Solid‐State Prelithiation Enables High‐Performance Li‐Al‐H Anode for Solid‐State Batteries

Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 12
Main Authors Pang, Yuepeng, Wang, Xitong, Shi, Xinxin, Xu, Fen, Sun, Lixian, Yang, Junhe, Zheng, Shiyou
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g−1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g−1 at 1 A g−1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior. Solid‐state prelithiation of LiAlH4 through a short‐circuited electrochemical reaction leads to a uniform distribution of Al nanograins in an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells due to the kinetic enhancement. This strategy can also be applied to other Li‐poor electrode materials for further improvement.
AbstractList Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g−1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g−1 at 1 A g−1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g−1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g−1 at 1 A g−1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior. Solid‐state prelithiation of LiAlH4 through a short‐circuited electrochemical reaction leads to a uniform distribution of Al nanograins in an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells due to the kinetic enhancement. This strategy can also be applied to other Li‐poor electrode materials for further improvement.
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li 3 AlH 6 ‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH 4 and Li with the help of fast electron and Li‐ion conductors (C and P6 3 mc LiBH 4 ). This nanocomposite consists of dispersive Al nanograins and an amorphous Li 3 AlH 6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g −1 ), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g −1 at 1 A g −1 ) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO 2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li 3 AlH 6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.
Author Sun, Lixian
Shi, Xinxin
Yang, Junhe
Pang, Yuepeng
Xu, Fen
Zheng, Shiyou
Wang, Xitong
Author_xml – sequence: 1
  givenname: Yuepeng
  surname: Pang
  fullname: Pang, Yuepeng
  organization: University of Shanghai for Science and Technology
– sequence: 2
  givenname: Xitong
  surname: Wang
  fullname: Wang, Xitong
  organization: University of Shanghai for Science and Technology
– sequence: 3
  givenname: Xinxin
  surname: Shi
  fullname: Shi, Xinxin
  organization: University of Shanghai for Science and Technology
– sequence: 4
  givenname: Fen
  surname: Xu
  fullname: Xu, Fen
  organization: Guilin University of Electronic Technology
– sequence: 5
  givenname: Lixian
  surname: Sun
  fullname: Sun, Lixian
  organization: Guilin University of Electronic Technology
– sequence: 6
  givenname: Junhe
  surname: Yang
  fullname: Yang, Junhe
  organization: University of Shanghai for Science and Technology
– sequence: 7
  givenname: Shiyou
  orcidid: 0000-0002-6614-9567
  surname: Zheng
  fullname: Zheng, Shiyou
  email: syzheng@usst.edu.cn
  organization: University of Shanghai for Science and Technology
BookMark eNqFkE1LAzEQhoMoWGuvnhc8b83XfuRYS7VC1UL1HLLZWZuy3a1JivTmT_A3-ktMrVQUxDnMDDPvMwPvCTps2gYQOiO4TzCmFwqaZZ9iIjDNRHKAOiQlPE5zjg_3PaPHqOfcAofggmDGOqictbUp31_fZl55iKYWauPnRnnTNtGoUUUNLhqbp3mQTMFWrV2qRkM0MWEwqEMaR4OmLSEKq-jnsUvlPVgD7hQdVap20PuqXfR4NXoYjuPJ_fXNcDCJNac0iZlOhShURkRKAXhSsSIhCrjOS5xwlqhcCU2KKgOWJRURXJealhkpONZVKgjrovPd3ZVtn9fgvFy0a9uEl5KynJFchAiq_k6lbeuchUqurFkqu5EEy62Zcmum3JsZAP4L0MZ_OuStMvXfmNhhL6aGzT9P5GB0d_vNfgCkK5BI
CitedBy_id crossref_primary_10_1002_adfm_202410948
crossref_primary_10_1016_j_jechem_2024_06_039
crossref_primary_10_1016_j_mtnano_2020_100079
crossref_primary_10_20964_2020_08_100
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1007_s40843_021_1740_7
crossref_primary_10_1016_j_jallcom_2023_170177
crossref_primary_10_1002_celc_202001414
crossref_primary_10_1016_j_jechem_2024_11_026
crossref_primary_10_1039_D0CC03099F
crossref_primary_10_1016_j_jpowsour_2024_234118
crossref_primary_10_1016_j_nanoen_2020_105407
crossref_primary_10_7498_aps_69_20201554
crossref_primary_10_1002_advs_202100899
crossref_primary_10_1016_j_ccr_2024_215954
crossref_primary_10_1007_s41918_020_00092_1
crossref_primary_10_1002_aenm_202300172
crossref_primary_10_1002_smll_202102894
crossref_primary_10_1016_j_ensm_2022_03_004
crossref_primary_10_1021_acsmaterialslett_3c00036
crossref_primary_10_1039_D2TA03905B
crossref_primary_10_1007_s12598_024_02710_z
crossref_primary_10_1016_j_mtnano_2022_100194
crossref_primary_10_1039_D1QI00298H
crossref_primary_10_1039_D0SC03121F
crossref_primary_10_1002_adfm_202314822
crossref_primary_10_1002_aenm_202101565
crossref_primary_10_3389_fmats_2020_00071
crossref_primary_10_3390_batteries9050269
crossref_primary_10_1002_smll_202207210
crossref_primary_10_1002_smm2_1205
crossref_primary_10_3390_nano11020538
crossref_primary_10_1002_eem2_12527
Cites_doi 10.1038/s41467-019-09061-9
10.1021/acsnano.8b01033
10.1021/acsomega.7b00143
10.1038/natrevmats.2016.103
10.1002/adma.200901710
10.1002/aenm.201601066
10.1038/nmat2288
10.1039/c0ee00699h
10.1016/j.electacta.2017.10.024
10.1002/adma.201606349
10.1002/adma.200600673
10.1002/aenm.201900807
10.1021/acsenergylett.7b00175
10.1021/nn404601h
10.1002/anie.201203910
10.1016/j.electacta.2017.09.074
10.1016/j.chempr.2018.01.003
10.1038/nmat3077
10.1002/adfm.201402538
10.1126/science.1212741
10.1039/c3cc43987a
10.1039/C5TA02545A
10.1021/acsami.9b01326
10.1016/j.ensm.2019.01.014
10.1039/C5TA06549F
10.1021/ja807392k
10.1038/35104644
10.1021/acsami.6b11314
10.1149/2.0761706jes
10.1039/C4NR03444A
10.1016/j.jpowsour.2013.03.073
10.1002/adfm.201809219
10.1016/j.elecom.2007.02.008
10.1039/C9NR03445E
10.1002/0471716243
10.1002/smll.201502788
10.1016/j.jallcom.2013.04.001
10.1007/s00339-016-9674-x
10.1039/C3DT52313F
10.1016/j.jallcom.2017.11.193
10.1002/anie.201811955
10.1002/celc.201402440
10.1002/aenm.201502237
10.1016/j.jpowsour.2012.10.079
10.1149/1.2133112
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902795
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201902795
AENM201902795
Genre article
GrantInformation_xml – fundername: Scientific Research Innovation Plan of Shanghai Education Commission
  funderid: 2019‐01‐07‐00‐07‐E00015
– fundername: Shanghai Outstanding Academic Leaders Plan
– fundername: Program of Shanghai Subject Chief Scientist
  funderid: 17XD1403000
– fundername: National Natural Science Foundation of China
  funderid: 51671135; 51971146; 51971147
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4225-3c699ba71962ee45f3b51ae4c8d05435a8a9c1bf7e375f194cdc2d71b40cf6913
ISSN 1614-6832
IngestDate Fri Jul 25 12:13:43 EDT 2025
Tue Jul 01 01:43:33 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 22 16:36:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4225-3c699ba71962ee45f3b51ae4c8d05435a8a9c1bf7e375f194cdc2d71b40cf6913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6614-9567
PQID 2383189999
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2383189999
crossref_primary_10_1002_aenm_201902795
crossref_citationtrail_10_1002_aenm_201902795
wiley_primary_10_1002_aenm_201902795_AENM201902795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2011; 334
2017; 7
2019; 9
2017; 2
2009; 21
2015; 3
2013; 49
2019; 11
2019; 10
2013; 226
2019; 58
2016; 122
2008; 7
2006; 18
2019; 18
2011; 10
2005
2017; 29
2017; 253
2009; 131
2011; 4
2013; 7
1977; 124
2017; 257
2017; 9
2016; 12
2014; 43
2012; 51
2016; 6
2015; 25
2018; 4
2018; 735
2013; 239
2007; 9
2013; 575
2019; 29
2017; 164
2018; 12
2014; 6
2001; 414
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 12
  start-page: 3816
  year: 2018
  publication-title: ACS Nano
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 25
  start-page: 184
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1359
  year: 2016
  publication-title: Small
– volume: 10
  start-page: 710
  year: 2011
  publication-title: Nat. Mater.
– year: 2005
– volume: 49
  start-page: 7174
  year: 2013
  publication-title: Chem. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 226
  start-page: 61
  year: 2013
  publication-title: J. Power Sources
– volume: 2
  start-page: 877
  year: 2015
  publication-title: ChemElectroChem
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 1081
  year: 2019
  publication-title: Nat. Commun.
– volume: 43
  start-page: 1806
  year: 2014
  publication-title: Dalton Trans.
– volume: 122
  start-page: 135
  year: 2016
  publication-title: Appl. Phys. A
– volume: 735
  start-page: 833
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 1486
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 257
  start-page: 321
  year: 2017
  publication-title: Electrochim. Acta
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 18
  start-page: 423
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2682
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 239
  start-page: 466
  year: 2013
  publication-title: J. Power Sources
– volume: 2
  start-page: 1956
  year: 2017
  publication-title: ACS Omega
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 972
  year: 2018
  publication-title: Chem
– volume: 7
  start-page: 916
  year: 2008
  publication-title: Nat. Mater.
– volume: 21
  start-page: 4593
  year: 2009
  publication-title: Adv. Mater.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 2
  start-page: 1385
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 131
  start-page: 894
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2436
  year: 2006
  publication-title: Adv. Mater.
– volume: 58
  start-page: 1094
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 575
  start-page: 246
  year: 2013
  publication-title: J. Alloys Compd.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 124
  start-page: 1569
  year: 1977
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 2261
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 253
  start-page: 218
  year: 2017
  publication-title: Electrochim. Acta
– ident: e_1_2_7_41_1
  doi: 10.1038/s41467-019-09061-9
– ident: e_1_2_7_13_1
  doi: 10.1021/acsnano.8b01033
– ident: e_1_2_7_25_1
  doi: 10.1021/acsomega.7b00143
– ident: e_1_2_7_26_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.200901710
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.201601066
– ident: e_1_2_7_18_1
  doi: 10.1038/nmat2288
– ident: e_1_2_7_6_1
  doi: 10.1039/c0ee00699h
– ident: e_1_2_7_19_1
  doi: 10.1016/j.electacta.2017.10.024
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201606349
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.200600673
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.201900807
– ident: e_1_2_7_5_1
  doi: 10.1021/acsenergylett.7b00175
– ident: e_1_2_7_28_1
  doi: 10.1021/nn404601h
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201203910
– ident: e_1_2_7_22_1
  doi: 10.1016/j.electacta.2017.09.074
– ident: e_1_2_7_10_1
  doi: 10.1016/j.chempr.2018.01.003
– ident: e_1_2_7_30_1
  doi: 10.1038/nmat3077
– ident: e_1_2_7_36_1
  doi: 10.1002/adfm.201402538
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_15_1
  doi: 10.1039/c3cc43987a
– ident: e_1_2_7_14_1
  doi: 10.1039/C5TA02545A
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.9b01326
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ensm.2019.01.014
– ident: e_1_2_7_37_1
  doi: 10.1039/C5TA06549F
– ident: e_1_2_7_35_1
  doi: 10.1021/ja807392k
– ident: e_1_2_7_1_1
  doi: 10.1038/35104644
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.6b11314
– ident: e_1_2_7_20_1
  doi: 10.1149/2.0761706jes
– ident: e_1_2_7_16_1
  doi: 10.1039/C4NR03444A
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jpowsour.2013.03.073
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.201809219
– ident: e_1_2_7_42_1
  doi: 10.1016/j.elecom.2007.02.008
– ident: e_1_2_7_11_1
  doi: 10.1039/C9NR03445E
– ident: e_1_2_7_34_1
  doi: 10.1002/0471716243
– ident: e_1_2_7_9_1
  doi: 10.1002/smll.201502788
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jallcom.2013.04.001
– ident: e_1_2_7_12_1
  doi: 10.1007/s00339-016-9674-x
– ident: e_1_2_7_29_1
  doi: 10.1039/C3DT52313F
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jallcom.2017.11.193
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201811955
– ident: e_1_2_7_21_1
  doi: 10.1002/celc.201402440
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.201502237
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jpowsour.2012.10.079
– ident: e_1_2_7_33_1
  doi: 10.1149/1.2133112
SSID ssj0000491033
Score 2.4509573
Snippet Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms borohydride electrolytes
Conductors
Cycles
Dispersion
Electrochemical analysis
Electrode materials
lithium alanates
Lithium aluminum hydrides
Nanocomposites
Reaction kinetics
solid‐state batteries
solid‐state prelithiation
Stability
Title Solid‐State Prelithiation Enables High‐Performance Li‐Al‐H Anode for Solid‐State Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902795
https://www.proquest.com/docview/2383189999
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c5NIeSp_UTVL2UOghqNVzVzqKxsUUOxScgHsS-1JrMHJpbCg95SfkR-SX9Zd09qGVRNNXLkKM1hLe-TQ7M5r5FqGXRDBCBUQnTGUkSHMlg4LkOolDZaQKKhTX-Y75KZmep--X2XI0uu5VLe22_LX4fmNfyW20CjLQq-6S_Q_N-puCAM5Bv3AEDcPxn3S82KzhmW25gvEbdU0FeNaf7YwfT0xr1IUp5_ADP_SaBWYrLy7X_nR6XDYbafnAb3qIZeVs6w9bEtu2nEDZfkLwhe0kdJ-prGH5uNM7737qcvlWvATj0kkXZrdhEDbfVh7Ay51xtl37mktWQGTqq7WcfQVvICC5S2mqvsyyNnmjHPbBF_fWZ796_WL8LZksU41mGABHJ6Z2_84hy7Yfmf15rCUFnpzO_fU7aD-GYASs6X55Mp8tfC4PoqwoTEwvR_v_Wn7QMH4zfMjQ_-mCmn5oZHybswfovgtKcGkR9hCNVPMI3etRVT5G0sDgx-WVAQAeoAw7lGGNMhjSwxeerUBQruEwxQZTGC7h4c08mp6g83eTs7fTwO3QEYgUFoIgEaQoOKNgxmOl0qxOeBYxlYpcQiiQZCxnhYh4TVVCszoqUiFFLGnE01DUpIiSp2iv2TTqGcIyrPWuL1TVok45k5xrXiGSq4gJnSsdo6Cdt0o4-nq9i8q6ssTbcaXnufLzPEav_PgvlrjltyMPWzVU7uW-qMCThdUOoqdijGKjmr_cpRpA5fltfnSA7nbvzCHa237dqSNwebf8hUPcT1XHo_g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid%E2%80%90State+Prelithiation+Enables+High%E2%80%90Performance+Li%E2%80%90Al%E2%80%90H+Anode+for+Solid%E2%80%90State+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Pang%2C+Yuepeng&rft.au=Wang%2C+Xitong&rft.au=Shi%2C+Xinxin&rft.au=Xu%2C+Fen&rft.date=2020-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902795&rft.externalDBID=10.1002%252Faenm.201902795&rft.externalDocID=AENM201902795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon