Porous Carbons: Structure‐Oriented Design and Versatile Applications
Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemis...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided.
Herein, the structure–property relationships of porous carbon materials in water remediation, carbon capture, lithium‐ion batteries, lithium–sulfur batteries, Li metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and oxygen reduction reactions are proposed. The recent progress in structural control and functionalization of porous carbons are also summarized, in terms of achieving microporous, mesoporous, macroporous, and hierarchically porous carbons. |
---|---|
AbstractList | Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO
2
capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided. Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided. Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided. Herein, the structure–property relationships of porous carbon materials in water remediation, carbon capture, lithium‐ion batteries, lithium–sulfur batteries, Li metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and oxygen reduction reactions are proposed. The recent progress in structural control and functionalization of porous carbons are also summarized, in terms of achieving microporous, mesoporous, macroporous, and hierarchically porous carbons. |
Author | Zhang, Huayang Tian, Wenjie Shao, Guosheng Wang, Shaobin Duan, Xiaoguang Sun, Hongqi |
Author_xml | – sequence: 1 givenname: Wenjie surname: Tian fullname: Tian, Wenjie organization: The University of Adelaide – sequence: 2 givenname: Huayang surname: Zhang fullname: Zhang, Huayang organization: The University of Adelaide – sequence: 3 givenname: Xiaoguang surname: Duan fullname: Duan, Xiaoguang organization: The University of Adelaide – sequence: 4 givenname: Hongqi surname: Sun fullname: Sun, Hongqi email: h.sun@ecu.edu.au organization: Edith Cowan University – sequence: 5 givenname: Guosheng surname: Shao fullname: Shao, Guosheng organization: Zhengzhou University – sequence: 6 givenname: Shaobin orcidid: 0000-0002-1751-9162 surname: Wang fullname: Wang, Shaobin email: shaobin.wang@adelaide.edu.au organization: The University of Adelaide |
BookMark | eNqFkMtKw0AUhgdRsK1uXQdcp84tScddaa0KlQpecDdMZs5ISjqJMwnSnY_gM_okplYqCOLq_Iv_O-fw9dG-qxwgdELwkGBMz5SxqyHFRGBB02QP9UhK0phhOtrfZfJ0iPohLDEmWcZ4D81uK1-1IZoon1cunEd3jW9103r4eHtf-AJcAyaaQiieXaSciR7BB9UUJUTjui4L3eWOO0IHVpUBjr_nAD3MLu4nV_F8cXk9Gc9jzSlNYp1TRnJsM5sCFYZarZkaJWpksTGaamDMpIozlmqS88yAAJVkVIHgVliesQE63e6tffXSQmjksmq9605KygTPUprwpGvxbUv7KgQPVuqi-Xq08aooJcFyY0xujMmdsQ4b_sJqX6yUX_8NiC3w2vlY_9OW4-ns5of9BPBcgpE |
CitedBy_id | crossref_primary_10_1002_smll_202207767 crossref_primary_10_1016_j_cej_2023_142313 crossref_primary_10_1016_j_cej_2025_159556 crossref_primary_10_1002_adsu_202400742 crossref_primary_10_1016_j_electacta_2024_144610 crossref_primary_10_1016_j_matchemphys_2023_127835 crossref_primary_10_1016_S1872_5805_23_60710_3 crossref_primary_10_3390_bios13060636 crossref_primary_10_1002_admi_202100244 crossref_primary_10_1016_j_colsurfa_2025_136486 crossref_primary_10_1016_j_rsurfi_2025_100483 crossref_primary_10_1016_j_apcatb_2024_124848 crossref_primary_10_1016_j_ccr_2022_214604 crossref_primary_10_1016_j_jcat_2024_115755 crossref_primary_10_1016_j_apcatb_2024_123991 crossref_primary_10_7209_carbon_010201 crossref_primary_10_1016_j_cej_2022_140098 crossref_primary_10_1016_j_coche_2022_100838 crossref_primary_10_1016_j_diamond_2022_109196 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_batt_202100379 crossref_primary_10_1016_j_scitotenv_2022_158360 crossref_primary_10_1039_D3NJ01826A crossref_primary_10_1039_D1GC01376A crossref_primary_10_1021_acs_energyfuels_1c02238 crossref_primary_10_1016_j_seppur_2022_121749 crossref_primary_10_1039_D1TA10269A crossref_primary_10_1021_acsami_5c00068 crossref_primary_10_1360_SST_2022_0169 crossref_primary_10_1021_acsaem_3c02188 crossref_primary_10_1038_s41598_025_90747_0 crossref_primary_10_1007_s42823_023_00460_z crossref_primary_10_1016_j_energy_2023_129323 crossref_primary_10_1038_s41598_021_85661_0 crossref_primary_10_1016_j_apenergy_2024_125195 crossref_primary_10_1016_j_jece_2024_113446 crossref_primary_10_1016_j_jclepro_2021_129025 crossref_primary_10_1016_j_cej_2025_161615 crossref_primary_10_1002_anie_202213959 crossref_primary_10_1016_j_trac_2024_118043 crossref_primary_10_1016_j_nanoen_2023_109025 crossref_primary_10_1134_S1560090424600402 crossref_primary_10_1016_j_fuel_2021_121505 crossref_primary_10_1007_s42114_023_00682_9 crossref_primary_10_1016_j_carbon_2022_05_001 crossref_primary_10_26599_CF_2024_9200024 crossref_primary_10_1016_j_cej_2023_143856 crossref_primary_10_1016_j_jcis_2020_10_058 crossref_primary_10_1002_adma_202412908 crossref_primary_10_1016_j_jcis_2021_10_118 crossref_primary_10_1021_acsaem_4c02968 crossref_primary_10_1016_j_jcis_2023_01_092 crossref_primary_10_1016_j_cej_2022_135899 crossref_primary_10_1016_j_watres_2021_117984 crossref_primary_10_1002_adfm_202007158 crossref_primary_10_1016_j_mtcata_2023_100006 crossref_primary_10_1016_j_indcrop_2021_113700 crossref_primary_10_1016_j_seppur_2024_128910 crossref_primary_10_1002_smll_202403777 crossref_primary_10_1016_j_biortech_2021_126101 crossref_primary_10_1016_j_mseb_2023_117023 crossref_primary_10_1002_asia_202401484 crossref_primary_10_1038_s41467_020_18419_3 crossref_primary_10_1039_D4CY00594E crossref_primary_10_1016_j_cej_2024_154900 crossref_primary_10_1016_j_jcis_2020_09_022 crossref_primary_10_1021_acs_iecr_2c00094 crossref_primary_10_1016_j_ceramint_2022_08_185 crossref_primary_10_1016_j_est_2023_110049 crossref_primary_10_2139_ssrn_4127707 crossref_primary_10_1016_j_cej_2024_156075 crossref_primary_10_1016_j_matlet_2024_136813 crossref_primary_10_1021_acsaem_2c02417 crossref_primary_10_1039_D1SC01902C crossref_primary_10_3390_nano13030545 crossref_primary_10_1021_acsanm_4c01965 crossref_primary_10_1021_acsnano_0c10624 crossref_primary_10_1021_acs_energyfuels_2c04369 crossref_primary_10_1016_j_jece_2024_114973 crossref_primary_10_1016_j_jallcom_2022_167218 crossref_primary_10_1016_j_scitotenv_2021_149696 crossref_primary_10_1016_j_watres_2024_122960 crossref_primary_10_1016_j_ensm_2022_05_020 crossref_primary_10_1016_j_jelechem_2024_118063 crossref_primary_10_1016_j_carbon_2020_11_069 crossref_primary_10_1039_D2NA00621A crossref_primary_10_1021_acsaem_2c00141 crossref_primary_10_1016_j_cej_2020_127373 crossref_primary_10_1080_21663831_2023_2178860 crossref_primary_10_1016_j_desal_2024_118051 crossref_primary_10_1016_j_mssp_2024_108901 crossref_primary_10_1002_smll_202400179 crossref_primary_10_1021_acsaem_3c00929 crossref_primary_10_1016_j_memsci_2023_121983 crossref_primary_10_1007_s00604_022_05475_3 crossref_primary_10_1016_j_esi_2023_04_001 crossref_primary_10_1021_acssuschemeng_4c08126 crossref_primary_10_1002_batt_202200087 crossref_primary_10_1016_j_fuel_2024_132893 crossref_primary_10_1016_j_rser_2023_113594 crossref_primary_10_1039_D3NR05384A crossref_primary_10_1016_j_watres_2022_118489 crossref_primary_10_1016_j_biombioe_2025_107664 crossref_primary_10_1002_smll_202404548 crossref_primary_10_1021_acsmaterialslett_4c01175 crossref_primary_10_1016_j_ccr_2022_214576 crossref_primary_10_1021_acsaem_3c00818 crossref_primary_10_1016_j_ijbiomac_2024_138631 crossref_primary_10_1016_j_microc_2023_109032 crossref_primary_10_1021_acsomega_1c05905 crossref_primary_10_1016_j_heliyon_2024_e31339 crossref_primary_10_1021_acscatal_1c00857 crossref_primary_10_1016_j_jobab_2024_11_004 crossref_primary_10_1021_acsanm_3c01702 crossref_primary_10_1002_anie_202216724 crossref_primary_10_1002_ente_202400882 crossref_primary_10_1107_S1600576724010586 crossref_primary_10_3390_ma15031037 crossref_primary_10_1016_j_scitotenv_2021_151720 crossref_primary_10_1016_j_cjche_2020_11_028 crossref_primary_10_1016_j_carbon_2025_119994 crossref_primary_10_1016_j_apsusc_2023_157010 crossref_primary_10_1016_j_est_2025_116259 crossref_primary_10_1016_j_ijbiomac_2024_132078 crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1002_aenm_202406069 crossref_primary_10_1002_aenm_202100911 crossref_primary_10_1016_j_seppur_2024_129984 crossref_primary_10_1016_j_envres_2025_121374 crossref_primary_10_1016_j_jhazmat_2024_136439 crossref_primary_10_1016_j_jcis_2023_02_067 crossref_primary_10_1016_j_seppur_2023_125203 crossref_primary_10_1016_j_jcis_2022_01_093 crossref_primary_10_1021_acsnano_4c10531 crossref_primary_10_1021_acs_energyfuels_1c03064 crossref_primary_10_18321_cpc22_1_37_48 crossref_primary_10_1016_j_indcrop_2023_117032 crossref_primary_10_1016_j_jece_2024_114133 crossref_primary_10_1002_cnma_202200225 crossref_primary_10_1021_acsami_4c08082 crossref_primary_10_1002_anie_202316116 crossref_primary_10_1016_j_cej_2022_139045 crossref_primary_10_1016_j_carbon_2020_07_034 crossref_primary_10_1016_j_ijbiomac_2024_135462 crossref_primary_10_1002_smll_202201838 crossref_primary_10_1016_j_jcis_2023_04_024 crossref_primary_10_1016_j_micromeso_2021_111385 crossref_primary_10_1021_acsomega_3c01506 crossref_primary_10_1021_acsami_3c03424 crossref_primary_10_1016_j_cej_2025_159381 crossref_primary_10_1016_j_envres_2023_116441 crossref_primary_10_1002_slct_202400432 crossref_primary_10_1016_j_colsurfa_2023_130994 crossref_primary_10_1016_j_ensm_2020_07_027 crossref_primary_10_1016_j_jcis_2023_01_135 crossref_primary_10_1016_j_mtsust_2023_100358 crossref_primary_10_1016_j_mseb_2025_118085 crossref_primary_10_1002_admi_202400358 crossref_primary_10_1016_j_enchem_2024_100137 crossref_primary_10_1021_acsanm_3c00505 crossref_primary_10_1016_j_ceramint_2024_07_015 crossref_primary_10_1002_anie_202217808 crossref_primary_10_59761_RCR5122 crossref_primary_10_1021_acs_jafc_4c11487 crossref_primary_10_1007_s10668_025_05998_8 crossref_primary_10_1016_j_pce_2024_103698 crossref_primary_10_1016_j_jece_2022_107460 crossref_primary_10_1039_D3NA00067B crossref_primary_10_1039_D4NR00401A crossref_primary_10_1002_smll_202303658 crossref_primary_10_1021_acsmaterialsau_4c00168 crossref_primary_10_1016_j_cej_2024_154983 crossref_primary_10_3390_molecules28093660 crossref_primary_10_1039_D4TA00252K crossref_primary_10_1021_acsomega_3c00313 crossref_primary_10_1039_D4NR01986E crossref_primary_10_1016_j_diamond_2022_109432 crossref_primary_10_1016_j_jhazmat_2021_127083 crossref_primary_10_1016_j_carbon_2023_118347 crossref_primary_10_1002_ange_202213959 crossref_primary_10_1016_j_carbon_2023_118464 crossref_primary_10_1007_s12274_022_4452_x crossref_primary_10_1016_j_biombioe_2024_107513 crossref_primary_10_1039_D4CS00338A crossref_primary_10_1007_s40820_023_01212_4 crossref_primary_10_1016_j_apcatb_2023_122874 crossref_primary_10_20517_energymater_2023_63 crossref_primary_10_1016_j_jcis_2023_02_147 crossref_primary_10_3390_nano13111744 crossref_primary_10_1039_D1TA00765C crossref_primary_10_1021_acsami_4c04795 crossref_primary_10_1038_s41598_023_46642_7 crossref_primary_10_1002_adfm_202008505 crossref_primary_10_1016_j_est_2023_107039 crossref_primary_10_1016_j_micromeso_2021_111038 crossref_primary_10_1021_acsaem_1c03956 crossref_primary_10_1007_s41918_022_00178_y crossref_primary_10_3390_catal14090558 crossref_primary_10_1002_adfm_202405830 crossref_primary_10_1016_j_ensm_2022_02_015 crossref_primary_10_1016_j_aca_2023_341675 crossref_primary_10_1007_s42823_023_00609_w crossref_primary_10_1016_j_est_2024_110636 crossref_primary_10_1039_D1NA00853F crossref_primary_10_1088_1742_6596_2587_1_012086 crossref_primary_10_1016_j_mtcomm_2024_108439 crossref_primary_10_1039_D1SE01427G crossref_primary_10_1016_j_jpowsour_2024_234797 crossref_primary_10_1039_D3EE02082G crossref_primary_10_1039_D3TA07853A crossref_primary_10_1016_j_diamond_2023_110714 crossref_primary_10_1007_s10967_023_09093_y crossref_primary_10_1016_j_est_2023_109129 crossref_primary_10_1002_pi_6621 crossref_primary_10_1016_j_ensm_2024_103462 crossref_primary_10_1007_s10854_022_08685_w crossref_primary_10_1016_j_partic_2023_03_002 crossref_primary_10_1002_smll_202500421 crossref_primary_10_1021_acs_langmuir_3c03818 crossref_primary_10_1016_j_jcis_2024_06_080 crossref_primary_10_1007_s10971_022_05862_5 crossref_primary_10_1021_acsaem_2c01987 crossref_primary_10_1016_j_cej_2021_131080 crossref_primary_10_1016_j_jelechem_2022_116599 crossref_primary_10_1016_j_seppur_2022_121602 crossref_primary_10_1016_j_chemosphere_2022_137631 crossref_primary_10_1039_D4GC06034B crossref_primary_10_1016_j_jpowsour_2024_234308 crossref_primary_10_1016_j_apmate_2021_11_005 crossref_primary_10_1016_j_electacta_2022_141465 crossref_primary_10_1002_smll_202305517 crossref_primary_10_1016_j_est_2023_109783 crossref_primary_10_1016_j_jclepro_2022_132131 crossref_primary_10_1016_j_mtener_2021_100850 crossref_primary_10_1039_D4TA02625J crossref_primary_10_1016_j_jpowsour_2023_233966 crossref_primary_10_1016_j_mcat_2024_114147 crossref_primary_10_1039_D1TA09987F crossref_primary_10_1002_ange_202316116 crossref_primary_10_1016_j_cclet_2020_09_029 crossref_primary_10_1002_adfm_202201743 crossref_primary_10_1007_s10311_023_01566_6 crossref_primary_10_1016_j_talanta_2024_127158 crossref_primary_10_1002_adma_202311655 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1016_j_jcis_2022_01_006 crossref_primary_10_3390_jof9010043 crossref_primary_10_1016_j_compositesb_2024_111932 crossref_primary_10_1016_j_ensm_2020_05_023 crossref_primary_10_1016_j_seppur_2024_127276 crossref_primary_10_1016_j_jechem_2022_11_023 crossref_primary_10_1002_smll_202408899 crossref_primary_10_1002_adfm_202310296 crossref_primary_10_1002_advs_202207751 crossref_primary_10_1016_j_mtener_2021_100935 crossref_primary_10_1016_j_jwpe_2024_106326 crossref_primary_10_1002_smll_202400812 crossref_primary_10_1039_D2TA00506A crossref_primary_10_1016_j_solidstatesciences_2022_107091 crossref_primary_10_1016_j_tibtech_2022_07_017 crossref_primary_10_1016_j_foodchem_2023_137165 crossref_primary_10_1039_D3TA02422A crossref_primary_10_1007_s10904_020_01834_w crossref_primary_10_1016_j_jallcom_2023_169584 crossref_primary_10_1016_j_jpowsour_2023_232787 crossref_primary_10_1002_adma_202401336 crossref_primary_10_1016_j_jece_2022_107199 crossref_primary_10_1016_j_seppur_2023_125980 crossref_primary_10_1007_s12274_022_4327_1 crossref_primary_10_1016_j_cej_2021_133736 crossref_primary_10_1002_ange_202216724 crossref_primary_10_1002_smll_202100927 crossref_primary_10_1016_j_cclet_2020_08_019 crossref_primary_10_1016_j_indcrop_2022_115981 crossref_primary_10_1016_j_jcis_2021_07_020 crossref_primary_10_1016_j_solidstatesciences_2024_107521 crossref_primary_10_1016_j_jece_2025_115881 crossref_primary_10_1021_acsaem_3c01314 crossref_primary_10_3390_ma16030906 crossref_primary_10_1016_j_matchemphys_2024_129819 crossref_primary_10_1016_j_rser_2022_112585 crossref_primary_10_1007_s11706_024_0708_6 crossref_primary_10_1016_j_scitotenv_2022_155670 crossref_primary_10_1039_D2TA04883C crossref_primary_10_1021_acssuschemeng_2c06671 crossref_primary_10_1021_acsanm_1c00003 crossref_primary_10_1039_D4RA04537H crossref_primary_10_1007_s10854_023_09960_0 crossref_primary_10_1039_D2NR01655A crossref_primary_10_1002_ange_202217808 crossref_primary_10_1002_smll_202305316 crossref_primary_10_1002_jccs_202300198 crossref_primary_10_1016_j_energy_2023_126707 crossref_primary_10_1021_acsanm_2c03040 crossref_primary_10_1007_s12274_023_5961_y crossref_primary_10_1002_batt_202400294 crossref_primary_10_1016_j_jhazmat_2022_128866 crossref_primary_10_1007_s10934_024_01567_y crossref_primary_10_1007_s40242_024_3259_6 crossref_primary_10_1021_acs_est_3c06376 crossref_primary_10_1002_adma_202311575 crossref_primary_10_1002_adfm_202303730 crossref_primary_10_1016_j_xcrp_2024_102097 crossref_primary_10_1016_j_seppur_2024_127486 crossref_primary_10_1021_acssuschemeng_3c03820 crossref_primary_10_1016_j_fuel_2023_130541 crossref_primary_10_1016_j_mtchem_2023_101747 crossref_primary_10_1002_advs_202103953 crossref_primary_10_1016_j_carbon_2024_118812 crossref_primary_10_1021_jacs_3c05279 crossref_primary_10_1016_j_cej_2021_131233 crossref_primary_10_1016_j_fuel_2023_128010 crossref_primary_10_1016_j_fmre_2023_05_007 crossref_primary_10_3389_fmicb_2024_1374974 crossref_primary_10_1007_s11706_022_0584_x crossref_primary_10_1039_D4TA05430J crossref_primary_10_3390_pr8060672 crossref_primary_10_1016_j_cattod_2022_08_011 crossref_primary_10_1016_j_est_2024_115244 crossref_primary_10_3390_molecules26175293 crossref_primary_10_1016_j_apmate_2022_100057 crossref_primary_10_1007_s11706_023_0651_y crossref_primary_10_1016_j_pmatsci_2024_101408 crossref_primary_10_1016_j_trac_2021_116421 crossref_primary_10_3390_nano12224045 crossref_primary_10_1002_cnl2_177 crossref_primary_10_1021_acsami_2c08642 crossref_primary_10_1002_cssc_202201004 crossref_primary_10_1016_j_electacta_2022_141678 crossref_primary_10_1016_j_pmatsci_2022_101035 crossref_primary_10_1021_acsami_4c05103 crossref_primary_10_1016_j_jcis_2023_09_018 crossref_primary_10_1039_D3TB02073H crossref_primary_10_1039_D4CS00574K crossref_primary_10_3390_ijms23095116 crossref_primary_10_1016_j_seppur_2023_125425 crossref_primary_10_1039_D1TA08646D crossref_primary_10_1016_j_watres_2024_122621 crossref_primary_10_2139_ssrn_4105288 crossref_primary_10_1016_j_jhazmat_2020_124459 crossref_primary_10_1016_j_electacta_2024_144338 crossref_primary_10_1016_j_electacta_2022_140898 crossref_primary_10_1039_D2NR01986H crossref_primary_10_1016_j_electacta_2021_138043 crossref_primary_10_1016_j_est_2024_114692 crossref_primary_10_1016_j_carbon_2024_119018 crossref_primary_10_1021_acs_energyfuels_5c00125 crossref_primary_10_3390_nano13020271 crossref_primary_10_1016_j_carbpol_2021_118166 crossref_primary_10_1016_j_cej_2023_147273 crossref_primary_10_3390_macromol1020007 crossref_primary_10_1016_j_jcis_2024_01_090 crossref_primary_10_1016_j_carbon_2021_06_072 crossref_primary_10_1016_j_cogsc_2021_100447 crossref_primary_10_3390_polym14204261 crossref_primary_10_1002_smll_202309702 crossref_primary_10_1039_D2NJ05652F crossref_primary_10_21926_cr_2402006 crossref_primary_10_1016_j_jcis_2021_11_091 crossref_primary_10_3390_app12126048 crossref_primary_10_1007_s10450_023_00418_7 crossref_primary_10_3390_physchem2030021 crossref_primary_10_1016_j_cej_2023_141607 crossref_primary_10_1016_j_cej_2022_139725 crossref_primary_10_1016_j_jcis_2025_01_163 crossref_primary_10_1016_j_jcis_2021_05_149 crossref_primary_10_1039_D1NJ02279B crossref_primary_10_1016_j_renene_2024_120777 crossref_primary_10_1016_j_diamond_2024_111769 crossref_primary_10_1007_s12274_021_4003_x crossref_primary_10_1016_j_apcatb_2024_124225 crossref_primary_10_1093_ce_zkae082 crossref_primary_10_3390_ma16186127 crossref_primary_10_1016_j_cej_2024_150843 crossref_primary_10_1016_j_pmatsci_2024_101314 crossref_primary_10_1039_D0CE01847C crossref_primary_10_1002_cey2_662 crossref_primary_10_1021_acs_langmuir_1c03489 crossref_primary_10_1016_j_indcrop_2022_115462 crossref_primary_10_1021_acs_energyfuels_3c00056 crossref_primary_10_1039_D1RA07034G crossref_primary_10_1016_j_matchemphys_2024_129536 crossref_primary_10_1016_j_jece_2025_115368 crossref_primary_10_1016_j_cej_2023_148219 crossref_primary_10_1016_j_ensm_2025_104181 crossref_primary_10_1007_s40820_021_00679_3 crossref_primary_10_1021_acs_energyfuels_4c02789 crossref_primary_10_1016_j_carbon_2022_04_007 crossref_primary_10_1021_acs_langmuir_4c02138 crossref_primary_10_1039_D0MA00384K crossref_primary_10_1016_j_cej_2021_132951 crossref_primary_10_1016_j_carbon_2021_12_096 crossref_primary_10_1002_celc_202200190 crossref_primary_10_1016_j_cej_2024_148626 crossref_primary_10_1139_cjc_2023_0012 crossref_primary_10_1002_smtd_202300746 crossref_primary_10_1007_s10854_021_06986_0 crossref_primary_10_1016_j_psep_2024_05_082 crossref_primary_10_1002_adma_202103130 crossref_primary_10_1039_D2SC03987G crossref_primary_10_1002_celc_202100571 crossref_primary_10_1016_j_cej_2022_135031 crossref_primary_10_1016_j_envpol_2021_117991 crossref_primary_10_1016_j_envpol_2021_117992 crossref_primary_10_3390_polym12112563 crossref_primary_10_1002_aenm_202204259 crossref_primary_10_1021_acs_energyfuels_4c01232 crossref_primary_10_3390_toxics12040283 crossref_primary_10_1007_s13399_024_05361_3 crossref_primary_10_21070_pels_v7i0_1698 crossref_primary_10_1016_j_desal_2024_118441 crossref_primary_10_1016_j_apsusc_2022_154795 crossref_primary_10_1016_j_jcis_2021_11_052 crossref_primary_10_1063_5_0210821 crossref_primary_10_1039_D1TA00178G crossref_primary_10_1002_aenm_202204345 crossref_primary_10_1002_adma_202401926 crossref_primary_10_1016_j_cej_2022_140512 crossref_primary_10_1016_j_mtnano_2023_100321 crossref_primary_10_1002_slct_202203034 crossref_primary_10_1016_j_ensm_2024_103901 crossref_primary_10_1016_j_jcis_2021_05_065 crossref_primary_10_1039_D1QM00121C crossref_primary_10_1039_D2TA03510C crossref_primary_10_1016_S1872_5805_21_60062_8 crossref_primary_10_1016_j_seppur_2023_124616 crossref_primary_10_1016_j_diamond_2023_110054 crossref_primary_10_1016_j_pnsc_2025_02_011 crossref_primary_10_1016_j_watres_2020_116390 crossref_primary_10_1016_j_est_2024_114209 crossref_primary_10_1016_j_scitotenv_2020_142136 crossref_primary_10_1016_j_coelec_2024_101478 crossref_primary_10_1246_cl_230092 crossref_primary_10_1016_j_renene_2024_120468 crossref_primary_10_1016_j_carbon_2022_06_073 |
Cites_doi | 10.1021/acs.est.5b01059 10.1038/natrevmats.2016.23 10.1002/aenm.201602898 10.1002/anie.201509054 10.1007/s40820-019-0291-z 10.1039/C6TA09229B 10.1039/C5EE03149D 10.1038/nnano.2014.152 10.1002/adma.201503816 10.1021/acs.jpcc.8b00081 10.1029/2012JD018619 10.1002/aenm.201601111 10.1039/C5TA09917J 10.1002/anie.201501475 10.1016/j.jpowsour.2018.05.046 10.1021/acsnano.9b04728 10.1002/aenm.201801149 10.1016/j.carbon.2017.03.027 10.1038/nmat2297 10.1039/C5TA09908K 10.1002/anie.201209548 10.1021/nn502045y 10.1126/sciadv.aat5168 10.1038/nmat3191 10.1016/j.pmatsci.2018.12.002 10.1038/nmat4317 10.1039/C6TA06176A 10.1021/ja809265m 10.1039/c2jm30192j 10.1002/smll.201900687 10.1021/nn4021955 10.1021/jacs.6b11411 10.1039/C6CS00426A 10.1039/C7TA08165K 10.1016/j.jece.2015.11.018 10.1038/nchem.2515 10.1002/advs.201600243 10.1039/C6EE02169G 10.1016/j.carbon.2015.12.066 10.1021/ja407552k 10.1038/nature10322 10.1016/j.nanoen.2017.05.015 10.1021/acs.chemmater.7b02645 10.1021/nn404640c 10.1021/ja7106178 10.1126/science.aac4722 10.1007/s10098-014-0830-8 10.1002/adfm.201870204 10.1021/es803268b 10.1039/C6CC04052G 10.1038/ncomms6261 10.1039/c2jm34066f 10.1016/j.nantod.2018.02.006 10.1126/science.1194237 10.1002/adma.201302459 10.1002/adma.201401376 10.1021/am401423b 10.1016/j.nanoen.2013.12.017 10.1021/acs.chemmater.7b04061 10.1016/S0008-6223(00)00027-0 10.1021/ja511539a 10.1002/aenm.201702267 10.1039/C4TA02199A 10.1039/C6TA06164H 10.1021/acsnano.7b05085 10.1039/C2TA00278G 10.1021/acsnano.6b07995 10.1002/adfm.201606190 10.1039/c2ra20775c 10.1021/nn204688c 10.1039/C7TA01722G 10.1039/C5TA03181H 10.1021/nn302147s 10.1002/advs.201700515 10.1039/c2ee21653a 10.1039/C7TA09633J 10.1039/C1JM13314D 10.1039/c1ee01176f 10.1021/am400958x 10.1002/adma.201101007 10.1016/0043-1354(85)90041-7 10.1021/cm010730l 10.1002/adma.200501905 10.1021/es801463v 10.1039/C6TA07826E 10.1039/C7TA03999A 10.1002/anie.200702046 10.1002/advs.201500195 10.1002/adfm.201603607 10.1002/aenm.201700283 10.1002/anie.201206720 10.1016/j.carbon.2017.05.088 10.1021/am400112m 10.1016/j.apcatb.2017.11.056 10.1038/s41467-018-04190-z 10.1002/anie.200501561 10.1002/aenm.201602078 10.1002/cphc.200800592 10.1021/jacs.5b06809 10.1002/adma.201505131 10.1016/j.matlet.2016.09.045 10.1016/0008-6223(95)00154-6 10.1002/aenm.201902852 10.1021/jacs.7b08133 10.1021/acsnano.6b04019 10.1002/anie.201710888 10.1002/anie.201710852 10.1002/anie.201605676 10.1016/j.carbon.2015.11.069 10.1039/c3ee41638k 10.1002/anie.200907289 10.1039/c0jm03793a 10.1021/acs.est.7b01679 10.1039/C6CS00639F 10.1016/j.jclepro.2017.08.229 10.1002/aenm.201701261 10.1021/acssuschemeng.5b01113 10.1039/C5TA09948J 10.1002/pola.22695 10.1021/es200782s 10.1021/cr0200062 10.1039/C5EE01985K 10.1002/adfm.201705253 10.1039/C6EE02364A 10.1038/nature06599 10.1016/S0008-6223(99)00180-3 10.1002/adma.201504765 10.1016/j.apcatb.2017.06.051 10.1002/smll.201702054 10.1038/ncomms8221 10.1002/smll.201902603 10.1021/nn503220h 10.1002/admt.201900806 10.1039/C3CS60159E 10.1021/jz300929x 10.1002/cssc.201700492 10.1016/j.apcatb.2017.08.069 10.1038/35104644 10.1021/acs.accounts.5b00482 10.1016/j.carbon.2017.10.084 10.1021/acsnano.5b08040 10.1039/C7TA07488C 10.1002/aenm.201800171 10.1002/aenm.201900343 10.1039/C5TA09202G 10.1116/1.5095413 10.1021/acscatal.7b04086 10.1039/C7GC01681F 10.1002/adma.201700874 10.1002/adma.201302034 10.1021/acs.chemmater.7b00857 10.1002/adfm.201400590 10.1016/j.cej.2018.04.139 10.1021/ja203184k 10.1016/j.carbon.2018.03.044 10.1007/s40843-017-9169-4 10.1021/es071230h 10.1016/j.jhazmat.2005.12.004 10.1021/am301372d 10.1021/ja5003907 10.1039/c1jm12979a 10.1038/nature18284 10.1039/C4EE01075B 10.1016/j.fuel.2003.09.001 10.1039/C7TA07010A 10.1021/acs.chemmater.7b01937 10.1021/acscentsci.5b00149 10.1039/C6TA05872H 10.1002/adma.201303115 10.1039/c3ta11114h 10.1039/C7TA08354H 10.1038/ncomms3798 10.1016/j.carbon.2014.07.062 10.1002/aenm.201702384 10.1002/anie.201100637 10.1039/C8TA12540F 10.1002/smtd.201900163 10.1002/aenm.201100548 10.1016/j.micromeso.2016.04.041 10.1021/cr300014x 10.1016/S0008-6223(00)00012-9 10.1016/j.jhazmat.2005.11.077 10.1039/C4TA05451B 10.1002/celc.201500376 10.1039/c3cc43401j 10.1149/2.1391706jes 10.1021/acs.jced.7b00745 10.1038/s41565-018-0216-x 10.1126/sciadv.1500564 10.1002/cssc.201200817 10.1126/science.1212741 10.1016/j.carbon.2008.06.027 10.1002/adfm.201601904 10.1021/acsami.7b17893 10.1002/adfm.201100291 10.1021/nl401995a 10.1016/j.carbon.2018.10.096 10.1016/j.jcis.2017.09.040 10.1021/acsami.7b08797 10.1039/c3ta01659e 10.1002/aenm.201500867 10.1039/C6EE00158K 10.1002/anie.201706777 10.1016/j.carbon.2015.05.017 10.1016/j.rser.2014.07.093 10.1002/anie.201205292 10.1038/nature11115 10.1021/jp806084d 10.1039/C7TA00335H 10.1039/C2CS35308C 10.1016/j.carbon.2017.02.016 10.1002/ijch.201400118 10.1038/nenergy.2016.10 10.1021/cm7024125 10.1039/C7TA02415K 10.1039/C5GC02397A 10.1021/nl4038592 10.1021/jp106764h 10.1002/aenm.201802386 10.1038/ncomms15020 10.1016/j.psep.2018.08.012 10.1002/aenm.201502491 10.1016/j.jpowsour.2016.12.008 10.1039/C1CS15060J 10.1016/j.electacta.2017.06.092 10.1039/C7TA08046H 10.1016/j.carbon.2013.09.006 10.1038/nnano.2016.32 10.1021/acsnano.5b03488 10.1021/acscatal.7b01695 10.1038/nature11893 10.1021/acs.jpcc.7b06457 10.1039/C3EE42551G 10.1016/j.carbon.2014.12.010 10.1021/acsami.6b01748 10.1002/aenm.201100340 10.1002/aenm.201100691 10.1016/j.nanoen.2015.10.038 10.1016/j.energy.2015.08.033 10.1002/adfm.201504004 10.1016/j.watres.2009.06.009 10.1039/C5CS00670H 10.1002/anie.200461051 10.1039/C4CS00484A 10.1002/adma.201604108 10.1016/j.chemosphere.2013.02.058 10.1039/C7GC01434A 10.1002/cssc.201500063 10.1002/adma.201502303 10.1021/acsnano.7b05869 10.1016/j.nanoen.2017.01.045 10.1038/nnano.2014.6 10.1002/aenm.201602911 10.1039/c3ta13049e 10.1021/cm202554j 10.1039/c0cs00208a 10.1039/C7TA05003H 10.1021/acs.nanolett.7b00533 10.1002/adma.201600979 10.1039/c3ta14281g 10.1039/C9CC01927H 10.1039/C6EE00551A 10.1039/C7TA01108C 10.1039/C6TA08169J 10.1016/j.cej.2017.06.074 10.1021/ie1024003 10.1002/adma.201600012 10.1016/j.apcatb.2015.07.024 10.1021/cm900288x 10.1002/adfm.201700324 10.1002/aenm.201700530 10.1002/anie.201702099 10.1002/anie.201209849 10.1021/jacs.5b11955 10.1038/ncomms10601 10.1039/c3ta00004d 10.1002/adfm.201603937 10.1039/C5TA00867K 10.1039/C7TA08169C 10.1021/nl502238b 10.1002/adfm.201100854 10.1016/j.carbon.2013.09.086 10.1039/B501259G 10.1038/s41467-017-01633-x 10.1021/nl802558y 10.1021/ar200306b 10.1039/C6TA07098A 10.1126/sciadv.aap9252 10.1021/ja7106146 10.1126/sciadv.aav7412 10.1016/j.cej.2017.04.106 10.1002/aenm.201502518 10.1021/jz201312e 10.1039/C4CS00071D 10.1039/C3EE42918K 10.1016/j.carbon.2017.04.050 10.1016/j.electacta.2016.01.105 10.1002/adma.201700104 10.1002/aenm.201100061 10.1039/c3ee41444b 10.1002/anie.201702453 10.1016/j.nanoen.2015.03.013 10.1002/aenm.201600693 10.1126/science.1176731 10.1126/science.aaa8075 10.1039/C7CS00787F 10.1021/es035121o 10.1021/cm960430h |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201909265 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201909265 ADFM201909265 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP170104264 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4225-cb231b0f7f6e29d2fcc3a85a8f0ddc2ce33d6a4336c1b47de9ea572ae94f9f473 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:14:06 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Tue Jul 01 04:12:10 EDT 2025 Wed Jan 22 16:34:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4225-cb231b0f7f6e29d2fcc3a85a8f0ddc2ce33d6a4336c1b47de9ea572ae94f9f473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1751-9162 |
PQID | 2394762545 |
PQPubID | 2045204 |
PageCount | 41 |
ParticipantIDs | proquest_journals_2394762545 crossref_citationtrail_10_1002_adfm_201909265 crossref_primary_10_1002_adfm_201909265 wiley_primary_10_1002_adfm_201909265_ADFM201909265 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2013; 1 2019 2017; 5 121 2012; 486 2019; 13 2015 2018 2018; 1 133 225 1995; 33 2014; 26 2014; 24 2013; 7 2013; 5 2012; 11 2013; 6 2014; 136 1997; 9 2013 2013; 1 7 2018; 47 2001 2000; 27 38 1985; 19 2011 2016 2016; 4 4 230 2018; 9 2018; 8 2018; 5 2009; 10 2018; 4 2001 2019; 414 15 2015; 137 2004; 38 2015; 84 2010; 114 2017 2014; 46 43 2013; 52 2008 2004 2005 2008 2005; 47 43 44 20 2014; 14 2018; 30 2017; 164 2011 2009; 40 21 2008; 112 2012; 24 2013 2015; 1 91 2012; 22 2019; 7 2016 2015; 191 27 2019; 9 2018; 28 2018; 220 2011; 2 2011; 1 2016; 19 2018; 347 2015; 55 2008 2008; 130 130 2015; 54 2013; 91 2016; 10 2012 2016 2017; 3 181 323 2019; 102 2012 2013; 22 46 2016; 18 2015 2011 2013; 93 4 5 2013 2014 2017; 495 7 327 2017; 139 2016; 11 2016; 99 2017; 51 2016; 4 2018; 19 2016; 6 2016; 7 2010; 49 2016; 1 2011 2019; 21 2012; 112 2016 2016; 1 45 2011 2010 2016; 21 330 26 2016; 3 2017; 56 2008; 46 2008; 42 2014; 39 2018; 12 2016; 28 2015 2012; 49 51 2018; 10 2016; 26 2016; 8 2016; 9 2012; 41 2018; 14 2008 2011; 130 133 2017; 5 2017; 119 2017; 7 2017; 8 2013; 25 2009; 43 2017; 3 2017; 4 2018; 127 2019; 55 2017; 46 2008; 7 2015; 348 2017; 9 2014; 66 2016; 185 2006; 135 2017; 118 2011 2017; 21 7 2018; 133 2020; 5 2006 2008 2012; 18 8 2 2014; 5 2014; 4 2017 2013; 118 2014; 2 2017; 37 2013; 13 2016 2016; 10 28 2017; 33 2002; 102 2015; 44 2011; 23 2017; 121 2014; 9 2014; 8 2015 2016; 3 49 2014; 7 2001; 13 2013 2012; 49 4 2017; 246 2009; 325 2015 2018; 3 61 2015; 2 2017; 218 2015; 13 2000 2006; 38 135 2015; 1 2011; 334 2015; 14 2004; 83 2015; 6 2015; 5 2015 2019; 8 11 2015; 3 2017; 27 2000 2015 2018; 38 17 511 2013; 42 2013 2012 2009 2011; 1 6 131 21 2016; 52 2013 2019 2014; 6 37 14 2018; 63 2017; 29 2016 2018; 99 122 2018 2017; 13 2015; 8 2016; 55 2019; 143 2018; 395 2017 2018; 168 119 2012; 2 2015; 27 2017; 17 2017; 11 2017; 10 2017 2014 2016; 7 67 4 2011; 50 2019 2017 2013; 135 2014; 79 2016; 535 2017; 19 2016; 138 2011; 45 2015 2011; 349 476 2011 2012 2015; 50 51 9 2014 2007; 41 2017; 341 2012; 6 2008; 452 2017 2018; 116 225 2012; 5 2018; 57 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_200_1 e_1_2_11_223_1 e_1_2_11_246_1 e_1_2_11_70_2 e_1_2_11_223_3 e_1_2_11_186_1 e_1_2_11_223_2 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_261_1 e_1_2_11_29_1 e_1_2_11_102_2 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_29_2 e_1_2_11_102_1 e_1_2_11_163_1 e_1_2_11_211_1 e_1_2_11_257_1 e_1_2_11_81_1 e_1_2_11_197_1 e_1_2_11_234_1 e_1_2_11_43_2 e_1_2_11_89_2 e_1_2_11_20_1 e_1_2_11_43_3 e_1_2_11_66_1 e_1_2_11_89_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_113_1 e_1_2_11_208_1 e_1_2_11_174_1 e_1_2_11_151_1 Li W. H. (e_1_2_11_176_1) 2017 Liu Y. D. (e_1_2_11_83_1) 2017 e_1_2_11_201_1 e_1_2_11_247_1 e_1_2_11_92_1 e_1_2_11_262_3 e_1_2_11_224_1 e_1_2_11_187_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_262_2 e_1_2_11_262_1 e_1_2_11_54_1 e_1_2_11_28_2 e_1_2_11_103_1 e_1_2_11_126_1 Liang H. W. (e_1_2_11_140_1) 2014 e_1_2_11_149_1 e_1_2_11_5_2 e_1_2_11_28_1 e_1_2_11_103_2 e_1_2_11_5_1 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_190_1 e_1_2_11_212_1 e_1_2_11_235_1 e_1_2_11_258_1 e_1_2_11_80_1 e_1_2_11_198_1 e_1_2_11_250_1 e_1_2_11_88_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_39_3 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 e_1_2_11_39_2 e_1_2_11_152_1 e_1_2_11_175_1 e_1_2_11_209_1 e_1_2_11_180_1 e_1_2_11_72_1 e_1_2_11_248_1 e_1_2_11_225_2 e_1_2_11_202_1 e_1_2_11_225_1 Zou L. F. (e_1_2_11_37_1) 2017 e_1_2_11_188_1 e_1_2_11_57_1 e_1_2_11_240_1 e_1_2_11_263_1 e_1_2_11_34_2 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_104_1 e_1_2_11_127_2 e_1_2_11_127_1 e_1_2_11_2_2 e_1_2_11_2_1 e_1_2_11_165_1 e_1_2_11_142_1 e_1_2_11_191_1 e_1_2_11_236_1 e_1_2_11_60_2 e_1_2_11_60_1 e_1_2_11_259_1 e_1_2_11_213_1 e_1_2_11_45_1 e_1_2_11_199_1 e_1_2_11_68_2 e_1_2_11_251_1 e_1_2_11_68_1 e_1_2_11_60_3 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_19_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_2 e_1_2_11_181_1 e_1_2_11_71_1 e_1_2_11_249_1 e_1_2_11_226_1 e_1_2_11_264_1 e_1_2_11_203_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_56_2 e_1_2_11_189_1 e_1_2_11_79_1 e_1_2_11_241_1 e_1_2_11_71_3 e_1_2_11_33_2 e_1_2_11_33_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_3_1 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_215_5 e_1_2_11_120_1 e_1_2_11_215_4 e_1_2_11_215_3 e_1_2_11_82_1 e_1_2_11_192_1 e_1_2_11_237_1 e_1_2_11_252_2 e_1_2_11_214_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_44_2 e_1_2_11_44_3 e_1_2_11_252_1 e_1_2_11_21_2 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_131_3 e_1_2_11_131_2 e_1_2_11_18_3 e_1_2_11_154_1 e_1_2_11_177_1 e_1_2_11_18_2 e_1_2_11_131_4 e_1_2_11_131_1 e_1_2_11_182_1 e_1_2_11_204_1 e_1_2_11_227_1 e_1_2_11_242_1 e_1_2_11_265_1 e_1_2_11_36_1 e_1_2_11_13_2 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_167_1 e_1_2_11_144_1 Radovic L. R. (e_1_2_11_21_1) 2001; 27 e_1_2_11_239_1 e_1_2_11_193_1 e_1_2_11_238_1 e_1_2_11_215_2 e_1_2_11_215_1 e_1_2_11_253_1 e_1_2_11_47_1 e_1_2_11_230_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_117_1 e_1_2_11_36_2 e_1_2_11_59_1 e_1_2_11_59_2 e_1_2_11_178_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_170_1 e_1_2_11_50_1 e_1_2_11_220_1 e_1_2_11_183_1 e_1_2_11_205_1 e_1_2_11_243_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_96_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_1_1 e_1_2_11_217_1 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_194_1 e_1_2_11_216_1 e_1_2_11_231_1 e_1_2_11_254_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_84_1 e_1_2_11_110_2 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_133_1 e_1_2_11_228_2 e_1_2_11_228_1 e_1_2_11_171_1 e_1_2_11_91_1 e_1_2_11_221_1 e_1_2_11_184_1 e_1_2_11_244_1 e_1_2_11_30_3 e_1_2_11_30_2 e_1_2_11_30_1 e_1_2_11_99_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_169_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_2 e_1_2_11_123_1 e_1_2_11_218_2 e_1_2_11_218_1 e_1_2_11_161_1 e_1_2_11_195_1 e_1_2_11_232_1 e_1_2_11_255_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_41_2 e_1_2_11_41_3 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_206_1 e_1_2_11_229_1 e_1_2_11_172_1 e_1_2_11_222_2 e_1_2_11_222_1 e_1_2_11_90_2 e_1_2_11_90_1 e_1_2_11_185_1 e_1_2_11_245_1 e_1_2_11_260_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_124_2 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_49_2 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_49_3 e_1_2_11_219_1 e_1_2_11_162_1 e_1_2_11_210_1 e_1_2_11_196_1 e_1_2_11_233_1 e_1_2_11_256_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_158_1 e_1_2_11_37_2 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_150_1 e_1_2_11_173_1 e_1_2_11_207_1 |
References_xml | – volume: 19 start-page: 3916 year: 2017 publication-title: Green Chem. – volume: 49 4 start-page: 9914 5466 year: 2013 2012 publication-title: Chem. Commun. ACS Appl. Mater. Interfaces – volume: 49 51 start-page: 6855 year: 2015 2012 publication-title: Environ. Sci. Technol. Angew. Chem., Int. Ed. – volume: 52 start-page: 6088 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 486 year: 2015 publication-title: Isr. J. Chem. – volume: 99 start-page: 556 year: 2016 publication-title: Carbon – volume: 5 start-page: 5630 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 3 181 323 start-page: 2112 103 361 year: 2012 2016 2017 publication-title: J. Phys. Chem. Lett. Appl. Catal., B Chem. Eng. J. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 49 start-page: 2565 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 9671 year: 2012 publication-title: RSC Adv. – volume: 5 start-page: 7854 year: 2017 publication-title: J. Mater. Chem. A – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 112 start-page: 673 year: 2012 publication-title: Chem. Rev. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1516 year: 2017 publication-title: J. Mater. Chem. A – volume: 220 start-page: 533 year: 2018 publication-title: Appl. Catal., B – volume: 19 start-page: 491 year: 1985 publication-title: Water Res. – volume: 1 91 start-page: 5021 142 year: 2013 2015 publication-title: J. Mater. Chem. A Energy – volume: 9 start-page: 1661 year: 2016 publication-title: Energy Environ. Sci. – volume: 1 start-page: 4490 year: 2013 publication-title: J. Mater. Chem. A – volume: 5 start-page: 181 year: 2017 publication-title: J. Mater. Chem. A – volume: 139 start-page: 1706 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 3859 year: 2011 2019 publication-title: Adv. Funct. Mater. Small Methods – year: 2019 publication-title: Small – volume: 11 start-page: 1911 year: 2017 publication-title: ACS Nano – volume: 22 start-page: 146 year: 2012 publication-title: J. Mater. Chem. – volume: 22 46 start-page: 8835 1094 year: 2012 2013 publication-title: J. Mater. Chem. Acc. Chem. Res. – volume: 56 start-page: 7557 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 8 11 start-page: 2916 60 year: 2015 2019 publication-title: Energy Environ. Sci. Nano‐Micro Lett. – volume: 57 start-page: 1856 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 start-page: 374 year: 2013 publication-title: ChemSusChem – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 325 start-page: 1652 year: 2009 publication-title: Science – volume: 5 121 year: 2019 2017 publication-title: Sci. Adv. J. Phys. Chem. C – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 118 start-page: 29 683 year: 2017 2013 publication-title: Adv. Mater. J. Geophys. Res.: Atmos. – volume: 12 start-page: 226 year: 2018 publication-title: ACS Nano – volume: 13 start-page: 527 year: 2015 publication-title: Nano Energy – volume: 29 start-page: 7062 year: 2017 publication-title: Chem. Mater. – volume: 83 start-page: 293 year: 2004 publication-title: Fuel – volume: 9 start-page: 1891 year: 2016 publication-title: Energy Environ. Sci. – volume: 6 37 14 start-page: 2839 1164 year: 2013 2019 2014 publication-title: Energy Environ. Sci. J. Vac. Sci. Technol., A Nano Lett. – volume: 191 27 start-page: 385 6914 year: 2016 2015 publication-title: Electrochim. Acta Adv. Mater. – volume: 46 43 start-page: 2660 4341 year: 2017 2014 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. – volume: 185 start-page: 359 year: 2016 publication-title: Mater. Lett. – volume: 55 start-page: 6034 year: 2019 publication-title: Chem. Commun. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 6 131 21 start-page: 7092 5026 2060 year: 2013 2012 2009 2011 publication-title: J. Mater. Chem. A ACS Nano J. Am. Chem. Soc. J. Mater. Chem. – volume: 127 start-page: 85 year: 2018 publication-title: Carbon – volume: 10 start-page: 2805 year: 2017 publication-title: ChemSusChem – volume: 4 start-page: 2798 year: 2013 publication-title: Nat. Commun. – volume: 5 start-page: 2519 year: 2017 publication-title: J. Mater. Chem. A – volume: 19 start-page: 4132 year: 2017 publication-title: Green Chem. – volume: 218 start-page: 260 year: 2017 publication-title: Appl. Catal., B – volume: 27 38 start-page: 227 863 year: 2001 2000 publication-title: Chem. Phys. Carbon Carbon – volume: 84 start-page: 281 year: 2015 publication-title: Carbon – volume: 143 start-page: 531 year: 2019 publication-title: Carbon – volume: 26 start-page: 6056 year: 2014 publication-title: Adv. Mater. – volume: 138 start-page: 1001 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 6284 year: 2013 publication-title: Adv. Mater. – volume: 9 start-page: 187 year: 2014 publication-title: Nat. Nanotechnol. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 3 61 start-page: 71 133 year: 2015 2018 publication-title: J. Mater. Chem. A Sci. China Mater. – volume: 26 start-page: 8334 year: 2016 publication-title: Adv. Funct. Mater. – volume: 341 start-page: 165 year: 2017 publication-title: J. Power Sources – volume: 4 start-page: 1050 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 33 start-page: 334 year: 2017 publication-title: Nano Energy – volume: 135 start-page: 395 year: 2006 publication-title: J. Hazard. Mater. – volume: 9 start-page: 1720 year: 2018 publication-title: Nat. Commun. – volume: 7 67 4 start-page: 230 280 year: 2017 2014 2016 publication-title: Adv. Energy Mater. Carbon J. Mater. Chem. A – volume: 130 133 start-page: 5390 year: 2008 2011 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 46 start-page: 2660 year: 2017 publication-title: Chem. Soc. Rev. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 start-page: 68 year: 2015 publication-title: ACS Cent. Sci. – volume: 1 45 start-page: 517 year: 2016 2016 publication-title: Nat. Rev. Mater. Chem. Soc. Rev. – volume: 535 start-page: 131 year: 2016 publication-title: Nature – volume: 4 start-page: 4296 year: 2016 publication-title: J. Mater. Chem. A – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 42 start-page: 8237 year: 2013 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 323 year: 2016 publication-title: ChemElectroChem – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 79 start-page: 213 year: 2014 publication-title: Carbon – volume: 2 start-page: 873 year: 2012 publication-title: Adv. Energy Mater. – volume: 7 start-page: 3574 year: 2014 publication-title: Energy Environ. Sci. – volume: 14 start-page: 763 year: 2015 publication-title: Nat. Mater. – volume: 8 start-page: 7115 year: 2014 publication-title: ACS Nano – volume: 7 year: 2013 publication-title: ACS Nano – volume: 9 start-page: 102 year: 2016 publication-title: Energy Environ. Sci. – volume: 66 start-page: 320 year: 2014 publication-title: Carbon – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 2260 year: 2015 publication-title: ChemSusChem – volume: 38 start-page: 3705 year: 2004 publication-title: Environ. Sci. Technol. – volume: 50 start-page: 9286 year: 2011 publication-title: Ind. Eng. Chem. Res. – volume: 4 4 230 start-page: 3059 5223 100 year: 2011 2016 2016 publication-title: Energy Environ. Sci. J. Mater. Chem. A Microporous Mesoporous Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 26 start-page: 111 year: 2016 publication-title: Adv. Funct. Mater. – volume: 99 122 start-page: 8 4955 year: 2016 2018 publication-title: Carbon J. Phys. Chem. C – volume: 10 start-page: 9353 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 718 year: 2016 publication-title: Nat. Chem. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1849 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 99 start-page: 8 year: 2016 publication-title: Carbon – volume: 19 start-page: 165 year: 2016 publication-title: Nano Energy – volume: 495 7 327 start-page: 80 335 51 year: 2013 2014 2017 publication-title: Nature Energy Environ. Sci. Chem. Eng. J. – volume: 54 start-page: 7060 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 168 119 start-page: 290 320 year: 2017 2018 publication-title: J. Cleaner Prod. Process Saf. Environ. Prot. – volume: 246 start-page: 634 year: 2017 publication-title: Electrochim. Acta – volume: 18 start-page: 2106 year: 2016 publication-title: Green Chem. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 37 start-page: 177 year: 2017 publication-title: Nano Energy – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 452 start-page: 301 year: 2008 publication-title: Nature – volume: 7 start-page: 6144 year: 2017 publication-title: ACS Catal. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 4364 year: 2016 publication-title: ACS Nano – volume: 2 start-page: 2859 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 42 start-page: 7931 year: 2008 publication-title: Environ. Sci. Technol. – volume: 55 start-page: 2032 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 14 year: 2018 publication-title: Small – volume: 348 year: 2015 publication-title: Science – volume: 13 start-page: 4413 year: 2001 publication-title: Chem. Mater. – volume: 28 start-page: 6391 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 5261 year: 2014 publication-title: Nat. Commun. – volume: 1 start-page: 678 year: 2011 publication-title: Adv. Energy Mater. – volume: 26 start-page: 7955 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 6245 year: 2017 publication-title: J. Mater. Chem. A – volume: 14 start-page: 5250 year: 2014 publication-title: Nano Lett. – volume: 102 start-page: 1 year: 2019 publication-title: Prog. Mater. Sci. – volume: 21 7 year: 2011 2017 publication-title: J. Mater. Chem. Adv. Energy Mater. – volume: 8 start-page: 1779 year: 2018 publication-title: ACS Catal. – volume: 2 start-page: 3317 year: 2014 publication-title: J. Mater. Chem. A – volume: 38 135 start-page: 1807 453 year: 2000 2006 publication-title: Carbon J. Hazard. Mater. – volume: 347 start-page: 432 year: 2018 publication-title: Chem. Eng. J. – volume: 3 start-page: 9565 year: 2015 publication-title: J. Mater. Chem. A – volume: 46 start-page: 7176 year: 2017 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 7323 year: 2012 publication-title: Energy Environ. Sci. – volume: 27 start-page: 7861 year: 2015 publication-title: Adv. Mater. – volume: 52 start-page: 3110 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 45 start-page: 7068 year: 2011 publication-title: Environ. Sci. Technol. – volume: 1 7 start-page: 9395 6237 year: 2013 2013 publication-title: J. Mater. Chem. A ACS Nano – volume: 93 4 5 start-page: 68 3059 6360 year: 2015 2011 2013 publication-title: Carbon Energy Environ. Sci. ACS Appl. Mater. Interfaces – volume: 133 start-page: 306 year: 2018 publication-title: Carbon – volume: 136 start-page: 6790 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 130 130 start-page: 2730 2730 year: 2008 2008 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 10 start-page: 715 year: 2009 publication-title: ChemPhysChem – volume: 19 start-page: 84 year: 2018 publication-title: Nano Today – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 40 21 start-page: 1107 2555 year: 2011 2009 publication-title: Chem. Soc. Rev. Chem. Mater. – volume: 47 43 44 20 start-page: 3696 5785 7053 932 2125 year: 2008 2004 2005 2008 2005 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Mater. Chem. Commun. – volume: 41 start-page: 797 year: 2012 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 7288 year: 2017 publication-title: Chem. Mater. – volume: 6 start-page: 2497 year: 2013 publication-title: Energy Environ. Sci. – volume: 57 start-page: 569 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 3787 year: 2009 publication-title: Water Res. – volume: 44 start-page: 2168 year: 2015 publication-title: Chem. Soc. Rev. – volume: 114 year: 2010 publication-title: J. Phys. Chem. C – volume: 7 start-page: 728 year: 2014 publication-title: Energy Environ. Sci. – volume: 1 133 225 start-page: 306 76 year: 2015 2018 2018 publication-title: Sci. Adv. Carbon Appl. Catal. B Environ. – volume: 414 15 start-page: 359 year: 2001 2019 publication-title: Nature Small – volume: 121 start-page: 257 year: 2017 publication-title: Carbon – volume: 24 start-page: 5104 year: 2014 publication-title: Adv. Funct. Mater. – volume: 10 28 start-page: 8676 1603 year: 2016 2016 publication-title: ACS Nano Adv. Mater. – volume: 8 start-page: 9295 year: 2014 publication-title: ACS Nano – volume: 26 start-page: 849 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 2738 year: 2016 publication-title: J. Mater. Chem. A – volume: 102 start-page: 4093 year: 2002 publication-title: Chem. Rev. – volume: 5 start-page: 2204 year: 2017 publication-title: J. Mater. Chem. A – volume: 39 start-page: 426 year: 2014 publication-title: Renew. Sust. Energ. Rev. – volume: 4 start-page: 266 year: 2016 publication-title: J. Environ. Chem. Eng. – volume: 395 start-page: 271 year: 2018 publication-title: J. Power Sources – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 4885 year: 2017 publication-title: Chem. Mater. – volume: 9 start-page: 3061 year: 2016 publication-title: Energy Environ. Sci. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 38 17 511 start-page: 1873 747 259 year: 2000 2015 2018 publication-title: Carbon Clean Technol. Environ. Policy J. Colloid Interface Sci. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 91 start-page: 1304 year: 2013 publication-title: Chemosphere – volume: 43 start-page: 2322 year: 2009 publication-title: Environ. Sci. Technol. – volume: 28 start-page: 1981 year: 2016 publication-title: Adv. Mater. – volume: 29 year: 2017 publication-title: Chem. Mater. – volume: 25 start-page: 5668 year: 2013 publication-title: Adv. Mater. – start-page: 2 year: 2017 publication-title: Nat. Energy – volume: 116 225 start-page: 528 76 year: 2017 2018 publication-title: Carbon Appl. Catal., B – volume: 3 49 start-page: 231 year: 2015 2016 publication-title: J. Mater. Chem. A Acc. Chem. Res. – volume: 23 start-page: 3959 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 1545 year: 2017 publication-title: Nat. Commun. – volume: 42 start-page: 3721 year: 2013 publication-title: Chem. Soc. Rev. – start-page: 5 year: 2014 publication-title: Nat. Commun. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 13 start-page: 3909 year: 2013 publication-title: Nano Lett. – volume: 28 start-page: 7494 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 81 year: 2014 publication-title: Nano Energy – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7221 year: 2015 publication-title: Nat. Commun. – volume: 41 start-page: 8295 year: 2007 publication-title: Environ. Sci. Technol. – volume: 9 start-page: 3079 year: 2016 publication-title: Energy Environ. Sci. – volume: 46 start-page: 1475 year: 2008 publication-title: Carbon – volume: 63 start-page: 559 year: 2018 publication-title: J. Chem. Eng. Data – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 98 year: 2017 publication-title: Carbon – volume: 1 start-page: 798 year: 2011 publication-title: Adv. Energy Mater. – volume: 137 start-page: 1572 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 609 year: 1997 publication-title: Chem. Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 21 330 26 start-page: 2781 650 8651 year: 2011 2010 2016 publication-title: Adv. Funct. Mater. Science Adv. Funct. Mater. – volume: 33 start-page: 1641 year: 1995 publication-title: Carbon – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 486 start-page: 43 year: 2012 publication-title: Nature – volume: 24 start-page: 464 year: 2012 publication-title: Chem. Mater. – volume: 51 year: 2017 publication-title: Environ. Sci. Technol. – start-page: 29 year: 2017 publication-title: Adv. Mater. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 start-page: 7184 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 3563 year: 2008 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 52 year: 2016 publication-title: Chem. Commun. – volume: 50 51 9 start-page: 5904 9592 8504 year: 2011 2012 2015 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. ACS Nano – volume: 18 8 2 start-page: 1877 3498 431 year: 2006 2008 2012 publication-title: Adv. Mater. Nano Lett. Adv. Energy Mater. – volume: 6 start-page: 1715 year: 2012 publication-title: ACS Nano – volume: 13 start-page: 642 year: 2018 2017 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 14 year: 2013 publication-title: J. Mater. Chem. A – volume: 119 start-page: 287 year: 2017 publication-title: Carbon – volume: 349 476 start-page: 43 year: 2015 2011 publication-title: Science Nature – volume: 17 start-page: 3097 year: 2017 publication-title: Nano Lett. – volume: 47 start-page: 2680 year: 2018 publication-title: Chem. Soc. Rev. – ident: e_1_2_11_29_1 doi: 10.1021/acs.est.5b01059 – ident: e_1_2_11_5_1 doi: 10.1038/natrevmats.2016.23 – ident: e_1_2_11_88_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_11_236_1 doi: 10.1002/anie.201509054 – ident: e_1_2_11_103_2 doi: 10.1007/s40820-019-0291-z – ident: e_1_2_11_264_1 doi: 10.1039/C6TA09229B – ident: e_1_2_11_204_1 doi: 10.1039/C5EE03149D – ident: e_1_2_11_84_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_11_94_1 doi: 10.1002/adma.201503816 – ident: e_1_2_11_228_2 doi: 10.1021/acs.jpcc.8b00081 – ident: e_1_2_11_37_2 doi: 10.1029/2012JD018619 – ident: e_1_2_11_239_1 doi: 10.1002/aenm.201601111 – ident: e_1_2_11_63_1 doi: 10.1039/C5TA09917J – ident: e_1_2_11_64_1 doi: 10.1002/anie.201501475 – ident: e_1_2_11_134_1 doi: 10.1016/j.jpowsour.2018.05.046 – ident: e_1_2_11_162_1 doi: 10.1021/acsnano.9b04728 – ident: e_1_2_11_114_1 doi: 10.1002/aenm.201801149 – ident: e_1_2_11_13_2 – ident: e_1_2_11_32_1 doi: 10.1016/j.carbon.2017.03.027 – ident: e_1_2_11_129_1 doi: 10.1038/nmat2297 – ident: e_1_2_11_44_2 doi: 10.1039/C5TA09908K – ident: e_1_2_11_141_1 doi: 10.1002/anie.201209548 – ident: e_1_2_11_193_1 doi: 10.1021/nn502045y – ident: e_1_2_11_85_1 doi: 10.1126/sciadv.aat5168 – ident: e_1_2_11_66_1 doi: 10.1038/nmat3191 – ident: e_1_2_11_8_1 doi: 10.1016/j.pmatsci.2018.12.002 – ident: e_1_2_11_11_1 doi: 10.1038/nmat4317 – ident: e_1_2_11_45_1 doi: 10.1039/C6TA06176A – ident: e_1_2_11_131_3 doi: 10.1021/ja809265m – ident: e_1_2_11_124_1 doi: 10.1039/c2jm30192j – ident: e_1_2_11_56_2 doi: 10.1002/smll.201900687 – ident: e_1_2_11_123_2 doi: 10.1021/nn4021955 – ident: e_1_2_11_157_1 doi: 10.1021/jacs.6b11411 – ident: e_1_2_11_57_1 doi: 10.1039/C6CS00426A – ident: e_1_2_11_163_1 doi: 10.1039/C7TA08165K – ident: e_1_2_11_246_1 doi: 10.1016/j.jece.2015.11.018 – ident: e_1_2_11_183_1 doi: 10.1038/nchem.2515 – ident: e_1_2_11_104_1 doi: 10.1002/advs.201600243 – ident: e_1_2_11_203_1 doi: 10.1039/C6EE02169G – ident: e_1_2_11_107_1 doi: 10.1016/j.carbon.2015.12.066 – ident: e_1_2_11_143_1 doi: 10.1021/ja407552k – ident: e_1_2_11_36_2 doi: 10.1038/nature10322 – ident: e_1_2_11_81_1 doi: 10.1016/j.nanoen.2017.05.015 – ident: e_1_2_11_168_1 doi: 10.1021/acs.chemmater.7b02645 – ident: e_1_2_11_98_1 doi: 10.1021/nn404640c – ident: e_1_2_11_127_1 doi: 10.1021/ja7106178 – ident: e_1_2_11_36_1 doi: 10.1126/science.aac4722 – ident: e_1_2_11_223_2 doi: 10.1007/s10098-014-0830-8 – ident: e_1_2_11_116_1 doi: 10.1002/adfm.201870204 – ident: e_1_2_11_25_1 doi: 10.1021/es803268b – ident: e_1_2_11_133_1 doi: 10.1039/C6CC04052G – ident: e_1_2_11_61_1 doi: 10.1038/ncomms6261 – ident: e_1_2_11_235_1 doi: 10.1039/c2jm34066f – ident: e_1_2_11_10_1 doi: 10.1016/j.nantod.2018.02.006 – ident: e_1_2_11_41_2 doi: 10.1126/science.1194237 – ident: e_1_2_11_172_1 doi: 10.1002/adma.201302459 – ident: e_1_2_11_14_1 doi: 10.1002/adma.201401376 – ident: e_1_2_11_43_3 doi: 10.1021/am401423b – ident: e_1_2_11_93_1 doi: 10.1016/j.nanoen.2013.12.017 – ident: e_1_2_11_170_1 doi: 10.1021/acs.chemmater.7b04061 – ident: e_1_2_11_223_1 doi: 10.1016/S0008-6223(00)00027-0 – ident: e_1_2_11_188_1 doi: 10.1021/ja511539a – ident: e_1_2_11_263_1 doi: 10.1002/aenm.201702267 – ident: e_1_2_11_62_1 doi: 10.1039/C4TA02199A – ident: e_1_2_11_182_1 doi: 10.1039/C6TA06164H – ident: e_1_2_11_173_1 doi: 10.1021/acsnano.7b05085 – ident: e_1_2_11_251_1 doi: 10.1039/C2TA00278G – ident: e_1_2_11_174_1 doi: 10.1021/acsnano.6b07995 – ident: e_1_2_11_180_1 doi: 10.1002/adfm.201606190 – ident: e_1_2_11_55_1 doi: 10.1039/c2ra20775c – ident: e_1_2_11_136_1 doi: 10.1021/nn204688c – ident: e_1_2_11_50_1 doi: 10.1039/C7TA01722G – ident: e_1_2_11_89_1 doi: 10.1039/C5TA03181H – ident: e_1_2_11_131_2 doi: 10.1021/nn302147s – ident: e_1_2_11_12_1 doi: 10.1002/advs.201700515 – ident: e_1_2_11_53_1 doi: 10.1039/c2ee21653a – ident: e_1_2_11_171_1 doi: 10.1039/C7TA09633J – ident: e_1_2_11_177_1 doi: 10.1039/C1JM13314D – ident: e_1_2_11_44_1 doi: 10.1039/c1ee01176f – ident: e_1_2_11_73_1 doi: 10.1021/am400958x – ident: e_1_2_11_27_1 doi: 10.1002/adma.201101007 – ident: e_1_2_11_22_1 doi: 10.1016/0043-1354(85)90041-7 – ident: e_1_2_11_234_1 doi: 10.1021/cm010730l – ident: e_1_2_11_262_1 doi: 10.1002/adma.200501905 – ident: e_1_2_11_24_1 doi: 10.1021/es801463v – ident: e_1_2_11_209_1 doi: 10.1039/C6TA07826E – ident: e_1_2_11_152_1 doi: 10.1039/C7TA03999A – ident: e_1_2_11_215_1 doi: 10.1002/anie.200702046 – ident: e_1_2_11_99_1 doi: 10.1002/advs.201500195 – ident: e_1_2_11_187_1 doi: 10.1002/adfm.201603607 – ident: e_1_2_11_4_1 doi: 10.1002/aenm.201700283 – ident: e_1_2_11_29_2 doi: 10.1002/anie.201206720 – ident: e_1_2_11_241_1 doi: 10.1016/j.carbon.2017.05.088 – ident: e_1_2_11_226_1 doi: 10.1021/am400112m – ident: e_1_2_11_2_2 doi: 10.1016/j.apcatb.2017.11.056 – ident: e_1_2_11_119_1 doi: 10.1038/s41467-018-04190-z – ident: e_1_2_11_215_3 doi: 10.1002/anie.200501561 – volume: 27 start-page: 227 year: 2001 ident: e_1_2_11_21_1 publication-title: Chem. Phys. Carbon – ident: e_1_2_11_70_2 doi: 10.1002/aenm.201602078 – ident: e_1_2_11_101_1 doi: 10.1002/cphc.200800592 – ident: e_1_2_11_112_1 doi: 10.1021/jacs.5b06809 – ident: e_1_2_11_190_1 doi: 10.1002/adma.201505131 – ident: e_1_2_11_248_1 doi: 10.1016/j.matlet.2016.09.045 – ident: e_1_2_11_52_1 doi: 10.1016/0008-6223(95)00154-6 – ident: e_1_2_11_95_1 doi: 10.1002/aenm.201902852 – ident: e_1_2_11_169_1 doi: 10.1021/jacs.7b08133 – ident: e_1_2_11_68_1 doi: 10.1021/acsnano.6b04019 – ident: e_1_2_11_147_1 doi: 10.1002/anie.201710888 – ident: e_1_2_11_155_1 doi: 10.1002/anie.201710852 – ident: e_1_2_11_76_1 doi: 10.1002/anie.201605676 – ident: e_1_2_11_146_1 doi: 10.1016/j.carbon.2015.11.069 – ident: e_1_2_11_212_1 doi: 10.1039/c3ee41638k – ident: e_1_2_11_139_1 doi: 10.1002/anie.200907289 – ident: e_1_2_11_131_4 doi: 10.1039/c0jm03793a – ident: e_1_2_11_15_1 doi: 10.1021/acs.est.7b01679 – ident: e_1_2_11_7_1 doi: 10.1039/C6CS00639F – ident: e_1_2_11_34_1 doi: 10.1016/j.jclepro.2017.08.229 – ident: e_1_2_11_167_1 doi: 10.1002/aenm.201701261 – ident: e_1_2_11_247_1 doi: 10.1021/acssuschemeng.5b01113 – ident: e_1_2_11_166_1 doi: 10.1039/C5TA09948J – ident: e_1_2_11_261_1 doi: 10.1002/pola.22695 – ident: e_1_2_11_48_1 doi: 10.1021/es200782s – ident: e_1_2_11_217_1 doi: 10.1021/cr0200062 – ident: e_1_2_11_103_1 doi: 10.1039/C5EE01985K – ident: e_1_2_11_185_1 doi: 10.1002/adfm.201705253 – ident: e_1_2_11_254_1 doi: 10.1039/C6EE02364A – ident: e_1_2_11_19_1 doi: 10.1038/nature06599 – ident: e_1_2_11_21_2 doi: 10.1016/S0008-6223(99)00180-3 – ident: e_1_2_11_68_2 doi: 10.1002/adma.201504765 – ident: e_1_2_11_179_1 doi: 10.1016/j.apcatb.2017.06.051 – ident: e_1_2_11_156_1 doi: 10.1002/smll.201702054 – ident: e_1_2_11_189_1 doi: 10.1038/ncomms8221 – ident: e_1_2_11_92_1 doi: 10.1002/smll.201902603 – ident: e_1_2_11_72_1 doi: 10.1021/nn503220h – ident: e_1_2_11_77_1 doi: 10.1002/admt.201900806 – ident: e_1_2_11_224_1 doi: 10.1039/C3CS60159E – ident: e_1_2_11_18_1 doi: 10.1021/jz300929x – ident: e_1_2_11_43_2 doi: 10.1039/c1ee01176f – ident: e_1_2_11_206_1 doi: 10.1002/cssc.201700492 – ident: e_1_2_11_227_1 doi: 10.1016/j.apcatb.2017.08.069 – ident: e_1_2_11_56_1 doi: 10.1038/35104644 – ident: e_1_2_11_89_2 doi: 10.1021/acs.accounts.5b00482 – ident: e_1_2_11_158_1 doi: 10.1016/j.carbon.2017.10.084 – ident: e_1_2_11_213_1 doi: 10.1021/acsnano.5b08040 – ident: e_1_2_11_256_1 doi: 10.1039/C7TA07488C – ident: e_1_2_11_120_1 doi: 10.1002/aenm.201800171 – ident: e_1_2_11_111_1 doi: 10.1002/aenm.201900343 – ident: e_1_2_11_49_3 doi: 10.1039/C5TA09202G – ident: e_1_2_11_60_2 doi: 10.1116/1.5095413 – ident: e_1_2_11_145_1 doi: 10.1021/acscatal.7b04086 – ident: e_1_2_11_205_1 doi: 10.1039/C7GC01681F – ident: e_1_2_11_186_1 doi: 10.1002/adma.201700874 – ident: e_1_2_11_214_1 doi: 10.1002/adma.201302034 – ident: e_1_2_11_233_1 doi: 10.1021/acs.chemmater.7b00857 – ident: e_1_2_11_245_1 doi: 10.1002/adfm.201400590 – ident: e_1_2_11_31_1 doi: 10.1016/j.cej.2018.04.139 – ident: e_1_2_11_252_2 doi: 10.1021/ja203184k – ident: e_1_2_11_30_2 doi: 10.1016/j.carbon.2018.03.044 – ident: e_1_2_11_225_2 doi: 10.1007/s40843-017-9169-4 – ident: e_1_2_11_26_1 doi: 10.1021/es071230h – ident: e_1_2_11_28_2 doi: 10.1016/j.jhazmat.2005.12.004 – ident: e_1_2_11_33_2 doi: 10.1021/am301372d – ident: e_1_2_11_51_1 doi: 10.1021/ja5003907 – ident: e_1_2_11_70_1 doi: 10.1039/c1jm12979a – ident: e_1_2_11_144_1 doi: 10.1038/nature18284 – ident: e_1_2_11_9_1 doi: 10.1039/C4EE01075B – ident: e_1_2_11_46_1 doi: 10.1016/j.fuel.2003.09.001 – ident: e_1_2_11_198_1 doi: 10.1039/C7TA07010A – ident: e_1_2_11_194_1 doi: 10.1021/acs.chemmater.7b01937 – ident: e_1_2_11_125_1 doi: 10.1021/acscentsci.5b00149 – ident: e_1_2_11_210_1 doi: 10.1039/C6TA05872H – ident: e_1_2_11_231_1 doi: 10.1002/adma.201303115 – ident: e_1_2_11_59_1 doi: 10.1039/C6CS00426A – ident: e_1_2_11_123_1 doi: 10.1039/c3ta11114h – ident: e_1_2_11_154_1 doi: 10.1039/C7TA08354H – ident: e_1_2_11_258_1 doi: 10.1038/ncomms3798 – start-page: 29 year: 2017 ident: e_1_2_11_37_1 publication-title: Adv. Mater. – ident: e_1_2_11_178_1 doi: 10.1016/j.carbon.2014.07.062 – ident: e_1_2_11_108_1 doi: 10.1002/aenm.201702384 – ident: e_1_2_11_71_1 doi: 10.1002/anie.201100637 – ident: e_1_2_11_97_1 doi: 10.1039/C8TA12540F – ident: e_1_2_11_90_2 doi: 10.1002/smtd.201900163 – ident: e_1_2_11_262_3 doi: 10.1002/aenm.201100548 – ident: e_1_2_11_44_3 doi: 10.1016/j.micromeso.2016.04.041 – ident: e_1_2_11_255_1 doi: 10.1021/cr300014x – ident: e_1_2_11_28_1 doi: 10.1016/S0008-6223(00)00012-9 – ident: e_1_2_11_23_1 doi: 10.1016/j.jhazmat.2005.11.077 – ident: e_1_2_11_225_1 doi: 10.1039/C4TA05451B – ident: e_1_2_11_244_1 doi: 10.1002/celc.201500376 – ident: e_1_2_11_33_1 doi: 10.1039/c3cc43401j – ident: e_1_2_11_113_1 doi: 10.1149/2.1391706jes – ident: e_1_2_11_259_1 doi: 10.1021/acs.jced.7b00745 – ident: e_1_2_11_13_1 doi: 10.1038/s41565-018-0216-x – ident: e_1_2_11_30_1 doi: 10.1126/sciadv.1500564 – ident: e_1_2_11_249_1 doi: 10.1002/cssc.201200817 – ident: e_1_2_11_87_1 doi: 10.1126/science.1212741 – ident: e_1_2_11_132_1 doi: 10.1016/j.carbon.2008.06.027 – ident: e_1_2_11_195_1 doi: 10.1002/adfm.201601904 – ident: e_1_2_11_219_1 doi: 10.1021/acsami.7b17893 – ident: e_1_2_11_41_1 doi: 10.1002/adfm.201100291 – ident: e_1_2_11_105_1 doi: 10.1021/nl401995a – ident: e_1_2_11_197_1 doi: 10.1016/j.carbon.2018.10.096 – ident: e_1_2_11_223_3 doi: 10.1016/j.jcis.2017.09.040 – ident: e_1_2_11_201_1 doi: 10.1021/acsami.7b08797 – ident: e_1_2_11_222_1 doi: 10.1039/c3ta01659e – ident: e_1_2_11_3_1 doi: 10.1002/aenm.201500867 – ident: e_1_2_11_122_1 doi: 10.1039/C6EE00158K – ident: e_1_2_11_6_1 doi: 10.1002/anie.201706777 – ident: e_1_2_11_43_1 doi: 10.1016/j.carbon.2015.05.017 – start-page: 2 year: 2017 ident: e_1_2_11_83_1 publication-title: Nat. Energy – ident: e_1_2_11_38_1 doi: 10.1016/j.rser.2014.07.093 – ident: e_1_2_11_228_1 doi: 10.1016/j.carbon.2015.11.069 – ident: e_1_2_11_71_2 doi: 10.1002/anie.201205292 – ident: e_1_2_11_137_1 doi: 10.1038/nature11115 – ident: e_1_2_11_138_1 doi: 10.1021/jp806084d – ident: e_1_2_11_257_1 doi: 10.1039/C7TA00335H – ident: e_1_2_11_216_1 doi: 10.1039/C2CS35308C – ident: e_1_2_11_2_1 doi: 10.1016/j.carbon.2017.02.016 – ident: e_1_2_11_91_1 doi: 10.1002/ijch.201400118 – ident: e_1_2_11_82_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_11_215_4 doi: 10.1021/cm7024125 – ident: e_1_2_11_127_2 doi: 10.1021/ja7106178 – ident: e_1_2_11_150_1 doi: 10.1039/C7TA02415K – ident: e_1_2_11_237_1 doi: 10.1039/C5GC02397A – ident: e_1_2_11_60_3 doi: 10.1021/nl4038592 – ident: e_1_2_11_100_1 doi: 10.1021/jp106764h – ident: e_1_2_11_118_1 doi: 10.1002/aenm.201802386 – ident: e_1_2_11_159_1 doi: 10.1038/ncomms15020 – ident: e_1_2_11_34_2 doi: 10.1016/j.psep.2018.08.012 – ident: e_1_2_11_42_1 doi: 10.1002/aenm.201502491 – ident: e_1_2_11_75_1 doi: 10.1016/j.jpowsour.2016.12.008 – ident: e_1_2_11_135_1 doi: 10.1039/C1CS15060J – ident: e_1_2_11_200_1 doi: 10.1016/j.electacta.2017.06.092 – ident: e_1_2_11_199_1 doi: 10.1039/C7TA08046H – ident: e_1_2_11_54_1 doi: 10.1016/j.carbon.2013.09.006 – ident: e_1_2_11_86_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_11_71_3 doi: 10.1021/acsnano.5b03488 – ident: e_1_2_11_165_1 doi: 10.1021/acscatal.7b01695 – ident: e_1_2_11_39_1 doi: 10.1038/nature11893 – ident: e_1_2_11_110_2 doi: 10.1021/acs.jpcc.7b06457 – ident: e_1_2_11_229_1 doi: 10.1039/C3EE42551G – ident: e_1_2_11_161_1 doi: 10.1016/j.carbon.2014.12.010 – start-page: 29 year: 2017 ident: e_1_2_11_176_1 publication-title: Adv. Mater. – ident: e_1_2_11_35_1 doi: 10.1021/acsami.6b01748 – ident: e_1_2_11_58_1 doi: 10.1002/aenm.201100340 – ident: e_1_2_11_96_1 doi: 10.1002/aenm.201100691 – ident: e_1_2_11_211_1 doi: 10.1016/j.nanoen.2015.10.038 – ident: e_1_2_11_222_2 doi: 10.1016/j.energy.2015.08.033 – ident: e_1_2_11_240_1 doi: 10.1002/adfm.201504004 – ident: e_1_2_11_20_1 doi: 10.1016/j.watres.2009.06.009 – ident: e_1_2_11_5_2 doi: 10.1039/C5CS00670H – ident: e_1_2_11_215_2 doi: 10.1002/anie.200461051 – ident: e_1_2_11_142_1 doi: 10.1039/C4CS00484A – ident: e_1_2_11_106_1 doi: 10.1002/adma.201604108 – ident: e_1_2_11_17_1 doi: 10.1016/j.chemosphere.2013.02.058 – ident: e_1_2_11_181_1 doi: 10.1039/C7GC01434A – ident: e_1_2_11_149_1 doi: 10.1002/cssc.201500063 – ident: e_1_2_11_102_2 doi: 10.1002/adma.201502303 – ident: e_1_2_11_160_1 doi: 10.1021/acsnano.7b05869 – ident: e_1_2_11_202_1 doi: 10.1016/j.nanoen.2017.01.045 – ident: e_1_2_11_65_1 doi: 10.1038/nnano.2014.6 – ident: e_1_2_11_109_1 doi: 10.1002/aenm.201602911 – ident: e_1_2_11_131_1 doi: 10.1039/c3ta13049e – ident: e_1_2_11_184_1 doi: 10.1021/cm202554j – ident: e_1_2_11_218_1 doi: 10.1039/c0cs00208a – ident: e_1_2_11_126_1 doi: 10.1039/C7TA05003H – ident: e_1_2_11_130_1 doi: 10.1021/acs.nanolett.7b00533 – ident: e_1_2_11_192_1 doi: 10.1002/adma.201600979 – ident: e_1_2_11_208_1 doi: 10.1039/c3ta14281g – ident: e_1_2_11_80_1 doi: 10.1039/C9CC01927H – ident: e_1_2_11_253_1 doi: 10.1039/C6EE00551A – ident: e_1_2_11_121_1 doi: 10.1039/C7TA01108C – ident: e_1_2_11_243_1 doi: 10.1039/C6TA08169J – ident: e_1_2_11_39_3 doi: 10.1016/j.cej.2017.06.074 – ident: e_1_2_11_242_1 doi: 10.1021/ie1024003 – ident: e_1_2_11_148_1 doi: 10.1002/adma.201600012 – ident: e_1_2_11_18_2 doi: 10.1016/j.apcatb.2015.07.024 – ident: e_1_2_11_250_1 doi: 10.1016/j.carbon.2018.03.044 – ident: e_1_2_11_218_2 doi: 10.1021/cm900288x – ident: e_1_2_11_115_1 doi: 10.1002/adfm.201700324 – ident: e_1_2_11_78_1 doi: 10.1002/aenm.201700530 – ident: e_1_2_11_79_1 doi: 10.1002/anie.201702099 – ident: e_1_2_11_151_1 doi: 10.1002/anie.201209849 – ident: e_1_2_11_47_1 doi: 10.1021/jacs.5b11955 – ident: e_1_2_11_69_1 doi: 10.1038/ncomms10601 – ident: e_1_2_11_67_1 doi: 10.1039/c3ta00004d – ident: e_1_2_11_41_3 doi: 10.1002/adfm.201603937 – ident: e_1_2_11_260_1 doi: 10.1039/C5TA00867K – ident: e_1_2_11_164_1 doi: 10.1039/C7TA08169C – ident: e_1_2_11_74_1 doi: 10.1021/nl502238b – ident: e_1_2_11_90_1 doi: 10.1002/adfm.201100854 – ident: e_1_2_11_49_2 doi: 10.1016/j.carbon.2013.09.086 – ident: e_1_2_11_215_5 doi: 10.1039/B501259G – ident: e_1_2_11_196_1 doi: 10.1038/s41467-017-01633-x – ident: e_1_2_11_262_2 doi: 10.1021/nl802558y – ident: e_1_2_11_124_2 doi: 10.1021/ar200306b – ident: e_1_2_11_175_1 doi: 10.1039/C6TA07098A – ident: e_1_2_11_153_1 doi: 10.1039/C7TA00335H – ident: e_1_2_11_221_1 doi: 10.1126/sciadv.aap9252 – ident: e_1_2_11_252_1 doi: 10.1021/ja7106146 – ident: e_1_2_11_110_1 doi: 10.1126/sciadv.aav7412 – ident: e_1_2_11_18_3 doi: 10.1016/j.cej.2017.04.106 – ident: e_1_2_11_207_1 doi: 10.1002/aenm.201502518 – ident: e_1_2_11_128_1 doi: 10.1021/jz201312e – ident: e_1_2_11_59_2 doi: 10.1039/C4CS00071D – ident: e_1_2_11_39_2 doi: 10.1039/C3EE42918K – ident: e_1_2_11_265_1 doi: 10.1016/j.carbon.2017.04.050 – ident: e_1_2_11_102_1 doi: 10.1016/j.electacta.2016.01.105 – ident: e_1_2_11_117_1 doi: 10.1002/adma.201700104 – ident: e_1_2_11_230_1 doi: 10.1002/aenm.201100061 – start-page: 5 year: 2014 ident: e_1_2_11_140_1 publication-title: Nat. Commun. – ident: e_1_2_11_30_3 doi: 10.1016/j.apcatb.2017.11.056 – ident: e_1_2_11_60_1 doi: 10.1039/c3ee41444b – ident: e_1_2_11_191_1 doi: 10.1002/anie.201702453 – ident: e_1_2_11_238_1 doi: 10.1016/j.nanoen.2015.03.013 – ident: e_1_2_11_49_1 doi: 10.1002/aenm.201600693 – ident: e_1_2_11_40_1 doi: 10.1126/science.1176731 – ident: e_1_2_11_220_1 doi: 10.1126/science.aaa8075 – ident: e_1_2_11_1_1 doi: 10.1039/C7CS00787F – ident: e_1_2_11_16_1 doi: 10.1021/es035121o – ident: e_1_2_11_232_1 doi: 10.1021/cm960430h |
SSID | ssj0017734 |
Score | 2.7018955 |
SecondaryResourceType | review_article |
Snippet | Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carbon carbon capture Carbon dioxide Carbon sequestration electrocatalysis energy storage Lithium sulfur batteries Lithium-ion batteries Materials science nanoporous carbon materials Oxygen reduction reactions Porous materials Rechargeable batteries water treatment |
Title | Porous Carbons: Structure‐Oriented Design and Versatile Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909265 https://www.proquest.com/docview/2394762545 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQLDDwRhRK5QGJKW3i2E7NVrVEFaKAKJW6RX4uVC3qY2HiE_hGvgQ7adIUCSHBGMm2kvvIPbbvPReASxYYzhXWnlJKeJgZ4gmiQ09p1uRE2j2FcYXCvXvaHeDbIRmWqvgzfojiwM15Rvq_dg7OxayxIg3lyrhKchvQGKKuytwlbDlU9FTwRwVRlF0r08AleAXDnLXRR4316etRaQU1y4A1jTjxHuD5u2aJJi_1xVzU5ds3Gsf_fMw-2F3CUdjK7OcAbOjxIdgpkRQegfhxMp0sZrDNp8Ka6DXsp5Szi6n-fP94cDTJFrTCTpoJAvlYQXcEZ_U90rBVuh0_BoP45rnd9ZbdFzyJrZN7UljoJ3wTGaoRU8hIGfIm4U3jKyWR1GGoKMdhSGUgcGSVqzmJENcMG2ZwFJ6AzfFkrE8BpE27JCXKCGmwbyGRolQRTLViDEtiKsDLpZ_IJTW565AxSjJSZZQ4-SSFfCrgqhj_mpFy_DiymiszWTrnLHHd4G0MsNixAlCqlV9WSVqduFc8nf1l0jnYRm6nnub8VMGm1ZS-sHBmLmpgq9Xp3fVrqel-AQAo8H0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHdkRZc0DilNI4tlNzqyhRWQqIReot8nqhalGXCyc-gW_kS7CzUZAQEhwj2VYyS-bZnnkDcMgCw7nC2ldKCR8zQ3xBdOgrzRqcSLunMK5QuHNN24_4okuKbEJXC5PxQ5QHbs4z0v-1c3B3IH38yRrKlXGl5DaiMUTJLMy5tt6OPr91VzJIBVGUXSzTwKV4Bd2Ct7GOjr_O_xqXPsHmNGRNY068DKJ42yzV5Kk2GYuafPlG5Pivz1mBpRyRes3MhFZhRvfXYHGKp3Ad4tvBcDAZead8KKyVnnj3KevsZKjfX99uHFOyxa1eK00G8Xhfee4Uzqq8p73m1AX5BjzGZw-nbT9vwOBLbP3cl8KiP1E3kaEaMYWMlCFvEN4wdaUkkjoMFeU4DKkMBI6sfjUnEeKaYcMMjsJNqPQHfb0FHm3YJSlRRkiD6xYVKUoVwVQrxrAkpgp-If5E5uzkrklGL8l4lVHi5JOU8qnCUTn-OePl-HHkbqHNJPfPUeIawtswYOFjFVCqll9WSZqtuFM-bf9l0gHMtx86V8nV-fXlDiwgt3FPU4B2oWK1pvcsuhmL_dR-PwB4AfMF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy5oDEKSVxbKfmVlGishQqoFJvkdcLVVu19MKJT-Ab-RLspE0LEkKCYyTbSmbJPNszbwBOWGg4V1j7SinhY2aIL4iOfKVZhRNp9xTGFQo37mi9ha_bpD1TxZ_zQxQHbs4zsv-1c_C-MmdT0lCujKsktwGNIUrmYRHTgLnmDbWHgkAqjOP8XpmGLsMrbE9oGwN09nX-17A0xZqziDULOcka8MnL5pkmz-XRiyjL1288jv_5mnVYHeNRr5ob0AbM6e4mrMywFG5B0uwNeqOhd8EHwtroufeYcc6OBvrj7f3e8SRb1OrVslQQj3eV587grMI72qvOXI9vQyu5fLqo--P2C77E1st9KSz2E4GJDdWIKWSkjHiF8IoJlJJI6ihSlOMoojIUOLba1ZzEiGuGDTM4jnZgodvr6l3waMUuSYkyQhocWEykKFUEU60Yw5KYEvgT6adyzE3uWmR00pxVGaVOPmkhnxKcFuP7OSvHjyMPJspMx945TF07eBsELHgsAcq08ssqabWWNIqnvb9MOoalZi1Jb6_ubvZhGblde5b_cwALVmn60EKbF3GUWe8nqaDxtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Carbons%3A+Structure%E2%80%90Oriented+Design+and+Versatile+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Tian%2C+Wenjie&rft.au=Zhang%2C+Huayang&rft.au=Duan%2C+Xiaoguang&rft.au=Sun%2C+Hongqi&rft.date=2020-04-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=17&rft_id=info:doi/10.1002%2Fadfm.201909265&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201909265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |