Fitness of Japanese encephalitis virus to Neuro-2a cells is determined by interactions of the viral envelope protein with highly sulfated glycosaminoglycans on the cell surface

Genetically different subpopulations were identified and purified from Japanese Encephalitis virus (JEV). Those with small plaques (SPs; <2 mm in diameter), derived from strains of T1P1, CJN, and CC27, were more competent than those with large plaques (LPs; >5 mm in diameter) when passaged in...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical virology Vol. 76; no. 4; pp. 583 - 592
Main Authors Chiou, Shyan-Song, Liu, Hsuan, Chuang, Ching-Kai, Lin, Chiou-Chun, Chen, Wei-June
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2005
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genetically different subpopulations were identified and purified from Japanese Encephalitis virus (JEV). Those with small plaques (SPs; <2 mm in diameter), derived from strains of T1P1, CJN, and CC27, were more competent than those with large plaques (LPs; >5 mm in diameter) when passaged in Neuro‐2a cells. Differences in amino acids between SPs and LPs from each strain were shown in the viral envelope (E) protein. The amino acid at E‐306 was Glu in LP but was substituted by Lys in SP in the T1P1 strain. A similar substitution occurred at E‐138 in the CJN strain. However, the amino acid was Asp in LP but was substituted by Asn in SP at E‐389 in the CC27 strain. All SPs were shown to have a higher affinity to the cellular membrane when compared to LPs, and this resulted in more‐efficient infection of Neuro‐2a cells, suggesting that the differential fitness of JEV variants to Neuro‐2a cells appeared in the early phase of infection. In addition, glycosaminoglycans (GAGs) on the surface of many mammalian cells have been demonstrated to be critical for infection by JEV, especially SP variants. The present results suggest that T1P1‐SP1 viruses infected Neuro‐2a cells more efficiently in spite of the sparse distribution of cell surface GAGs. We conclude that highly sulfated forms of GAGs expressed by Neuro‐2a cells play an important role in selecting JEV variants with specific mutations in the E glycoprotein. J. Med. Virol. 76:583–592, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Genetically different subpopulations were identified and purified from Japanese Encephalitis virus (JEV). Those with small plaques (SPs; <2 mm in diameter), derived from strains of T1P1, CJN, and CC27, were more competent than those with large plaques (LPs; >5 mm in diameter) when passaged in Neuro-2a cells. Differences in amino acids between SPs and LPs from each strain were shown in the viral envelope (E) protein. The amino acid at E-306 was Glu in LP but was substituted by Lys in SP in the T1P1 strain. A similar substitution occurred at E-138 in the CJN strain. However, the amino acid was Asp in LP but was substituted by Asn in SP at E-389 in the CC27 strain. All SPs were shown to have a higher affinity to the cellular membrane when compared to LPs, and this resulted in more-efficient infection of Neuro-2a cells, suggesting that the differential fitness of JEV variants to Neuro-2a cells appeared in the early phase of infection. In addition, glycosaminoglycans (GAGs) on the surface of many mammalian cells have been demonstrated to be critical for infection by JEV, especially SP variants. The present results suggest that T1P1-SP1 viruses infected Neuro-2a cells more efficiently in spite of the sparse distribution of cell surface GAGs. We conclude that highly sulfated forms of GAGs expressed by Neuro-2a cells play an important role in selecting JEV variants with specific mutations in the E glycoprotein.
Genetically different subpopulations were identified and purified from Japanese Encephalitis virus (JEV). Those with small plaques (SPs; <2 mm in diameter), derived from strains of T1P1, CJN, and CC27, were more competent than those with large plaques (LPs; >5 mm in diameter) when passaged in Neuro-2a cells. Differences in amino acids between SPs and LPs from each strain were shown in the viral envelope (E) protein. The amino acid at E-306 was Glu in LP but was substituted by Lys in SP in the T1P1 strain. A similar substitution occurred at E-138 in the CJN strain. However, the amino acid was Asp in LP but was substituted by Asn in SP at E-389 in the CC27 strain. All SPs were shown to have a higher affinity to the cellular membrane when compared to LPs, and this resulted in more-efficient infection of Neuro-2a cells, suggesting that the differential fitness of JEV variants to Neuro-2a cells appeared in the early phase of infection. In addition, glycosaminoglycans (GAGs) on the surface of many mammalian cells have been demonstrated to be critical for infection by JEV, especially SP variants. The present results suggest that T1P1-SP1 viruses infected Neuro-2a cells more efficiently in spite of the sparse distribution of cell surface GAGs. We conclude that highly sulfated forms of GAGs expressed by Neuro-2a cells play an important role in selecting JEV variants with specific mutations in the E glycoprotein.Genetically different subpopulations were identified and purified from Japanese Encephalitis virus (JEV). Those with small plaques (SPs; <2 mm in diameter), derived from strains of T1P1, CJN, and CC27, were more competent than those with large plaques (LPs; >5 mm in diameter) when passaged in Neuro-2a cells. Differences in amino acids between SPs and LPs from each strain were shown in the viral envelope (E) protein. The amino acid at E-306 was Glu in LP but was substituted by Lys in SP in the T1P1 strain. A similar substitution occurred at E-138 in the CJN strain. However, the amino acid was Asp in LP but was substituted by Asn in SP at E-389 in the CC27 strain. All SPs were shown to have a higher affinity to the cellular membrane when compared to LPs, and this resulted in more-efficient infection of Neuro-2a cells, suggesting that the differential fitness of JEV variants to Neuro-2a cells appeared in the early phase of infection. In addition, glycosaminoglycans (GAGs) on the surface of many mammalian cells have been demonstrated to be critical for infection by JEV, especially SP variants. The present results suggest that T1P1-SP1 viruses infected Neuro-2a cells more efficiently in spite of the sparse distribution of cell surface GAGs. We conclude that highly sulfated forms of GAGs expressed by Neuro-2a cells play an important role in selecting JEV variants with specific mutations in the E glycoprotein.
Genetically different subpopulations were identified and purified from Japanese Encephalitis virus (JEV). Those with small plaques (SPs; <2 mm in diameter), derived from strains of T1P1, CJN, and CC27, were more competent than those with large plaques (LPs; >5 mm in diameter) when passaged in Neuro‐2a cells. Differences in amino acids between SPs and LPs from each strain were shown in the viral envelope (E) protein. The amino acid at E‐306 was Glu in LP but was substituted by Lys in SP in the T1P1 strain. A similar substitution occurred at E‐138 in the CJN strain. However, the amino acid was Asp in LP but was substituted by Asn in SP at E‐389 in the CC27 strain. All SPs were shown to have a higher affinity to the cellular membrane when compared to LPs, and this resulted in more‐efficient infection of Neuro‐2a cells, suggesting that the differential fitness of JEV variants to Neuro‐2a cells appeared in the early phase of infection. In addition, glycosaminoglycans (GAGs) on the surface of many mammalian cells have been demonstrated to be critical for infection by JEV, especially SP variants. The present results suggest that T1P1‐SP1 viruses infected Neuro‐2a cells more efficiently in spite of the sparse distribution of cell surface GAGs. We conclude that highly sulfated forms of GAGs expressed by Neuro‐2a cells play an important role in selecting JEV variants with specific mutations in the E glycoprotein. J. Med. Virol. 76:583–592, 2005. © 2005 Wiley‐Liss, Inc.
Author Chiou, Shyan-Song
Liu, Hsuan
Chen, Wei-June
Lin, Chiou-Chun
Chuang, Ching-Kai
Author_xml – sequence: 1
  givenname: Shyan-Song
  surname: Chiou
  fullname: Chiou, Shyan-Song
  organization: Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
– sequence: 2
  givenname: Hsuan
  surname: Liu
  fullname: Liu, Hsuan
  organization: Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Ching-Kai
  surname: Chuang
  fullname: Chuang, Ching-Kai
  organization: Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
– sequence: 4
  givenname: Chiou-Chun
  surname: Lin
  fullname: Lin, Chiou-Chun
  organization: Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
– sequence: 5
  givenname: Wei-June
  surname: Chen
  fullname: Chen, Wei-June
  email: wjchen@mail.cgu.edu.tw
  organization: Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16927466$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15977230$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhi1URKeFBS-AvKESi7S-5LqkhU6pSmFRQOrGOnFOOi6eZLCdKfNWPGKdmWmREIiV7eT7P5-cnD2y0_UdEvKSs0POmDi6nS8PBUtZ_oRMOKvypGIF3yETxtM8yXOe7ZI9728ZY2UlxDOyy7OqKIRkE_Lr1IQOvad9S89hAXGPFDuNixlYE4ynS-MGT0NPL3FwfSKAarTW0_iqwYBubjpsaL2iposn0MH03VoXZjiGwUbfEm2_QLpwfUDT0TsTZnRmbmZ2Rf1gWwhRcWNXuvcQff24hdHSrS3jhZFzLWh8Tp62YD2-2K775Mvp-6uTs-Ti0_TDyduLRKdCxK8uRMYwy0rWNlJkmgshGgCoa1HWkCHHkjVctg0rtSy1iI9TlnLZFBWUsga5Tw423ljzjwF9UHPjx0Jii_rBq7yoyizNiv-CvJB5mgkWwVdbcKjn2KiFM3NwK_XwMyLweguA12BbB502_jeXV6JI8zxyRxtOu957h63SJsDY9-DAWMWZGsdCxbFQ67GIiTd_JB6lf2G39jtjcfVvUJ1__PqQSDYJ4wP-fEyA-x67JItMfbucqmv5bvr5-PpYXcl7qpTZLA
CODEN JMVIDB
CitedBy_id crossref_primary_10_3390_microorganisms12091804
crossref_primary_10_1002_rmv_2021
crossref_primary_10_1016_j_virusres_2018_06_009
crossref_primary_10_1016_j_virusres_2023_199120
crossref_primary_10_3390_v12070709
crossref_primary_10_1016_j_virol_2009_08_030
crossref_primary_10_1016_j_lfs_2019_04_022
crossref_primary_10_1016_j_imbio_2008_11_008
crossref_primary_10_1128_JVI_00293_15
crossref_primary_10_1186_s12985_024_02398_8
crossref_primary_10_3390_v12050552
crossref_primary_10_1038_s41467_020_18936_1
crossref_primary_10_1016_j_mam_2021_100994
crossref_primary_10_1016_j_virol_2008_06_017
crossref_primary_10_1016_j_vaccine_2007_10_047
crossref_primary_10_1016_j_vetmic_2013_01_017
crossref_primary_10_3390_diseases9040085
crossref_primary_10_3390_pathogens7030068
crossref_primary_10_1016_j_heliyon_2019_e02882
crossref_primary_10_1038_s41467_017_00024_6
crossref_primary_10_1099_jgv_0_000015
crossref_primary_10_1186_1743_422X_5_66
crossref_primary_10_3390_ijms19123940
crossref_primary_10_1016_j_virol_2009_10_035
crossref_primary_10_3390_v15051033
crossref_primary_10_1128_JVI_02274_16
crossref_primary_10_1002_rmv_1868
Cites_doi 10.1006/viro.2001.1033
10.1128/JVI.74.19.8867-8875.2000
10.1128/JVI.76.20.10128-10137.2002
10.1146/annurev.bi.60.070191.002303
10.1099/0022-1317-81-6-1413
10.1146/annurev.mi.44.100190.003245
10.1128/iai.65.1.1-8.1997
10.1128/JVI.76.9.4662-4665.2002
10.1006/viro.1997.8956
10.1128/jvi.71.7.5115-5123.1997
10.1093/oxfordjournals.epirev.a036087
10.1099/0022-1317-78-11-2711
10.1042/bj3220499
10.1007/978-3-642-77011-1_6
10.1603/0022-2585-37.1.108
10.1016/S0959-437X(05)80323-5
10.1080/13550280290168019
10.1007/BF02456129
10.1016/S0168-1702(97)00098-1
10.1002/jmv.20025
10.1099/00222615-48-3-223
10.1006/viro.2001.0986
10.1128/JVI.74.17.7814-7823.2000
10.1093/genetics/157.4.1403
10.1128/JVI.75.12.5627-5637.2001
10.1073/pnas.0437842100
10.1128/JVI.78.15.8271-8280.2004
10.1091/mbc.5.7.797
10.1006/viro.2001.1232
10.1016/0042-6822(90)90029-Q
10.1096/fasebj.10.8.8666162
10.1128/JVI.72.9.7357-7366.1998
10.1128/JVI.76.10.4901-4911.2002
10.1128/jvi.71.8.6100-6105.1997
10.1128/jvi.70.3.1799-1803.1996
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
2006 INIST-CNRS
(c) 2005 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: 2006 INIST-CNRS
– notice: (c) 2005 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U9
H94
7X8
DOI 10.1002/jmv.20406
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9071
EndPage 592
ExternalDocumentID 15977230
16927466
10_1002_jmv_20406
JMV20406
ark_67375_WNG_Z3DGPBZB_T
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Chang Gung Memorial Hospital
  funderid: CMRP33009
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
ECGQY
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WHG
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U9
H94
7X8
ID FETCH-LOGICAL-c4226-67250e5580fd325c1222daaabb28ba5e1e80d13fd08c38c2b2840413d79a83ba3
IEDL.DBID DR2
ISSN 0146-6615
IngestDate Thu Jul 10 23:48:41 EDT 2025
Fri Jul 11 12:16:49 EDT 2025
Thu May 22 04:21:10 EDT 2025
Mon Jul 21 09:11:24 EDT 2025
Tue Jul 01 01:33:14 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Wed Jan 22 17:12:09 EST 2025
Wed Oct 30 09:57:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords glycosaminoglycans (GAGs)
neuro-2a cells
Flavivirus
Cell surface
Protein
Virus
envelope
Japanese encephalitis virus
Glycosaminoglycan
Japanese encephalitis group virus
Mutation
Flaviviridae
Fitness
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
(c) 2005 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4226-67250e5580fd325c1222daaabb28ba5e1e80d13fd08c38c2b2840413d79a83ba3
Notes Chang Gung Memorial Hospital - No. CMRP33009
ArticleID:JMV20406
istex:D6E3EBCEF41079980D43BBCD716076A05C2B52B4
ark:/67375/WNG-Z3DGPBZB-T
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15977230
PQID 17364520
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_67985457
proquest_miscellaneous_17364520
pubmed_primary_15977230
pascalfrancis_primary_16927466
crossref_citationtrail_10_1002_jmv_20406
crossref_primary_10_1002_jmv_20406
wiley_primary_10_1002_jmv_20406_JMV20406
istex_primary_ark_67375_WNG_Z3DGPBZB_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2005
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: August 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Journal of medical virology
PublicationTitleAlternate J. Med. Virol
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Chen WJ, Dong CF, Chiou LY, Chuang WL. 2000. Potential role of Armigeres subalbatus (Diptera: Culicidae) in the transmission of Japanese encephalitis virus in the absence of rice culture on Liu-Chiu islet, Taiwan. J Med Entomol 37: 108-113.
Domingo E. 1992. Genetic variation and quasi-species. Curr Opin Genet Dev 2: 61-63.
Klimstra WB, Ryman KD, Johnston RE. 1998. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72: 7357-7366.
Lee E, Lobigs M. 2000. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74: 8867-8875.
Ni H, Barrett AD. 1998. Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology 241: 30-36.
Lobigs M, Usha R, Nestorowicz A, Marshall ID, Weir RC, Dalgarno L. 1990. Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176: 587-595.
Gorman OT, Bean WJ, Webster RG. 1992. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr Top Microbiol Immunol 176: 75-97.
Wu SC, Lian WC, Hsu LC, Liau MY. 1997. Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res 51: 173-181.
Wang WK, Lin SR, Lee CM, King CC, Chang SC. 2002. Dengue type 3 virus in plasma is a population of closely related genomes: Quasispecies. J Virol 76: 4662-4665.
Lee E, Hall RA, Lobigs M. 2004. Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses: J Virol 78: 8271-8280.
Smit JM, Waarts BL, Kimata K, Klimstra WB, Bittman R, Wilschut J. 2002. Adaptation of alphaviruses to heparan sulfate: Interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin. J Virol 76: 10128-10137.
Chambers TJ, Hahn CS, Galler R, Rice CM. 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44: 649-688.
Liu H, Chiou SS, Chen WJ. 2004. Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants with heparan sulfate on the cell surface. J Med Virol 72: 618-624.
McMinn PC. 1997. The molecular basis of virulence of the encephalitogenic Flaviviruses. J Gen Virol 78: 2711-2722.
Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. 2000. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74: 7814-7823.
Wadstrom T, Ljungh A. 1999. Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: Key events in microbial pathogenicity. J Med Microbiol 48: 223-233.
Dropulic LK, Hardwick JM, Griffin DE. 1997. A single amino acid change in the E2 glycoprotein of Sindbis virus confers neurovirulence by altering an early step of virus replication. J Virol 71: 6100-6105.
Lee E, Lobigs M. 2002. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76: 4901-4911.
Raman R, Venkataraman G, Ernst S, Sasisekharan V, Sasisekharan R. 2003. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc Nat Acad Sci USA 100: 2357-2362.
Yasui K. 2002. Neuropathogenesis of Japanese encephalitis virus. J Neuro Virol 8: 112-114.
Holland JJ, De La Torre JC, Steinhauer DA. 1992. RNA virus population as quasispecies. Curr Top Microbiol Immunol 176: 1-20.
Schneider-Schaulies J. 2000. Cellular receptor for viruses: Links to tropism and pathogenesis. J Gen Virol 81: 1413-1429.
Germi R, Crance JM, Garin D, Guimet J, Lortat-Jacob H, Ruigrok RW, Zarski JP, Drouet E. 2002. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292: 162-168.
Sawitzky D. 1996. Protein-glycosaminoglycan interactions: Infectiological aspects. Med Microbiol Immunol 184: 155-161.
Chiou SS, Chen WJ. 2001. Mutations in the NS3 gene and 3′-NCR of Japanese encephalitis virus isolated from an unconventional ecosystem and implications for natural attenuation of the virus. Virology 289: 129-136.
Kim CW, Goldberger OA, Gallo RL, Bernfield M. 1994. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 5: 797-805.
Rostand KS, Esko JD. 1997. Microbial adherence to and invasion through proteoglycans. Infect Immu 65: 1-8.
Kjellen L, Lindahl U. 1991. Proteoglycans: Structures and interactions. Annu Rev Biochem 60: 443-475.
Dockter J, Evans CF, Tishon A, Oldstone MBA. 1996. Competitive selection in vivo by a cell for one variant over another: Implications for RNA virus quasispecies in vivo. J Virol 70: 1799-1803.
Vaughn DW, Hoke CH, Jr. 1992. The epidemiology of Japanese encephalitis: Prospects for prevention. Epidemiol Rev 14: 197-221.
Cooper LA, Scott TW. 2001. Differential evolution of Eastern Equine Encephalitis virus populations in response to host cell type. Genetics 157: 1403-1412.
Domingo E, Escarmis C, Sevilla N, Moya A, Ellena SF, Quer J, Novella IS, Holland JJ. 1996. Basic concepts in RNA virus evolution. FASEB J 10: 859-864.
Su CM, Liao CL, Lee YL, Lin YL, 2001. Highly sulfated forms of heparin sulfate are involved in Japanese encephalitis virus infection. Virology 286: 206-215.
Toida T, Yoshida H, Toyoda H, Koshiishi I, Imanari T, Hileman RE, Fromm JR, Linhardt RJ. 1997. Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species. Biochem J 322: 499-506.
Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T, Heinz FX. 2001. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate bindings sites in the envelope protein and attenuation in vivo. J Virol 75: 5627-5637.
Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW. 1997. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71: 5115-5123.
2001; 286
2001; 289
2002; 292
1997; 65
2002; 76
1999; 48
2002; 8
1996; 184
1991; 60
1992; 14
1996; 70
1996; 10
1997; 322
2001; 157
1990; 44
2004; 72
1997; 51
1997; 71
2000; 37
1992; 176
2000; 74
2004; 78
1997; 78
2000; 81
1998; 72
2001; 1
1990; 176
1992; 2
1994; 5
2003; 100
2001; 75
1998; 241
e_1_2_1_23_1
e_1_2_1_24_1
Holland JJ (e_1_2_1_13_1) 1992; 176
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
Lindenbach BD (e_1_2_1_20_1) 2001
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Ni H, Barrett AD. 1998. Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology 241: 30-36.
– reference: Klimstra WB, Ryman KD, Johnston RE. 1998. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72: 7357-7366.
– reference: Kjellen L, Lindahl U. 1991. Proteoglycans: Structures and interactions. Annu Rev Biochem 60: 443-475.
– reference: Germi R, Crance JM, Garin D, Guimet J, Lortat-Jacob H, Ruigrok RW, Zarski JP, Drouet E. 2002. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292: 162-168.
– reference: Chen WJ, Dong CF, Chiou LY, Chuang WL. 2000. Potential role of Armigeres subalbatus (Diptera: Culicidae) in the transmission of Japanese encephalitis virus in the absence of rice culture on Liu-Chiu islet, Taiwan. J Med Entomol 37: 108-113.
– reference: Lee E, Hall RA, Lobigs M. 2004. Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses: J Virol 78: 8271-8280.
– reference: Chiou SS, Chen WJ. 2001. Mutations in the NS3 gene and 3′-NCR of Japanese encephalitis virus isolated from an unconventional ecosystem and implications for natural attenuation of the virus. Virology 289: 129-136.
– reference: Gorman OT, Bean WJ, Webster RG. 1992. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr Top Microbiol Immunol 176: 75-97.
– reference: Lee E, Lobigs M. 2000. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74: 8867-8875.
– reference: Raman R, Venkataraman G, Ernst S, Sasisekharan V, Sasisekharan R. 2003. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc Nat Acad Sci USA 100: 2357-2362.
– reference: Holland JJ, De La Torre JC, Steinhauer DA. 1992. RNA virus population as quasispecies. Curr Top Microbiol Immunol 176: 1-20.
– reference: Su CM, Liao CL, Lee YL, Lin YL, 2001. Highly sulfated forms of heparin sulfate are involved in Japanese encephalitis virus infection. Virology 286: 206-215.
– reference: Cooper LA, Scott TW. 2001. Differential evolution of Eastern Equine Encephalitis virus populations in response to host cell type. Genetics 157: 1403-1412.
– reference: Yasui K. 2002. Neuropathogenesis of Japanese encephalitis virus. J Neuro Virol 8: 112-114.
– reference: Wang WK, Lin SR, Lee CM, King CC, Chang SC. 2002. Dengue type 3 virus in plasma is a population of closely related genomes: Quasispecies. J Virol 76: 4662-4665.
– reference: Wu SC, Lian WC, Hsu LC, Liau MY. 1997. Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res 51: 173-181.
– reference: Domingo E, Escarmis C, Sevilla N, Moya A, Ellena SF, Quer J, Novella IS, Holland JJ. 1996. Basic concepts in RNA virus evolution. FASEB J 10: 859-864.
– reference: Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW. 1997. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71: 5115-5123.
– reference: Schneider-Schaulies J. 2000. Cellular receptor for viruses: Links to tropism and pathogenesis. J Gen Virol 81: 1413-1429.
– reference: Rostand KS, Esko JD. 1997. Microbial adherence to and invasion through proteoglycans. Infect Immu 65: 1-8.
– reference: Sawitzky D. 1996. Protein-glycosaminoglycan interactions: Infectiological aspects. Med Microbiol Immunol 184: 155-161.
– reference: Wadstrom T, Ljungh A. 1999. Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: Key events in microbial pathogenicity. J Med Microbiol 48: 223-233.
– reference: Dropulic LK, Hardwick JM, Griffin DE. 1997. A single amino acid change in the E2 glycoprotein of Sindbis virus confers neurovirulence by altering an early step of virus replication. J Virol 71: 6100-6105.
– reference: Liu H, Chiou SS, Chen WJ. 2004. Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants with heparan sulfate on the cell surface. J Med Virol 72: 618-624.
– reference: Lee E, Lobigs M. 2002. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76: 4901-4911.
– reference: Lobigs M, Usha R, Nestorowicz A, Marshall ID, Weir RC, Dalgarno L. 1990. Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176: 587-595.
– reference: Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T, Heinz FX. 2001. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate bindings sites in the envelope protein and attenuation in vivo. J Virol 75: 5627-5637.
– reference: Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. 2000. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74: 7814-7823.
– reference: Vaughn DW, Hoke CH, Jr. 1992. The epidemiology of Japanese encephalitis: Prospects for prevention. Epidemiol Rev 14: 197-221.
– reference: Toida T, Yoshida H, Toyoda H, Koshiishi I, Imanari T, Hileman RE, Fromm JR, Linhardt RJ. 1997. Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species. Biochem J 322: 499-506.
– reference: McMinn PC. 1997. The molecular basis of virulence of the encephalitogenic Flaviviruses. J Gen Virol 78: 2711-2722.
– reference: Smit JM, Waarts BL, Kimata K, Klimstra WB, Bittman R, Wilschut J. 2002. Adaptation of alphaviruses to heparan sulfate: Interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin. J Virol 76: 10128-10137.
– reference: Kim CW, Goldberger OA, Gallo RL, Bernfield M. 1994. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 5: 797-805.
– reference: Domingo E. 1992. Genetic variation and quasi-species. Curr Opin Genet Dev 2: 61-63.
– reference: Chambers TJ, Hahn CS, Galler R, Rice CM. 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44: 649-688.
– reference: Dockter J, Evans CF, Tishon A, Oldstone MBA. 1996. Competitive selection in vivo by a cell for one variant over another: Implications for RNA virus quasispecies in vivo. J Virol 70: 1799-1803.
– volume: 76
  start-page: 10128
  year: 2002
  end-page: 10137
  article-title: Adaptation of alphaviruses to heparan sulfate: Interaction of Sindbis and Semliki forest viruses with liposomes containing lipid‐conjugated heparin
  publication-title: J Virol
– volume: 76
  start-page: 4662
  year: 2002
  end-page: 4665
  article-title: Dengue type 3 virus in plasma is a population of closely related genomes: Quasispecies
  publication-title: J Virol
– volume: 72
  start-page: 7357
  year: 1998
  end-page: 7366
  article-title: Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor
  publication-title: J Virol
– volume: 44
  start-page: 649
  year: 1990
  end-page: 688
  article-title: Flavivirus genome organization, expression, and replication
  publication-title: Annu Rev Microbiol
– volume: 48
  start-page: 223
  year: 1999
  end-page: 233
  article-title: Glycosaminoglycan‐binding microbial proteins in tissue adhesion and invasion: Key events in microbial pathogenicity
  publication-title: J Med Microbiol
– volume: 292
  start-page: 162
  year: 2002
  end-page: 168
  article-title: Heparan sulfate‐mediated binding of infectious dengue virus type 2 and yellow fever virus
  publication-title: Virology
– volume: 14
  start-page: 197
  year: 1992
  end-page: 221
  article-title: The epidemiology of Japanese encephalitis: Prospects for prevention
  publication-title: Epidemiol Rev
– volume: 289
  start-page: 129
  year: 2001
  end-page: 136
  article-title: Mutations in the gene and 3′‐NCR of Japanese encephalitis virus isolated from an unconventional ecosystem and implications for natural attenuation of the virus
  publication-title: Virology
– volume: 60
  start-page: 443
  year: 1991
  end-page: 475
  article-title: Proteoglycans: Structures and interactions
  publication-title: Annu Rev Biochem
– volume: 37
  start-page: 108
  year: 2000
  end-page: 113
  article-title: Potential role of (Diptera: Culicidae) in the transmission of Japanese encephalitis virus in the absence of rice culture on Liu‐Chiu islet, Taiwan
  publication-title: J Med Entomol
– volume: 10
  start-page: 859
  year: 1996
  end-page: 864
  article-title: Basic concepts in RNA virus evolution
  publication-title: FASEB J
– volume: 76
  start-page: 4901
  year: 2002
  end-page: 4911
  article-title: Mechanism of virulence attenuation of glycosaminoglycan‐binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus
  publication-title: J Virol
– volume: 2
  start-page: 61
  year: 1992
  end-page: 63
  article-title: Genetic variation and quasi‐species
  publication-title: Curr Opin Genet Dev
– volume: 176
  start-page: 75
  year: 1992
  end-page: 97
  article-title: Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis
  publication-title: Curr Top Microbiol Immunol
– volume: 78
  start-page: 2711
  year: 1997
  end-page: 2722
  article-title: The molecular basis of virulence of the encephalitogenic Flaviviruses
  publication-title: J Gen Virol
– volume: 71
  start-page: 6100
  year: 1997
  end-page: 6105
  article-title: A single amino acid change in the E2 glycoprotein of Sindbis virus confers neurovirulence by altering an early step of virus replication
  publication-title: J Virol
– volume: 72
  start-page: 618
  year: 2004
  end-page: 624
  article-title: Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants with heparan sulfate on the cell surface
  publication-title: J Med Virol
– volume: 74
  start-page: 8867
  year: 2000
  end-page: 8875
  article-title: Substitutions at the putative receptor‐binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry
  publication-title: J Virol
– volume: 70
  start-page: 1799
  year: 1996
  end-page: 1803
  article-title: Competitive selection in vivo by a cell for one variant over another: Implications for RNA virus quasispecies in vivo
  publication-title: J Virol
– volume: 1
  start-page: 991
  year: 2001
  end-page: 1041
– volume: 75
  start-page: 5627
  year: 2001
  end-page: 5637
  article-title: Adaptation of tick‐borne encephalitis virus to BHK‐21 cells results in the formation of multiple heparan sulfate bindings sites in the envelope protein and attenuation in vivo
  publication-title: J Virol
– volume: 65
  start-page: 1
  year: 1997
  end-page: 8
  article-title: Microbial adherence to and invasion through proteoglycans
  publication-title: Infect Immu
– volume: 184
  start-page: 155
  year: 1996
  end-page: 161
  article-title: Protein‐glycosaminoglycan interactions: Infectiological aspects
  publication-title: Med Microbiol Immunol
– volume: 74
  start-page: 7814
  year: 2000
  end-page: 7823
  article-title: Infection of human cells by dengue virus is modulated by different cell types and viral strains
  publication-title: J Virol
– volume: 5
  start-page: 797
  year: 1994
  end-page: 805
  article-title: Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell‐, tissue‐, and development‐specific patterns
  publication-title: Mol Biol Cell
– volume: 176
  start-page: 1
  year: 1992
  end-page: 20
  article-title: RNA virus population as quasispecies
  publication-title: Curr Top Microbiol Immunol
– volume: 51
  start-page: 173
  year: 1997
  end-page: 181
  article-title: Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence
  publication-title: Virus Res
– volume: 322
  start-page: 499
  year: 1997
  end-page: 506
  article-title: Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species
  publication-title: Biochem J
– volume: 81
  start-page: 1413
  year: 2000
  end-page: 1429
  article-title: Cellular receptor for viruses: Links to tropism and pathogenesis
  publication-title: J Gen Virol
– volume: 157
  start-page: 1403
  year: 2001
  end-page: 1412
  article-title: Differential evolution of Eastern Equine Encephalitis virus populations in response to host cell type
  publication-title: Genetics
– volume: 241
  start-page: 30
  year: 1998
  end-page: 36
  article-title: Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants
  publication-title: Virology
– volume: 286
  start-page: 206
  year: 2001
  end-page: 215
  article-title: Highly sulfated forms of heparin sulfate are involved in Japanese encephalitis virus infection
  publication-title: Virology
– volume: 8
  start-page: 112
  year: 2002
  end-page: 114
  article-title: Neuropathogenesis of Japanese encephalitis virus
  publication-title: J Neuro Virol
– volume: 78
  start-page: 8271
  year: 2004
  end-page: 8280
  article-title: Common E protein determinants for attenuation of glycosaminoglycan‐binding variants of Japanese encephalitis and West Nile viruses
  publication-title: J Virol
– volume: 100
  start-page: 2357
  year: 2003
  end-page: 2362
  article-title: Structural specificity of heparin binding in the fibroblast growth factor family of proteins
  publication-title: Proc Nat Acad Sci USA
– volume: 71
  start-page: 5115
  year: 1997
  end-page: 5123
  article-title: Tissue culture adaptation of foot‐and‐mouth disease virus selects viruses that bind to heparin and are attenuated in cattle
  publication-title: J Virol
– volume: 176
  start-page: 587
  year: 1990
  end-page: 595
  article-title: Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence
  publication-title: Virology
– ident: e_1_2_1_4_1
  doi: 10.1006/viro.2001.1033
– ident: e_1_2_1_17_1
  doi: 10.1128/JVI.74.19.8867-8875.2000
– ident: e_1_2_1_31_1
  doi: 10.1128/JVI.76.20.10128-10137.2002
– ident: e_1_2_1_15_1
  doi: 10.1146/annurev.bi.60.070191.002303
– ident: e_1_2_1_30_1
  doi: 10.1099/0022-1317-81-6-1413
– ident: e_1_2_1_2_1
  doi: 10.1146/annurev.mi.44.100190.003245
– ident: e_1_2_1_27_1
  doi: 10.1128/iai.65.1.1-8.1997
– ident: e_1_2_1_36_1
  doi: 10.1128/JVI.76.9.4662-4665.2002
– volume: 176
  start-page: 1
  year: 1992
  ident: e_1_2_1_13_1
  article-title: RNA virus population as quasispecies
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_2_1_25_1
  doi: 10.1006/viro.1997.8956
– ident: e_1_2_1_28_1
  doi: 10.1128/jvi.71.7.5115-5123.1997
– ident: e_1_2_1_34_1
  doi: 10.1093/oxfordjournals.epirev.a036087
– ident: e_1_2_1_24_1
  doi: 10.1099/0022-1317-78-11-2711
– ident: e_1_2_1_33_1
  doi: 10.1042/bj3220499
– ident: e_1_2_1_12_1
  doi: 10.1007/978-3-642-77011-1_6
– ident: e_1_2_1_3_1
  doi: 10.1603/0022-2585-37.1.108
– ident: e_1_2_1_8_1
  doi: 10.1016/S0959-437X(05)80323-5
– ident: e_1_2_1_38_1
  doi: 10.1080/13550280290168019
– ident: e_1_2_1_29_1
  doi: 10.1007/BF02456129
– start-page: 991
  volume-title: Fields virology
  year: 2001
  ident: e_1_2_1_20_1
– ident: e_1_2_1_37_1
  doi: 10.1016/S0168-1702(97)00098-1
– ident: e_1_2_1_21_1
  doi: 10.1002/jmv.20025
– ident: e_1_2_1_35_1
  doi: 10.1099/00222615-48-3-223
– ident: e_1_2_1_32_1
  doi: 10.1006/viro.2001.0986
– ident: e_1_2_1_6_1
  doi: 10.1128/JVI.74.17.7814-7823.2000
– ident: e_1_2_1_5_1
  doi: 10.1093/genetics/157.4.1403
– ident: e_1_2_1_23_1
  doi: 10.1128/JVI.75.12.5627-5637.2001
– ident: e_1_2_1_26_1
  doi: 10.1073/pnas.0437842100
– ident: e_1_2_1_19_1
  doi: 10.1128/JVI.78.15.8271-8280.2004
– ident: e_1_2_1_14_1
  doi: 10.1091/mbc.5.7.797
– ident: e_1_2_1_11_1
  doi: 10.1006/viro.2001.1232
– ident: e_1_2_1_22_1
  doi: 10.1016/0042-6822(90)90029-Q
– ident: e_1_2_1_9_1
  doi: 10.1096/fasebj.10.8.8666162
– ident: e_1_2_1_16_1
  doi: 10.1128/JVI.72.9.7357-7366.1998
– ident: e_1_2_1_18_1
  doi: 10.1128/JVI.76.10.4901-4911.2002
– ident: e_1_2_1_10_1
  doi: 10.1128/jvi.71.8.6100-6105.1997
– ident: e_1_2_1_7_1
  doi: 10.1128/jvi.70.3.1799-1803.1996
SSID ssj0008922
Score 1.9129503
Snippet Genetically different subpopulations were identified and purified from Japanese Encephalitis virus (JEV). Those with small plaques (SPs; <2 mm in diameter),...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 583
SubjectTerms Amino Acid Substitution
Animals
Biological and medical sciences
Cell Line, Tumor
Cell Membrane - chemistry
Cricetinae
DNA Mutational Analysis
Encephalitis Virus, Japanese - genetics
Encephalitis Virus, Japanese - growth & development
envelope
Fundamental and applied biological sciences. Psychology
glycosaminoglycans (GAGs)
Glycosaminoglycans - metabolism
Heparitin Sulfate - analysis
Heparitin Sulfate - metabolism
Human viral diseases
Infectious diseases
Japanese encephalitis virus
Medical sciences
Mice
Microbiology
Miscellaneous
Molecular Sequence Data
mutation
Mutation, Missense
neuro-2a cells
Neurons - virology
Sequence Analysis, DNA
Viral diseases
Viral Envelope Proteins - genetics
Viral Envelope Proteins - metabolism
Viral Plaque Assay
Virology
Title Fitness of Japanese encephalitis virus to Neuro-2a cells is determined by interactions of the viral envelope protein with highly sulfated glycosaminoglycans on the cell surface
URI https://api.istex.fr/ark:/67375/WNG-Z3DGPBZB-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.20406
https://www.ncbi.nlm.nih.gov/pubmed/15977230
https://www.proquest.com/docview/17364520
https://www.proquest.com/docview/67985457
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWqIiFeuF8WSrEQQrykTeI4yYonStlWK7VCqIWqQrLs2IalS1LlUnV54hP4Fj6JL-mMk-xqUSsh3qLdySS2xzMnnvExIS8CC_6QS-Yx5UdeBO_qSR4pD9BBZFmSBlK7Atn9ePcwGh_xoxXyut8L0_JDzBfccGY4f40TXKpqc0Ea-u37GXzeRY5uG2u1EBB9WFBHpcM2gwCewIMYxHtWIT_cnN-5FIuuYbeeY22krKB7bHuuxWXAcxnHukA0ukU-901o609ONppabWQ__mJ3_M823iY3O4BK37QWdYesmPwuub7XpeDvkd-jSY3ukRaWjiHS4gmWFN3D6VeE9JOKnk3KpqJ1QR3xx5-fv0JJMT9QUfhTd-U3RlM1o0hWUbZbK5xCQKN4Ozzf5K6YyVBHJDHJKS4YUyRXns5o1UwtYGRNv0xnWVFJ0FfgpUQtudOCDwS50srM3CeHo3cHb3e97uAHL8ONvV6cADAznKe-1SzkWQAgRksplQpTJbkJTOrrgFntpxlLsxB-jnyIxjoZypQpyR6Q1bzIzSNCJcAnk_lMW1ztAjjGAzM0sWU2QBZUOSCvehMQWceKjodzTEXL5xwKGAPhxmBAns9FT1sqkMuEXjo7mkvI8gRr5xIuPu3viGO2vfN-63hLHAzI-pKhLVTGwzCJYtD0rLc8AVMeuw2GtGgqESSYOw79qyUwtQbQOBmQh63JLrQj3yB8dkK7neFd3RIx3vvoLh7_u-gTcsNR27oCyTWyWpeNeQqgrVbrbnZeAFWtQUk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamTQJu-P8pP5uFEOImWxLHSSpxwxhdKWuFUAfTJGQ5sQ1lJZmSdKJc8Qg8C4_Ek3COk7Qq2iTEXdSenMT28fEXn-PvEPLEM-APuWQOS9zACeBdHcmDxAF0EBgWxZ5UNkF2FPYPg8ERP1ojz9uzMDU_xGLDDWeG9dc4wXFDemfJGvrl6xl83wXIt72BFb2ROX_v3ZI8Ku7WMQTwBQ6sQrzlFXL9ncWtK6vRBnbsN8yOlCV0kKkrW5wHPVeRrF2KetfIx7YRdQbKyfasSrbT73_xO_5vK6-Tqw1GpS9qo7pB1nR2k1waNlH4W-RXb1Khh6S5oQNYbLGIJUUPcfoZUf2kpGeTYlbSKqeW--P3j5--pBgiKCn8qZoMHK1oMqfIV1HUpyusQgCkeDs8X2c2n0lTyyUxySjuGVPkV57OaTmbGoDJin6aztO8lKAvx0uJWjKrBR8IcoWRqb5NDnuvxi_7TlP7wUnxbK8TRoDNNOexaxTzeeoBjlFSyiTx40Ry7enYVR4zyo1TFqc-_By4sCCrqCtjlkh2h6xneabvESoBQenUZcrghhcgMu7prg4NMx4SocoOedbagEgbYnSszzEVNaWzL2AMhB2DDnm8ED2t2UDOE3pqDWkhIYsTTJ-LuPgw2hfHbG__7e7xrhh3yOaKpS1Vhl0_CkLQtNWanoBZj90GQ5rPSuFFGD723YslMLoG6DjqkLu1zS61I-UgfHlCu63lXdwSMRi-txf3_110i1zuj4cH4uD16M0DcsUy3dp8yYdkvSpm-hFguCrZtFP1DzNgRWU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWqVqp44X7ZAq2FEOIlbRLnKp4oy7YsdFWhFqoKyXJimy5dklUuFcsTn8C38El8CTNOsqtFrYR4i3Ynk9gej0884zOEPHU0-ENfMIsltmd58K6W8L3EAnTgaRZGjpAmQXYU7B97wxP_ZIW86M7CNPwQ8w03nBnGX-MEn0q9syAN_fL1Aj7vPKTbXvMCO8a6Df33C-6oKG5CCOAKLFiE_I5WyHZ35rcuLUZr2K_fMDlSlNA_uilscRnyXAayZiUa3CCfujY0CSjn23WVbKff_6J3_M9G3iTXW4RKXzYmdYusqOw2WT9oY_B3yK_BuEL_SHNNh7DUYglLiv5heoaYflzSi3FRl7TKqWH--P3jpysoBghKCn_KNv9GSZrMKLJVFM3ZCqMQ4CjeDs9XmclmUtQwSYwzijvGFNmVJzNa1hMNIFnSz5NZmpcC9OV4KVBLZrTgA0Gu0CJVd8nx4PXRq32rrfxgpXiy1wpCQGbK9yNbS-b6qQMoRgohksSNEuErR0W2dJiWdpSyKHXhZ8-G5ViGsYhYItg9sprlmXpAqAD8pFKbSY3bXYDHfEfFKtBMO0iDKnrkeWcCPG1p0bE6x4Q3hM4uhzHgZgx65MlcdNpwgVwm9MzY0VxCFOeYPBf6_ONoj5-y_t7h7ukuP-qRzSVDW6gMYjf0AtC01VkehzmP3QZDmtcld0IMHrv21RIYWwNsHPbI_cZkF9qRcBC-O6HdxvCubgkfHnwwFxv_LrpF1g_7A_7uzejtQ3LN0NyaZMlHZLUqavUYAFyVbJqJ-gc8lkQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitness+of+Japanese+encephalitis+virus+to+Neuro%E2%80%902a+cells+is+determined+by+interactions+of+the+viral+envelope+protein+with+highly+sulfated+glycosaminoglycans+on+the+cell+surface&rft.jtitle=Journal+of+medical+virology&rft.au=Chiou%2C+Shyan%E2%80%90Song&rft.au=Liu%2C+Hsuan&rft.au=Chuang%2C+Ching%E2%80%90Kai&rft.au=Lin%2C+Chiou%E2%80%90Chun&rft.date=2005-08-01&rft.issn=0146-6615&rft.eissn=1096-9071&rft.volume=76&rft.issue=4&rft.spage=583&rft.epage=592&rft_id=info:doi/10.1002%2Fjmv.20406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmv_20406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon