Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries

Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standard...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 7
Main Authors Hu, Yin, Chen, Wei, Lei, Tianyu, Zhou, Bin, Jiao, Yu, Yan, Yichao, Du, Xinchuan, Huang, Jianwen, Wu, Chunyang, Wang, Xuepeng, Wang, Yang, Chen, Bo, Xu, Jun, Wang, Chao, Xiong, Jie
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 14.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm−2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current. A new type of carbon quantum dots–modified cathode named PEI‐CDots@AB/S for lithium–sulfur (Li–S) batteries is synthesized and reported, which enables the achievement of a real capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at the current density of 8 mA cm−2, leading to a significant performance improvement in Li–S batteries.
AbstractList Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm−2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current. A new type of carbon quantum dots–modified cathode named PEI‐CDots@AB/S for lithium–sulfur (Li–S) batteries is synthesized and reported, which enables the achievement of a real capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at the current density of 8 mA cm−2, leading to a significant performance improvement in Li–S batteries.
Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm−2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm−2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.
Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm −2 , the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm −2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li + ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.
Author Zhou, Bin
Wang, Xuepeng
Jiao, Yu
Huang, Jianwen
Xiong, Jie
Wu, Chunyang
Chen, Wei
Wang, Yang
Yan, Yichao
Du, Xinchuan
Wang, Chao
Lei, Tianyu
Xu, Jun
Chen, Bo
Hu, Yin
Author_xml – sequence: 1
  givenname: Yin
  surname: Hu
  fullname: Hu, Yin
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Tianyu
  surname: Lei
  fullname: Lei, Tianyu
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Bin
  surname: Zhou
  fullname: Zhou, Bin
  organization: Civil Flight University of China
– sequence: 5
  givenname: Yu
  surname: Jiao
  fullname: Jiao, Yu
  organization: Xichang College
– sequence: 6
  givenname: Yichao
  surname: Yan
  fullname: Yan, Yichao
  organization: University of Electronic Science and Technology of China
– sequence: 7
  givenname: Xinchuan
  surname: Du
  fullname: Du, Xinchuan
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: Jianwen
  surname: Huang
  fullname: Huang, Jianwen
  organization: University of Electronic Science and Technology of China
– sequence: 9
  givenname: Chunyang
  surname: Wu
  fullname: Wu, Chunyang
  organization: University of Electronic Science and Technology of China
– sequence: 10
  givenname: Xuepeng
  surname: Wang
  fullname: Wang, Xuepeng
  organization: University of Electronic Science and Technology of China
– sequence: 11
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: University of Electronic Science and Technology of China
– sequence: 12
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: Institute of Microelectronics of Chinese Academy of Sciences
– sequence: 13
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
  email: apjunxu@hfut.edu.cn
  organization: Hefei University of Technology
– sequence: 14
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  email: cwang@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 15
  givenname: Jie
  orcidid: 0000-0003-3881-6948
  surname: Xiong
  fullname: Xiong, Jie
  email: jiexiong@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BookMark eNqFkclKBDEQhoMouM3Vc8DzjNmml6O24wLjhnpuMunEiXQnmkWZm-_gxefzSUwzMoIg1qWK5P_qh_q3wbqxRgKwh9EII0QOuDTdiCBcIFKOx2tgC2eYDbOCofXVTMkmGHj_iFKxEiNKt8BHxd3MGngTuQmxg8c2-M-39wvbaKVlA89NkE5xoXm7nLkI2hoPuUmfCaysaWJ6e9FhAZV1cGLm3IiEnumHOayic9IEeCyN7xXXaZt1Xa-A2sCpDnMdu-R4G1sVHTziIZlo6XfBhuKtl4PvvgPuTyZ31dlwenV6Xh1Oh4IRMh7mjBRS4WaMmZA4m0ksCk4oaYgqZYZmeMZoifK8UY0kJS3SKVRTMKKQoDgjnO6A_eXeJ2efo_ShfrTRmWRZE5yXtKQox0nFlirhrPdOqlrowPtLBMd1W2NU9zHUfQz1KoaEjX5hT0533C3-Bsol8KpbufhHXR9OLi9-2C-CjKE0
CitedBy_id crossref_primary_10_1039_D0TA07674K
crossref_primary_10_1016_j_matlet_2020_127622
crossref_primary_10_1016_j_jechem_2023_01_038
crossref_primary_10_1039_D1QI01611C
crossref_primary_10_1007_s43979_022_00002_y
crossref_primary_10_1186_s11671_019_3210_9
crossref_primary_10_1016_j_est_2023_108178
crossref_primary_10_1016_j_apsusc_2020_146079
crossref_primary_10_1016_j_ceramint_2023_01_174
crossref_primary_10_1021_acsanm_1c01372
crossref_primary_10_1016_j_jallcom_2023_171021
crossref_primary_10_1002_adma_201905632
crossref_primary_10_1016_j_compositesb_2022_110232
crossref_primary_10_1016_j_energy_2020_118696
crossref_primary_10_1016_j_est_2024_111118
crossref_primary_10_1002_aenm_202101294
crossref_primary_10_1021_acsaem_0c03247
crossref_primary_10_1016_j_envres_2020_110587
crossref_primary_10_1002_clem_15
crossref_primary_10_1016_j_jechem_2022_08_027
crossref_primary_10_1002_aenm_202201585
crossref_primary_10_1016_j_jechem_2020_11_032
crossref_primary_10_1039_D1NR00077B
crossref_primary_10_1016_j_jpcs_2024_112445
crossref_primary_10_1021_acsami_3c16067
crossref_primary_10_1007_s12598_023_02265_5
crossref_primary_10_1016_j_surfin_2025_106101
crossref_primary_10_1039_C9QM00415G
crossref_primary_10_1002_adfm_202206113
crossref_primary_10_1039_D1TA06747H
crossref_primary_10_1039_C9RA08238G
crossref_primary_10_1016_j_cej_2024_148877
crossref_primary_10_1039_C9CC07061C
crossref_primary_10_1021_acs_energyfuels_0c01198
crossref_primary_10_1039_D0GC02208J
crossref_primary_10_1007_s40820_023_01037_1
crossref_primary_10_1016_j_electacta_2020_136760
crossref_primary_10_1016_j_flatc_2023_100516
crossref_primary_10_1016_j_jpowsour_2019_227336
crossref_primary_10_1002_sus2_42
crossref_primary_10_1002_adma_202006661
crossref_primary_10_1016_j_cej_2025_161970
crossref_primary_10_1039_D0TA08289A
crossref_primary_10_1002_eem2_12514
crossref_primary_10_1021_acs_energyfuels_3c03213
crossref_primary_10_1002_advs_202301355
crossref_primary_10_1016_j_molliq_2022_118971
crossref_primary_10_1002_sus2_110
crossref_primary_10_1002_asia_202100765
crossref_primary_10_1021_acsami_9b17458
crossref_primary_10_1155_2022_4949916
crossref_primary_10_1016_j_ensm_2020_05_033
crossref_primary_10_1002_aenm_202002180
crossref_primary_10_1002_er_7162
crossref_primary_10_1007_s12274_023_6178_9
crossref_primary_10_1021_acssuschemeng_3c03565
crossref_primary_10_1021_acsami_0c08984
crossref_primary_10_1016_j_susmat_2021_e00304
crossref_primary_10_20964_2020_04_34
crossref_primary_10_1021_acsami_2c00392
crossref_primary_10_1016_j_apcatb_2020_119846
crossref_primary_10_1016_j_nanoen_2019_104373
crossref_primary_10_1039_D0RA10018H
crossref_primary_10_1016_j_carbpol_2022_120500
crossref_primary_10_1021_acsaem_2c02306
crossref_primary_10_1002_cssc_202000648
crossref_primary_10_1016_j_mattod_2021_07_028
crossref_primary_10_1007_s12598_020_01498_y
crossref_primary_10_1021_acsami_9b18723
crossref_primary_10_1002_adfm_202106731
crossref_primary_10_1007_s40820_023_01064_y
crossref_primary_10_1007_s40820_020_00484_4
crossref_primary_10_1016_j_jpowsour_2022_232269
crossref_primary_10_1002_aenm_201903030
crossref_primary_10_1007_s44246_023_00064_2
crossref_primary_10_1002_er_5405
crossref_primary_10_1002_advs_202000470
crossref_primary_10_1016_j_ensm_2021_05_027
crossref_primary_10_1016_j_jechem_2023_06_030
crossref_primary_10_1021_acsnano_0c10624
crossref_primary_10_1515_revic_2024_0017
crossref_primary_10_1002_adfm_202400262
crossref_primary_10_1016_j_smmf_2024_100052
crossref_primary_10_1021_acscentsci_0c01306
crossref_primary_10_1016_j_cej_2023_143303
crossref_primary_10_1002_adsu_202100152
crossref_primary_10_1016_j_apsusc_2022_152649
crossref_primary_10_1002_adfm_202109462
crossref_primary_10_1088_1742_6596_1707_1_012006
crossref_primary_10_1016_j_jclepro_2023_138258
crossref_primary_10_1002_adfm_202211356
crossref_primary_10_1016_j_carbon_2021_12_038
crossref_primary_10_1016_j_mtsust_2023_100432
crossref_primary_10_3390_nano14080656
crossref_primary_10_1080_1536383X_2021_1945585
crossref_primary_10_1002_smll_202406714
crossref_primary_10_3390_nano14141172
crossref_primary_10_1016_j_ensm_2021_01_020
crossref_primary_10_1016_j_jallcom_2020_156808
crossref_primary_10_1016_j_microc_2024_111105
crossref_primary_10_1002_eom2_12329
crossref_primary_10_1002_smll_202104367
crossref_primary_10_1002_aenm_202000082
crossref_primary_10_1002_est2_500
crossref_primary_10_1016_j_nanoen_2020_105173
crossref_primary_10_1016_j_cej_2022_136826
crossref_primary_10_1039_C9QM00554D
crossref_primary_10_1021_acsami_1c21573
crossref_primary_10_1016_j_jpowsour_2020_228152
crossref_primary_10_1039_D4DT00511B
Cites_doi 10.1002/aenm.201502459
10.1021/ja062677d
10.1039/C7TC01574G
10.1021/acs.jpcc.6b08171
10.1002/aenm.201702314
10.1016/j.nanoen.2015.04.032
10.1002/aenm.201602347
10.1021/ar300179v
10.1021/nn406628s
10.1016/j.jpowsour.2018.04.015
10.1039/C4CS00269E
10.1002/aenm.201601630
10.1038/nenergy.2016.132
10.1103/PhysRevB.59.1758
10.1002/admi.201700783
10.1039/C7RA07220A
10.1002/aenm.201601843
10.1016/j.ccr.2016.02.017
10.1021/acs.accounts.6b00541
10.1002/adma.201804084
10.1021/acsnano.6b06369
10.1016/j.carbon.2012.02.046
10.1002/aenm.201702348
10.1002/smtd.201700345
10.1038/s41586-018-0109-z
10.1103/PhysRevLett.77.3865
10.1002/aenm.201700260
10.1021/acsnano.7b06061
10.1002/adma.201605160
10.1002/aenm.201702485
10.1016/j.joule.2018.07.022
10.1002/adfm.201800508
10.1149/2.026304jes
10.1038/ncomms6002
10.1002/aenm.201702889
10.1016/j.carbon.2017.06.093
10.1002/smll.201701013
10.1016/j.nantod.2018.02.006
10.1002/anie.201504514
10.1039/C6TC03666J
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201802955
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201802955
AENM201802955
Genre article
GrantInformation_xml – fundername: National Key Basic Research Program of China
  funderid: 2014CB931702
– fundername: Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders
  funderid: 2014JQ0011
– fundername: Fundamental Research Funds for the Central Universities
  funderid: ZYGX2016Z004; ZYGX2018J036
– fundername: Sichuan Science and Technology Program
  funderid: 2018RZ0082
– fundername: National Natural Science Foundation of China
  funderid: 51722204
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4225-7428ef1d514ce16be1c8a232d2f9e60b1b439077dfde2938161fd842f0c3162a3
ISSN 1614-6832
IngestDate Fri Jul 25 12:18:18 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Tue Jul 01 01:43:27 EDT 2025
Wed Jan 22 17:05:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4225-7428ef1d514ce16be1c8a232d2f9e60b1b439077dfde2938161fd842f0c3162a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3881-6948
PQID 2179393071
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2179393071
crossref_citationtrail_10_1002_aenm_201802955
crossref_primary_10_1002_aenm_201802955
wiley_primary_10_1002_aenm_201802955_AENM201802955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 14, 2019
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: February 14, 2019
  day: 14
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 15
2017; 7
2018; 28
2017; 4
2013; 46
2018; 389
2015; 54
2016; 10
2017; 29
2013; 160
2016; 120
1996; 77
2012; 50
2016; 4
2018; 19
2017; 50
2016; 6
2018; 8
2014; 5
2016; 1
2018; 2
2018; 557
2017; 11
2015; 44
2017; 13
1999; 59
2018; 30
2016; 320–321
2017; 122
2014; 8
2006; 128
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 7
  start-page: 41304
  year: 2017
  publication-title: RSC Adv.
– volume: 8
  start-page: 1702348
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1601630
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 1701013
  year: 2017
  publication-title: Small
– volume: 1
  start-page: 16132
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 1702889
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 320–321
  start-page: 66
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 54
  start-page: 10539
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 84
  year: 2018
  publication-title: Nano Today
– volume: 29
  start-page: 1605160
  year: 2017
  publication-title: Adv. Mater.
– volume: 50
  start-page: 2810
  year: 2012
  publication-title: Carbon
– volume: 5
  start-page: 6328
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 1702314
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 1700260
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 435
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 1700783
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 30
  start-page: 1804084
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 10554
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 557
  start-page: 409
  year: 2018
  publication-title: Nature
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 122
  start-page: 389
  year: 2017
  publication-title: Carbon
– volume: 8
  start-page: 1702485
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 160
  start-page: A553
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 128
  start-page: 7756
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1700345
  year: 2018
  publication-title: Small Methods
– volume: 6
  start-page: 1502459
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 1125
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 44
  start-page: 362
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 25604
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 5002
  year: 2014
  publication-title: Nat. Commun.
– volume: 15
  start-page: 379
  year: 2015
  publication-title: Nano Energy
– volume: 8
  start-page: 4522
  year: 2014
  publication-title: ACS Nano
– volume: 11
  start-page: 11417
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 10462
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 1602347
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 389
  start-page: 169
  year: 2018
  publication-title: J. Power Sources
– volume: 2
  start-page: 2091
  year: 2018
  publication-title: Joule
– volume: 7
  start-page: 1601843
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 1800508
  year: 2018
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_5_11_1
  doi: 10.1002/aenm.201502459
– ident: e_1_2_5_16_1
  doi: 10.1021/ja062677d
– ident: e_1_2_5_17_1
  doi: 10.1039/C7TC01574G
– ident: e_1_2_5_15_1
  doi: 10.1021/acs.jpcc.6b08171
– ident: e_1_2_5_21_1
  doi: 10.1002/aenm.201702314
– ident: e_1_2_5_7_1
  doi: 10.1016/j.nanoen.2015.04.032
– ident: e_1_2_5_12_1
  doi: 10.1002/aenm.201602347
– ident: e_1_2_5_1_1
  doi: 10.1021/ar300179v
– ident: e_1_2_5_23_1
  doi: 10.1021/nn406628s
– ident: e_1_2_5_10_1
  doi: 10.1016/j.jpowsour.2018.04.015
– ident: e_1_2_5_18_1
  doi: 10.1039/C4CS00269E
– ident: e_1_2_5_30_1
  doi: 10.1002/aenm.201601630
– ident: e_1_2_5_5_1
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_5_39_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_5_8_1
  doi: 10.1002/admi.201700783
– ident: e_1_2_5_26_1
  doi: 10.1039/C7RA07220A
– ident: e_1_2_5_34_1
  doi: 10.1002/aenm.201601843
– ident: e_1_2_5_14_1
  doi: 10.1016/j.ccr.2016.02.017
– ident: e_1_2_5_9_1
  doi: 10.1021/acs.accounts.6b00541
– ident: e_1_2_5_33_1
  doi: 10.1002/adma.201804084
– ident: e_1_2_5_28_1
  doi: 10.1021/acsnano.6b06369
– ident: e_1_2_5_22_1
  doi: 10.1016/j.carbon.2012.02.046
– ident: e_1_2_5_2_1
  doi: 10.1002/aenm.201702348
– ident: e_1_2_5_6_1
  doi: 10.1002/smtd.201700345
– ident: e_1_2_5_38_1
  doi: 10.1038/s41586-018-0109-z
– ident: e_1_2_5_40_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_5_13_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_5_29_1
  doi: 10.1021/acsnano.7b06061
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201605160
– ident: e_1_2_5_31_1
  doi: 10.1002/aenm.201702485
– ident: e_1_2_5_32_1
  doi: 10.1016/j.joule.2018.07.022
– ident: e_1_2_5_3_1
  doi: 10.1002/adfm.201800508
– ident: e_1_2_5_36_1
  doi: 10.1149/2.026304jes
– ident: e_1_2_5_37_1
  doi: 10.1038/ncomms6002
– ident: e_1_2_5_20_1
  doi: 10.1002/aenm.201702889
– ident: e_1_2_5_25_1
  doi: 10.1016/j.carbon.2017.06.093
– ident: e_1_2_5_35_1
  doi: 10.1002/smll.201701013
– ident: e_1_2_5_4_1
  doi: 10.1016/j.nantod.2018.02.006
– ident: e_1_2_5_27_1
  doi: 10.1002/anie.201504514
– ident: e_1_2_5_24_1
  doi: 10.1039/C6TC03666J
SSID ssj0000491033
Score 2.5689235
Snippet Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbon dots
carbon quantum dots
Cathodes
chemical absorption
Current density
Decay rate
Density functional theory
Electrochemical impedance spectroscopy
High current
high sulfur loading
Industrial applications
ion conductivity
Ion transport
Lithium ions
Lithium sulfur batteries
Organic chemistry
Performance enhancement
Polyethyleneimine
Quantum dots
Title Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201802955
https://www.proquest.com/docview/2179393071
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMetsl3ggPgpygbyAYnDFEicNHGOpSuaEJ2EtondIjuxtUhbirrmwmn_Axeu_Gv8JbwX24mLihhcojaKk9bvE_s9672vCXmlkzwp44kMqizXQaIFvHP5BKKUJKnSWJQQk-CC_uI4PTpLPpxPzkejH17WUruWb8qvW-tK_seqcA7silWy_2DZ_qZwAj6DfeEIFobjrWw8EysJ1vvUQve0V-AMr69d8kK8WFa1Rv-yW_PTwqpqYMFxabLfukzgZVf0h6KvZhcJzDqcNxcmLwCTQA6cgtMhprpjQaFXalA3qLpxUbdX_XNP2kvdrg6MbqfLUHQyty7hQJmKQ_CWTTcNcHVTQt0TO7PFI59VPaQO1QYyGMbaYd172TV9Z5vadQwsnWKBqR-1Qy84CkHK7Wqn8s8ZQSc3XuceltnWWcCoygrVoNQAStzlRgp4U277t2mwT040Qs6swPZF3_4O2WUQicBQujs9XHw86RfyIMSKwrgr5HD_wImDhuzt5o_YdH6GiMaPizrH5vQBuW8jEjo1eD0kI9U8Ivc8ncrH5LsBjVrQKIL28-abQ4x6iFEfMQqIUUCM-ohRoIc6xCgiRi1i1CJGPcRo3VCLGDzRwEV7uJ6Qs_fz09lRYLf0CMqE4cbJEO0qHVXgppcqSqWKSi7Aqa-YzlUaykiCgxxmWaUrBY4ohy7VFU-YDss4SpmIn5KdZtmoZ4TyLOMQ3YhQAiBSKs4U51ykIdxITZJ8TALX10Vp9e5x25XLYruBx-R1f_0Xo_Tyxyv3nekKOxpcFwxnuhxmzGhMWGfOv9ylmM6PF_2357d--h65O7w--2RnvWrVC3CM1_KlRfMX3YW5bA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+Quantum+Dots%E2%80%93Modified+Interfacial+Interactions+and+Ion+Conductivity+for+Enhanced+High+Current+Density+Performance+in+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Hu%2C+Yin&rft.au=Chen%2C+Wei&rft.au=Lei%2C+Tianyu&rft.au=Zhou%2C+Bin&rft.date=2019-02-14&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=7&rft_id=info:doi/10.1002%2Faenm.201802955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201802955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon