Porous Carbons: Structure‐Oriented Design and Versatile Applications

Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemis...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 17
Main Authors Tian, Wenjie, Zhang, Huayang, Duan, Xiaoguang, Sun, Hongqi, Shao, Guosheng, Wang, Shaobin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided. Herein, the structure–property relationships of porous carbon materials in water remediation, carbon capture, lithium‐ion batteries, lithium–sulfur batteries, Li metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and oxygen reduction reactions are proposed. The recent progress in structural control and functionalization of porous carbons are also summarized, in terms of achieving microporous, mesoporous, macroporous, and hierarchically porous carbons.
AbstractList Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO 2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided.
Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided.
Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades, tremendous efforts have been made in the coordinated design and fabrication of porous carbon nanoarchitectures in terms of pore sizes, surface chemistry, and structure. Herein, structure‐oriented carbon design and applications are reviewed. The unique properties of porous carbon materials that offer them promising design opportunities and broad applicability in some representative fields, including water remediation, CO2 capture, lithium‐ion batteries, lithium–sulfur batteries, lithium metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and the oxygen reduction reaction are highlighted. Then, the most up‐to‐date strategies for structural control and functionalization of porous carbons are summarized, toward tailoring microporous, mesoporous, macroporous, and hierarchically porous carbons with disordered or ordered, amorphous or graphitic structures. Meanwhile, the emerging features of these structures in various applications are introduced where applicable. Finally, insights into the challenges and perspectives for future development are provided. Herein, the structure–property relationships of porous carbon materials in water remediation, carbon capture, lithium‐ion batteries, lithium–sulfur batteries, Li metal anodes, Na‐ion batteries, K‐ion batteries, supercapacitors, and oxygen reduction reactions are proposed. The recent progress in structural control and functionalization of porous carbons are also summarized, in terms of achieving microporous, mesoporous, macroporous, and hierarchically porous carbons.
Author Zhang, Huayang
Tian, Wenjie
Shao, Guosheng
Wang, Shaobin
Duan, Xiaoguang
Sun, Hongqi
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Tian
  fullname: Tian, Wenjie
  organization: The University of Adelaide
– sequence: 2
  givenname: Huayang
  surname: Zhang
  fullname: Zhang, Huayang
  organization: The University of Adelaide
– sequence: 3
  givenname: Xiaoguang
  surname: Duan
  fullname: Duan, Xiaoguang
  organization: The University of Adelaide
– sequence: 4
  givenname: Hongqi
  surname: Sun
  fullname: Sun, Hongqi
  email: h.sun@ecu.edu.au
  organization: Edith Cowan University
– sequence: 5
  givenname: Guosheng
  surname: Shao
  fullname: Shao, Guosheng
  organization: Zhengzhou University
– sequence: 6
  givenname: Shaobin
  orcidid: 0000-0002-1751-9162
  surname: Wang
  fullname: Wang, Shaobin
  email: shaobin.wang@adelaide.edu.au
  organization: The University of Adelaide
BookMark eNqFkMtKw0AUhgdRsK1uXQdcp84tScddaa0KlQpecDdMZs5ISjqJMwnSnY_gM_okplYqCOLq_Iv_O-fw9dG-qxwgdELwkGBMz5SxqyHFRGBB02QP9UhK0phhOtrfZfJ0iPohLDEmWcZ4D81uK1-1IZoon1cunEd3jW9103r4eHtf-AJcAyaaQiieXaSciR7BB9UUJUTjui4L3eWOO0IHVpUBjr_nAD3MLu4nV_F8cXk9Gc9jzSlNYp1TRnJsM5sCFYZarZkaJWpksTGaamDMpIozlmqS88yAAJVkVIHgVliesQE63e6tffXSQmjksmq9605KygTPUprwpGvxbUv7KgQPVuqi-Xq08aooJcFyY0xujMmdsQ4b_sJqX6yUX_8NiC3w2vlY_9OW4-ns5of9BPBcgpE
CitedBy_id crossref_primary_10_1002_smll_202207767
crossref_primary_10_1016_j_cej_2023_142313
crossref_primary_10_1016_j_cej_2025_159556
crossref_primary_10_1002_adsu_202400742
crossref_primary_10_1016_j_electacta_2024_144610
crossref_primary_10_1016_j_matchemphys_2023_127835
crossref_primary_10_1016_S1872_5805_23_60710_3
crossref_primary_10_3390_bios13060636
crossref_primary_10_1002_admi_202100244
crossref_primary_10_1016_j_colsurfa_2025_136486
crossref_primary_10_1016_j_rsurfi_2025_100483
crossref_primary_10_1016_j_apcatb_2024_124848
crossref_primary_10_1016_j_ccr_2022_214604
crossref_primary_10_1016_j_jcat_2024_115755
crossref_primary_10_1016_j_apcatb_2024_123991
crossref_primary_10_7209_carbon_010201
crossref_primary_10_1016_j_cej_2022_140098
crossref_primary_10_1016_j_coche_2022_100838
crossref_primary_10_1016_j_diamond_2022_109196
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1002_batt_202100379
crossref_primary_10_1016_j_scitotenv_2022_158360
crossref_primary_10_1039_D3NJ01826A
crossref_primary_10_1039_D1GC01376A
crossref_primary_10_1021_acs_energyfuels_1c02238
crossref_primary_10_1016_j_seppur_2022_121749
crossref_primary_10_1039_D1TA10269A
crossref_primary_10_1021_acsami_5c00068
crossref_primary_10_1360_SST_2022_0169
crossref_primary_10_1021_acsaem_3c02188
crossref_primary_10_1038_s41598_025_90747_0
crossref_primary_10_1007_s42823_023_00460_z
crossref_primary_10_1016_j_energy_2023_129323
crossref_primary_10_1038_s41598_021_85661_0
crossref_primary_10_1016_j_apenergy_2024_125195
crossref_primary_10_1016_j_jece_2024_113446
crossref_primary_10_1016_j_jclepro_2021_129025
crossref_primary_10_1016_j_cej_2025_161615
crossref_primary_10_1002_anie_202213959
crossref_primary_10_1016_j_trac_2024_118043
crossref_primary_10_1016_j_nanoen_2023_109025
crossref_primary_10_1134_S1560090424600402
crossref_primary_10_1016_j_fuel_2021_121505
crossref_primary_10_1007_s42114_023_00682_9
crossref_primary_10_1016_j_carbon_2022_05_001
crossref_primary_10_26599_CF_2024_9200024
crossref_primary_10_1016_j_cej_2023_143856
crossref_primary_10_1016_j_jcis_2020_10_058
crossref_primary_10_1002_adma_202412908
crossref_primary_10_1016_j_jcis_2021_10_118
crossref_primary_10_1021_acsaem_4c02968
crossref_primary_10_1016_j_jcis_2023_01_092
crossref_primary_10_1016_j_cej_2022_135899
crossref_primary_10_1016_j_watres_2021_117984
crossref_primary_10_1002_adfm_202007158
crossref_primary_10_1016_j_mtcata_2023_100006
crossref_primary_10_1016_j_indcrop_2021_113700
crossref_primary_10_1016_j_seppur_2024_128910
crossref_primary_10_1002_smll_202403777
crossref_primary_10_1016_j_biortech_2021_126101
crossref_primary_10_1016_j_mseb_2023_117023
crossref_primary_10_1002_asia_202401484
crossref_primary_10_1038_s41467_020_18419_3
crossref_primary_10_1039_D4CY00594E
crossref_primary_10_1016_j_cej_2024_154900
crossref_primary_10_1016_j_jcis_2020_09_022
crossref_primary_10_1021_acs_iecr_2c00094
crossref_primary_10_1016_j_ceramint_2022_08_185
crossref_primary_10_1016_j_est_2023_110049
crossref_primary_10_2139_ssrn_4127707
crossref_primary_10_1016_j_cej_2024_156075
crossref_primary_10_1016_j_matlet_2024_136813
crossref_primary_10_1021_acsaem_2c02417
crossref_primary_10_1039_D1SC01902C
crossref_primary_10_3390_nano13030545
crossref_primary_10_1021_acsanm_4c01965
crossref_primary_10_1021_acsnano_0c10624
crossref_primary_10_1021_acs_energyfuels_2c04369
crossref_primary_10_1016_j_jece_2024_114973
crossref_primary_10_1016_j_jallcom_2022_167218
crossref_primary_10_1016_j_scitotenv_2021_149696
crossref_primary_10_1016_j_watres_2024_122960
crossref_primary_10_1016_j_ensm_2022_05_020
crossref_primary_10_1016_j_jelechem_2024_118063
crossref_primary_10_1016_j_carbon_2020_11_069
crossref_primary_10_1039_D2NA00621A
crossref_primary_10_1021_acsaem_2c00141
crossref_primary_10_1016_j_cej_2020_127373
crossref_primary_10_1080_21663831_2023_2178860
crossref_primary_10_1016_j_desal_2024_118051
crossref_primary_10_1016_j_mssp_2024_108901
crossref_primary_10_1002_smll_202400179
crossref_primary_10_1021_acsaem_3c00929
crossref_primary_10_1016_j_memsci_2023_121983
crossref_primary_10_1007_s00604_022_05475_3
crossref_primary_10_1016_j_esi_2023_04_001
crossref_primary_10_1021_acssuschemeng_4c08126
crossref_primary_10_1002_batt_202200087
crossref_primary_10_1016_j_fuel_2024_132893
crossref_primary_10_1016_j_rser_2023_113594
crossref_primary_10_1039_D3NR05384A
crossref_primary_10_1016_j_watres_2022_118489
crossref_primary_10_1016_j_biombioe_2025_107664
crossref_primary_10_1002_smll_202404548
crossref_primary_10_1021_acsmaterialslett_4c01175
crossref_primary_10_1016_j_ccr_2022_214576
crossref_primary_10_1021_acsaem_3c00818
crossref_primary_10_1016_j_ijbiomac_2024_138631
crossref_primary_10_1016_j_microc_2023_109032
crossref_primary_10_1021_acsomega_1c05905
crossref_primary_10_1016_j_heliyon_2024_e31339
crossref_primary_10_1021_acscatal_1c00857
crossref_primary_10_1016_j_jobab_2024_11_004
crossref_primary_10_1021_acsanm_3c01702
crossref_primary_10_1002_anie_202216724
crossref_primary_10_1002_ente_202400882
crossref_primary_10_1107_S1600576724010586
crossref_primary_10_3390_ma15031037
crossref_primary_10_1016_j_scitotenv_2021_151720
crossref_primary_10_1016_j_cjche_2020_11_028
crossref_primary_10_1016_j_carbon_2025_119994
crossref_primary_10_1016_j_apsusc_2023_157010
crossref_primary_10_1016_j_est_2025_116259
crossref_primary_10_1016_j_ijbiomac_2024_132078
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1002_aenm_202406069
crossref_primary_10_1002_aenm_202100911
crossref_primary_10_1016_j_seppur_2024_129984
crossref_primary_10_1016_j_envres_2025_121374
crossref_primary_10_1016_j_jhazmat_2024_136439
crossref_primary_10_1016_j_jcis_2023_02_067
crossref_primary_10_1016_j_seppur_2023_125203
crossref_primary_10_1016_j_jcis_2022_01_093
crossref_primary_10_1021_acsnano_4c10531
crossref_primary_10_1021_acs_energyfuels_1c03064
crossref_primary_10_18321_cpc22_1_37_48
crossref_primary_10_1016_j_indcrop_2023_117032
crossref_primary_10_1016_j_jece_2024_114133
crossref_primary_10_1002_cnma_202200225
crossref_primary_10_1021_acsami_4c08082
crossref_primary_10_1002_anie_202316116
crossref_primary_10_1016_j_cej_2022_139045
crossref_primary_10_1016_j_carbon_2020_07_034
crossref_primary_10_1016_j_ijbiomac_2024_135462
crossref_primary_10_1002_smll_202201838
crossref_primary_10_1016_j_jcis_2023_04_024
crossref_primary_10_1016_j_micromeso_2021_111385
crossref_primary_10_1021_acsomega_3c01506
crossref_primary_10_1021_acsami_3c03424
crossref_primary_10_1016_j_cej_2025_159381
crossref_primary_10_1016_j_envres_2023_116441
crossref_primary_10_1002_slct_202400432
crossref_primary_10_1016_j_colsurfa_2023_130994
crossref_primary_10_1016_j_ensm_2020_07_027
crossref_primary_10_1016_j_jcis_2023_01_135
crossref_primary_10_1016_j_mtsust_2023_100358
crossref_primary_10_1016_j_mseb_2025_118085
crossref_primary_10_1002_admi_202400358
crossref_primary_10_1016_j_enchem_2024_100137
crossref_primary_10_1021_acsanm_3c00505
crossref_primary_10_1016_j_ceramint_2024_07_015
crossref_primary_10_1002_anie_202217808
crossref_primary_10_59761_RCR5122
crossref_primary_10_1021_acs_jafc_4c11487
crossref_primary_10_1007_s10668_025_05998_8
crossref_primary_10_1016_j_pce_2024_103698
crossref_primary_10_1016_j_jece_2022_107460
crossref_primary_10_1039_D3NA00067B
crossref_primary_10_1039_D4NR00401A
crossref_primary_10_1002_smll_202303658
crossref_primary_10_1021_acsmaterialsau_4c00168
crossref_primary_10_1016_j_cej_2024_154983
crossref_primary_10_3390_molecules28093660
crossref_primary_10_1039_D4TA00252K
crossref_primary_10_1021_acsomega_3c00313
crossref_primary_10_1039_D4NR01986E
crossref_primary_10_1016_j_diamond_2022_109432
crossref_primary_10_1016_j_jhazmat_2021_127083
crossref_primary_10_1016_j_carbon_2023_118347
crossref_primary_10_1002_ange_202213959
crossref_primary_10_1016_j_carbon_2023_118464
crossref_primary_10_1007_s12274_022_4452_x
crossref_primary_10_1016_j_biombioe_2024_107513
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_1007_s40820_023_01212_4
crossref_primary_10_1016_j_apcatb_2023_122874
crossref_primary_10_20517_energymater_2023_63
crossref_primary_10_1016_j_jcis_2023_02_147
crossref_primary_10_3390_nano13111744
crossref_primary_10_1039_D1TA00765C
crossref_primary_10_1021_acsami_4c04795
crossref_primary_10_1038_s41598_023_46642_7
crossref_primary_10_1002_adfm_202008505
crossref_primary_10_1016_j_est_2023_107039
crossref_primary_10_1016_j_micromeso_2021_111038
crossref_primary_10_1021_acsaem_1c03956
crossref_primary_10_1007_s41918_022_00178_y
crossref_primary_10_3390_catal14090558
crossref_primary_10_1002_adfm_202405830
crossref_primary_10_1016_j_ensm_2022_02_015
crossref_primary_10_1016_j_aca_2023_341675
crossref_primary_10_1007_s42823_023_00609_w
crossref_primary_10_1016_j_est_2024_110636
crossref_primary_10_1039_D1NA00853F
crossref_primary_10_1088_1742_6596_2587_1_012086
crossref_primary_10_1016_j_mtcomm_2024_108439
crossref_primary_10_1039_D1SE01427G
crossref_primary_10_1016_j_jpowsour_2024_234797
crossref_primary_10_1039_D3EE02082G
crossref_primary_10_1039_D3TA07853A
crossref_primary_10_1016_j_diamond_2023_110714
crossref_primary_10_1007_s10967_023_09093_y
crossref_primary_10_1016_j_est_2023_109129
crossref_primary_10_1002_pi_6621
crossref_primary_10_1016_j_ensm_2024_103462
crossref_primary_10_1007_s10854_022_08685_w
crossref_primary_10_1016_j_partic_2023_03_002
crossref_primary_10_1002_smll_202500421
crossref_primary_10_1021_acs_langmuir_3c03818
crossref_primary_10_1016_j_jcis_2024_06_080
crossref_primary_10_1007_s10971_022_05862_5
crossref_primary_10_1021_acsaem_2c01987
crossref_primary_10_1016_j_cej_2021_131080
crossref_primary_10_1016_j_jelechem_2022_116599
crossref_primary_10_1016_j_seppur_2022_121602
crossref_primary_10_1016_j_chemosphere_2022_137631
crossref_primary_10_1039_D4GC06034B
crossref_primary_10_1016_j_jpowsour_2024_234308
crossref_primary_10_1016_j_apmate_2021_11_005
crossref_primary_10_1016_j_electacta_2022_141465
crossref_primary_10_1002_smll_202305517
crossref_primary_10_1016_j_est_2023_109783
crossref_primary_10_1016_j_jclepro_2022_132131
crossref_primary_10_1016_j_mtener_2021_100850
crossref_primary_10_1039_D4TA02625J
crossref_primary_10_1016_j_jpowsour_2023_233966
crossref_primary_10_1016_j_mcat_2024_114147
crossref_primary_10_1039_D1TA09987F
crossref_primary_10_1002_ange_202316116
crossref_primary_10_1016_j_cclet_2020_09_029
crossref_primary_10_1002_adfm_202201743
crossref_primary_10_1007_s10311_023_01566_6
crossref_primary_10_1016_j_talanta_2024_127158
crossref_primary_10_1002_adma_202311655
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1016_j_jcis_2022_01_006
crossref_primary_10_3390_jof9010043
crossref_primary_10_1016_j_compositesb_2024_111932
crossref_primary_10_1016_j_ensm_2020_05_023
crossref_primary_10_1016_j_seppur_2024_127276
crossref_primary_10_1016_j_jechem_2022_11_023
crossref_primary_10_1002_smll_202408899
crossref_primary_10_1002_adfm_202310296
crossref_primary_10_1002_advs_202207751
crossref_primary_10_1016_j_mtener_2021_100935
crossref_primary_10_1016_j_jwpe_2024_106326
crossref_primary_10_1002_smll_202400812
crossref_primary_10_1039_D2TA00506A
crossref_primary_10_1016_j_solidstatesciences_2022_107091
crossref_primary_10_1016_j_tibtech_2022_07_017
crossref_primary_10_1016_j_foodchem_2023_137165
crossref_primary_10_1039_D3TA02422A
crossref_primary_10_1007_s10904_020_01834_w
crossref_primary_10_1016_j_jallcom_2023_169584
crossref_primary_10_1016_j_jpowsour_2023_232787
crossref_primary_10_1002_adma_202401336
crossref_primary_10_1016_j_jece_2022_107199
crossref_primary_10_1016_j_seppur_2023_125980
crossref_primary_10_1007_s12274_022_4327_1
crossref_primary_10_1016_j_cej_2021_133736
crossref_primary_10_1002_ange_202216724
crossref_primary_10_1002_smll_202100927
crossref_primary_10_1016_j_cclet_2020_08_019
crossref_primary_10_1016_j_indcrop_2022_115981
crossref_primary_10_1016_j_jcis_2021_07_020
crossref_primary_10_1016_j_solidstatesciences_2024_107521
crossref_primary_10_1016_j_jece_2025_115881
crossref_primary_10_1021_acsaem_3c01314
crossref_primary_10_3390_ma16030906
crossref_primary_10_1016_j_matchemphys_2024_129819
crossref_primary_10_1016_j_rser_2022_112585
crossref_primary_10_1007_s11706_024_0708_6
crossref_primary_10_1016_j_scitotenv_2022_155670
crossref_primary_10_1039_D2TA04883C
crossref_primary_10_1021_acssuschemeng_2c06671
crossref_primary_10_1021_acsanm_1c00003
crossref_primary_10_1039_D4RA04537H
crossref_primary_10_1007_s10854_023_09960_0
crossref_primary_10_1039_D2NR01655A
crossref_primary_10_1002_ange_202217808
crossref_primary_10_1002_smll_202305316
crossref_primary_10_1002_jccs_202300198
crossref_primary_10_1016_j_energy_2023_126707
crossref_primary_10_1021_acsanm_2c03040
crossref_primary_10_1007_s12274_023_5961_y
crossref_primary_10_1002_batt_202400294
crossref_primary_10_1016_j_jhazmat_2022_128866
crossref_primary_10_1007_s10934_024_01567_y
crossref_primary_10_1007_s40242_024_3259_6
crossref_primary_10_1021_acs_est_3c06376
crossref_primary_10_1002_adma_202311575
crossref_primary_10_1002_adfm_202303730
crossref_primary_10_1016_j_xcrp_2024_102097
crossref_primary_10_1016_j_seppur_2024_127486
crossref_primary_10_1021_acssuschemeng_3c03820
crossref_primary_10_1016_j_fuel_2023_130541
crossref_primary_10_1016_j_mtchem_2023_101747
crossref_primary_10_1002_advs_202103953
crossref_primary_10_1016_j_carbon_2024_118812
crossref_primary_10_1021_jacs_3c05279
crossref_primary_10_1016_j_cej_2021_131233
crossref_primary_10_1016_j_fuel_2023_128010
crossref_primary_10_1016_j_fmre_2023_05_007
crossref_primary_10_3389_fmicb_2024_1374974
crossref_primary_10_1007_s11706_022_0584_x
crossref_primary_10_1039_D4TA05430J
crossref_primary_10_3390_pr8060672
crossref_primary_10_1016_j_cattod_2022_08_011
crossref_primary_10_1016_j_est_2024_115244
crossref_primary_10_3390_molecules26175293
crossref_primary_10_1016_j_apmate_2022_100057
crossref_primary_10_1007_s11706_023_0651_y
crossref_primary_10_1016_j_pmatsci_2024_101408
crossref_primary_10_1016_j_trac_2021_116421
crossref_primary_10_3390_nano12224045
crossref_primary_10_1002_cnl2_177
crossref_primary_10_1021_acsami_2c08642
crossref_primary_10_1002_cssc_202201004
crossref_primary_10_1016_j_electacta_2022_141678
crossref_primary_10_1016_j_pmatsci_2022_101035
crossref_primary_10_1021_acsami_4c05103
crossref_primary_10_1016_j_jcis_2023_09_018
crossref_primary_10_1039_D3TB02073H
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_3390_ijms23095116
crossref_primary_10_1016_j_seppur_2023_125425
crossref_primary_10_1039_D1TA08646D
crossref_primary_10_1016_j_watres_2024_122621
crossref_primary_10_2139_ssrn_4105288
crossref_primary_10_1016_j_jhazmat_2020_124459
crossref_primary_10_1016_j_electacta_2024_144338
crossref_primary_10_1016_j_electacta_2022_140898
crossref_primary_10_1039_D2NR01986H
crossref_primary_10_1016_j_electacta_2021_138043
crossref_primary_10_1016_j_est_2024_114692
crossref_primary_10_1016_j_carbon_2024_119018
crossref_primary_10_1021_acs_energyfuels_5c00125
crossref_primary_10_3390_nano13020271
crossref_primary_10_1016_j_carbpol_2021_118166
crossref_primary_10_1016_j_cej_2023_147273
crossref_primary_10_3390_macromol1020007
crossref_primary_10_1016_j_jcis_2024_01_090
crossref_primary_10_1016_j_carbon_2021_06_072
crossref_primary_10_1016_j_cogsc_2021_100447
crossref_primary_10_3390_polym14204261
crossref_primary_10_1002_smll_202309702
crossref_primary_10_1039_D2NJ05652F
crossref_primary_10_21926_cr_2402006
crossref_primary_10_1016_j_jcis_2021_11_091
crossref_primary_10_3390_app12126048
crossref_primary_10_1007_s10450_023_00418_7
crossref_primary_10_3390_physchem2030021
crossref_primary_10_1016_j_cej_2023_141607
crossref_primary_10_1016_j_cej_2022_139725
crossref_primary_10_1016_j_jcis_2025_01_163
crossref_primary_10_1016_j_jcis_2021_05_149
crossref_primary_10_1039_D1NJ02279B
crossref_primary_10_1016_j_renene_2024_120777
crossref_primary_10_1016_j_diamond_2024_111769
crossref_primary_10_1007_s12274_021_4003_x
crossref_primary_10_1016_j_apcatb_2024_124225
crossref_primary_10_1093_ce_zkae082
crossref_primary_10_3390_ma16186127
crossref_primary_10_1016_j_cej_2024_150843
crossref_primary_10_1016_j_pmatsci_2024_101314
crossref_primary_10_1039_D0CE01847C
crossref_primary_10_1002_cey2_662
crossref_primary_10_1021_acs_langmuir_1c03489
crossref_primary_10_1016_j_indcrop_2022_115462
crossref_primary_10_1021_acs_energyfuels_3c00056
crossref_primary_10_1039_D1RA07034G
crossref_primary_10_1016_j_matchemphys_2024_129536
crossref_primary_10_1016_j_jece_2025_115368
crossref_primary_10_1016_j_cej_2023_148219
crossref_primary_10_1016_j_ensm_2025_104181
crossref_primary_10_1007_s40820_021_00679_3
crossref_primary_10_1021_acs_energyfuels_4c02789
crossref_primary_10_1016_j_carbon_2022_04_007
crossref_primary_10_1021_acs_langmuir_4c02138
crossref_primary_10_1039_D0MA00384K
crossref_primary_10_1016_j_cej_2021_132951
crossref_primary_10_1016_j_carbon_2021_12_096
crossref_primary_10_1002_celc_202200190
crossref_primary_10_1016_j_cej_2024_148626
crossref_primary_10_1139_cjc_2023_0012
crossref_primary_10_1002_smtd_202300746
crossref_primary_10_1007_s10854_021_06986_0
crossref_primary_10_1016_j_psep_2024_05_082
crossref_primary_10_1002_adma_202103130
crossref_primary_10_1039_D2SC03987G
crossref_primary_10_1002_celc_202100571
crossref_primary_10_1016_j_cej_2022_135031
crossref_primary_10_1016_j_envpol_2021_117991
crossref_primary_10_1016_j_envpol_2021_117992
crossref_primary_10_3390_polym12112563
crossref_primary_10_1002_aenm_202204259
crossref_primary_10_1021_acs_energyfuels_4c01232
crossref_primary_10_3390_toxics12040283
crossref_primary_10_1007_s13399_024_05361_3
crossref_primary_10_21070_pels_v7i0_1698
crossref_primary_10_1016_j_desal_2024_118441
crossref_primary_10_1016_j_apsusc_2022_154795
crossref_primary_10_1016_j_jcis_2021_11_052
crossref_primary_10_1063_5_0210821
crossref_primary_10_1039_D1TA00178G
crossref_primary_10_1002_aenm_202204345
crossref_primary_10_1002_adma_202401926
crossref_primary_10_1016_j_cej_2022_140512
crossref_primary_10_1016_j_mtnano_2023_100321
crossref_primary_10_1002_slct_202203034
crossref_primary_10_1016_j_ensm_2024_103901
crossref_primary_10_1016_j_jcis_2021_05_065
crossref_primary_10_1039_D1QM00121C
crossref_primary_10_1039_D2TA03510C
crossref_primary_10_1016_S1872_5805_21_60062_8
crossref_primary_10_1016_j_seppur_2023_124616
crossref_primary_10_1016_j_diamond_2023_110054
crossref_primary_10_1016_j_pnsc_2025_02_011
crossref_primary_10_1016_j_watres_2020_116390
crossref_primary_10_1016_j_est_2024_114209
crossref_primary_10_1016_j_scitotenv_2020_142136
crossref_primary_10_1016_j_coelec_2024_101478
crossref_primary_10_1246_cl_230092
crossref_primary_10_1016_j_renene_2024_120468
crossref_primary_10_1016_j_carbon_2022_06_073
Cites_doi 10.1021/acs.est.5b01059
10.1038/natrevmats.2016.23
10.1002/aenm.201602898
10.1002/anie.201509054
10.1007/s40820-019-0291-z
10.1039/C6TA09229B
10.1039/C5EE03149D
10.1038/nnano.2014.152
10.1002/adma.201503816
10.1021/acs.jpcc.8b00081
10.1029/2012JD018619
10.1002/aenm.201601111
10.1039/C5TA09917J
10.1002/anie.201501475
10.1016/j.jpowsour.2018.05.046
10.1021/acsnano.9b04728
10.1002/aenm.201801149
10.1016/j.carbon.2017.03.027
10.1038/nmat2297
10.1039/C5TA09908K
10.1002/anie.201209548
10.1021/nn502045y
10.1126/sciadv.aat5168
10.1038/nmat3191
10.1016/j.pmatsci.2018.12.002
10.1038/nmat4317
10.1039/C6TA06176A
10.1021/ja809265m
10.1039/c2jm30192j
10.1002/smll.201900687
10.1021/nn4021955
10.1021/jacs.6b11411
10.1039/C6CS00426A
10.1039/C7TA08165K
10.1016/j.jece.2015.11.018
10.1038/nchem.2515
10.1002/advs.201600243
10.1039/C6EE02169G
10.1016/j.carbon.2015.12.066
10.1021/ja407552k
10.1038/nature10322
10.1016/j.nanoen.2017.05.015
10.1021/acs.chemmater.7b02645
10.1021/nn404640c
10.1021/ja7106178
10.1126/science.aac4722
10.1007/s10098-014-0830-8
10.1002/adfm.201870204
10.1021/es803268b
10.1039/C6CC04052G
10.1038/ncomms6261
10.1039/c2jm34066f
10.1016/j.nantod.2018.02.006
10.1126/science.1194237
10.1002/adma.201302459
10.1002/adma.201401376
10.1021/am401423b
10.1016/j.nanoen.2013.12.017
10.1021/acs.chemmater.7b04061
10.1016/S0008-6223(00)00027-0
10.1021/ja511539a
10.1002/aenm.201702267
10.1039/C4TA02199A
10.1039/C6TA06164H
10.1021/acsnano.7b05085
10.1039/C2TA00278G
10.1021/acsnano.6b07995
10.1002/adfm.201606190
10.1039/c2ra20775c
10.1021/nn204688c
10.1039/C7TA01722G
10.1039/C5TA03181H
10.1021/nn302147s
10.1002/advs.201700515
10.1039/c2ee21653a
10.1039/C7TA09633J
10.1039/C1JM13314D
10.1039/c1ee01176f
10.1021/am400958x
10.1002/adma.201101007
10.1016/0043-1354(85)90041-7
10.1021/cm010730l
10.1002/adma.200501905
10.1021/es801463v
10.1039/C6TA07826E
10.1039/C7TA03999A
10.1002/anie.200702046
10.1002/advs.201500195
10.1002/adfm.201603607
10.1002/aenm.201700283
10.1002/anie.201206720
10.1016/j.carbon.2017.05.088
10.1021/am400112m
10.1016/j.apcatb.2017.11.056
10.1038/s41467-018-04190-z
10.1002/anie.200501561
10.1002/aenm.201602078
10.1002/cphc.200800592
10.1021/jacs.5b06809
10.1002/adma.201505131
10.1016/j.matlet.2016.09.045
10.1016/0008-6223(95)00154-6
10.1002/aenm.201902852
10.1021/jacs.7b08133
10.1021/acsnano.6b04019
10.1002/anie.201710888
10.1002/anie.201710852
10.1002/anie.201605676
10.1016/j.carbon.2015.11.069
10.1039/c3ee41638k
10.1002/anie.200907289
10.1039/c0jm03793a
10.1021/acs.est.7b01679
10.1039/C6CS00639F
10.1016/j.jclepro.2017.08.229
10.1002/aenm.201701261
10.1021/acssuschemeng.5b01113
10.1039/C5TA09948J
10.1002/pola.22695
10.1021/es200782s
10.1021/cr0200062
10.1039/C5EE01985K
10.1002/adfm.201705253
10.1039/C6EE02364A
10.1038/nature06599
10.1016/S0008-6223(99)00180-3
10.1002/adma.201504765
10.1016/j.apcatb.2017.06.051
10.1002/smll.201702054
10.1038/ncomms8221
10.1002/smll.201902603
10.1021/nn503220h
10.1002/admt.201900806
10.1039/C3CS60159E
10.1021/jz300929x
10.1002/cssc.201700492
10.1016/j.apcatb.2017.08.069
10.1038/35104644
10.1021/acs.accounts.5b00482
10.1016/j.carbon.2017.10.084
10.1021/acsnano.5b08040
10.1039/C7TA07488C
10.1002/aenm.201800171
10.1002/aenm.201900343
10.1039/C5TA09202G
10.1116/1.5095413
10.1021/acscatal.7b04086
10.1039/C7GC01681F
10.1002/adma.201700874
10.1002/adma.201302034
10.1021/acs.chemmater.7b00857
10.1002/adfm.201400590
10.1016/j.cej.2018.04.139
10.1021/ja203184k
10.1016/j.carbon.2018.03.044
10.1007/s40843-017-9169-4
10.1021/es071230h
10.1016/j.jhazmat.2005.12.004
10.1021/am301372d
10.1021/ja5003907
10.1039/c1jm12979a
10.1038/nature18284
10.1039/C4EE01075B
10.1016/j.fuel.2003.09.001
10.1039/C7TA07010A
10.1021/acs.chemmater.7b01937
10.1021/acscentsci.5b00149
10.1039/C6TA05872H
10.1002/adma.201303115
10.1039/c3ta11114h
10.1039/C7TA08354H
10.1038/ncomms3798
10.1016/j.carbon.2014.07.062
10.1002/aenm.201702384
10.1002/anie.201100637
10.1039/C8TA12540F
10.1002/smtd.201900163
10.1002/aenm.201100548
10.1016/j.micromeso.2016.04.041
10.1021/cr300014x
10.1016/S0008-6223(00)00012-9
10.1016/j.jhazmat.2005.11.077
10.1039/C4TA05451B
10.1002/celc.201500376
10.1039/c3cc43401j
10.1149/2.1391706jes
10.1021/acs.jced.7b00745
10.1038/s41565-018-0216-x
10.1126/sciadv.1500564
10.1002/cssc.201200817
10.1126/science.1212741
10.1016/j.carbon.2008.06.027
10.1002/adfm.201601904
10.1021/acsami.7b17893
10.1002/adfm.201100291
10.1021/nl401995a
10.1016/j.carbon.2018.10.096
10.1016/j.jcis.2017.09.040
10.1021/acsami.7b08797
10.1039/c3ta01659e
10.1002/aenm.201500867
10.1039/C6EE00158K
10.1002/anie.201706777
10.1016/j.carbon.2015.05.017
10.1016/j.rser.2014.07.093
10.1002/anie.201205292
10.1038/nature11115
10.1021/jp806084d
10.1039/C7TA00335H
10.1039/C2CS35308C
10.1016/j.carbon.2017.02.016
10.1002/ijch.201400118
10.1038/nenergy.2016.10
10.1021/cm7024125
10.1039/C7TA02415K
10.1039/C5GC02397A
10.1021/nl4038592
10.1021/jp106764h
10.1002/aenm.201802386
10.1038/ncomms15020
10.1016/j.psep.2018.08.012
10.1002/aenm.201502491
10.1016/j.jpowsour.2016.12.008
10.1039/C1CS15060J
10.1016/j.electacta.2017.06.092
10.1039/C7TA08046H
10.1016/j.carbon.2013.09.006
10.1038/nnano.2016.32
10.1021/acsnano.5b03488
10.1021/acscatal.7b01695
10.1038/nature11893
10.1021/acs.jpcc.7b06457
10.1039/C3EE42551G
10.1016/j.carbon.2014.12.010
10.1021/acsami.6b01748
10.1002/aenm.201100340
10.1002/aenm.201100691
10.1016/j.nanoen.2015.10.038
10.1016/j.energy.2015.08.033
10.1002/adfm.201504004
10.1016/j.watres.2009.06.009
10.1039/C5CS00670H
10.1002/anie.200461051
10.1039/C4CS00484A
10.1002/adma.201604108
10.1016/j.chemosphere.2013.02.058
10.1039/C7GC01434A
10.1002/cssc.201500063
10.1002/adma.201502303
10.1021/acsnano.7b05869
10.1016/j.nanoen.2017.01.045
10.1038/nnano.2014.6
10.1002/aenm.201602911
10.1039/c3ta13049e
10.1021/cm202554j
10.1039/c0cs00208a
10.1039/C7TA05003H
10.1021/acs.nanolett.7b00533
10.1002/adma.201600979
10.1039/c3ta14281g
10.1039/C9CC01927H
10.1039/C6EE00551A
10.1039/C7TA01108C
10.1039/C6TA08169J
10.1016/j.cej.2017.06.074
10.1021/ie1024003
10.1002/adma.201600012
10.1016/j.apcatb.2015.07.024
10.1021/cm900288x
10.1002/adfm.201700324
10.1002/aenm.201700530
10.1002/anie.201702099
10.1002/anie.201209849
10.1021/jacs.5b11955
10.1038/ncomms10601
10.1039/c3ta00004d
10.1002/adfm.201603937
10.1039/C5TA00867K
10.1039/C7TA08169C
10.1021/nl502238b
10.1002/adfm.201100854
10.1016/j.carbon.2013.09.086
10.1039/B501259G
10.1038/s41467-017-01633-x
10.1021/nl802558y
10.1021/ar200306b
10.1039/C6TA07098A
10.1126/sciadv.aap9252
10.1021/ja7106146
10.1126/sciadv.aav7412
10.1016/j.cej.2017.04.106
10.1002/aenm.201502518
10.1021/jz201312e
10.1039/C4CS00071D
10.1039/C3EE42918K
10.1016/j.carbon.2017.04.050
10.1016/j.electacta.2016.01.105
10.1002/adma.201700104
10.1002/aenm.201100061
10.1039/c3ee41444b
10.1002/anie.201702453
10.1016/j.nanoen.2015.03.013
10.1002/aenm.201600693
10.1126/science.1176731
10.1126/science.aaa8075
10.1039/C7CS00787F
10.1021/es035121o
10.1021/cm960430h
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201909265
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201909265
ADFM201909265
Genre reviewArticle
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP170104264
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4225-cb231b0f7f6e29d2fcc3a85a8f0ddc2ce33d6a4336c1b47de9ea572ae94f9f473
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:14:06 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Tue Jul 01 04:12:10 EDT 2025
Wed Jan 22 16:34:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4225-cb231b0f7f6e29d2fcc3a85a8f0ddc2ce33d6a4336c1b47de9ea572ae94f9f473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1751-9162
PQID 2394762545
PQPubID 2045204
PageCount 41
ParticipantIDs proquest_journals_2394762545
crossref_citationtrail_10_1002_adfm_201909265
crossref_primary_10_1002_adfm_201909265
wiley_primary_10_1002_adfm_201909265_ADFM201909265
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2013; 1
2019 2017; 5 121
2012; 486
2019; 13
2015 2018 2018; 1 133 225
1995; 33
2014; 26
2014; 24
2013; 7
2013; 5
2012; 11
2013; 6
2014; 136
1997; 9
2013 2013; 1 7
2018; 47
2001 2000; 27 38
1985; 19
2011 2016 2016; 4 4 230
2018; 9
2018; 8
2018; 5
2009; 10
2018; 4
2001 2019; 414 15
2015; 137
2004; 38
2015; 84
2010; 114
2017 2014; 46 43
2013; 52
2008 2004 2005 2008 2005; 47 43 44 20
2014; 14
2018; 30
2017; 164
2011 2009; 40 21
2008; 112
2012; 24
2013 2015; 1 91
2012; 22
2019; 7
2016 2015; 191 27
2019; 9
2018; 28
2018; 220
2011; 2
2011; 1
2016; 19
2018; 347
2015; 55
2008 2008; 130 130
2015; 54
2013; 91
2016; 10
2012 2016 2017; 3 181 323
2019; 102
2012 2013; 22 46
2016; 18
2015 2011 2013; 93 4 5
2013 2014 2017; 495 7 327
2017; 139
2016; 11
2016; 99
2017; 51
2016; 4
2018; 19
2016; 6
2016; 7
2010; 49
2016; 1
2011 2019; 21
2012; 112
2016 2016; 1 45
2011 2010 2016; 21 330 26
2016; 3
2017; 56
2008; 46
2008; 42
2014; 39
2018; 12
2016; 28
2015 2012; 49 51
2018; 10
2016; 26
2016; 8
2016; 9
2012; 41
2018; 14
2008 2011; 130 133
2017; 5
2017; 119
2017; 7
2017; 8
2013; 25
2009; 43
2017; 3
2017; 4
2018; 127
2019; 55
2017; 46
2008; 7
2015; 348
2017; 9
2014; 66
2016; 185
2006; 135
2017; 118
2011 2017; 21 7
2018; 133
2020; 5
2006 2008 2012; 18 8 2
2014; 5
2014; 4
2017 2013; 118
2014; 2
2017; 37
2013; 13
2016 2016; 10 28
2017; 33
2002; 102
2015; 44
2011; 23
2017; 121
2014; 9
2014; 8
2015 2016; 3 49
2014; 7
2001; 13
2013 2012; 49 4
2017; 246
2009; 325
2015 2018; 3 61
2015; 2
2017; 218
2015; 13
2000 2006; 38 135
2015; 1
2011; 334
2015; 14
2004; 83
2015; 6
2015; 5
2015 2019; 8 11
2015; 3
2017; 27
2000 2015 2018; 38 17 511
2013; 42
2013 2012 2009 2011; 1 6 131 21
2016; 52
2013 2019 2014; 6 37 14
2018; 63
2017; 29
2016 2018; 99 122
2018 2017; 13
2015; 8
2016; 55
2019; 143
2018; 395
2017 2018; 168 119
2012; 2
2015; 27
2017; 17
2017; 11
2017; 10
2017 2014 2016; 7 67 4
2011; 50
2019
2017
2013; 135
2014; 79
2016; 535
2017; 19
2016; 138
2011; 45
2015 2011; 349 476
2011 2012 2015; 50 51 9
2014
2007; 41
2017; 341
2012; 6
2008; 452
2017 2018; 116 225
2012; 5
2018; 57
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_200_1
e_1_2_11_223_1
e_1_2_11_246_1
e_1_2_11_70_2
e_1_2_11_223_3
e_1_2_11_186_1
e_1_2_11_223_2
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_261_1
e_1_2_11_29_1
e_1_2_11_102_2
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_29_2
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_211_1
e_1_2_11_257_1
e_1_2_11_81_1
e_1_2_11_197_1
e_1_2_11_234_1
e_1_2_11_43_2
e_1_2_11_89_2
e_1_2_11_20_1
e_1_2_11_43_3
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_113_1
e_1_2_11_208_1
e_1_2_11_174_1
e_1_2_11_151_1
Li W. H. (e_1_2_11_176_1) 2017
Liu Y. D. (e_1_2_11_83_1) 2017
e_1_2_11_201_1
e_1_2_11_247_1
e_1_2_11_92_1
e_1_2_11_262_3
e_1_2_11_224_1
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_262_2
e_1_2_11_262_1
e_1_2_11_54_1
e_1_2_11_28_2
e_1_2_11_103_1
e_1_2_11_126_1
Liang H. W. (e_1_2_11_140_1) 2014
e_1_2_11_149_1
e_1_2_11_5_2
e_1_2_11_28_1
e_1_2_11_103_2
e_1_2_11_5_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_190_1
e_1_2_11_212_1
e_1_2_11_235_1
e_1_2_11_258_1
e_1_2_11_80_1
e_1_2_11_198_1
e_1_2_11_250_1
e_1_2_11_88_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_39_3
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_39_2
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_209_1
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_248_1
e_1_2_11_225_2
e_1_2_11_202_1
e_1_2_11_225_1
Zou L. F. (e_1_2_11_37_1) 2017
e_1_2_11_188_1
e_1_2_11_57_1
e_1_2_11_240_1
e_1_2_11_263_1
e_1_2_11_34_2
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_104_1
e_1_2_11_127_2
e_1_2_11_127_1
e_1_2_11_2_2
e_1_2_11_2_1
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_191_1
e_1_2_11_236_1
e_1_2_11_60_2
e_1_2_11_60_1
e_1_2_11_259_1
e_1_2_11_213_1
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_68_2
e_1_2_11_251_1
e_1_2_11_68_1
e_1_2_11_60_3
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_2
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_249_1
e_1_2_11_226_1
e_1_2_11_264_1
e_1_2_11_203_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_56_2
e_1_2_11_189_1
e_1_2_11_79_1
e_1_2_11_241_1
e_1_2_11_71_3
e_1_2_11_33_2
e_1_2_11_33_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_215_5
e_1_2_11_120_1
e_1_2_11_215_4
e_1_2_11_215_3
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_237_1
e_1_2_11_252_2
e_1_2_11_214_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_44_2
e_1_2_11_44_3
e_1_2_11_252_1
e_1_2_11_21_2
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_131_3
e_1_2_11_131_2
e_1_2_11_18_3
e_1_2_11_154_1
e_1_2_11_177_1
e_1_2_11_18_2
e_1_2_11_131_4
e_1_2_11_131_1
e_1_2_11_182_1
e_1_2_11_204_1
e_1_2_11_227_1
e_1_2_11_242_1
e_1_2_11_265_1
e_1_2_11_36_1
e_1_2_11_13_2
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_144_1
Radovic L. R. (e_1_2_11_21_1) 2001; 27
e_1_2_11_239_1
e_1_2_11_193_1
e_1_2_11_238_1
e_1_2_11_215_2
e_1_2_11_215_1
e_1_2_11_253_1
e_1_2_11_47_1
e_1_2_11_230_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_36_2
e_1_2_11_59_1
e_1_2_11_59_2
e_1_2_11_178_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_170_1
e_1_2_11_50_1
e_1_2_11_220_1
e_1_2_11_183_1
e_1_2_11_205_1
e_1_2_11_243_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_1_1
e_1_2_11_217_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_216_1
e_1_2_11_231_1
e_1_2_11_254_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_110_2
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_228_2
e_1_2_11_228_1
e_1_2_11_171_1
e_1_2_11_91_1
e_1_2_11_221_1
e_1_2_11_184_1
e_1_2_11_244_1
e_1_2_11_30_3
e_1_2_11_30_2
e_1_2_11_30_1
e_1_2_11_99_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_169_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_2
e_1_2_11_123_1
e_1_2_11_218_2
e_1_2_11_218_1
e_1_2_11_161_1
e_1_2_11_195_1
e_1_2_11_232_1
e_1_2_11_255_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_41_2
e_1_2_11_41_3
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_206_1
e_1_2_11_229_1
e_1_2_11_172_1
e_1_2_11_222_2
e_1_2_11_222_1
e_1_2_11_90_2
e_1_2_11_90_1
e_1_2_11_185_1
e_1_2_11_245_1
e_1_2_11_260_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_124_2
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_49_2
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_49_3
e_1_2_11_219_1
e_1_2_11_162_1
e_1_2_11_210_1
e_1_2_11_196_1
e_1_2_11_233_1
e_1_2_11_256_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_158_1
e_1_2_11_37_2
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
e_1_2_11_207_1
References_xml – volume: 19
  start-page: 3916
  year: 2017
  publication-title: Green Chem.
– volume: 49 4
  start-page: 9914 5466
  year: 2013 2012
  publication-title: Chem. Commun. ACS Appl. Mater. Interfaces
– volume: 49 51
  start-page: 6855
  year: 2015 2012
  publication-title: Environ. Sci. Technol. Angew. Chem., Int. Ed.
– volume: 52
  start-page: 6088
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 486
  year: 2015
  publication-title: Isr. J. Chem.
– volume: 99
  start-page: 556
  year: 2016
  publication-title: Carbon
– volume: 5
  start-page: 5630
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3 181 323
  start-page: 2112 103 361
  year: 2012 2016 2017
  publication-title: J. Phys. Chem. Lett. Appl. Catal., B Chem. Eng. J.
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 49
  start-page: 2565
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 9671
  year: 2012
  publication-title: RSC Adv.
– volume: 5
  start-page: 7854
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 112
  start-page: 673
  year: 2012
  publication-title: Chem. Rev.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1516
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 220
  start-page: 533
  year: 2018
  publication-title: Appl. Catal., B
– volume: 19
  start-page: 491
  year: 1985
  publication-title: Water Res.
– volume: 1 91
  start-page: 5021 142
  year: 2013 2015
  publication-title: J. Mater. Chem. A Energy
– volume: 9
  start-page: 1661
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 4490
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 181
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 1706
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 3859
  year: 2011 2019
  publication-title: Adv. Funct. Mater. Small Methods
– year: 2019
  publication-title: Small
– volume: 11
  start-page: 1911
  year: 2017
  publication-title: ACS Nano
– volume: 22
  start-page: 146
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 22 46
  start-page: 8835 1094
  year: 2012 2013
  publication-title: J. Mater. Chem. Acc. Chem. Res.
– volume: 56
  start-page: 7557
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 8 11
  start-page: 2916 60
  year: 2015 2019
  publication-title: Energy Environ. Sci. Nano‐Micro Lett.
– volume: 57
  start-page: 1856
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 374
  year: 2013
  publication-title: ChemSusChem
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 325
  start-page: 1652
  year: 2009
  publication-title: Science
– volume: 5 121
  year: 2019 2017
  publication-title: Sci. Adv. J. Phys. Chem. C
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 118
  start-page: 29 683
  year: 2017 2013
  publication-title: Adv. Mater. J. Geophys. Res.: Atmos.
– volume: 12
  start-page: 226
  year: 2018
  publication-title: ACS Nano
– volume: 13
  start-page: 527
  year: 2015
  publication-title: Nano Energy
– volume: 29
  start-page: 7062
  year: 2017
  publication-title: Chem. Mater.
– volume: 83
  start-page: 293
  year: 2004
  publication-title: Fuel
– volume: 9
  start-page: 1891
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 6 37 14
  start-page: 2839 1164
  year: 2013 2019 2014
  publication-title: Energy Environ. Sci. J. Vac. Sci. Technol., A Nano Lett.
– volume: 191 27
  start-page: 385 6914
  year: 2016 2015
  publication-title: Electrochim. Acta Adv. Mater.
– volume: 46 43
  start-page: 2660 4341
  year: 2017 2014
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 185
  start-page: 359
  year: 2016
  publication-title: Mater. Lett.
– volume: 55
  start-page: 6034
  year: 2019
  publication-title: Chem. Commun.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1 6 131 21
  start-page: 7092 5026 2060
  year: 2013 2012 2009 2011
  publication-title: J. Mater. Chem. A ACS Nano J. Am. Chem. Soc. J. Mater. Chem.
– volume: 127
  start-page: 85
  year: 2018
  publication-title: Carbon
– volume: 10
  start-page: 2805
  year: 2017
  publication-title: ChemSusChem
– volume: 4
  start-page: 2798
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2519
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 4132
  year: 2017
  publication-title: Green Chem.
– volume: 218
  start-page: 260
  year: 2017
  publication-title: Appl. Catal., B
– volume: 27 38
  start-page: 227 863
  year: 2001 2000
  publication-title: Chem. Phys. Carbon Carbon
– volume: 84
  start-page: 281
  year: 2015
  publication-title: Carbon
– volume: 143
  start-page: 531
  year: 2019
  publication-title: Carbon
– volume: 26
  start-page: 6056
  year: 2014
  publication-title: Adv. Mater.
– volume: 138
  start-page: 1001
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 6284
  year: 2013
  publication-title: Adv. Mater.
– volume: 9
  start-page: 187
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3 61
  start-page: 71 133
  year: 2015 2018
  publication-title: J. Mater. Chem. A Sci. China Mater.
– volume: 26
  start-page: 8334
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 341
  start-page: 165
  year: 2017
  publication-title: J. Power Sources
– volume: 4
  start-page: 1050
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 33
  start-page: 334
  year: 2017
  publication-title: Nano Energy
– volume: 135
  start-page: 395
  year: 2006
  publication-title: J. Hazard. Mater.
– volume: 9
  start-page: 1720
  year: 2018
  publication-title: Nat. Commun.
– volume: 7 67 4
  start-page: 230 280
  year: 2017 2014 2016
  publication-title: Adv. Energy Mater. Carbon J. Mater. Chem. A
– volume: 130 133
  start-page: 5390
  year: 2008 2011
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 46
  start-page: 2660
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 68
  year: 2015
  publication-title: ACS Cent. Sci.
– volume: 1 45
  start-page: 517
  year: 2016 2016
  publication-title: Nat. Rev. Mater. Chem. Soc. Rev.
– volume: 535
  start-page: 131
  year: 2016
  publication-title: Nature
– volume: 4
  start-page: 4296
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 42
  start-page: 8237
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 323
  year: 2016
  publication-title: ChemElectroChem
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 79
  start-page: 213
  year: 2014
  publication-title: Carbon
– volume: 2
  start-page: 873
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 3574
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 763
  year: 2015
  publication-title: Nat. Mater.
– volume: 8
  start-page: 7115
  year: 2014
  publication-title: ACS Nano
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 9
  start-page: 102
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 66
  start-page: 320
  year: 2014
  publication-title: Carbon
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2260
  year: 2015
  publication-title: ChemSusChem
– volume: 38
  start-page: 3705
  year: 2004
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 9286
  year: 2011
  publication-title: Ind. Eng. Chem. Res.
– volume: 4 4 230
  start-page: 3059 5223 100
  year: 2011 2016 2016
  publication-title: Energy Environ. Sci. J. Mater. Chem. A Microporous Mesoporous Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 26
  start-page: 111
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 99 122
  start-page: 8 4955
  year: 2016 2018
  publication-title: Carbon J. Phys. Chem. C
– volume: 10
  start-page: 9353
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 718
  year: 2016
  publication-title: Nat. Chem.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1849
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 99
  start-page: 8
  year: 2016
  publication-title: Carbon
– volume: 19
  start-page: 165
  year: 2016
  publication-title: Nano Energy
– volume: 495 7 327
  start-page: 80 335 51
  year: 2013 2014 2017
  publication-title: Nature Energy Environ. Sci. Chem. Eng. J.
– volume: 54
  start-page: 7060
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 168 119
  start-page: 290 320
  year: 2017 2018
  publication-title: J. Cleaner Prod. Process Saf. Environ. Prot.
– volume: 246
  start-page: 634
  year: 2017
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 2106
  year: 2016
  publication-title: Green Chem.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 37
  start-page: 177
  year: 2017
  publication-title: Nano Energy
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 452
  start-page: 301
  year: 2008
  publication-title: Nature
– volume: 7
  start-page: 6144
  year: 2017
  publication-title: ACS Catal.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 4364
  year: 2016
  publication-title: ACS Nano
– volume: 2
  start-page: 2859
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 42
  start-page: 7931
  year: 2008
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 2032
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 348
  year: 2015
  publication-title: Science
– volume: 13
  start-page: 4413
  year: 2001
  publication-title: Chem. Mater.
– volume: 28
  start-page: 6391
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5261
  year: 2014
  publication-title: Nat. Commun.
– volume: 1
  start-page: 678
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 7955
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 6245
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 5250
  year: 2014
  publication-title: Nano Lett.
– volume: 102
  start-page: 1
  year: 2019
  publication-title: Prog. Mater. Sci.
– volume: 21 7
  year: 2011 2017
  publication-title: J. Mater. Chem. Adv. Energy Mater.
– volume: 8
  start-page: 1779
  year: 2018
  publication-title: ACS Catal.
– volume: 2
  start-page: 3317
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 38 135
  start-page: 1807 453
  year: 2000 2006
  publication-title: Carbon J. Hazard. Mater.
– volume: 347
  start-page: 432
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 9565
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 7176
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 7323
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 7861
  year: 2015
  publication-title: Adv. Mater.
– volume: 52
  start-page: 3110
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 45
  start-page: 7068
  year: 2011
  publication-title: Environ. Sci. Technol.
– volume: 1 7
  start-page: 9395 6237
  year: 2013 2013
  publication-title: J. Mater. Chem. A ACS Nano
– volume: 93 4 5
  start-page: 68 3059 6360
  year: 2015 2011 2013
  publication-title: Carbon Energy Environ. Sci. ACS Appl. Mater. Interfaces
– volume: 133
  start-page: 306
  year: 2018
  publication-title: Carbon
– volume: 136
  start-page: 6790
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 130 130
  start-page: 2730 2730
  year: 2008 2008
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 10
  start-page: 715
  year: 2009
  publication-title: ChemPhysChem
– volume: 19
  start-page: 84
  year: 2018
  publication-title: Nano Today
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 40 21
  start-page: 1107 2555
  year: 2011 2009
  publication-title: Chem. Soc. Rev. Chem. Mater.
– volume: 47 43 44 20
  start-page: 3696 5785 7053 932 2125
  year: 2008 2004 2005 2008 2005
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Mater. Chem. Commun.
– volume: 41
  start-page: 797
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 7288
  year: 2017
  publication-title: Chem. Mater.
– volume: 6
  start-page: 2497
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 569
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 3787
  year: 2009
  publication-title: Water Res.
– volume: 44
  start-page: 2168
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 114
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 728
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 1 133 225
  start-page: 306 76
  year: 2015 2018 2018
  publication-title: Sci. Adv. Carbon Appl. Catal. B Environ.
– volume: 414 15
  start-page: 359
  year: 2001 2019
  publication-title: Nature Small
– volume: 121
  start-page: 257
  year: 2017
  publication-title: Carbon
– volume: 24
  start-page: 5104
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 10 28
  start-page: 8676 1603
  year: 2016 2016
  publication-title: ACS Nano Adv. Mater.
– volume: 8
  start-page: 9295
  year: 2014
  publication-title: ACS Nano
– volume: 26
  start-page: 849
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2738
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 102
  start-page: 4093
  year: 2002
  publication-title: Chem. Rev.
– volume: 5
  start-page: 2204
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 39
  start-page: 426
  year: 2014
  publication-title: Renew. Sust. Energ. Rev.
– volume: 4
  start-page: 266
  year: 2016
  publication-title: J. Environ. Chem. Eng.
– volume: 395
  start-page: 271
  year: 2018
  publication-title: J. Power Sources
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 4885
  year: 2017
  publication-title: Chem. Mater.
– volume: 9
  start-page: 3061
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 38 17 511
  start-page: 1873 747 259
  year: 2000 2015 2018
  publication-title: Carbon Clean Technol. Environ. Policy J. Colloid Interface Sci.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 91
  start-page: 1304
  year: 2013
  publication-title: Chemosphere
– volume: 43
  start-page: 2322
  year: 2009
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 1981
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  publication-title: Chem. Mater.
– volume: 25
  start-page: 5668
  year: 2013
  publication-title: Adv. Mater.
– start-page: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 116 225
  start-page: 528 76
  year: 2017 2018
  publication-title: Carbon Appl. Catal., B
– volume: 3 49
  start-page: 231
  year: 2015 2016
  publication-title: J. Mater. Chem. A Acc. Chem. Res.
– volume: 23
  start-page: 3959
  year: 2011
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1545
  year: 2017
  publication-title: Nat. Commun.
– volume: 42
  start-page: 3721
  year: 2013
  publication-title: Chem. Soc. Rev.
– start-page: 5
  year: 2014
  publication-title: Nat. Commun.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 13
  start-page: 3909
  year: 2013
  publication-title: Nano Lett.
– volume: 28
  start-page: 7494
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 81
  year: 2014
  publication-title: Nano Energy
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7221
  year: 2015
  publication-title: Nat. Commun.
– volume: 41
  start-page: 8295
  year: 2007
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 3079
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 1475
  year: 2008
  publication-title: Carbon
– volume: 63
  start-page: 559
  year: 2018
  publication-title: J. Chem. Eng. Data
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 98
  year: 2017
  publication-title: Carbon
– volume: 1
  start-page: 798
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 1572
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 609
  year: 1997
  publication-title: Chem. Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 21 330 26
  start-page: 2781 650 8651
  year: 2011 2010 2016
  publication-title: Adv. Funct. Mater. Science Adv. Funct. Mater.
– volume: 33
  start-page: 1641
  year: 1995
  publication-title: Carbon
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– volume: 24
  start-page: 464
  year: 2012
  publication-title: Chem. Mater.
– volume: 51
  year: 2017
  publication-title: Environ. Sci. Technol.
– start-page: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 7184
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 3563
  year: 2008
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 52
  year: 2016
  publication-title: Chem. Commun.
– volume: 50 51 9
  start-page: 5904 9592 8504
  year: 2011 2012 2015
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. ACS Nano
– volume: 18 8 2
  start-page: 1877 3498 431
  year: 2006 2008 2012
  publication-title: Adv. Mater. Nano Lett. Adv. Energy Mater.
– volume: 6
  start-page: 1715
  year: 2012
  publication-title: ACS Nano
– volume: 13
  start-page: 642
  year: 2018 2017
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 14
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 119
  start-page: 287
  year: 2017
  publication-title: Carbon
– volume: 349 476
  start-page: 43
  year: 2015 2011
  publication-title: Science Nature
– volume: 17
  start-page: 3097
  year: 2017
  publication-title: Nano Lett.
– volume: 47
  start-page: 2680
  year: 2018
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_11_29_1
  doi: 10.1021/acs.est.5b01059
– ident: e_1_2_11_5_1
  doi: 10.1038/natrevmats.2016.23
– ident: e_1_2_11_88_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_11_236_1
  doi: 10.1002/anie.201509054
– ident: e_1_2_11_103_2
  doi: 10.1007/s40820-019-0291-z
– ident: e_1_2_11_264_1
  doi: 10.1039/C6TA09229B
– ident: e_1_2_11_204_1
  doi: 10.1039/C5EE03149D
– ident: e_1_2_11_84_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_11_94_1
  doi: 10.1002/adma.201503816
– ident: e_1_2_11_228_2
  doi: 10.1021/acs.jpcc.8b00081
– ident: e_1_2_11_37_2
  doi: 10.1029/2012JD018619
– ident: e_1_2_11_239_1
  doi: 10.1002/aenm.201601111
– ident: e_1_2_11_63_1
  doi: 10.1039/C5TA09917J
– ident: e_1_2_11_64_1
  doi: 10.1002/anie.201501475
– ident: e_1_2_11_134_1
  doi: 10.1016/j.jpowsour.2018.05.046
– ident: e_1_2_11_162_1
  doi: 10.1021/acsnano.9b04728
– ident: e_1_2_11_114_1
  doi: 10.1002/aenm.201801149
– ident: e_1_2_11_13_2
– ident: e_1_2_11_32_1
  doi: 10.1016/j.carbon.2017.03.027
– ident: e_1_2_11_129_1
  doi: 10.1038/nmat2297
– ident: e_1_2_11_44_2
  doi: 10.1039/C5TA09908K
– ident: e_1_2_11_141_1
  doi: 10.1002/anie.201209548
– ident: e_1_2_11_193_1
  doi: 10.1021/nn502045y
– ident: e_1_2_11_85_1
  doi: 10.1126/sciadv.aat5168
– ident: e_1_2_11_66_1
  doi: 10.1038/nmat3191
– ident: e_1_2_11_8_1
  doi: 10.1016/j.pmatsci.2018.12.002
– ident: e_1_2_11_11_1
  doi: 10.1038/nmat4317
– ident: e_1_2_11_45_1
  doi: 10.1039/C6TA06176A
– ident: e_1_2_11_131_3
  doi: 10.1021/ja809265m
– ident: e_1_2_11_124_1
  doi: 10.1039/c2jm30192j
– ident: e_1_2_11_56_2
  doi: 10.1002/smll.201900687
– ident: e_1_2_11_123_2
  doi: 10.1021/nn4021955
– ident: e_1_2_11_157_1
  doi: 10.1021/jacs.6b11411
– ident: e_1_2_11_57_1
  doi: 10.1039/C6CS00426A
– ident: e_1_2_11_163_1
  doi: 10.1039/C7TA08165K
– ident: e_1_2_11_246_1
  doi: 10.1016/j.jece.2015.11.018
– ident: e_1_2_11_183_1
  doi: 10.1038/nchem.2515
– ident: e_1_2_11_104_1
  doi: 10.1002/advs.201600243
– ident: e_1_2_11_203_1
  doi: 10.1039/C6EE02169G
– ident: e_1_2_11_107_1
  doi: 10.1016/j.carbon.2015.12.066
– ident: e_1_2_11_143_1
  doi: 10.1021/ja407552k
– ident: e_1_2_11_36_2
  doi: 10.1038/nature10322
– ident: e_1_2_11_81_1
  doi: 10.1016/j.nanoen.2017.05.015
– ident: e_1_2_11_168_1
  doi: 10.1021/acs.chemmater.7b02645
– ident: e_1_2_11_98_1
  doi: 10.1021/nn404640c
– ident: e_1_2_11_127_1
  doi: 10.1021/ja7106178
– ident: e_1_2_11_36_1
  doi: 10.1126/science.aac4722
– ident: e_1_2_11_223_2
  doi: 10.1007/s10098-014-0830-8
– ident: e_1_2_11_116_1
  doi: 10.1002/adfm.201870204
– ident: e_1_2_11_25_1
  doi: 10.1021/es803268b
– ident: e_1_2_11_133_1
  doi: 10.1039/C6CC04052G
– ident: e_1_2_11_61_1
  doi: 10.1038/ncomms6261
– ident: e_1_2_11_235_1
  doi: 10.1039/c2jm34066f
– ident: e_1_2_11_10_1
  doi: 10.1016/j.nantod.2018.02.006
– ident: e_1_2_11_41_2
  doi: 10.1126/science.1194237
– ident: e_1_2_11_172_1
  doi: 10.1002/adma.201302459
– ident: e_1_2_11_14_1
  doi: 10.1002/adma.201401376
– ident: e_1_2_11_43_3
  doi: 10.1021/am401423b
– ident: e_1_2_11_93_1
  doi: 10.1016/j.nanoen.2013.12.017
– ident: e_1_2_11_170_1
  doi: 10.1021/acs.chemmater.7b04061
– ident: e_1_2_11_223_1
  doi: 10.1016/S0008-6223(00)00027-0
– ident: e_1_2_11_188_1
  doi: 10.1021/ja511539a
– ident: e_1_2_11_263_1
  doi: 10.1002/aenm.201702267
– ident: e_1_2_11_62_1
  doi: 10.1039/C4TA02199A
– ident: e_1_2_11_182_1
  doi: 10.1039/C6TA06164H
– ident: e_1_2_11_173_1
  doi: 10.1021/acsnano.7b05085
– ident: e_1_2_11_251_1
  doi: 10.1039/C2TA00278G
– ident: e_1_2_11_174_1
  doi: 10.1021/acsnano.6b07995
– ident: e_1_2_11_180_1
  doi: 10.1002/adfm.201606190
– ident: e_1_2_11_55_1
  doi: 10.1039/c2ra20775c
– ident: e_1_2_11_136_1
  doi: 10.1021/nn204688c
– ident: e_1_2_11_50_1
  doi: 10.1039/C7TA01722G
– ident: e_1_2_11_89_1
  doi: 10.1039/C5TA03181H
– ident: e_1_2_11_131_2
  doi: 10.1021/nn302147s
– ident: e_1_2_11_12_1
  doi: 10.1002/advs.201700515
– ident: e_1_2_11_53_1
  doi: 10.1039/c2ee21653a
– ident: e_1_2_11_171_1
  doi: 10.1039/C7TA09633J
– ident: e_1_2_11_177_1
  doi: 10.1039/C1JM13314D
– ident: e_1_2_11_44_1
  doi: 10.1039/c1ee01176f
– ident: e_1_2_11_73_1
  doi: 10.1021/am400958x
– ident: e_1_2_11_27_1
  doi: 10.1002/adma.201101007
– ident: e_1_2_11_22_1
  doi: 10.1016/0043-1354(85)90041-7
– ident: e_1_2_11_234_1
  doi: 10.1021/cm010730l
– ident: e_1_2_11_262_1
  doi: 10.1002/adma.200501905
– ident: e_1_2_11_24_1
  doi: 10.1021/es801463v
– ident: e_1_2_11_209_1
  doi: 10.1039/C6TA07826E
– ident: e_1_2_11_152_1
  doi: 10.1039/C7TA03999A
– ident: e_1_2_11_215_1
  doi: 10.1002/anie.200702046
– ident: e_1_2_11_99_1
  doi: 10.1002/advs.201500195
– ident: e_1_2_11_187_1
  doi: 10.1002/adfm.201603607
– ident: e_1_2_11_4_1
  doi: 10.1002/aenm.201700283
– ident: e_1_2_11_29_2
  doi: 10.1002/anie.201206720
– ident: e_1_2_11_241_1
  doi: 10.1016/j.carbon.2017.05.088
– ident: e_1_2_11_226_1
  doi: 10.1021/am400112m
– ident: e_1_2_11_2_2
  doi: 10.1016/j.apcatb.2017.11.056
– ident: e_1_2_11_119_1
  doi: 10.1038/s41467-018-04190-z
– ident: e_1_2_11_215_3
  doi: 10.1002/anie.200501561
– volume: 27
  start-page: 227
  year: 2001
  ident: e_1_2_11_21_1
  publication-title: Chem. Phys. Carbon
– ident: e_1_2_11_70_2
  doi: 10.1002/aenm.201602078
– ident: e_1_2_11_101_1
  doi: 10.1002/cphc.200800592
– ident: e_1_2_11_112_1
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_11_190_1
  doi: 10.1002/adma.201505131
– ident: e_1_2_11_248_1
  doi: 10.1016/j.matlet.2016.09.045
– ident: e_1_2_11_52_1
  doi: 10.1016/0008-6223(95)00154-6
– ident: e_1_2_11_95_1
  doi: 10.1002/aenm.201902852
– ident: e_1_2_11_169_1
  doi: 10.1021/jacs.7b08133
– ident: e_1_2_11_68_1
  doi: 10.1021/acsnano.6b04019
– ident: e_1_2_11_147_1
  doi: 10.1002/anie.201710888
– ident: e_1_2_11_155_1
  doi: 10.1002/anie.201710852
– ident: e_1_2_11_76_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_11_146_1
  doi: 10.1016/j.carbon.2015.11.069
– ident: e_1_2_11_212_1
  doi: 10.1039/c3ee41638k
– ident: e_1_2_11_139_1
  doi: 10.1002/anie.200907289
– ident: e_1_2_11_131_4
  doi: 10.1039/c0jm03793a
– ident: e_1_2_11_15_1
  doi: 10.1021/acs.est.7b01679
– ident: e_1_2_11_7_1
  doi: 10.1039/C6CS00639F
– ident: e_1_2_11_34_1
  doi: 10.1016/j.jclepro.2017.08.229
– ident: e_1_2_11_167_1
  doi: 10.1002/aenm.201701261
– ident: e_1_2_11_247_1
  doi: 10.1021/acssuschemeng.5b01113
– ident: e_1_2_11_166_1
  doi: 10.1039/C5TA09948J
– ident: e_1_2_11_261_1
  doi: 10.1002/pola.22695
– ident: e_1_2_11_48_1
  doi: 10.1021/es200782s
– ident: e_1_2_11_217_1
  doi: 10.1021/cr0200062
– ident: e_1_2_11_103_1
  doi: 10.1039/C5EE01985K
– ident: e_1_2_11_185_1
  doi: 10.1002/adfm.201705253
– ident: e_1_2_11_254_1
  doi: 10.1039/C6EE02364A
– ident: e_1_2_11_19_1
  doi: 10.1038/nature06599
– ident: e_1_2_11_21_2
  doi: 10.1016/S0008-6223(99)00180-3
– ident: e_1_2_11_68_2
  doi: 10.1002/adma.201504765
– ident: e_1_2_11_179_1
  doi: 10.1016/j.apcatb.2017.06.051
– ident: e_1_2_11_156_1
  doi: 10.1002/smll.201702054
– ident: e_1_2_11_189_1
  doi: 10.1038/ncomms8221
– ident: e_1_2_11_92_1
  doi: 10.1002/smll.201902603
– ident: e_1_2_11_72_1
  doi: 10.1021/nn503220h
– ident: e_1_2_11_77_1
  doi: 10.1002/admt.201900806
– ident: e_1_2_11_224_1
  doi: 10.1039/C3CS60159E
– ident: e_1_2_11_18_1
  doi: 10.1021/jz300929x
– ident: e_1_2_11_43_2
  doi: 10.1039/c1ee01176f
– ident: e_1_2_11_206_1
  doi: 10.1002/cssc.201700492
– ident: e_1_2_11_227_1
  doi: 10.1016/j.apcatb.2017.08.069
– ident: e_1_2_11_56_1
  doi: 10.1038/35104644
– ident: e_1_2_11_89_2
  doi: 10.1021/acs.accounts.5b00482
– ident: e_1_2_11_158_1
  doi: 10.1016/j.carbon.2017.10.084
– ident: e_1_2_11_213_1
  doi: 10.1021/acsnano.5b08040
– ident: e_1_2_11_256_1
  doi: 10.1039/C7TA07488C
– ident: e_1_2_11_120_1
  doi: 10.1002/aenm.201800171
– ident: e_1_2_11_111_1
  doi: 10.1002/aenm.201900343
– ident: e_1_2_11_49_3
  doi: 10.1039/C5TA09202G
– ident: e_1_2_11_60_2
  doi: 10.1116/1.5095413
– ident: e_1_2_11_145_1
  doi: 10.1021/acscatal.7b04086
– ident: e_1_2_11_205_1
  doi: 10.1039/C7GC01681F
– ident: e_1_2_11_186_1
  doi: 10.1002/adma.201700874
– ident: e_1_2_11_214_1
  doi: 10.1002/adma.201302034
– ident: e_1_2_11_233_1
  doi: 10.1021/acs.chemmater.7b00857
– ident: e_1_2_11_245_1
  doi: 10.1002/adfm.201400590
– ident: e_1_2_11_31_1
  doi: 10.1016/j.cej.2018.04.139
– ident: e_1_2_11_252_2
  doi: 10.1021/ja203184k
– ident: e_1_2_11_30_2
  doi: 10.1016/j.carbon.2018.03.044
– ident: e_1_2_11_225_2
  doi: 10.1007/s40843-017-9169-4
– ident: e_1_2_11_26_1
  doi: 10.1021/es071230h
– ident: e_1_2_11_28_2
  doi: 10.1016/j.jhazmat.2005.12.004
– ident: e_1_2_11_33_2
  doi: 10.1021/am301372d
– ident: e_1_2_11_51_1
  doi: 10.1021/ja5003907
– ident: e_1_2_11_70_1
  doi: 10.1039/c1jm12979a
– ident: e_1_2_11_144_1
  doi: 10.1038/nature18284
– ident: e_1_2_11_9_1
  doi: 10.1039/C4EE01075B
– ident: e_1_2_11_46_1
  doi: 10.1016/j.fuel.2003.09.001
– ident: e_1_2_11_198_1
  doi: 10.1039/C7TA07010A
– ident: e_1_2_11_194_1
  doi: 10.1021/acs.chemmater.7b01937
– ident: e_1_2_11_125_1
  doi: 10.1021/acscentsci.5b00149
– ident: e_1_2_11_210_1
  doi: 10.1039/C6TA05872H
– ident: e_1_2_11_231_1
  doi: 10.1002/adma.201303115
– ident: e_1_2_11_59_1
  doi: 10.1039/C6CS00426A
– ident: e_1_2_11_123_1
  doi: 10.1039/c3ta11114h
– ident: e_1_2_11_154_1
  doi: 10.1039/C7TA08354H
– ident: e_1_2_11_258_1
  doi: 10.1038/ncomms3798
– start-page: 29
  year: 2017
  ident: e_1_2_11_37_1
  publication-title: Adv. Mater.
– ident: e_1_2_11_178_1
  doi: 10.1016/j.carbon.2014.07.062
– ident: e_1_2_11_108_1
  doi: 10.1002/aenm.201702384
– ident: e_1_2_11_71_1
  doi: 10.1002/anie.201100637
– ident: e_1_2_11_97_1
  doi: 10.1039/C8TA12540F
– ident: e_1_2_11_90_2
  doi: 10.1002/smtd.201900163
– ident: e_1_2_11_262_3
  doi: 10.1002/aenm.201100548
– ident: e_1_2_11_44_3
  doi: 10.1016/j.micromeso.2016.04.041
– ident: e_1_2_11_255_1
  doi: 10.1021/cr300014x
– ident: e_1_2_11_28_1
  doi: 10.1016/S0008-6223(00)00012-9
– ident: e_1_2_11_23_1
  doi: 10.1016/j.jhazmat.2005.11.077
– ident: e_1_2_11_225_1
  doi: 10.1039/C4TA05451B
– ident: e_1_2_11_244_1
  doi: 10.1002/celc.201500376
– ident: e_1_2_11_33_1
  doi: 10.1039/c3cc43401j
– ident: e_1_2_11_113_1
  doi: 10.1149/2.1391706jes
– ident: e_1_2_11_259_1
  doi: 10.1021/acs.jced.7b00745
– ident: e_1_2_11_13_1
  doi: 10.1038/s41565-018-0216-x
– ident: e_1_2_11_30_1
  doi: 10.1126/sciadv.1500564
– ident: e_1_2_11_249_1
  doi: 10.1002/cssc.201200817
– ident: e_1_2_11_87_1
  doi: 10.1126/science.1212741
– ident: e_1_2_11_132_1
  doi: 10.1016/j.carbon.2008.06.027
– ident: e_1_2_11_195_1
  doi: 10.1002/adfm.201601904
– ident: e_1_2_11_219_1
  doi: 10.1021/acsami.7b17893
– ident: e_1_2_11_41_1
  doi: 10.1002/adfm.201100291
– ident: e_1_2_11_105_1
  doi: 10.1021/nl401995a
– ident: e_1_2_11_197_1
  doi: 10.1016/j.carbon.2018.10.096
– ident: e_1_2_11_223_3
  doi: 10.1016/j.jcis.2017.09.040
– ident: e_1_2_11_201_1
  doi: 10.1021/acsami.7b08797
– ident: e_1_2_11_222_1
  doi: 10.1039/c3ta01659e
– ident: e_1_2_11_3_1
  doi: 10.1002/aenm.201500867
– ident: e_1_2_11_122_1
  doi: 10.1039/C6EE00158K
– ident: e_1_2_11_6_1
  doi: 10.1002/anie.201706777
– ident: e_1_2_11_43_1
  doi: 10.1016/j.carbon.2015.05.017
– start-page: 2
  year: 2017
  ident: e_1_2_11_83_1
  publication-title: Nat. Energy
– ident: e_1_2_11_38_1
  doi: 10.1016/j.rser.2014.07.093
– ident: e_1_2_11_228_1
  doi: 10.1016/j.carbon.2015.11.069
– ident: e_1_2_11_71_2
  doi: 10.1002/anie.201205292
– ident: e_1_2_11_137_1
  doi: 10.1038/nature11115
– ident: e_1_2_11_138_1
  doi: 10.1021/jp806084d
– ident: e_1_2_11_257_1
  doi: 10.1039/C7TA00335H
– ident: e_1_2_11_216_1
  doi: 10.1039/C2CS35308C
– ident: e_1_2_11_2_1
  doi: 10.1016/j.carbon.2017.02.016
– ident: e_1_2_11_91_1
  doi: 10.1002/ijch.201400118
– ident: e_1_2_11_82_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_11_215_4
  doi: 10.1021/cm7024125
– ident: e_1_2_11_127_2
  doi: 10.1021/ja7106178
– ident: e_1_2_11_150_1
  doi: 10.1039/C7TA02415K
– ident: e_1_2_11_237_1
  doi: 10.1039/C5GC02397A
– ident: e_1_2_11_60_3
  doi: 10.1021/nl4038592
– ident: e_1_2_11_100_1
  doi: 10.1021/jp106764h
– ident: e_1_2_11_118_1
  doi: 10.1002/aenm.201802386
– ident: e_1_2_11_159_1
  doi: 10.1038/ncomms15020
– ident: e_1_2_11_34_2
  doi: 10.1016/j.psep.2018.08.012
– ident: e_1_2_11_42_1
  doi: 10.1002/aenm.201502491
– ident: e_1_2_11_75_1
  doi: 10.1016/j.jpowsour.2016.12.008
– ident: e_1_2_11_135_1
  doi: 10.1039/C1CS15060J
– ident: e_1_2_11_200_1
  doi: 10.1016/j.electacta.2017.06.092
– ident: e_1_2_11_199_1
  doi: 10.1039/C7TA08046H
– ident: e_1_2_11_54_1
  doi: 10.1016/j.carbon.2013.09.006
– ident: e_1_2_11_86_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_11_71_3
  doi: 10.1021/acsnano.5b03488
– ident: e_1_2_11_165_1
  doi: 10.1021/acscatal.7b01695
– ident: e_1_2_11_39_1
  doi: 10.1038/nature11893
– ident: e_1_2_11_110_2
  doi: 10.1021/acs.jpcc.7b06457
– ident: e_1_2_11_229_1
  doi: 10.1039/C3EE42551G
– ident: e_1_2_11_161_1
  doi: 10.1016/j.carbon.2014.12.010
– start-page: 29
  year: 2017
  ident: e_1_2_11_176_1
  publication-title: Adv. Mater.
– ident: e_1_2_11_35_1
  doi: 10.1021/acsami.6b01748
– ident: e_1_2_11_58_1
  doi: 10.1002/aenm.201100340
– ident: e_1_2_11_96_1
  doi: 10.1002/aenm.201100691
– ident: e_1_2_11_211_1
  doi: 10.1016/j.nanoen.2015.10.038
– ident: e_1_2_11_222_2
  doi: 10.1016/j.energy.2015.08.033
– ident: e_1_2_11_240_1
  doi: 10.1002/adfm.201504004
– ident: e_1_2_11_20_1
  doi: 10.1016/j.watres.2009.06.009
– ident: e_1_2_11_5_2
  doi: 10.1039/C5CS00670H
– ident: e_1_2_11_215_2
  doi: 10.1002/anie.200461051
– ident: e_1_2_11_142_1
  doi: 10.1039/C4CS00484A
– ident: e_1_2_11_106_1
  doi: 10.1002/adma.201604108
– ident: e_1_2_11_17_1
  doi: 10.1016/j.chemosphere.2013.02.058
– ident: e_1_2_11_181_1
  doi: 10.1039/C7GC01434A
– ident: e_1_2_11_149_1
  doi: 10.1002/cssc.201500063
– ident: e_1_2_11_102_2
  doi: 10.1002/adma.201502303
– ident: e_1_2_11_160_1
  doi: 10.1021/acsnano.7b05869
– ident: e_1_2_11_202_1
  doi: 10.1016/j.nanoen.2017.01.045
– ident: e_1_2_11_65_1
  doi: 10.1038/nnano.2014.6
– ident: e_1_2_11_109_1
  doi: 10.1002/aenm.201602911
– ident: e_1_2_11_131_1
  doi: 10.1039/c3ta13049e
– ident: e_1_2_11_184_1
  doi: 10.1021/cm202554j
– ident: e_1_2_11_218_1
  doi: 10.1039/c0cs00208a
– ident: e_1_2_11_126_1
  doi: 10.1039/C7TA05003H
– ident: e_1_2_11_130_1
  doi: 10.1021/acs.nanolett.7b00533
– ident: e_1_2_11_192_1
  doi: 10.1002/adma.201600979
– ident: e_1_2_11_208_1
  doi: 10.1039/c3ta14281g
– ident: e_1_2_11_80_1
  doi: 10.1039/C9CC01927H
– ident: e_1_2_11_253_1
  doi: 10.1039/C6EE00551A
– ident: e_1_2_11_121_1
  doi: 10.1039/C7TA01108C
– ident: e_1_2_11_243_1
  doi: 10.1039/C6TA08169J
– ident: e_1_2_11_39_3
  doi: 10.1016/j.cej.2017.06.074
– ident: e_1_2_11_242_1
  doi: 10.1021/ie1024003
– ident: e_1_2_11_148_1
  doi: 10.1002/adma.201600012
– ident: e_1_2_11_18_2
  doi: 10.1016/j.apcatb.2015.07.024
– ident: e_1_2_11_250_1
  doi: 10.1016/j.carbon.2018.03.044
– ident: e_1_2_11_218_2
  doi: 10.1021/cm900288x
– ident: e_1_2_11_115_1
  doi: 10.1002/adfm.201700324
– ident: e_1_2_11_78_1
  doi: 10.1002/aenm.201700530
– ident: e_1_2_11_79_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_11_151_1
  doi: 10.1002/anie.201209849
– ident: e_1_2_11_47_1
  doi: 10.1021/jacs.5b11955
– ident: e_1_2_11_69_1
  doi: 10.1038/ncomms10601
– ident: e_1_2_11_67_1
  doi: 10.1039/c3ta00004d
– ident: e_1_2_11_41_3
  doi: 10.1002/adfm.201603937
– ident: e_1_2_11_260_1
  doi: 10.1039/C5TA00867K
– ident: e_1_2_11_164_1
  doi: 10.1039/C7TA08169C
– ident: e_1_2_11_74_1
  doi: 10.1021/nl502238b
– ident: e_1_2_11_90_1
  doi: 10.1002/adfm.201100854
– ident: e_1_2_11_49_2
  doi: 10.1016/j.carbon.2013.09.086
– ident: e_1_2_11_215_5
  doi: 10.1039/B501259G
– ident: e_1_2_11_196_1
  doi: 10.1038/s41467-017-01633-x
– ident: e_1_2_11_262_2
  doi: 10.1021/nl802558y
– ident: e_1_2_11_124_2
  doi: 10.1021/ar200306b
– ident: e_1_2_11_175_1
  doi: 10.1039/C6TA07098A
– ident: e_1_2_11_153_1
  doi: 10.1039/C7TA00335H
– ident: e_1_2_11_221_1
  doi: 10.1126/sciadv.aap9252
– ident: e_1_2_11_252_1
  doi: 10.1021/ja7106146
– ident: e_1_2_11_110_1
  doi: 10.1126/sciadv.aav7412
– ident: e_1_2_11_18_3
  doi: 10.1016/j.cej.2017.04.106
– ident: e_1_2_11_207_1
  doi: 10.1002/aenm.201502518
– ident: e_1_2_11_128_1
  doi: 10.1021/jz201312e
– ident: e_1_2_11_59_2
  doi: 10.1039/C4CS00071D
– ident: e_1_2_11_39_2
  doi: 10.1039/C3EE42918K
– ident: e_1_2_11_265_1
  doi: 10.1016/j.carbon.2017.04.050
– ident: e_1_2_11_102_1
  doi: 10.1016/j.electacta.2016.01.105
– ident: e_1_2_11_117_1
  doi: 10.1002/adma.201700104
– ident: e_1_2_11_230_1
  doi: 10.1002/aenm.201100061
– start-page: 5
  year: 2014
  ident: e_1_2_11_140_1
  publication-title: Nat. Commun.
– ident: e_1_2_11_30_3
  doi: 10.1016/j.apcatb.2017.11.056
– ident: e_1_2_11_60_1
  doi: 10.1039/c3ee41444b
– ident: e_1_2_11_191_1
  doi: 10.1002/anie.201702453
– ident: e_1_2_11_238_1
  doi: 10.1016/j.nanoen.2015.03.013
– ident: e_1_2_11_49_1
  doi: 10.1002/aenm.201600693
– ident: e_1_2_11_40_1
  doi: 10.1126/science.1176731
– ident: e_1_2_11_220_1
  doi: 10.1126/science.aaa8075
– ident: e_1_2_11_1_1
  doi: 10.1039/C7CS00787F
– ident: e_1_2_11_16_1
  doi: 10.1021/es035121o
– ident: e_1_2_11_232_1
  doi: 10.1021/cm960430h
SSID ssj0017734
Score 2.7018955
SecondaryResourceType review_article
Snippet Porous carbon materials have demonstrated exceptional performance in a variety of energy‐ and environment‐related applications. Over the past decades,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbon
carbon capture
Carbon dioxide
Carbon sequestration
electrocatalysis
energy storage
Lithium sulfur batteries
Lithium-ion batteries
Materials science
nanoporous carbon materials
Oxygen reduction reactions
Porous materials
Rechargeable batteries
water treatment
Title Porous Carbons: Structure‐Oriented Design and Versatile Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909265
https://www.proquest.com/docview/2394762545
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQLDDwRhRK5QGJKW3i2E7NVrVEFaKAKJW6RX4uVC3qY2HiE_hGvgQ7adIUCSHBGMm2kvvIPbbvPReASxYYzhXWnlJKeJgZ4gmiQ09p1uRE2j2FcYXCvXvaHeDbIRmWqvgzfojiwM15Rvq_dg7OxayxIg3lyrhKchvQGKKuytwlbDlU9FTwRwVRlF0r08AleAXDnLXRR4316etRaQU1y4A1jTjxHuD5u2aJJi_1xVzU5ds3Gsf_fMw-2F3CUdjK7OcAbOjxIdgpkRQegfhxMp0sZrDNp8Ka6DXsp5Szi6n-fP94cDTJFrTCTpoJAvlYQXcEZ_U90rBVuh0_BoP45rnd9ZbdFzyJrZN7UljoJ3wTGaoRU8hIGfIm4U3jKyWR1GGoKMdhSGUgcGSVqzmJENcMG2ZwFJ6AzfFkrE8BpE27JCXKCGmwbyGRolQRTLViDEtiKsDLpZ_IJTW565AxSjJSZZQ4-SSFfCrgqhj_mpFy_DiymiszWTrnLHHd4G0MsNixAlCqlV9WSVqduFc8nf1l0jnYRm6nnub8VMGm1ZS-sHBmLmpgq9Xp3fVrqel-AQAo8H0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHdkRZc0DilNI4tlNzqyhRWQqIReot8nqhalGXCyc-gW_kS7CzUZAQEhwj2VYyS-bZnnkDcMgCw7nC2ldKCR8zQ3xBdOgrzRqcSLunMK5QuHNN24_4okuKbEJXC5PxQ5QHbs4z0v-1c3B3IH38yRrKlXGl5DaiMUTJLMy5tt6OPr91VzJIBVGUXSzTwKV4Bd2Ct7GOjr_O_xqXPsHmNGRNY068DKJ42yzV5Kk2GYuafPlG5Pivz1mBpRyRes3MhFZhRvfXYHGKp3Ad4tvBcDAZead8KKyVnnj3KevsZKjfX99uHFOyxa1eK00G8Xhfee4Uzqq8p73m1AX5BjzGZw-nbT9vwOBLbP3cl8KiP1E3kaEaMYWMlCFvEN4wdaUkkjoMFeU4DKkMBI6sfjUnEeKaYcMMjsJNqPQHfb0FHm3YJSlRRkiD6xYVKUoVwVQrxrAkpgp-If5E5uzkrklGL8l4lVHi5JOU8qnCUTn-OePl-HHkbqHNJPfPUeIawtswYOFjFVCqll9WSZqtuFM-bf9l0gHMtx86V8nV-fXlDiwgt3FPU4B2oWK1pvcsuhmL_dR-PwB4AfMF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy5oDEKSVxbKfmVlGishQqoFJvkdcLVVu19MKJT-Ab-RLspE0LEkKCYyTbSmbJPNszbwBOWGg4V1j7SinhY2aIL4iOfKVZhRNp9xTGFQo37mi9ha_bpD1TxZ_zQxQHbs4zsv-1c_C-MmdT0lCujKsktwGNIUrmYRHTgLnmDbWHgkAqjOP8XpmGLsMrbE9oGwN09nX-17A0xZqziDULOcka8MnL5pkmz-XRiyjL1288jv_5mnVYHeNRr5ob0AbM6e4mrMywFG5B0uwNeqOhd8EHwtroufeYcc6OBvrj7f3e8SRb1OrVslQQj3eV587grMI72qvOXI9vQyu5fLqo--P2C77E1st9KSz2E4GJDdWIKWSkjHiF8IoJlJJI6ihSlOMoojIUOLba1ZzEiGuGDTM4jnZgodvr6l3waMUuSYkyQhocWEykKFUEU60Yw5KYEvgT6adyzE3uWmR00pxVGaVOPmkhnxKcFuP7OSvHjyMPJspMx945TF07eBsELHgsAcq08ssqabWWNIqnvb9MOoalZi1Jb6_ubvZhGblde5b_cwALVmn60EKbF3GUWe8nqaDxtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Carbons%3A+Structure%E2%80%90Oriented+Design+and+Versatile+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Tian%2C+Wenjie&rft.au=Zhang%2C+Huayang&rft.au=Duan%2C+Xiaoguang&rft.au=Sun%2C+Hongqi&rft.date=2020-04-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=17&rft_id=info:doi/10.1002%2Fadfm.201909265&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201909265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon