1016_j_electacta_2022_141813
crossref_primary_10_1080_15435075_2025_2483447
crossref_primary_10_34133_research_0209
crossref_primary_10_1007_s40820_024_01526_x
crossref_primary_10_1002_aenm_202204259
crossref_primary_10_1016_j_matlet_2022_133542
crossref_primary_10_1093_mam_ozae044_591
crossref_primary_10_1016_j_jelechem_2021_115669
crossref_primary_10_1016_j_ensm_2022_08_035
crossref_primary_10_1002_adfm_202107718
crossref_primary_10_1002_batt_202300233
crossref_primary_10_1016_j_carbon_2021_03_022
crossref_primary_10_1002_batt_202100022
crossref_primary_10_1016_j_ensm_2025_104041
crossref_primary_10_1016_j_jallcom_2023_169314
crossref_primary_10_1016_j_jcis_2022_06_062
crossref_primary_10_1016_j_cej_2024_158761
crossref_primary_10_1039_D4NA00416G
crossref_primary_10_1016_j_pmatsci_2023_101166
crossref_primary_10_1016_j_mtnano_2023_100321
crossref_primary_10_1007_s12613_023_2685_7
crossref_primary_10_1021_acs_energyfuels_4c03980
crossref_primary_10_3390_molecules28031409
crossref_primary_10_1016_j_est_2023_109921
crossref_primary_10_1002_adma_202407359
crossref_primary_10_1021_acsaem_4c02485
crossref_primary_10_1016_j_scib_2022_09_021
crossref_primary_10_1002_adfm_202408657
crossref_primary_10_1088_1361_6528_ac1131
crossref_primary_10_1093_mam_ozae044_253
crossref_primary_10_1002_aenm_202202052
crossref_primary_10_1039_D1QM00471A
crossref_primary_10_1002_cey2_503
crossref_primary_10_1016_j_cej_2021_131758
crossref_primary_10_1016_j_jcis_2024_09_152
crossref_primary_10_1016_j_est_2023_107614
crossref_primary_10_1021_acsanm_1c01264
Cites_doi 10.1039/C7TA06577A
10.1016/S1003-6326(08)60060-6
10.1039/C6TA00236F
10.1016/j.cej.2019.01.158
10.1021/acsami.6b09898
10.1142/S1793604719500498
10.1016/j.solidstatesciences.2019.04.014
10.1016/j.materresbull.2015.12.005
10.1002/anie.201602202
10.1016/j.jechem.2019.06.016
10.1039/C7TA08261D
10.1016/j.nanoen.2019.104219
10.1039/C7TA01480E
10.1002/smll.201600606
10.1016/j.carbon.2012.12.072
10.1002/adma.201405370
10.1002/adma.201700210
10.1039/C8CC01631C
10.1021/acssuschemeng.9b05948
10.1016/j.jpowsour.2019.227514
10.1007/s11581-016-1919-3
10.1039/D0TA02922J
10.1021/ja907098f
10.1016/j.nanoen.2017.12.042
10.1039/C9TA02710F
10.1016/j.jallcom.2018.11.257
10.1039/C6TA09195D
10.1016/j.matlet.2019.127064
10.1039/C7EE01628J
10.1021/nl803279t
10.1039/C5EE01985K
10.1002/cey2.8
10.1016/j.electacta.2018.04.006
10.1039/C4EE03361B
10.1039/C9TA02107H
10.1016/j.electacta.2015.02.055
10.1039/C4CP01045K
10.1002/adfm.201700522
10.1039/C8TA02067A
10.1039/C3EE44004D
10.1021/acsami.8b21257
10.1002/chem.201703375
10.1002/adma.201604108
10.1039/C5TA03519H
10.1016/j.jpowsour.2013.05.040
10.1016/j.matlet.2016.02.121
10.1021/acs.chemmater.6b04769
10.1002/smll.201600101
10.1021/acsami.8b15940
10.1016/j.jpowsour.2017.11.043
10.1016/j.jpowsour.2020.228110
10.1016/j.electacta.2016.01.105
10.1016/j.carbon.2018.08.071
10.1021/acsami.7b01986
10.1016/j.nanoen.2019.02.074
10.1021/cr400407a
10.1021/acsami.9b07865
10.1016/j.scib.2017.12.024
10.1039/C5CC06266G
10.1021/acs.inorgchem.8b00284
10.1039/C6TA08472A
10.1016/j.jallcom.2016.01.101
10.1016/j.jallcom.2019.04.271
10.1016/j.jpowsour.2018.09.103
10.1016/j.ceramint.2018.06.163
10.1149/2.1061807jes
10.1002/adma.201605820
10.1016/j.jechem.2019.02.005
10.1039/C7RA09349G
10.1039/C8TA10980J
10.1039/C4CS00141A
10.1016/j.jallcom.2019.03.127
10.1038/s41467-019-13945-1
10.1016/j.ensm.2018.01.005
10.1021/acsami.8b00614
10.1016/j.matlet.2020.127403
10.1016/j.jpowsour.2015.03.164
10.1021/acssuschemeng.8b06326
10.1002/anie.201310679
10.1002/adma.201503221
10.1039/C6RA16515J
10.1039/C9CC01018A
10.1002/advs.201600243
10.1007/s10853-019-03416-9
10.1039/C8TA12540F
10.1038/s41467-019-11960-w
10.1016/j.electacta.2016.12.094
10.1002/adma.201502864
10.1016/j.electacta.2016.12.019
10.1016/j.apcatb.2018.02.034
10.1021/acsnano.6b05653
10.1002/cey2.14
10.1039/C4TA03948C
10.1016/j.electacta.2016.10.016
10.1016/j.ensm.2017.03.006
10.1002/aenm.201700189
10.1021/nl3016957
10.1016/j.electacta.2019.02.067
10.1002/advs.201500031
10.1002/aenm.201602898
10.1149/2.0041505eel
10.1016/j.electacta.2017.05.090
10.1016/j.materresbull.2017.03.016
10.1021/acssuschemeng.8b06385
10.1016/j.electacta.2018.05.174
10.1016/j.apsusc.2013.02.035
10.1021/acsami.9b05667
10.1039/C6TA08364A
10.1016/j.jelechem.2019.113392
10.1016/j.jallcom.2019.01.125
10.1039/C8QI00285A
10.1016/j.electacta.2018.09.192
10.1021/acsami.9b08378
10.1002/aenm.201802379
10.1016/j.carbon.2016.05.052
10.1016/j.electacta.2015.04.125
10.1002/celc.201801760
10.1002/cssc.201701664
10.1039/C6TA10577G
10.1002/aenm.201500658
10.1039/C7TA08970H
10.1039/C7NR01280B
10.1021/acsami.8b05618
10.1021/acsami.8b19637
10.1039/C9NR02277E
10.1039/C9TA04450G
10.1039/C6TA07109K
10.1002/smll.201905452
10.1039/C8TA00117K
10.1016/j.materresbull.2015.08.035
10.1016/j.jpowsour.2019.227586
10.1002/smll.201602742
10.1016/j.cclet.2019.06.044
10.1039/C7RA03628K
10.1002/adfm.201800394
10.1016/j.apsusc.2018.09.035
10.1016/j.jpowsour.2005.12.079
10.1002/smtd.201800323
10.1007/s10854-019-00965-2
10.1002/adfm.201402833
10.1016/j.ensm.2017.09.003
10.1016/j.jpowsour.2016.10.067
10.1039/C5CC02564H
10.1039/C7TA00690J
10.1016/j.apsusc.2019.143717
10.1063/1674-0068/31/cjcp1802013
10.1039/c2ra01367c
10.1016/j.commatsci.2013.12.052
10.1002/adfm.201901912
10.1016/j.jpowsour.2019.03.031
10.1002/aenm.201803342
10.1039/C9TA09502K
10.1021/jp9731821
10.1039/C6TA04592H
10.1088/1361-6528/aab120
10.1002/cey2.24
10.1039/C5CP05212B
10.1039/C3NR05374A
10.1002/cey2.29
10.1039/C6EE01750A
10.1039/C9RA10485B
10.1002/adma.201700748
10.1002/advs.201600112
10.1002/adma.201504412
10.1039/C9TA00869A
10.1021/acs.chemmater.7b03903
10.1016/j.ssi.2019.01.025
10.1021/acsami.9b02555
10.1002/cey2.21
10.1038/srep02260
10.20964/2018.02.62
10.1002/advs.201700880
10.1002/cey2.28
10.1002/adma.201400719
10.1021/nl301409h
10.1021/acs.chemmater.6b01935
10.1007/s11581-018-2830-x
10.1016/j.ensm.2020.04.003
10.1021/acs.jpclett.7b02012
10.1002/adfm.201100854
10.1002/cssc.201802948
10.1016/j.jechem.2018.11.007
10.1016/j.matlet.2017.04.001
10.1021/acsami.7b18226
10.1002/smll.201802218
10.1002/aenm.201601329
10.1016/j.jpowsour.2017.01.014
10.1016/j.fuproc.2018.05.007
10.1038/s41467-018-07646-4
10.1002/advs.201500286
10.1016/j.electacta.2016.09.003
10.1002/adma.201503015
10.1016/j.carbon.2015.06.076
10.1039/C8TA11890F
10.1039/C8TA06232C
10.1039/C8CC04426K
10.1016/j.jallcom.2017.09.020
10.1039/C8TA11915E
10.1002/aenm.201501929
10.1002/cey2.1
10.1021/acs.chemmater.5b04557
10.1016/j.electacta.2019.04.059
10.1039/C6TA04906K
10.1002/advs.201900151
10.1021/acsami.7b06290
10.1002/aenm.201601804
10.1016/j.carbon.2017.02.057
10.1016/j.electacta.2018.10.150
10.1039/C8TA06412A
10.1021/am4060222
10.1002/cey2.22
10.1002/ppsc.201600315
10.1002/smll.201700762
10.1016/j.electacta.2016.07.089
10.1002/adma.201706668
10.1002/aenm.201602894
10.1039/C9TA02268F
10.1021/acsami.9b14249
10.1016/j.jpowsour.2017.12.028
10.1007/s10800-018-1196-0
10.1016/j.matlet.2016.11.110
10.1039/C6TA10494K
10.1016/j.carbon.2017.01.101
10.1002/aenm.201502217
10.1002/smll.201805427
10.1039/C8TA11578H
10.1039/C8TA09247H
10.1016/j.carbon.2015.12.066
10.1149/1.1393348
10.1002/anie.201407898
10.1021/nl504038s
10.1016/j.nanoen.2014.08.011
10.1039/C6TA04929J
10.1007/s11581-017-2122-x
10.1016/j.jpowsour.2014.09.046
10.1016/j.mtener.2018.02.001
10.1016/j.jcis.2019.11.085
10.1039/C4RA01200C
10.1016/j.carbon.2017.07.056
10.1002/advs.201800241
10.1039/C8CC00365C
10.1039/C7TA00880E
10.1016/j.nanoen.2016.11.023
10.1088/0957-4484/27/17/175402
10.1002/adfm.201606232
10.1016/j.jpowsour.2017.04.076
10.1039/C8TA06905K
10.1016/j.ensm.2020.02.033
10.1002/adma.201802035
10.1007/s40843-017-9045-9
10.1039/C6TA02139E
10.1002/advs.201500195
10.1021/acsami.9b08987
10.1039/C4EE03759F
10.1149/2.1041910jes
10.1021/acs.nanolett.6b00057
10.1002/cssc.201200680
10.1016/j.ssi.2018.07.006
10.1016/j.electacta.2013.10.211
10.1016/j.electacta.2018.05.082
10.1016/j.ceramint.2017.05.063
10.1021/acsami.8b08380
10.1002/cey2.19
10.1038/nchem.281
10.1016/j.ensm.2019.03.011
10.1039/C5TA03528G
10.1039/C5RA19717A
10.1039/c2ee21802j
10.1021/acsami.7b16077
10.1016/j.ensm.2017.11.008
10.1039/c1cc14419g
10.1021/acsami.7b15659
10.1002/aenm.201900036
10.1021/acsami.5b00594
10.1016/j.carbon.2017.05.072
10.1016/j.nanoen.2015.05.038
10.1016/j.electacta.2016.05.013
10.1166/jctn.2008.1123
10.1016/j.carbon.2018.06.035
10.1016/j.cej.2019.122457
10.1016/j.carbon.2015.04.049
10.1021/acs.jpcc.5b05443
10.1016/j.jpowsour.2017.10.019
10.1016/j.electacta.2018.06.074
10.1039/c3ta00184a
10.1016/j.synthmet.2016.07.011
10.1088/1674-1056/23/11/118202
10.1039/C6RA24386J
10.1016/j.carbon.2018.01.053
10.1021/nn203393d
10.1002/celc.201901829
10.1021/acsami.7b18195
10.1039/C7SE00134G
10.1016/j.ceramint.2018.05.233
10.1007/s12274-017-1649-5
10.1002/aenm.201501489
10.1016/j.jallcom.2019.04.338
10.1142/S1793292016501241
10.1016/j.electacta.2018.04.216
10.1039/C7TA02194A
10.1016/j.ceramint.2019.03.074
10.1039/C7RA00469A
10.1039/C6TA08667E
10.1016/j.jallcom.2018.01.350
10.1002/advs.201600468
10.1002/celc.201700554
10.1007/s11706-018-0414-3
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202000927
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202000927
AENM202000927
Genre reviewArticle
GrantInformation_xml – fundername: Science and Technology Development by Central Government of China
  funderid: ZY18C04
– fundername: National Natural Science Foundation of China
  funderid: 51502063; 51772272
– fundername: Fundamental Research Foundation for Universities of Heilongjiang Province
  funderid: LGYC2018JQ006
– fundername: Young Innovative Talents of HUST
  funderid: 201505
– fundername: National Youth Talent Support Program of China
– fundername: Natural Science Funds for Distinguished Young Scholar of Zhejiang Province
  funderid: LR20E020001
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4227-58f06f0e285803cea78d157e392cc71c10228e8479848e433dece5c1b3678dd73
ISSN 1614-6832
IngestDate Fri Jul 25 12:03:31 EDT 2025
Tue Jul 01 01:43:35 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Wed Jan 22 16:34:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4227-58f06f0e285803cea78d157e392cc71c10228e8479848e433dece5c1b3678dd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5976-5337
PQID 2425493864
PQPubID 886389
PageCount 36
ParticipantIDs proquest_journals_2425493864
crossref_primary_10_1002_aenm_202000927
crossref_citationtrail_10_1002_aenm_202000927
wiley_primary_10_1002_aenm_202000927_AENM202000927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2019; 12
2019; 15
2018; 324
2016; 666
2020; 11
2013; 241
2020; 10
2012; 12
2019; 166
2017; 728
2013; 55
2019; 23
2019; 25
2019; 29
2017; 60
2020; 42
2019; 30
2020; 261
2016; 207
2020; 40
2019; 35
2020; 380
2016; 10
2017; 370
2020; 265
2016; 16
2016; 12
2016; 11
2016; 4
2018; 230
2016; 6
2016; 3
2020; 31
2016; 219
2019; 45
2020; 28
2019; 850
2015; 119
2016; 216
2016; 336
2016; 213
2016; 28
2019; 295
2016; 27
2016; 8
2016; 9
2020; 29
2019; 55
2016; 107
2018; 404
2019; 54
2017; 43
2016; 220
2008; 5
2017; 356
2017; 116
2020; 8
2020; 7
2017; 31
2019; 60
2014; 4
2015; 170
2020; 2
2014; 2
2017; 34
2017; 120
2014; 9
2017; 123
2017; 244
2014; 7
2014; 6
2014; 53
2015; 2
2015; 160
2019; 1900223
2015; 5
2015; 4
2015; 3
2017; 27
2020; 461
2015; 94
2019; 309
2015; 286
2017; 23
2019; 303
2019; 784
2019; 422
2018; 63
2017; 29
2014; 85
2015; 8
2015; 7
2000; 147
2020
2017; 10
2017; 13
2009; 9
2019; 779
2020; 67
2017; 342
2018; 54
2009; 1
2017; 223
2017; 224
2018; 57
2018; 165
2013; 3
2019; 93
2018; 281
2013; 1
2018; 282
2014; 26
2020; 448
2020; 562
2018; 45
2018; 44
2013; 6
2014; 23
2020; 449
2018; 48
2018; 6
2018; 177
2018; 8
2018; 292
2018; 5
2014; 16
2019; 795
2018; 30
2015; 91
2006; 160
2019; 790
2018; 31
2019; 794
2019; 7
2018; 29
2019; 9
2018; 28
2019; 3
2019; 6
2018; 743
2015; 51
2019; 1
2014; 272
2019; 464
2014; 43
2016; 99
2019; 333
2018; 12
2018; 11
2018; 10
2018; 14
2016; 172
2018; 13
2017; 5
2017; 7
2017; 8
2017; 1
2017; 4
2016; 76
2016; 73
2017; 198
2017; 9
2019; 364
2018; 130
2018; 375
2018; 139
2018; 378
2011; 21
2013; 273
2016; 191
2015; 15
2014; 116
2015; 17
2018; 140
2008; 18
2009; 131
2014; 114
2016; 55
2018; 273
2015; 25
2017; 96
2012; 2
2015; 27
2018; 277
2018; 279
2011; 47
2017; 188
2012; 6
1998; 102
2012; 5
2019; 496
e_1_2_7_3_1
e_1_2_7_311_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_297_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
e_1_2_7_263_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_285_1
e_1_2_7_307_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_214_1
e_1_2_7_275_1
e_1_2_7_252_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_296_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_310_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_249_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_264_1
e_1_2_7_117_1
e_1_2_7_284_1
e_1_2_7_306_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_253_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_295_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_265_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_283_1
e_1_2_7_305_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_254_1
e_1_2_7_231_1
Guo L. (e_1_2_7_180_1) 2020
e_1_2_7_294_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_279_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_266_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_282_1
e_1_2_7_91_1
e_1_2_7_304_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_255_1
e_1_2_7_157_1
e_1_2_7_270_1
e_1_2_7_108_1
e_1_2_7_293_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_278_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
Su Z. (e_1_2_7_177_1) 2020
e_1_2_7_267_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_281_1
e_1_2_7_303_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_289_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_256_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_271_1
e_1_2_7_292_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_277_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_268_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_260_1
e_1_2_7_280_1
e_1_2_7_302_1
e_1_2_7_113_1
e_1_2_7_288_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_257_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_272_1
e_1_2_7_291_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_276_1
e_1_2_7_299_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_269_1
e_1_2_7_186_1
e_1_2_7_246_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_261_1
e_1_2_7_301_1
e_1_2_7_114_1
e_1_2_7_287_1
e_1_2_7_73_1
e_1_2_7_50_1
Ren J. (e_1_2_7_181_1) 2020
Zhu H. (e_1_2_7_53_1) 2019; 1900223
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_258_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_309_1
e_1_2_7_273_1
e_1_2_7_250_1
e_1_2_7_290_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_298_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_262_1
e_1_2_7_300_1
e_1_2_7_115_1
e_1_2_7_286_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_259_1
e_1_2_7_308_1
e_1_2_7_138_1
e_1_2_7_274_1
e_1_2_7_251_1
References_xml – volume: 94
  start-page: 189
  year: 2015
  publication-title: Carbon
– volume: 191
  start-page: 385
  year: 2016
  publication-title: Electrochim. Acta
– volume: 213
  start-page: 496
  year: 2016
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 3500
  year: 2018
  publication-title: Chem. Commun.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 4660
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 99
  start-page: 556
  year: 2016
  publication-title: Carbon
– volume: 7
  start-page: 229
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 34
  year: 2017
  publication-title: Part. Part. Syst. Charact.
– volume: 449
  year: 2020
  publication-title: J. Power Sources
– volume: 44
  year: 2018
  publication-title: Ceram. Int.
– volume: 21
  start-page: 3859
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 6670
  year: 2015
  publication-title: Adv. Mater.
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 172
  start-page: 56
  year: 2016
  publication-title: Mater. Lett.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 917
  year: 2019
  publication-title: ChemElectroChem
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 9
  start-page: 3240
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 35
  start-page: 132
  year: 2019
  publication-title: J. Energy Chem.
– volume: 31
  start-page: 673
  year: 2018
  publication-title: Chin. J. Chem. Phys.
– volume: 12
  start-page: 2559
  year: 2016
  publication-title: Small
– volume: 303
  start-page: 140
  year: 2019
  publication-title: Electrochim. Acta
– volume: 188
  start-page: 355
  year: 2017
  publication-title: Mater. Lett.
– volume: 63
  start-page: 126
  year: 2018
  publication-title: Sci. Bull.
– volume: 265
  year: 2020
  publication-title: Mater. Lett.
– volume: 7
  start-page: 201
  year: 2020
  publication-title: ChemElectroChem
– volume: 130
  start-page: 574
  year: 2018
  publication-title: Carbon
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 364
  year: 2014
  publication-title: Nano Energy
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6277
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 276
  year: 2018
  publication-title: Carbon
– volume: 790
  start-page: 203
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 779
  start-page: 147
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 1309
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 496
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 55
  start-page: 328
  year: 2013
  publication-title: Carbon
– volume: 25
  start-page: 1105
  year: 2019
  publication-title: Ionics
– volume: 85
  start-page: 179
  year: 2014
  publication-title: Comput. Mater. Sci.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 261
  year: 2020
  publication-title: Mater. Lett.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 28
  start-page: 2259
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 45
  year: 2019
  publication-title: Ceram. Int.
– volume: 244
  start-page: 86
  year: 2017
  publication-title: Electrochim. Acta
– volume: 11
  year: 2016
  publication-title: Nano
– volume: 29
  start-page: 52
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 18
  start-page: 346
  year: 2008
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 29
  start-page: 1623
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 2877
  year: 2017
  publication-title: ChemElectroChem
– volume: 13
  year: 2017
  publication-title: Small
– volume: 5
  start-page: 4467
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 170
  start-page: 171
  year: 2015
  publication-title: Electrochim. Acta
– volume: 464
  start-page: 422
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 461
  year: 2020
  publication-title: J. Power Sources
– year: 2020
  publication-title: Carbon Energy
– volume: 40
  start-page: 1
  year: 2020
  publication-title: J. Energy Chem.
– volume: 54
  start-page: 4317
  year: 2018
  publication-title: Chem. Commun.
– volume: 336
  start-page: 186
  year: 2016
  publication-title: J. Power Sources
– volume: 54
  start-page: 8504
  year: 2019
  publication-title: J. Mater. Sci.
– volume: 784
  start-page: 939
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 12
  start-page: 3522
  year: 2016
  publication-title: Small
– volume: 216
  start-page: 51
  year: 2016
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 2042
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1587
  year: 2018
  publication-title: Inorg. Chem. Front.
– volume: 26
  start-page: 5794
  year: 2014
  publication-title: Adv. Mater.
– volume: 23
  start-page: 3057
  year: 2017
  publication-title: Ionics
– volume: 8
  start-page: 2916
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 6702
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 610
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 241
  start-page: 680
  year: 2013
  publication-title: J. Power Sources
– volume: 12
  start-page: 3783
  year: 2012
  publication-title: Nano Lett.
– volume: 1
  start-page: 200
  year: 2019
  publication-title: Carbon Energy
– volume: 286
  start-page: 330
  year: 2015
  publication-title: J. Power Sources
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 309
  start-page: 177
  year: 2019
  publication-title: Electrochim. Acta
– volume: 272
  start-page: 880
  year: 2014
  publication-title: J. Power Sources
– volume: 380
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 7693
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 448
  year: 2020
  publication-title: J. Power Sources
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 28
  start-page: 55
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 850
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 7
  start-page: 4395
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 2802
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 539
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 43
  year: 2017
  publication-title: Ceram. Int.
– volume: 224
  start-page: 446
  year: 2017
  publication-title: Electrochim. Acta
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 6
  year: 2020
  publication-title: Carbon Energy
– volume: 1
  start-page: 6441
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 116
  start-page: 300
  year: 2014
  publication-title: Electrochim. Acta
– volume: 96
  start-page: 315
  year: 2017
  publication-title: Mater. Res. Bull.
– volume: 10
  start-page: 2637
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 5021
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 378
  start-page: 105
  year: 2018
  publication-title: J. Power Sources
– volume: 282
  start-page: 510
  year: 2018
  publication-title: Electrochim. Acta
– volume: 375
  start-page: 82
  year: 2018
  publication-title: J. Power Sources
– volume: 12
  start-page: 1
  year: 2019
  publication-title: ChemSusChem
– volume: 356
  start-page: 80
  year: 2017
  publication-title: J. Power Sources
– volume: 15
  year: 2019
  publication-title: Small
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 292
  start-page: 871
  year: 2018
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 6048
  year: 2017
  publication-title: Nanoscale
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 333
  start-page: 93
  year: 2019
  publication-title: Solid State Ionics.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 273
  start-page: 63
  year: 2018
  publication-title: Electrochim. Acta
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 134
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 8558
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 1097
  year: 2017
  publication-title: Ionics
– volume: 2
  start-page: 4498
  year: 2012
  publication-title: RSC Adv.
– volume: 1
  start-page: 173
  year: 2019
  publication-title: Carbon Energy
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 28
  start-page: 2041
  year: 2016
  publication-title: Chem. Mater.
– volume: 10
  start-page: 6342
  year: 2020
  publication-title: RSC Adv.
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1237
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1234
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 55
  start-page: 7445
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: A41
  year: 2015
  publication-title: ECS Electrochem. Lett.
– volume: 160
  start-page: 698
  year: 2006
  publication-title: J. Power Sources
– volume: 14
  year: 2018
  publication-title: Small
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2260
  year: 2013
  publication-title: Sci. Rep.
– volume: 31
  start-page: 64
  year: 2017
  publication-title: Nano Energy
– volume: 295
  start-page: 262
  year: 2019
  publication-title: Electrochim. Acta
– volume: 116
  start-page: 338
  year: 2017
  publication-title: Carbon
– volume: 10
  start-page: 1757
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 7936
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 277
  start-page: 88
  year: 2018
  publication-title: Electrochim. Acta
– volume: 198
  start-page: 106
  year: 2017
  publication-title: Mater. Lett.
– volume: 1
  start-page: 219
  year: 2019
  publication-title: Carbon Energy
– volume: 5
  start-page: 9322
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 2498
  year: 2018
  publication-title: Chem. Mater.
– volume: 6
  start-page: 7084
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 143
  year: 2020
  publication-title: Carbon Energy
– volume: 324
  start-page: 183
  year: 2018
  publication-title: Solid State Ionics.
– volume: 422
  start-page: 1
  year: 2019
  publication-title: J. Power Sources
– volume: 6
  start-page: 205
  year: 2012
  publication-title: ACS Nano
– volume: 5
  start-page: 5858
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 793
  year: 2018
  publication-title: J. Appl. Electrochem.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 13
  start-page: 2010
  year: 2018
  publication-title: Int. J. Electrochem. Sci.
– volume: 5
  start-page: 8752
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 846
  year: 2020
  publication-title: Chin. Chem. Lett.
– volume: 10
  start-page: 4244
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 8630
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 37
  year: 2018
  publication-title: Mater. Today Energy
– volume: 370
  start-page: 114
  year: 2017
  publication-title: J. Power Sources
– volume: 9
  start-page: 1752
  year: 2009
  publication-title: Nano Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 12
  start-page: 37
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 56
  year: 2013
  publication-title: ChemSusChem
– volume: 364
  start-page: 208
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 5249
  year: 2018
  publication-title: Inorg. Chem.
– volume: 160
  start-page: 15
  year: 2015
  publication-title: Electrochim. Acta
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 47
  year: 2011
  publication-title: Chem. Commun.
– volume: 23
  year: 2014
  publication-title: Chin. Phys. B
– volume: 25
  start-page: 481
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3116
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  year: 2019
  publication-title: Funct. Mater. Lett.
– volume: 6
  start-page: 1390
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 565
  year: 2015
  publication-title: Nano Lett.
– volume: 230
  start-page: 58
  year: 2018
  publication-title: Appl. Catal., B
– volume: 10
  start-page: 704
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 3134
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 53
  year: 2018
  publication-title: Front. Mater. Sci.
– volume: 279
  start-page: 186
  year: 2018
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 4337
  year: 2017
  publication-title: Nano Res.
– volume: 91
  start-page: 88
  year: 2015
  publication-title: Carbon
– volume: 102
  start-page: 4477
  year: 1998
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: 276
  year: 2019
  publication-title: Carbon Energy
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 223
  start-page: 92
  year: 2017
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 746
  year: 2015
  publication-title: Nano Energy
– volume: 73
  start-page: 125
  year: 2016
  publication-title: Mater. Res. Bull.
– volume: 93
  start-page: 62
  year: 2019
  publication-title: Solid State Sci.
– volume: 114
  start-page: 5057
  year: 2014
  publication-title: Chem. Rev.
– volume: 7
  start-page: 9807
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 728
  start-page: 976
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 28
  start-page: 5087
  year: 2016
  publication-title: Chem. Mater.
– volume: 794
  start-page: 509
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 743
  start-page: 377
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 1384
  year: 2014
  publication-title: Nanoscale
– volume: 281
  start-page: 208
  year: 2018
  publication-title: Electrochim. Acta
– volume: 55
  start-page: 3614
  year: 2019
  publication-title: Chem. Commun.
– volume: 8
  start-page: 9068
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 342
  start-page: 964
  year: 2017
  publication-title: J. Power Sources
– volume: 60
  start-page: 162
  year: 2019
  publication-title: Nano Energy
– volume: 43
  start-page: 7067
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 1497
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 120
  start-page: 380
  year: 2017
  publication-title: Carbon
– volume: 404
  start-page: 39
  year: 2018
  publication-title: J. Power Sources
– volume: 10
  start-page: 3562
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 506
  year: 2018
  publication-title: ChemSusChem
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 1117
  year: 2018
  publication-title: Carbon
– volume: 1
  start-page: 246
  year: 2019
  publication-title: Carbon Energy
– volume: 5
  start-page: 2221
  year: 2008
  publication-title: J. Comput. Theor. Nanosci.
– volume: 207
  start-page: 266
  year: 2016
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 253
  year: 2019
  publication-title: Carbon Energy
– volume: 10
  start-page: 5203
  year: 2019
  publication-title: Nat. Commun.
– volume: 76
  start-page: 113
  year: 2016
  publication-title: Mater. Res. Bull.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 219
  start-page: 227
  year: 2016
  publication-title: Electrochim. Acta
– volume: 42
  start-page: 91
  year: 2020
  publication-title: J. Energy Chem.
– volume: 123
  start-page: 250
  year: 2017
  publication-title: Carbon
– volume: 7
  start-page: 1643
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 177
  start-page: 328
  year: 2018
  publication-title: Fuel Process. Technol.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 666
  start-page: 254
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 107
  start-page: 67
  year: 2016
  publication-title: Carbon
– volume: 7
  start-page: 8585
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 273
  start-page: 302
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 403
  year: 2009
  publication-title: Nat. Chem.
– volume: 562
  start-page: 511
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 1900223
  start-page: 1
  year: 2019
  publication-title: Small Methods
– volume: 147
  start-page: 1271
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 4399
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  start-page: 6644
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 629
  year: 2017
  publication-title: Sci. China Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 5428
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 220
  year: 2018
  publication-title: Nano Energy
– volume: 795
  start-page: 223
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 12
  start-page: 4025
  year: 2012
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 116
  start-page: 686
  year: 2017
  publication-title: Carbon
– volume: 220
  start-page: 524
  year: 2016
  publication-title: Synth. Met.
– volume: 1
  start-page: 32
  year: 2019
  publication-title: Carbon Energy
– volume: 30
  start-page: 6583
  year: 2019
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 5
  start-page: 8334
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 4209
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 2054
  year: 2016
  publication-title: Nano Lett.
– volume: 11
  start-page: 132
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 1130
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 11
  start-page: 274
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 4705
  year: 2019
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_152_1
  doi: 10.1039/C7TA06577A
– ident: e_1_2_7_242_1
  doi: 10.1016/S1003-6326(08)60060-6
– ident: e_1_2_7_111_1
  doi: 10.1039/C6TA00236F
– ident: e_1_2_7_199_1
  doi: 10.1016/j.cej.2019.01.158
– ident: e_1_2_7_218_1
  doi: 10.1021/acsami.6b09898
– ident: e_1_2_7_50_1
  doi: 10.1142/S1793604719500498
– ident: e_1_2_7_211_1
  doi: 10.1016/j.solidstatesciences.2019.04.014
– ident: e_1_2_7_21_1
  doi: 10.1016/j.materresbull.2015.12.005
– ident: e_1_2_7_232_1
  doi: 10.1002/anie.201602202
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jechem.2019.06.016
– ident: e_1_2_7_121_1
  doi: 10.1039/C7TA08261D
– ident: e_1_2_7_186_1
  doi: 10.1016/j.nanoen.2019.104219
– ident: e_1_2_7_185_1
  doi: 10.1039/C7TA01480E
– ident: e_1_2_7_94_1
  doi: 10.1002/smll.201600606
– ident: e_1_2_7_76_1
  doi: 10.1016/j.carbon.2012.12.072
– ident: e_1_2_7_92_1
  doi: 10.1002/adma.201405370
– ident: e_1_2_7_236_1
  doi: 10.1002/adma.201700210
– ident: e_1_2_7_129_1
  doi: 10.1039/C8CC01631C
– ident: e_1_2_7_170_1
  doi: 10.1021/acssuschemeng.9b05948
– ident: e_1_2_7_200_1
  doi: 10.1016/j.jpowsour.2019.227514
– ident: e_1_2_7_224_1
  doi: 10.1007/s11581-016-1919-3
– ident: e_1_2_7_307_1
  doi: 10.1039/D0TA02922J
– ident: e_1_2_7_68_1
  doi: 10.1021/ja907098f
– ident: e_1_2_7_72_1
  doi: 10.1016/j.nanoen.2017.12.042
– ident: e_1_2_7_240_1
  doi: 10.1039/C9TA02710F
– ident: e_1_2_7_161_1
  doi: 10.1016/j.jallcom.2018.11.257
– ident: e_1_2_7_47_1
  doi: 10.1039/C6TA09195D
– ident: e_1_2_7_182_1
  doi: 10.1016/j.matlet.2019.127064
– ident: e_1_2_7_84_1
  doi: 10.1039/C7EE01628J
– ident: e_1_2_7_105_1
  doi: 10.1021/nl803279t
– ident: e_1_2_7_124_1
  doi: 10.1039/C5EE01985K
– ident: e_1_2_7_173_1
  doi: 10.1002/cey2.8
– ident: e_1_2_7_274_1
  doi: 10.1016/j.electacta.2018.04.006
– year: 2020
  ident: e_1_2_7_180_1
  publication-title: Carbon Energy
– ident: e_1_2_7_34_1
  doi: 10.1039/C4EE03361B
– ident: e_1_2_7_187_1
  doi: 10.1039/C9TA02107H
– ident: e_1_2_7_48_1
  doi: 10.1016/j.electacta.2015.02.055
– ident: e_1_2_7_144_1
  doi: 10.1039/C4CP01045K
– ident: e_1_2_7_205_1
  doi: 10.1002/adfm.201700522
– ident: e_1_2_7_213_1
  doi: 10.1039/C8TA02067A
– ident: e_1_2_7_35_1
  doi: 10.1039/C3EE44004D
– ident: e_1_2_7_220_1
  doi: 10.1021/acsami.8b21257
– ident: e_1_2_7_131_1
  doi: 10.1002/chem.201703375
– ident: e_1_2_7_150_1
  doi: 10.1002/adma.201604108
– ident: e_1_2_7_196_1
  doi: 10.1039/C5TA03519H
– ident: e_1_2_7_1_1
  doi: 10.1016/j.jpowsour.2013.05.040
– ident: e_1_2_7_30_1
  doi: 10.1016/j.matlet.2016.02.121
– ident: e_1_2_7_279_1
  doi: 10.1021/acs.chemmater.6b04769
– ident: e_1_2_7_145_1
  doi: 10.1002/smll.201600101
– ident: e_1_2_7_151_1
  doi: 10.1021/acsami.8b15940
– ident: e_1_2_7_273_1
  doi: 10.1016/j.jpowsour.2017.11.043
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jpowsour.2020.228110
– ident: e_1_2_7_114_1
  doi: 10.1016/j.electacta.2016.01.105
– ident: e_1_2_7_98_1
  doi: 10.1016/j.carbon.2018.08.071
– ident: e_1_2_7_137_1
  doi: 10.1021/acsami.7b01986
– ident: e_1_2_7_266_1
  doi: 10.1016/j.nanoen.2019.02.074
– ident: e_1_2_7_115_1
  doi: 10.1021/cr400407a
– ident: e_1_2_7_149_1
  doi: 10.1021/acsami.9b07865
– ident: e_1_2_7_154_1
  doi: 10.1016/j.scib.2017.12.024
– ident: e_1_2_7_62_1
  doi: 10.1039/C5CC06266G
– ident: e_1_2_7_246_1
  doi: 10.1021/acs.inorgchem.8b00284
– ident: e_1_2_7_64_1
  doi: 10.1039/C6TA08472A
– ident: e_1_2_7_304_1
  doi: 10.1016/j.jallcom.2016.01.101
– volume: 1900223
  start-page: 1
  year: 2019
  ident: e_1_2_7_53_1
  publication-title: Small Methods
– ident: e_1_2_7_288_1
  doi: 10.1016/j.jallcom.2019.04.271
– ident: e_1_2_7_235_1
  doi: 10.1016/j.jpowsour.2018.09.103
– ident: e_1_2_7_133_1
  doi: 10.1016/j.ceramint.2018.06.163
– ident: e_1_2_7_70_1
  doi: 10.1149/2.1061807jes
– ident: e_1_2_7_110_1
  doi: 10.1002/adma.201605820
– ident: e_1_2_7_262_1
  doi: 10.1016/j.jechem.2019.02.005
– ident: e_1_2_7_197_1
  doi: 10.1039/C7RA09349G
– ident: e_1_2_7_249_1
  doi: 10.1039/C8TA10980J
– ident: e_1_2_7_97_1
  doi: 10.1039/C4CS00141A
– ident: e_1_2_7_285_1
  doi: 10.1016/j.jallcom.2019.03.127
– ident: e_1_2_7_52_1
  doi: 10.1038/s41467-019-13945-1
– ident: e_1_2_7_198_1
  doi: 10.1016/j.ensm.2018.01.005
– ident: e_1_2_7_278_1
  doi: 10.1021/acsami.8b00614
– ident: e_1_2_7_26_1
  doi: 10.1016/j.matlet.2020.127403
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jpowsour.2015.03.164
– ident: e_1_2_7_257_1
  doi: 10.1021/acssuschemeng.8b06326
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201310679
– ident: e_1_2_7_82_1
  doi: 10.1002/adma.201503221
– ident: e_1_2_7_287_1
  doi: 10.1039/C6RA16515J
– ident: e_1_2_7_253_1
  doi: 10.1039/C9CC01018A
– ident: e_1_2_7_136_1
  doi: 10.1002/advs.201600243
– ident: e_1_2_7_294_1
  doi: 10.1007/s10853-019-03416-9
– ident: e_1_2_7_169_1
  doi: 10.1039/C8TA12540F
– ident: e_1_2_7_310_1
  doi: 10.1038/s41467-019-11960-w
– ident: e_1_2_7_293_1
  doi: 10.1016/j.electacta.2016.12.094
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.201502864
– ident: e_1_2_7_289_1
  doi: 10.1016/j.electacta.2016.12.019
– ident: e_1_2_7_140_1
  doi: 10.1016/j.apcatb.2018.02.034
– ident: e_1_2_7_130_1
  doi: 10.1021/acsnano.6b05653
– ident: e_1_2_7_175_1
  doi: 10.1002/cey2.14
– ident: e_1_2_7_283_1
  doi: 10.1039/C4TA03948C
– ident: e_1_2_7_300_1
  doi: 10.1016/j.electacta.2016.10.016
– ident: e_1_2_7_91_1
  doi: 10.1016/j.ensm.2017.03.006
– ident: e_1_2_7_267_1
  doi: 10.1002/aenm.201700189
– ident: e_1_2_7_41_1
  doi: 10.1021/nl3016957
– ident: e_1_2_7_206_1
  doi: 10.1016/j.electacta.2019.02.067
– ident: e_1_2_7_229_1
  doi: 10.1002/advs.201500031
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_7_214_1
  doi: 10.1149/2.0041505eel
– ident: e_1_2_7_194_1
  doi: 10.1016/j.electacta.2017.05.090
– ident: e_1_2_7_22_1
  doi: 10.1016/j.materresbull.2017.03.016
– ident: e_1_2_7_212_1
  doi: 10.1021/acssuschemeng.8b06385
– ident: e_1_2_7_259_1
  doi: 10.1016/j.electacta.2018.05.174
– ident: e_1_2_7_66_1
  doi: 10.1016/j.apsusc.2013.02.035
– ident: e_1_2_7_61_1
  doi: 10.1021/acsami.9b05667
– ident: e_1_2_7_303_1
  doi: 10.1039/C6TA08364A
– ident: e_1_2_7_204_1
  doi: 10.1016/j.jelechem.2019.113392
– ident: e_1_2_7_284_1
  doi: 10.1016/j.jallcom.2019.01.125
– ident: e_1_2_7_301_1
  doi: 10.1039/C8QI00285A
– ident: e_1_2_7_291_1
  doi: 10.1016/j.electacta.2018.09.192
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.9b08378
– ident: e_1_2_7_209_1
  doi: 10.1002/aenm.201802379
– ident: e_1_2_7_191_1
  doi: 10.1016/j.carbon.2016.05.052
– ident: e_1_2_7_222_1
  doi: 10.1016/j.electacta.2015.04.125
– ident: e_1_2_7_298_1
  doi: 10.1002/celc.201801760
– ident: e_1_2_7_8_1
  doi: 10.1002/cssc.201701664
– ident: e_1_2_7_33_1
  doi: 10.1039/C6TA10577G
– ident: e_1_2_7_141_1
  doi: 10.1002/aenm.201500658
– ident: e_1_2_7_227_1
  doi: 10.1039/C7TA08970H
– ident: e_1_2_7_159_1
  doi: 10.1039/C7NR01280B
– ident: e_1_2_7_193_1
  doi: 10.1021/acsami.8b05618
– ident: e_1_2_7_148_1
  doi: 10.1021/acsami.8b19637
– ident: e_1_2_7_168_1
  doi: 10.1039/C9NR02277E
– ident: e_1_2_7_244_1
  doi: 10.1039/C9TA04450G
– ident: e_1_2_7_45_1
  doi: 10.1039/C6TA07109K
– ident: e_1_2_7_103_1
  doi: 10.1002/smll.201905452
– ident: e_1_2_7_292_1
  doi: 10.1039/C8TA00117K
– ident: e_1_2_7_113_1
  doi: 10.1016/j.materresbull.2015.08.035
– ident: e_1_2_7_207_1
  doi: 10.1016/j.jpowsour.2019.227586
– ident: e_1_2_7_28_1
  doi: 10.1002/smll.201602742
– ident: e_1_2_7_27_1
  doi: 10.1016/j.cclet.2019.06.044
– ident: e_1_2_7_163_1
  doi: 10.1039/C7RA03628K
– ident: e_1_2_7_127_1
  doi: 10.1002/adfm.201800394
– ident: e_1_2_7_195_1
  doi: 10.1016/j.apsusc.2018.09.035
– ident: e_1_2_7_225_1
  doi: 10.1016/j.jpowsour.2005.12.079
– ident: e_1_2_7_71_1
  doi: 10.1002/smtd.201800323
– ident: e_1_2_7_178_1
  doi: 10.1007/s10854-019-00965-2
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201402833
– ident: e_1_2_7_158_1
  doi: 10.1016/j.ensm.2017.09.003
– ident: e_1_2_7_256_1
  doi: 10.1016/j.jpowsour.2016.10.067
– ident: e_1_2_7_14_1
  doi: 10.1039/C5CC02564H
– ident: e_1_2_7_74_1
  doi: 10.1039/C7TA00690J
– ident: e_1_2_7_183_1
  doi: 10.1016/j.apsusc.2019.143717
– ident: e_1_2_7_239_1
  doi: 10.1063/1674-0068/31/cjcp1802013
– ident: e_1_2_7_107_1
  doi: 10.1039/c2ra01367c
– ident: e_1_2_7_99_1
  doi: 10.1016/j.commatsci.2013.12.052
– ident: e_1_2_7_234_1
  doi: 10.1002/adfm.201901912
– ident: e_1_2_7_223_1
  doi: 10.1016/j.jpowsour.2019.03.031
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.201803342
– ident: e_1_2_7_309_1
  doi: 10.1039/C9TA09502K
– ident: e_1_2_7_117_1
  doi: 10.1021/jp9731821
– ident: e_1_2_7_156_1
  doi: 10.1039/C6TA04592H
– ident: e_1_2_7_296_1
  doi: 10.1088/1361-6528/aab120
– ident: e_1_2_7_264_1
  doi: 10.1002/cey2.24
– ident: e_1_2_7_96_1
  doi: 10.1039/C5CP05212B
– ident: e_1_2_7_63_1
  doi: 10.1039/C3NR05374A
– ident: e_1_2_7_3_1
  doi: 10.1002/cey2.29
– ident: e_1_2_7_231_1
  doi: 10.1039/C6EE01750A
– ident: e_1_2_7_59_1
  doi: 10.1039/C9RA10485B
– ident: e_1_2_7_101_1
  doi: 10.1002/adma.201700748
– ident: e_1_2_7_139_1
  doi: 10.1002/advs.201600112
– ident: e_1_2_7_119_1
  doi: 10.1002/adma.201504412
– ident: e_1_2_7_261_1
  doi: 10.1039/C9TA00869A
– ident: e_1_2_7_233_1
  doi: 10.1021/acs.chemmater.7b03903
– ident: e_1_2_7_290_1
  doi: 10.1016/j.ssi.2019.01.025
– ident: e_1_2_7_32_1
  doi: 10.1021/acsami.9b02555
– ident: e_1_2_7_306_1
  doi: 10.1002/cey2.21
– ident: e_1_2_7_106_1
  doi: 10.1038/srep02260
– ident: e_1_2_7_237_1
  doi: 10.20964/2018.02.62
– ident: e_1_2_7_122_1
  doi: 10.1002/advs.201700880
– ident: e_1_2_7_305_1
  doi: 10.1002/cey2.28
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.201400719
– ident: e_1_2_7_95_1
  doi: 10.1021/nl301409h
– ident: e_1_2_7_215_1
  doi: 10.1021/acs.chemmater.6b01935
– ident: e_1_2_7_250_1
  doi: 10.1007/s11581-018-2830-x
– ident: e_1_2_7_88_1
  doi: 10.1016/j.ensm.2020.04.003
– ident: e_1_2_7_245_1
  doi: 10.1021/acs.jpclett.7b02012
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.201100854
– ident: e_1_2_7_23_1
  doi: 10.1002/cssc.201802948
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jechem.2018.11.007
– ident: e_1_2_7_65_1
  doi: 10.1016/j.matlet.2017.04.001
– ident: e_1_2_7_221_1
  doi: 10.1021/acsami.7b18226
– ident: e_1_2_7_201_1
  doi: 10.1002/smll.201802218
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201601329
– ident: e_1_2_7_49_1
  doi: 10.1016/j.jpowsour.2017.01.014
– ident: e_1_2_7_79_1
  doi: 10.1016/j.fuproc.2018.05.007
– ident: e_1_2_7_260_1
  doi: 10.1038/s41467-018-07646-4
– ident: e_1_2_7_31_1
  doi: 10.1002/advs.201500286
– ident: e_1_2_7_282_1
  doi: 10.1016/j.electacta.2016.09.003
– ident: e_1_2_7_73_1
  doi: 10.1002/adma.201503015
– ident: e_1_2_7_78_1
  doi: 10.1016/j.carbon.2015.06.076
– ident: e_1_2_7_254_1
  doi: 10.1039/C8TA11890F
– ident: e_1_2_7_18_1
  doi: 10.1039/C8TA06232C
– ident: e_1_2_7_25_1
  doi: 10.1039/C8CC04426K
– ident: e_1_2_7_277_1
  doi: 10.1016/j.jallcom.2017.09.020
– ident: e_1_2_7_251_1
  doi: 10.1039/C8TA11915E
– ident: e_1_2_7_157_1
  doi: 10.1002/aenm.201501929
– ident: e_1_2_7_308_1
  doi: 10.1002/cey2.1
– ident: e_1_2_7_281_1
  doi: 10.1021/acs.chemmater.5b04557
– ident: e_1_2_7_255_1
  doi: 10.1016/j.electacta.2019.04.059
– ident: e_1_2_7_297_1
  doi: 10.1039/C6TA04906K
– ident: e_1_2_7_5_1
  doi: 10.1002/advs.201900151
– year: 2020
  ident: e_1_2_7_181_1
  publication-title: Carbon Energy
– ident: e_1_2_7_299_1
  doi: 10.1021/acsami.7b06290
– ident: e_1_2_7_109_1
  doi: 10.1002/aenm.201601804
– ident: e_1_2_7_112_1
  doi: 10.1016/j.carbon.2017.02.057
– ident: e_1_2_7_286_1
  doi: 10.1016/j.electacta.2018.10.150
– ident: e_1_2_7_4_1
  doi: 10.1039/C8TA06412A
– ident: e_1_2_7_46_1
  doi: 10.1021/am4060222
– ident: e_1_2_7_54_1
  doi: 10.1002/cey2.22
– ident: e_1_2_7_192_1
  doi: 10.1002/ppsc.201600315
– ident: e_1_2_7_125_1
  doi: 10.1002/smll.201700762
– ident: e_1_2_7_210_1
  doi: 10.1016/j.electacta.2016.07.089
– ident: e_1_2_7_265_1
  doi: 10.1002/adma.201706668
– ident: e_1_2_7_60_1
  doi: 10.1002/aenm.201602894
– ident: e_1_2_7_135_1
  doi: 10.1039/C9TA02268F
– ident: e_1_2_7_269_1
  doi: 10.1021/acsami.9b14249
– ident: e_1_2_7_86_1
  doi: 10.1016/j.jpowsour.2017.12.028
– ident: e_1_2_7_275_1
  doi: 10.1007/s10800-018-1196-0
– ident: e_1_2_7_9_1
  doi: 10.1016/j.matlet.2016.11.110
– ident: e_1_2_7_138_1
  doi: 10.1039/C6TA10494K
– ident: e_1_2_7_165_1
  doi: 10.1016/j.carbon.2017.01.101
– ident: e_1_2_7_75_1
  doi: 10.1002/aenm.201502217
– ident: e_1_2_7_174_1
  doi: 10.1002/smll.201805427
– ident: e_1_2_7_58_1
  doi: 10.1039/C8TA11578H
– ident: e_1_2_7_184_1
  doi: 10.1039/C8TA09247H
– ident: e_1_2_7_167_1
  doi: 10.1016/j.carbon.2015.12.066
– ident: e_1_2_7_40_1
  doi: 10.1149/1.1393348
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201407898
– ident: e_1_2_7_20_1
  doi: 10.1021/nl504038s
– ident: e_1_2_7_57_1
  doi: 10.1016/j.nanoen.2014.08.011
– ident: e_1_2_7_153_1
  doi: 10.1039/C6TA04929J
– year: 2020
  ident: e_1_2_7_177_1
  publication-title: Carbon Energy
– ident: e_1_2_7_280_1
  doi: 10.1007/s11581-017-2122-x
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jpowsour.2014.09.046
– ident: e_1_2_7_160_1
  doi: 10.1016/j.mtener.2018.02.001
– ident: e_1_2_7_226_1
  doi: 10.1016/j.jcis.2019.11.085
– ident: e_1_2_7_77_1
  doi: 10.1039/C4RA01200C
– ident: e_1_2_7_126_1
  doi: 10.1016/j.carbon.2017.07.056
– ident: e_1_2_7_172_1
  doi: 10.1002/advs.201800241
– ident: e_1_2_7_37_1
  doi: 10.1039/C8CC00365C
– ident: e_1_2_7_230_1
  doi: 10.1039/C7TA00880E
– ident: e_1_2_7_252_1
  doi: 10.1016/j.nanoen.2016.11.023
– ident: e_1_2_7_102_1
  doi: 10.1088/0957-4484/27/17/175402
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.201606232
– ident: e_1_2_7_270_1
  doi: 10.1016/j.jpowsour.2017.04.076
– ident: e_1_2_7_11_1
  doi: 10.1039/C8TA06905K
– ident: e_1_2_7_100_1
  doi: 10.1016/j.ensm.2020.02.033
– ident: e_1_2_7_123_1
  doi: 10.1002/adma.201802035
– ident: e_1_2_7_147_1
  doi: 10.1007/s40843-017-9045-9
– ident: e_1_2_7_87_1
  doi: 10.1039/C6TA02139E
– ident: e_1_2_7_189_1
  doi: 10.1002/advs.201500195
– ident: e_1_2_7_216_1
  doi: 10.1021/acsami.9b08987
– ident: e_1_2_7_12_1
  doi: 10.1039/C4EE03759F
– ident: e_1_2_7_248_1
  doi: 10.1149/2.1041910jes
– ident: e_1_2_7_81_1
  doi: 10.1021/acs.nanolett.6b00057
– ident: e_1_2_7_85_1
  doi: 10.1002/cssc.201200680
– ident: e_1_2_7_217_1
  doi: 10.1016/j.ssi.2018.07.006
– ident: e_1_2_7_276_1
  doi: 10.1016/j.electacta.2013.10.211
– ident: e_1_2_7_132_1
  doi: 10.1016/j.electacta.2018.05.082
– ident: e_1_2_7_295_1
  doi: 10.1016/j.ceramint.2017.05.063
– ident: e_1_2_7_302_1
  doi: 10.1021/acsami.8b08380
– ident: e_1_2_7_179_1
  doi: 10.1002/cey2.19
– ident: e_1_2_7_118_1
  doi: 10.1038/nchem.281
– ident: e_1_2_7_311_1
  doi: 10.1016/j.ensm.2019.03.011
– ident: e_1_2_7_243_1
  doi: 10.1039/C5TA03528G
– ident: e_1_2_7_24_1
  doi: 10.1039/C5RA19717A
– ident: e_1_2_7_104_1
  doi: 10.1039/c2ee21802j
– ident: e_1_2_7_238_1
  doi: 10.1021/acsami.7b16077
– ident: e_1_2_7_120_1
  doi: 10.1016/j.ensm.2017.11.008
– ident: e_1_2_7_108_1
  doi: 10.1039/c1cc14419g
– ident: e_1_2_7_162_1
  doi: 10.1021/acsami.7b15659
– ident: e_1_2_7_202_1
  doi: 10.1002/aenm.201900036
– ident: e_1_2_7_219_1
  doi: 10.1021/acsami.5b00594
– ident: e_1_2_7_155_1
  doi: 10.1016/j.carbon.2017.05.072
– ident: e_1_2_7_128_1
  doi: 10.1016/j.nanoen.2015.05.038
– ident: e_1_2_7_143_1
  doi: 10.1016/j.electacta.2016.05.013
– ident: e_1_2_7_69_1
  doi: 10.1166/jctn.2008.1123
– ident: e_1_2_7_164_1
  doi: 10.1016/j.carbon.2018.06.035
– ident: e_1_2_7_208_1
  doi: 10.1016/j.cej.2019.122457
– ident: e_1_2_7_83_1
  doi: 10.1016/j.carbon.2015.04.049
– ident: e_1_2_7_146_1
  doi: 10.1021/acs.jpcc.5b05443
– ident: e_1_2_7_268_1
  doi: 10.1016/j.jpowsour.2017.10.019
– ident: e_1_2_7_272_1
  doi: 10.1016/j.electacta.2018.06.074
– ident: e_1_2_7_29_1
  doi: 10.1039/c3ta00184a
– ident: e_1_2_7_142_1
  doi: 10.1016/j.synthmet.2016.07.011
– ident: e_1_2_7_247_1
  doi: 10.1088/1674-1056/23/11/118202
– ident: e_1_2_7_67_1
  doi: 10.1039/C6RA24386J
– ident: e_1_2_7_89_1
  doi: 10.1016/j.carbon.2018.01.053
– ident: e_1_2_7_116_1
  doi: 10.1021/nn203393d
– ident: e_1_2_7_176_1
  doi: 10.1002/celc.201901829
– ident: e_1_2_7_203_1
  doi: 10.1021/acsami.7b18195
– ident: e_1_2_7_43_1
  doi: 10.1039/C7SE00134G
– ident: e_1_2_7_188_1
  doi: 10.1016/j.ceramint.2018.05.233
– ident: e_1_2_7_80_1
  doi: 10.1007/s12274-017-1649-5
– ident: e_1_2_7_56_1
  doi: 10.1002/aenm.201501489
– ident: e_1_2_7_190_1
  doi: 10.1016/j.jallcom.2019.04.338
– ident: e_1_2_7_90_1
  doi: 10.1142/S1793292016501241
– ident: e_1_2_7_258_1
  doi: 10.1016/j.electacta.2018.04.216
– ident: e_1_2_7_134_1
  doi: 10.1039/C7TA02194A
– ident: e_1_2_7_241_1
  doi: 10.1016/j.ceramint.2019.03.074
– ident: e_1_2_7_93_1
  doi: 10.1039/C7RA00469A
– ident: e_1_2_7_271_1
  doi: 10.1039/C6TA08667E
– ident: e_1_2_7_263_1
  doi: 10.1016/j.jallcom.2018.01.350
– ident: e_1_2_7_166_1
  doi: 10.1002/advs.201600468
– ident: e_1_2_7_171_1
  doi: 10.1002/celc.201700554
– ident: e_1_2_7_228_1
  doi: 10.1007/s11706-018-0414-3
SSID ssj0000491033
Score 2.6953104
SecondaryResourceType review_article
Snippet In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum
anodes
Boron
cathodes
Crystal structure
Doping
Electrochemical analysis
Electrode materials
Electrodes
Energy storage
Fluorine
heteroatoms
Ion storage
Lithium-ion batteries
Magnesium
Nitrogen
Power management
Power sources
Reaction kinetics
Rechargeable batteries
Sodium
Sodium-ion batteries
Storage batteries
Titanium
Title Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000927
https://www.proquest.com/docview/2425493864
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXocmkPFdBWXbogH5B6WKXNh504XFCARUvV5QKocIoSx0srQYJKcumvZ_wRJxG0UC5R5HWSjefZfuPMPCO0Q2jB4uWSOB4VATgoInJyFocOTM0Zj0gc-pmK8j0J5-fk2wW96OJ0VXZJnX_hfx7NK3mJVaEM7CqzZP_DsvamUADnYF84goXh-Cwbz2UsSwVu8w0Q4VuTupyUUy1JLGOCfmSKXe5X1V09Pa2KX83N9FgOEeBqZ8MwoKSNBhA6HRCorH4HG7OjPvxfNl1EgDCR9-XVzybrqjUKNNWDNelLg0SzyAAeZRuQ2o6LMIs7ITNLkaJfptWW7GDq9kCjs_7NvGpnnQeDthaBzUQplQFk6lDcXthXx7Y16b_rajHf2cnC_v4KrfrgRMAouJocLr6f2jU48I48N1A5GO37tbqerv91-JAhb-mckb5LozjJ2Rp6a5wJnGhkrKMVUW6gNz2JyXdor8MI1hjZxUmJLUIwIATXFVYIwRohGBCCDULeo_Oj2dnB3DGbZjic-H7kULZ0w6UrfEaZG3CRRazwaCSAB3MeeVx6-EwAJ4kZYYIEQSG4oNzLA6AtRREFH9CorErxEWFGCfTwSJLakDA3zIBMyzheFhNXbuQ4Rk7bJCk3ivJyY5PrVGth-6lswtQ24Rh9tvVvtZbKX2tO2hZOTX-7S6VzTGL5X8bIV63-xF3SAQo2X3LRJ_S66w4TNKp_N2ILWGidbxsw3QMacnkP
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom+Doping%3A+An+Effective+Way+to+Boost+Sodium+Ion+Storage&rft.jtitle=Advanced+energy+materials&rft.au=Li%2C+Yu&rft.au=Chen%2C+Minghua&rft.au=Liu%2C+Bo&rft.au=Zhang%2C+Yan&rft.date=2020-07-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000927&rft.externalDBID=10.1002%252Faenm.202000927&rft.externalDocID=AENM202000927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon