Solid‐State Prelithiation Enables High‐Performance Li‐Al‐H Anode for Solid‐State Batteries
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiati...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g−1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g−1 at 1 A g−1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.
Solid‐state prelithiation of LiAlH4 through a short‐circuited electrochemical reaction leads to a uniform distribution of Al nanograins in an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells due to the kinetic enhancement. This strategy can also be applied to other Li‐poor electrode materials for further improvement. |
---|---|
AbstractList | Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g−1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g−1 at 1 A g−1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior. Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g−1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g−1 at 1 A g−1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior. Solid‐state prelithiation of LiAlH4 through a short‐circuited electrochemical reaction leads to a uniform distribution of Al nanograins in an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells due to the kinetic enhancement. This strategy can also be applied to other Li‐poor electrode materials for further improvement. Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li 3 AlH 6 ‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH 4 and Li with the help of fast electron and Li‐ion conductors (C and P6 3 mc LiBH 4 ). This nanocomposite consists of dispersive Al nanograins and an amorphous Li 3 AlH 6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g −1 ), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g −1 at 1 A g −1 ) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO 2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li 3 AlH 6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior. |
Author | Sun, Lixian Shi, Xinxin Yang, Junhe Pang, Yuepeng Xu, Fen Zheng, Shiyou Wang, Xitong |
Author_xml | – sequence: 1 givenname: Yuepeng surname: Pang fullname: Pang, Yuepeng organization: University of Shanghai for Science and Technology – sequence: 2 givenname: Xitong surname: Wang fullname: Wang, Xitong organization: University of Shanghai for Science and Technology – sequence: 3 givenname: Xinxin surname: Shi fullname: Shi, Xinxin organization: University of Shanghai for Science and Technology – sequence: 4 givenname: Fen surname: Xu fullname: Xu, Fen organization: Guilin University of Electronic Technology – sequence: 5 givenname: Lixian surname: Sun fullname: Sun, Lixian organization: Guilin University of Electronic Technology – sequence: 6 givenname: Junhe surname: Yang fullname: Yang, Junhe organization: University of Shanghai for Science and Technology – sequence: 7 givenname: Shiyou orcidid: 0000-0002-6614-9567 surname: Zheng fullname: Zheng, Shiyou email: syzheng@usst.edu.cn organization: University of Shanghai for Science and Technology |
BookMark | eNqFkE1LAzEQhoMoWGuvnhc8b83XfuRYS7VC1UL1HLLZWZuy3a1JivTmT_A3-ktMrVQUxDnMDDPvMwPvCTps2gYQOiO4TzCmFwqaZZ9iIjDNRHKAOiQlPE5zjg_3PaPHqOfcAofggmDGOqictbUp31_fZl55iKYWauPnRnnTNtGoUUUNLhqbp3mQTMFWrV2qRkM0MWEwqEMaR4OmLSEKq-jnsUvlPVgD7hQdVap20PuqXfR4NXoYjuPJ_fXNcDCJNac0iZlOhShURkRKAXhSsSIhCrjOS5xwlqhcCU2KKgOWJRURXJealhkpONZVKgjrovPd3ZVtn9fgvFy0a9uEl5KynJFchAiq_k6lbeuchUqurFkqu5EEy62Zcmum3JsZAP4L0MZ_OuStMvXfmNhhL6aGzT9P5GB0d_vNfgCkK5BI |
CitedBy_id | crossref_primary_10_1002_adfm_202410948 crossref_primary_10_1016_j_jechem_2024_06_039 crossref_primary_10_1016_j_mtnano_2020_100079 crossref_primary_10_20964_2020_08_100 crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1007_s40843_021_1740_7 crossref_primary_10_1016_j_jallcom_2023_170177 crossref_primary_10_1002_celc_202001414 crossref_primary_10_1016_j_jechem_2024_11_026 crossref_primary_10_1039_D0CC03099F crossref_primary_10_1016_j_jpowsour_2024_234118 crossref_primary_10_1016_j_nanoen_2020_105407 crossref_primary_10_7498_aps_69_20201554 crossref_primary_10_1002_advs_202100899 crossref_primary_10_1016_j_ccr_2024_215954 crossref_primary_10_1007_s41918_020_00092_1 crossref_primary_10_1002_aenm_202300172 crossref_primary_10_1002_smll_202102894 crossref_primary_10_1016_j_ensm_2022_03_004 crossref_primary_10_1021_acsmaterialslett_3c00036 crossref_primary_10_1039_D2TA03905B crossref_primary_10_1007_s12598_024_02710_z crossref_primary_10_1016_j_mtnano_2022_100194 crossref_primary_10_1039_D1QI00298H crossref_primary_10_1039_D0SC03121F crossref_primary_10_1002_adfm_202314822 crossref_primary_10_1002_aenm_202101565 crossref_primary_10_3389_fmats_2020_00071 crossref_primary_10_3390_batteries9050269 crossref_primary_10_1002_smll_202207210 crossref_primary_10_1002_smm2_1205 crossref_primary_10_3390_nano11020538 crossref_primary_10_1002_eem2_12527 |
Cites_doi | 10.1038/s41467-019-09061-9 10.1021/acsnano.8b01033 10.1021/acsomega.7b00143 10.1038/natrevmats.2016.103 10.1002/adma.200901710 10.1002/aenm.201601066 10.1038/nmat2288 10.1039/c0ee00699h 10.1016/j.electacta.2017.10.024 10.1002/adma.201606349 10.1002/adma.200600673 10.1002/aenm.201900807 10.1021/acsenergylett.7b00175 10.1021/nn404601h 10.1002/anie.201203910 10.1016/j.electacta.2017.09.074 10.1016/j.chempr.2018.01.003 10.1038/nmat3077 10.1002/adfm.201402538 10.1126/science.1212741 10.1039/c3cc43987a 10.1039/C5TA02545A 10.1021/acsami.9b01326 10.1016/j.ensm.2019.01.014 10.1039/C5TA06549F 10.1021/ja807392k 10.1038/35104644 10.1021/acsami.6b11314 10.1149/2.0761706jes 10.1039/C4NR03444A 10.1016/j.jpowsour.2013.03.073 10.1002/adfm.201809219 10.1016/j.elecom.2007.02.008 10.1039/C9NR03445E 10.1002/0471716243 10.1002/smll.201502788 10.1016/j.jallcom.2013.04.001 10.1007/s00339-016-9674-x 10.1039/C3DT52313F 10.1016/j.jallcom.2017.11.193 10.1002/anie.201811955 10.1002/celc.201402440 10.1002/aenm.201502237 10.1016/j.jpowsour.2012.10.079 10.1149/1.2133112 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201902795 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201902795 AENM201902795 |
Genre | article |
GrantInformation_xml | – fundername: Scientific Research Innovation Plan of Shanghai Education Commission funderid: 2019‐01‐07‐00‐07‐E00015 – fundername: Shanghai Outstanding Academic Leaders Plan – fundername: Program of Shanghai Subject Chief Scientist funderid: 17XD1403000 – fundername: National Natural Science Foundation of China funderid: 51671135; 51971146; 51971147 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4225-3c699ba71962ee45f3b51ae4c8d05435a8a9c1bf7e375f194cdc2d71b40cf6913 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:13:43 EDT 2025 Tue Jul 01 01:43:33 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 22 16:36:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4225-3c699ba71962ee45f3b51ae4c8d05435a8a9c1bf7e375f194cdc2d71b40cf6913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6614-9567 |
PQID | 2383189999 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2383189999 crossref_primary_10_1002_aenm_201902795 crossref_citationtrail_10_1002_aenm_201902795 wiley_primary_10_1002_aenm_201902795_AENM201902795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2011; 334 2017; 7 2019; 9 2017; 2 2009; 21 2015; 3 2013; 49 2019; 11 2019; 10 2013; 226 2019; 58 2016; 122 2008; 7 2006; 18 2019; 18 2011; 10 2005 2017; 29 2017; 253 2009; 131 2011; 4 2013; 7 1977; 124 2017; 257 2017; 9 2016; 12 2014; 43 2012; 51 2016; 6 2015; 25 2018; 4 2018; 735 2013; 239 2007; 9 2013; 575 2019; 29 2017; 164 2018; 12 2014; 6 2001; 414 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 12 start-page: 3816 year: 2018 publication-title: ACS Nano – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 year: 2013 publication-title: ACS Nano – volume: 25 start-page: 184 year: 2015 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1359 year: 2016 publication-title: Small – volume: 10 start-page: 710 year: 2011 publication-title: Nat. Mater. – year: 2005 – volume: 49 start-page: 7174 year: 2013 publication-title: Chem. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 226 start-page: 61 year: 2013 publication-title: J. Power Sources – volume: 2 start-page: 877 year: 2015 publication-title: ChemElectroChem – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 1081 year: 2019 publication-title: Nat. Commun. – volume: 43 start-page: 1806 year: 2014 publication-title: Dalton Trans. – volume: 122 start-page: 135 year: 2016 publication-title: Appl. Phys. A – volume: 735 start-page: 833 year: 2018 publication-title: J. Alloys Compd. – volume: 9 start-page: 1486 year: 2007 publication-title: Electrochem. Commun. – volume: 257 start-page: 321 year: 2017 publication-title: Electrochim. Acta – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 18 start-page: 423 year: 2019 publication-title: Energy Storage Mater. – volume: 6 year: 2014 publication-title: Nanoscale – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2682 year: 2011 publication-title: Energy Environ. Sci. – volume: 239 start-page: 466 year: 2013 publication-title: J. Power Sources – volume: 2 start-page: 1956 year: 2017 publication-title: ACS Omega – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 972 year: 2018 publication-title: Chem – volume: 7 start-page: 916 year: 2008 publication-title: Nat. Mater. – volume: 21 start-page: 4593 year: 2009 publication-title: Adv. Mater. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 2 start-page: 1385 year: 2017 publication-title: ACS Energy Lett. – volume: 131 start-page: 894 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2436 year: 2006 publication-title: Adv. Mater. – volume: 58 start-page: 1094 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 575 start-page: 246 year: 2013 publication-title: J. Alloys Compd. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 11 year: 2019 publication-title: Nanoscale – volume: 124 start-page: 1569 year: 1977 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 2261 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 253 start-page: 218 year: 2017 publication-title: Electrochim. Acta – ident: e_1_2_7_41_1 doi: 10.1038/s41467-019-09061-9 – ident: e_1_2_7_13_1 doi: 10.1021/acsnano.8b01033 – ident: e_1_2_7_25_1 doi: 10.1021/acsomega.7b00143 – ident: e_1_2_7_26_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_7_2_1 doi: 10.1002/adma.200901710 – ident: e_1_2_7_4_1 doi: 10.1002/aenm.201601066 – ident: e_1_2_7_18_1 doi: 10.1038/nmat2288 – ident: e_1_2_7_6_1 doi: 10.1039/c0ee00699h – ident: e_1_2_7_19_1 doi: 10.1016/j.electacta.2017.10.024 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201606349 – ident: e_1_2_7_31_1 doi: 10.1002/adma.200600673 – ident: e_1_2_7_45_1 doi: 10.1002/aenm.201900807 – ident: e_1_2_7_5_1 doi: 10.1021/acsenergylett.7b00175 – ident: e_1_2_7_28_1 doi: 10.1021/nn404601h – ident: e_1_2_7_43_1 doi: 10.1002/anie.201203910 – ident: e_1_2_7_22_1 doi: 10.1016/j.electacta.2017.09.074 – ident: e_1_2_7_10_1 doi: 10.1016/j.chempr.2018.01.003 – ident: e_1_2_7_30_1 doi: 10.1038/nmat3077 – ident: e_1_2_7_36_1 doi: 10.1002/adfm.201402538 – ident: e_1_2_7_3_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_15_1 doi: 10.1039/c3cc43987a – ident: e_1_2_7_14_1 doi: 10.1039/C5TA02545A – ident: e_1_2_7_40_1 doi: 10.1021/acsami.9b01326 – ident: e_1_2_7_27_1 doi: 10.1016/j.ensm.2019.01.014 – ident: e_1_2_7_37_1 doi: 10.1039/C5TA06549F – ident: e_1_2_7_35_1 doi: 10.1021/ja807392k – ident: e_1_2_7_1_1 doi: 10.1038/35104644 – ident: e_1_2_7_17_1 doi: 10.1021/acsami.6b11314 – ident: e_1_2_7_20_1 doi: 10.1149/2.0761706jes – ident: e_1_2_7_16_1 doi: 10.1039/C4NR03444A – ident: e_1_2_7_23_1 doi: 10.1016/j.jpowsour.2013.03.073 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.201809219 – ident: e_1_2_7_42_1 doi: 10.1016/j.elecom.2007.02.008 – ident: e_1_2_7_11_1 doi: 10.1039/C9NR03445E – ident: e_1_2_7_34_1 doi: 10.1002/0471716243 – ident: e_1_2_7_9_1 doi: 10.1002/smll.201502788 – ident: e_1_2_7_8_1 doi: 10.1016/j.jallcom.2013.04.001 – ident: e_1_2_7_12_1 doi: 10.1007/s00339-016-9674-x – ident: e_1_2_7_29_1 doi: 10.1039/C3DT52313F – ident: e_1_2_7_24_1 doi: 10.1016/j.jallcom.2017.11.193 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201811955 – ident: e_1_2_7_21_1 doi: 10.1002/celc.201402440 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201502237 – ident: e_1_2_7_44_1 doi: 10.1016/j.jpowsour.2012.10.079 – ident: e_1_2_7_33_1 doi: 10.1149/1.2133112 |
SSID | ssj0000491033 |
Score | 2.4509573 |
Snippet | Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | borohydride electrolytes Conductors Cycles Dispersion Electrochemical analysis Electrode materials lithium alanates Lithium aluminum hydrides Nanocomposites Reaction kinetics solid‐state batteries solid‐state prelithiation Stability |
Title | Solid‐State Prelithiation Enables High‐Performance Li‐Al‐H Anode for Solid‐State Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902795 https://www.proquest.com/docview/2383189999 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c5NIeSp_UTVL2UOghqNVzVzqKxsUUOxScgHsS-1JrMHJpbCg95SfkR-SX9Zd09qGVRNNXLkKM1hLe-TQ7M5r5FqGXRDBCBUQnTGUkSHMlg4LkOolDZaQKKhTX-Y75KZmep--X2XI0uu5VLe22_LX4fmNfyW20CjLQq-6S_Q_N-puCAM5Bv3AEDcPxn3S82KzhmW25gvEbdU0FeNaf7YwfT0xr1IUp5_ADP_SaBWYrLy7X_nR6XDYbafnAb3qIZeVs6w9bEtu2nEDZfkLwhe0kdJ-prGH5uNM7737qcvlWvATj0kkXZrdhEDbfVh7Ay51xtl37mktWQGTqq7WcfQVvICC5S2mqvsyyNnmjHPbBF_fWZ796_WL8LZksU41mGABHJ6Z2_84hy7Yfmf15rCUFnpzO_fU7aD-GYASs6X55Mp8tfC4PoqwoTEwvR_v_Wn7QMH4zfMjQ_-mCmn5oZHybswfovgtKcGkR9hCNVPMI3etRVT5G0sDgx-WVAQAeoAw7lGGNMhjSwxeerUBQruEwxQZTGC7h4c08mp6g83eTs7fTwO3QEYgUFoIgEaQoOKNgxmOl0qxOeBYxlYpcQiiQZCxnhYh4TVVCszoqUiFFLGnE01DUpIiSp2iv2TTqGcIyrPWuL1TVok45k5xrXiGSq4gJnSsdo6Cdt0o4-nq9i8q6ssTbcaXnufLzPEav_PgvlrjltyMPWzVU7uW-qMCThdUOoqdijGKjmr_cpRpA5fltfnSA7nbvzCHa237dqSNwebf8hUPcT1XHo_g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid%E2%80%90State+Prelithiation+Enables+High%E2%80%90Performance+Li%E2%80%90Al%E2%80%90H+Anode+for+Solid%E2%80%90State+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Pang%2C+Yuepeng&rft.au=Wang%2C+Xitong&rft.au=Shi%2C+Xinxin&rft.au=Xu%2C+Fen&rft.date=2020-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902795&rft.externalDBID=10.1002%252Faenm.201902795&rft.externalDocID=AENM201902795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |