Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries
Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standard...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm−2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.
A new type of carbon quantum dots–modified cathode named PEI‐CDots@AB/S for lithium–sulfur (Li–S) batteries is synthesized and reported, which enables the achievement of a real capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at the current density of 8 mA cm−2, leading to a significant performance improvement in Li–S batteries. |
---|---|
AbstractList | Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm−2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.
A new type of carbon quantum dots–modified cathode named PEI‐CDots@AB/S for lithium–sulfur (Li–S) batteries is synthesized and reported, which enables the achievement of a real capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at the current density of 8 mA cm−2, leading to a significant performance improvement in Li–S batteries. Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm−2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current. Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm −2 , the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm −2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li + ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current. |
Author | Zhou, Bin Wang, Xuepeng Jiao, Yu Huang, Jianwen Xiong, Jie Wu, Chunyang Chen, Wei Wang, Yang Yan, Yichao Du, Xinchuan Wang, Chao Lei, Tianyu Xu, Jun Chen, Bo Hu, Yin |
Author_xml | – sequence: 1 givenname: Yin surname: Hu fullname: Hu, Yin organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Wei surname: Chen fullname: Chen, Wei organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Tianyu surname: Lei fullname: Lei, Tianyu organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Bin surname: Zhou fullname: Zhou, Bin organization: Civil Flight University of China – sequence: 5 givenname: Yu surname: Jiao fullname: Jiao, Yu organization: Xichang College – sequence: 6 givenname: Yichao surname: Yan fullname: Yan, Yichao organization: University of Electronic Science and Technology of China – sequence: 7 givenname: Xinchuan surname: Du fullname: Du, Xinchuan organization: University of Electronic Science and Technology of China – sequence: 8 givenname: Jianwen surname: Huang fullname: Huang, Jianwen organization: University of Electronic Science and Technology of China – sequence: 9 givenname: Chunyang surname: Wu fullname: Wu, Chunyang organization: University of Electronic Science and Technology of China – sequence: 10 givenname: Xuepeng surname: Wang fullname: Wang, Xuepeng organization: University of Electronic Science and Technology of China – sequence: 11 givenname: Yang surname: Wang fullname: Wang, Yang organization: University of Electronic Science and Technology of China – sequence: 12 givenname: Bo surname: Chen fullname: Chen, Bo organization: Institute of Microelectronics of Chinese Academy of Sciences – sequence: 13 givenname: Jun surname: Xu fullname: Xu, Jun email: apjunxu@hfut.edu.cn organization: Hefei University of Technology – sequence: 14 givenname: Chao surname: Wang fullname: Wang, Chao email: cwang@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 15 givenname: Jie orcidid: 0000-0003-3881-6948 surname: Xiong fullname: Xiong, Jie email: jiexiong@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BookMark | eNqFkclKBDEQhoMouM3Vc8DzjNmml6O24wLjhnpuMunEiXQnmkWZm-_gxefzSUwzMoIg1qWK5P_qh_q3wbqxRgKwh9EII0QOuDTdiCBcIFKOx2tgC2eYDbOCofXVTMkmGHj_iFKxEiNKt8BHxd3MGngTuQmxg8c2-M-39wvbaKVlA89NkE5xoXm7nLkI2hoPuUmfCaysaWJ6e9FhAZV1cGLm3IiEnumHOayic9IEeCyN7xXXaZt1Xa-A2sCpDnMdu-R4G1sVHTziIZlo6XfBhuKtl4PvvgPuTyZ31dlwenV6Xh1Oh4IRMh7mjBRS4WaMmZA4m0ksCk4oaYgqZYZmeMZoifK8UY0kJS3SKVRTMKKQoDgjnO6A_eXeJ2efo_ShfrTRmWRZE5yXtKQox0nFlirhrPdOqlrowPtLBMd1W2NU9zHUfQz1KoaEjX5hT0533C3-Bsol8KpbufhHXR9OLi9-2C-CjKE0 |
CitedBy_id | crossref_primary_10_1039_D0TA07674K crossref_primary_10_1016_j_matlet_2020_127622 crossref_primary_10_1016_j_jechem_2023_01_038 crossref_primary_10_1039_D1QI01611C crossref_primary_10_1007_s43979_022_00002_y crossref_primary_10_1186_s11671_019_3210_9 crossref_primary_10_1016_j_est_2023_108178 crossref_primary_10_1016_j_apsusc_2020_146079 crossref_primary_10_1016_j_ceramint_2023_01_174 crossref_primary_10_1021_acsanm_1c01372 crossref_primary_10_1016_j_jallcom_2023_171021 crossref_primary_10_1002_adma_201905632 crossref_primary_10_1016_j_compositesb_2022_110232 crossref_primary_10_1016_j_energy_2020_118696 crossref_primary_10_1016_j_est_2024_111118 crossref_primary_10_1002_aenm_202101294 crossref_primary_10_1021_acsaem_0c03247 crossref_primary_10_1016_j_envres_2020_110587 crossref_primary_10_1002_clem_15 crossref_primary_10_1016_j_jechem_2022_08_027 crossref_primary_10_1002_aenm_202201585 crossref_primary_10_1016_j_jechem_2020_11_032 crossref_primary_10_1039_D1NR00077B crossref_primary_10_1016_j_jpcs_2024_112445 crossref_primary_10_1021_acsami_3c16067 crossref_primary_10_1007_s12598_023_02265_5 crossref_primary_10_1016_j_surfin_2025_106101 crossref_primary_10_1039_C9QM00415G crossref_primary_10_1002_adfm_202206113 crossref_primary_10_1039_D1TA06747H crossref_primary_10_1039_C9RA08238G crossref_primary_10_1016_j_cej_2024_148877 crossref_primary_10_1039_C9CC07061C crossref_primary_10_1021_acs_energyfuels_0c01198 crossref_primary_10_1039_D0GC02208J crossref_primary_10_1007_s40820_023_01037_1 crossref_primary_10_1016_j_electacta_2020_136760 crossref_primary_10_1016_j_flatc_2023_100516 crossref_primary_10_1016_j_jpowsour_2019_227336 crossref_primary_10_1002_sus2_42 crossref_primary_10_1002_adma_202006661 crossref_primary_10_1016_j_cej_2025_161970 crossref_primary_10_1039_D0TA08289A crossref_primary_10_1002_eem2_12514 crossref_primary_10_1021_acs_energyfuels_3c03213 crossref_primary_10_1002_advs_202301355 crossref_primary_10_1016_j_molliq_2022_118971 crossref_primary_10_1002_sus2_110 crossref_primary_10_1002_asia_202100765 crossref_primary_10_1021_acsami_9b17458 crossref_primary_10_1155_2022_4949916 crossref_primary_10_1016_j_ensm_2020_05_033 crossref_primary_10_1002_aenm_202002180 crossref_primary_10_1002_er_7162 crossref_primary_10_1007_s12274_023_6178_9 crossref_primary_10_1021_acssuschemeng_3c03565 crossref_primary_10_1021_acsami_0c08984 crossref_primary_10_1016_j_susmat_2021_e00304 crossref_primary_10_20964_2020_04_34 crossref_primary_10_1021_acsami_2c00392 crossref_primary_10_1016_j_apcatb_2020_119846 crossref_primary_10_1016_j_nanoen_2019_104373 crossref_primary_10_1039_D0RA10018H crossref_primary_10_1016_j_carbpol_2022_120500 crossref_primary_10_1021_acsaem_2c02306 crossref_primary_10_1002_cssc_202000648 crossref_primary_10_1016_j_mattod_2021_07_028 crossref_primary_10_1007_s12598_020_01498_y crossref_primary_10_1021_acsami_9b18723 crossref_primary_10_1002_adfm_202106731 crossref_primary_10_1007_s40820_023_01064_y crossref_primary_10_1007_s40820_020_00484_4 crossref_primary_10_1016_j_jpowsour_2022_232269 crossref_primary_10_1002_aenm_201903030 crossref_primary_10_1007_s44246_023_00064_2 crossref_primary_10_1002_er_5405 crossref_primary_10_1002_advs_202000470 crossref_primary_10_1016_j_ensm_2021_05_027 crossref_primary_10_1016_j_jechem_2023_06_030 crossref_primary_10_1021_acsnano_0c10624 crossref_primary_10_1515_revic_2024_0017 crossref_primary_10_1002_adfm_202400262 crossref_primary_10_1016_j_smmf_2024_100052 crossref_primary_10_1021_acscentsci_0c01306 crossref_primary_10_1016_j_cej_2023_143303 crossref_primary_10_1002_adsu_202100152 crossref_primary_10_1016_j_apsusc_2022_152649 crossref_primary_10_1002_adfm_202109462 crossref_primary_10_1088_1742_6596_1707_1_012006 crossref_primary_10_1016_j_jclepro_2023_138258 crossref_primary_10_1002_adfm_202211356 crossref_primary_10_1016_j_carbon_2021_12_038 crossref_primary_10_1016_j_mtsust_2023_100432 crossref_primary_10_3390_nano14080656 crossref_primary_10_1080_1536383X_2021_1945585 crossref_primary_10_1002_smll_202406714 crossref_primary_10_3390_nano14141172 crossref_primary_10_1016_j_ensm_2021_01_020 crossref_primary_10_1016_j_jallcom_2020_156808 crossref_primary_10_1016_j_microc_2024_111105 crossref_primary_10_1002_eom2_12329 crossref_primary_10_1002_smll_202104367 crossref_primary_10_1002_aenm_202000082 crossref_primary_10_1002_est2_500 crossref_primary_10_1016_j_nanoen_2020_105173 crossref_primary_10_1016_j_cej_2022_136826 crossref_primary_10_1039_C9QM00554D crossref_primary_10_1021_acsami_1c21573 crossref_primary_10_1016_j_jpowsour_2020_228152 crossref_primary_10_1039_D4DT00511B |
Cites_doi | 10.1002/aenm.201502459 10.1021/ja062677d 10.1039/C7TC01574G 10.1021/acs.jpcc.6b08171 10.1002/aenm.201702314 10.1016/j.nanoen.2015.04.032 10.1002/aenm.201602347 10.1021/ar300179v 10.1021/nn406628s 10.1016/j.jpowsour.2018.04.015 10.1039/C4CS00269E 10.1002/aenm.201601630 10.1038/nenergy.2016.132 10.1103/PhysRevB.59.1758 10.1002/admi.201700783 10.1039/C7RA07220A 10.1002/aenm.201601843 10.1016/j.ccr.2016.02.017 10.1021/acs.accounts.6b00541 10.1002/adma.201804084 10.1021/acsnano.6b06369 10.1016/j.carbon.2012.02.046 10.1002/aenm.201702348 10.1002/smtd.201700345 10.1038/s41586-018-0109-z 10.1103/PhysRevLett.77.3865 10.1002/aenm.201700260 10.1021/acsnano.7b06061 10.1002/adma.201605160 10.1002/aenm.201702485 10.1016/j.joule.2018.07.022 10.1002/adfm.201800508 10.1149/2.026304jes 10.1038/ncomms6002 10.1002/aenm.201702889 10.1016/j.carbon.2017.06.093 10.1002/smll.201701013 10.1016/j.nantod.2018.02.006 10.1002/anie.201504514 10.1039/C6TC03666J |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201802955 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201802955 AENM201802955 |
Genre | article |
GrantInformation_xml | – fundername: National Key Basic Research Program of China funderid: 2014CB931702 – fundername: Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders funderid: 2014JQ0011 – fundername: Fundamental Research Funds for the Central Universities funderid: ZYGX2016Z004; ZYGX2018J036 – fundername: Sichuan Science and Technology Program funderid: 2018RZ0082 – fundername: National Natural Science Foundation of China funderid: 51722204 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4225-7428ef1d514ce16be1c8a232d2f9e60b1b439077dfde2938161fd842f0c3162a3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:18 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Tue Jul 01 01:43:27 EDT 2025 Wed Jan 22 17:05:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4225-7428ef1d514ce16be1c8a232d2f9e60b1b439077dfde2938161fd842f0c3162a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3881-6948 |
PQID | 2179393071 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2179393071 crossref_citationtrail_10_1002_aenm_201802955 crossref_primary_10_1002_aenm_201802955 wiley_primary_10_1002_aenm_201802955_AENM201802955 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 14, 2019 |
PublicationDateYYYYMMDD | 2019-02-14 |
PublicationDate_xml | – month: 02 year: 2019 text: February 14, 2019 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 15 2017; 7 2018; 28 2017; 4 2013; 46 2018; 389 2015; 54 2016; 10 2017; 29 2013; 160 2016; 120 1996; 77 2012; 50 2016; 4 2018; 19 2017; 50 2016; 6 2018; 8 2014; 5 2016; 1 2018; 2 2018; 557 2017; 11 2015; 44 2017; 13 1999; 59 2018; 30 2016; 320–321 2017; 122 2014; 8 2006; 128 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 7 start-page: 41304 year: 2017 publication-title: RSC Adv. – volume: 8 start-page: 1702348 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1601630 year: 2017 publication-title: Adv. Energy Mater. – volume: 13 start-page: 1701013 year: 2017 publication-title: Small – volume: 1 start-page: 16132 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 1702889 year: 2018 publication-title: Adv. Energy Mater. – volume: 320–321 start-page: 66 year: 2016 publication-title: Coord. Chem. Rev. – volume: 54 start-page: 10539 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 84 year: 2018 publication-title: Nano Today – volume: 29 start-page: 1605160 year: 2017 publication-title: Adv. Mater. – volume: 50 start-page: 2810 year: 2012 publication-title: Carbon – volume: 5 start-page: 6328 year: 2017 publication-title: J. Mater. Chem. C – volume: 8 start-page: 1702314 year: 2018 publication-title: Adv. Energy Mater. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 1700260 year: 2017 publication-title: Adv. Energy Mater. – volume: 50 start-page: 435 year: 2017 publication-title: Acc. Chem. Res. – volume: 4 start-page: 1700783 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 30 start-page: 1804084 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 10554 year: 2016 publication-title: J. Mater. Chem. C – volume: 557 start-page: 409 year: 2018 publication-title: Nature – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 122 start-page: 389 year: 2017 publication-title: Carbon – volume: 8 start-page: 1702485 year: 2018 publication-title: Adv. Energy Mater. – volume: 160 start-page: A553 year: 2013 publication-title: J. Electrochem. Soc. – volume: 128 start-page: 7756 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1700345 year: 2018 publication-title: Small Methods – volume: 6 start-page: 1502459 year: 2016 publication-title: Adv. Energy Mater. – volume: 46 start-page: 1125 year: 2013 publication-title: Acc. Chem. Res. – volume: 44 start-page: 362 year: 2015 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 25604 year: 2016 publication-title: J. Phys. Chem. C – volume: 5 start-page: 5002 year: 2014 publication-title: Nat. Commun. – volume: 15 start-page: 379 year: 2015 publication-title: Nano Energy – volume: 8 start-page: 4522 year: 2014 publication-title: ACS Nano – volume: 11 start-page: 11417 year: 2017 publication-title: ACS Nano – volume: 10 start-page: 10462 year: 2016 publication-title: ACS Nano – volume: 7 start-page: 1602347 year: 2017 publication-title: Adv. Energy Mater. – volume: 389 start-page: 169 year: 2018 publication-title: J. Power Sources – volume: 2 start-page: 2091 year: 2018 publication-title: Joule – volume: 7 start-page: 1601843 year: 2017 publication-title: Adv. Energy Mater. – volume: 28 start-page: 1800508 year: 2018 publication-title: Adv. Funct. Mater. – ident: e_1_2_5_11_1 doi: 10.1002/aenm.201502459 – ident: e_1_2_5_16_1 doi: 10.1021/ja062677d – ident: e_1_2_5_17_1 doi: 10.1039/C7TC01574G – ident: e_1_2_5_15_1 doi: 10.1021/acs.jpcc.6b08171 – ident: e_1_2_5_21_1 doi: 10.1002/aenm.201702314 – ident: e_1_2_5_7_1 doi: 10.1016/j.nanoen.2015.04.032 – ident: e_1_2_5_12_1 doi: 10.1002/aenm.201602347 – ident: e_1_2_5_1_1 doi: 10.1021/ar300179v – ident: e_1_2_5_23_1 doi: 10.1021/nn406628s – ident: e_1_2_5_10_1 doi: 10.1016/j.jpowsour.2018.04.015 – ident: e_1_2_5_18_1 doi: 10.1039/C4CS00269E – ident: e_1_2_5_30_1 doi: 10.1002/aenm.201601630 – ident: e_1_2_5_5_1 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_5_39_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_5_8_1 doi: 10.1002/admi.201700783 – ident: e_1_2_5_26_1 doi: 10.1039/C7RA07220A – ident: e_1_2_5_34_1 doi: 10.1002/aenm.201601843 – ident: e_1_2_5_14_1 doi: 10.1016/j.ccr.2016.02.017 – ident: e_1_2_5_9_1 doi: 10.1021/acs.accounts.6b00541 – ident: e_1_2_5_33_1 doi: 10.1002/adma.201804084 – ident: e_1_2_5_28_1 doi: 10.1021/acsnano.6b06369 – ident: e_1_2_5_22_1 doi: 10.1016/j.carbon.2012.02.046 – ident: e_1_2_5_2_1 doi: 10.1002/aenm.201702348 – ident: e_1_2_5_6_1 doi: 10.1002/smtd.201700345 – ident: e_1_2_5_38_1 doi: 10.1038/s41586-018-0109-z – ident: e_1_2_5_40_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_5_13_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_5_29_1 doi: 10.1021/acsnano.7b06061 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201605160 – ident: e_1_2_5_31_1 doi: 10.1002/aenm.201702485 – ident: e_1_2_5_32_1 doi: 10.1016/j.joule.2018.07.022 – ident: e_1_2_5_3_1 doi: 10.1002/adfm.201800508 – ident: e_1_2_5_36_1 doi: 10.1149/2.026304jes – ident: e_1_2_5_37_1 doi: 10.1038/ncomms6002 – ident: e_1_2_5_20_1 doi: 10.1002/aenm.201702889 – ident: e_1_2_5_25_1 doi: 10.1016/j.carbon.2017.06.093 – ident: e_1_2_5_35_1 doi: 10.1002/smll.201701013 – ident: e_1_2_5_4_1 doi: 10.1016/j.nantod.2018.02.006 – ident: e_1_2_5_27_1 doi: 10.1002/anie.201504514 – ident: e_1_2_5_24_1 doi: 10.1039/C6TC03666J |
SSID | ssj0000491033 |
Score | 2.5689235 |
Snippet | Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carbon dots carbon quantum dots Cathodes chemical absorption Current density Decay rate Density functional theory Electrochemical impedance spectroscopy High current high sulfur loading Industrial applications ion conductivity Ion transport Lithium ions Lithium sulfur batteries Organic chemistry Performance enhancement Polyethyleneimine Quantum dots |
Title | Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201802955 https://www.proquest.com/docview/2179393071 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMetsl3ggPgpygbyAYnDFEicNHGOpSuaEJ2EtondIjuxtUhbirrmwmn_Axeu_Gv8JbwX24mLihhcojaKk9bvE_s9672vCXmlkzwp44kMqizXQaIFvHP5BKKUJKnSWJQQk-CC_uI4PTpLPpxPzkejH17WUruWb8qvW-tK_seqcA7silWy_2DZ_qZwAj6DfeEIFobjrWw8EysJ1vvUQve0V-AMr69d8kK8WFa1Rv-yW_PTwqpqYMFxabLfukzgZVf0h6KvZhcJzDqcNxcmLwCTQA6cgtMhprpjQaFXalA3qLpxUbdX_XNP2kvdrg6MbqfLUHQyty7hQJmKQ_CWTTcNcHVTQt0TO7PFI59VPaQO1QYyGMbaYd172TV9Z5vadQwsnWKBqR-1Qy84CkHK7Wqn8s8ZQSc3XuceltnWWcCoygrVoNQAStzlRgp4U277t2mwT040Qs6swPZF3_4O2WUQicBQujs9XHw86RfyIMSKwrgr5HD_wImDhuzt5o_YdH6GiMaPizrH5vQBuW8jEjo1eD0kI9U8Ivc8ncrH5LsBjVrQKIL28-abQ4x6iFEfMQqIUUCM-ohRoIc6xCgiRi1i1CJGPcRo3VCLGDzRwEV7uJ6Qs_fz09lRYLf0CMqE4cbJEO0qHVXgppcqSqWKSi7Aqa-YzlUaykiCgxxmWaUrBY4ohy7VFU-YDss4SpmIn5KdZtmoZ4TyLOMQ3YhQAiBSKs4U51ykIdxITZJ8TALX10Vp9e5x25XLYruBx-R1f_0Xo_Tyxyv3nekKOxpcFwxnuhxmzGhMWGfOv9ylmM6PF_2357d--h65O7w--2RnvWrVC3CM1_KlRfMX3YW5bA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+Quantum+Dots%E2%80%93Modified+Interfacial+Interactions+and+Ion+Conductivity+for+Enhanced+High+Current+Density+Performance+in+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Hu%2C+Yin&rft.au=Chen%2C+Wei&rft.au=Lei%2C+Tianyu&rft.au=Zhou%2C+Bin&rft.date=2019-02-14&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=7&rft_id=info:doi/10.1002%2Faenm.201802955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201802955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |