Insight of a Phase Compatible Surface Coating for Long‐Durable Li‐Rich Layered Oxide Cathode

Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0....

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 34
Main Authors Hu, Sijiang, Li, Yu, Chen, Yuhua, Peng, Jiming, Zhou, Tengfei, Pang, Wei Kong, Didier, Christophe, Peterson, Vanessa K., Wang, Hongqiang, Li, Qingyu, Guo, Zaiping
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3−y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is MnOM bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g−1 at 1 C (260 mA g−1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g−1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries. A facile surface engineering strategy is used to introduce a phase‐compatible La0.8Sr0.2MnO3−y (LSM) coating with an R3¯c hexagonal symmetry to a Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material with hexagonal R3¯m symmetry. The electrode bulk structure is stabilized by the coating by the heterostructural MnOM (Ni, Co, or Mn) bonding at the LSM/LM interface.
AbstractList Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO 2 and LiMn 2 O 4 ; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La 0.8 Sr 0.2 MnO 3− y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 (LM) cathode material. The LSM is MnO M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g −1 at 1 C (260 mA g −1 ) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g −1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3−y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is MnOM bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g−1 at 1 C (260 mA g−1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g−1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries. A facile surface engineering strategy is used to introduce a phase‐compatible La0.8Sr0.2MnO3−y (LSM) coating with an R3¯c hexagonal symmetry to a Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material with hexagonal R3¯m symmetry. The electrode bulk structure is stabilized by the coating by the heterostructural MnOM (Ni, Co, or Mn) bonding at the LSM/LM interface.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3−y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is MnOM bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g−1 at 1 C (260 mA g−1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g−1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.
Author Hu, Sijiang
Li, Yu
Guo, Zaiping
Wang, Hongqiang
Li, Qingyu
Peng, Jiming
Zhou, Tengfei
Pang, Wei Kong
Chen, Yuhua
Peterson, Vanessa K.
Didier, Christophe
Author_xml – sequence: 1
  givenname: Sijiang
  orcidid: 0000-0002-1254-9514
  surname: Hu
  fullname: Hu, Sijiang
  organization: University of Wollongong
– sequence: 2
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  organization: Guangxi Normal University
– sequence: 3
  givenname: Yuhua
  surname: Chen
  fullname: Chen, Yuhua
  organization: Guangxi Normal University
– sequence: 4
  givenname: Jiming
  surname: Peng
  fullname: Peng, Jiming
  organization: Guangxi Normal University
– sequence: 5
  givenname: Tengfei
  surname: Zhou
  fullname: Zhou, Tengfei
  organization: University of Wollongong
– sequence: 6
  givenname: Wei Kong
  surname: Pang
  fullname: Pang, Wei Kong
  email: wkpang@uow.edu.au
  organization: University of Wollongong
– sequence: 7
  givenname: Christophe
  surname: Didier
  fullname: Didier, Christophe
  organization: Australian Nuclear Science and Technology Organization
– sequence: 8
  givenname: Vanessa K.
  surname: Peterson
  fullname: Peterson, Vanessa K.
  organization: Australian Nuclear Science and Technology Organization
– sequence: 9
  givenname: Hongqiang
  surname: Wang
  fullname: Wang, Hongqiang
  email: whq74@gxnu.edu.cn, whq74@126.com
  organization: Guangxi Normal University
– sequence: 10
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
  organization: Guangxi Normal University
– sequence: 11
  givenname: Zaiping
  orcidid: 0000-0003-3464-5301
  surname: Guo
  fullname: Guo, Zaiping
  email: zguo@uow.edu.au
  organization: University of Wollongong
BookMark eNqFkE1PAjEQhhuDiYhcPTfxDLbdLtseCaKSrGL8OK_d7hRKli12lyg3f4K_0V9iCQYTE-Nc5iPvM5N5j1GrchUgdEpJnxLCzhVUyz4jVBKayPgAtemA8t5AcNLa1xE7Qt26XpAQXFISRW30PKlqO5s32Bms8N1c1YBHbrlSjc1LwA9rb5TejsKgmmHjPE5dNft8_7hYe7WVpDY091bPcao24KHA0zdbBEQ1c1fACTo0qqyh-5076Oly_Di67qXTq8lomPY0ZyzuUSFBwwAgESwPH-RxLhlIrpNC8DxRWuSFiaVQPDZUQqJ5JBWhBojKITYy6qCz3d6Vdy9rqJts4da-CiczxoSIxSCSUVD1dyrtXV17MNnK26Xym4ySbGtktjUy2xsZAP4L0LYJXriq8cqWf2Nyh73aEjb_HMmG49ubH_YLnEeL7Q
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118038
crossref_primary_10_1016_j_ensm_2021_05_005
crossref_primary_10_1021_acsami_2c12739
crossref_primary_10_1016_j_cej_2021_130723
crossref_primary_10_1002_ange_202213806
crossref_primary_10_1016_j_matchemphys_2022_126228
crossref_primary_10_1002_aenm_202404459
crossref_primary_10_1016_j_jcis_2021_03_038
crossref_primary_10_1016_j_jcis_2022_10_105
crossref_primary_10_1002_adma_201905245
crossref_primary_10_1038_s41560_023_01289_6
crossref_primary_10_1038_s41467_020_17396_x
crossref_primary_10_1002_advs_202405175
crossref_primary_10_1002_aenm_202203354
crossref_primary_10_1007_s12034_024_03226_z
crossref_primary_10_1016_j_nanoen_2020_104995
crossref_primary_10_1002_smll_202307419
crossref_primary_10_1007_s43673_024_00138_2
crossref_primary_10_1039_D2NR04074C
crossref_primary_10_1002_adfm_202310873
crossref_primary_10_1016_j_jechem_2022_03_046
crossref_primary_10_1002_cjoc_202000387
crossref_primary_10_1002_eem2_12610
crossref_primary_10_1016_j_jechem_2021_01_034
crossref_primary_10_1016_j_jallcom_2023_170050
crossref_primary_10_1021_acscentsci_0c01200
crossref_primary_10_1016_j_ceramint_2020_09_114
crossref_primary_10_1021_acsami_1c01351
crossref_primary_10_1002_adfm_202422482
crossref_primary_10_1016_j_mtener_2024_101709
crossref_primary_10_1021_acsami_0c16589
crossref_primary_10_1002_adma_202404982
crossref_primary_10_1016_j_jpowsour_2024_235981
crossref_primary_10_1007_s12274_023_6133_9
crossref_primary_10_1016_j_cjsc_2023_100060
crossref_primary_10_1039_C9TA09327C
crossref_primary_10_1039_D4TA01403K
crossref_primary_10_1002_aenm_201903634
crossref_primary_10_1680_jsuin_21_00010
crossref_primary_10_1016_j_electacta_2024_144727
crossref_primary_10_1016_j_cej_2021_132985
crossref_primary_10_1039_D0NR08980J
crossref_primary_10_1016_j_jpowsour_2024_234805
crossref_primary_10_1016_j_nanoen_2021_106665
crossref_primary_10_1016_j_jechem_2024_03_050
crossref_primary_10_1016_j_powtec_2020_12_016
crossref_primary_10_1016_j_electacta_2020_135959
crossref_primary_10_1002_smll_202405659
crossref_primary_10_1016_j_electacta_2023_143700
crossref_primary_10_1002_aenm_202002506
crossref_primary_10_1021_acsami_1c16743
crossref_primary_10_1021_acsami_4c04281
crossref_primary_10_1016_j_jpowsour_2023_232653
crossref_primary_10_1021_acsami_1c04647
crossref_primary_10_1021_acsenergylett_9b02048
crossref_primary_10_1002_adfm_202304979
crossref_primary_10_1016_j_ceramint_2020_07_124
crossref_primary_10_1002_ange_202309049
crossref_primary_10_1002_adma_202414195
crossref_primary_10_1039_D0TA09609A
crossref_primary_10_1016_j_ensm_2022_02_043
crossref_primary_10_1016_j_ensm_2024_103783
crossref_primary_10_1021_acsnano_1c02023
crossref_primary_10_1016_j_ensm_2024_103304
crossref_primary_10_1007_s12274_022_5003_1
crossref_primary_10_1039_D4EE00726C
crossref_primary_10_1002_aenm_202103894
crossref_primary_10_1007_s40820_021_00643_1
crossref_primary_10_1016_j_cej_2024_151257
crossref_primary_10_1039_C9TA12683J
crossref_primary_10_1016_j_jssc_2021_122411
crossref_primary_10_1007_s13233_020_8175_0
crossref_primary_10_1021_acsami_2c09937
crossref_primary_10_1039_D4EE02329C
crossref_primary_10_1021_acsami_1c11180
crossref_primary_10_1016_j_jechem_2021_01_024
crossref_primary_10_1039_D3CC02195E
crossref_primary_10_1016_j_jpowsour_2021_230048
crossref_primary_10_1016_j_mattod_2020_12_017
crossref_primary_10_1016_j_nanoen_2021_106760
crossref_primary_10_1021_acsami_9b21264
crossref_primary_10_1002_anie_202309049
crossref_primary_10_1021_acs_iecr_2c01350
crossref_primary_10_1002_cssc_202101901
crossref_primary_10_1016_j_cej_2020_126306
crossref_primary_10_1002_chem_202003987
crossref_primary_10_1016_j_matt_2020_12_004
crossref_primary_10_1016_j_ensm_2020_11_034
crossref_primary_10_1016_j_apsusc_2024_162114
crossref_primary_10_1021_acs_jpcc_1c10126
crossref_primary_10_1002_adfm_202425669
crossref_primary_10_1002_adma_202001358
crossref_primary_10_1002_smll_202307292
crossref_primary_10_1021_acsami_4c00291
crossref_primary_10_1039_D2TA02228A
crossref_primary_10_1021_acs_chemmater_0c03460
crossref_primary_10_1039_D1QI00687H
crossref_primary_10_1002_anie_202419664
crossref_primary_10_1007_s12274_023_5613_2
crossref_primary_10_1016_j_electacta_2019_135116
crossref_primary_10_1126_sciadv_add5189
crossref_primary_10_1002_adma_202000496
crossref_primary_10_1002_adma_202108543
crossref_primary_10_1016_j_est_2021_103112
crossref_primary_10_1002_smll_202008132
crossref_primary_10_1515_ntrev_2024_0034
crossref_primary_10_1039_D4SC03006K
crossref_primary_10_1002_chem_202302569
crossref_primary_10_1016_j_electacta_2020_136082
crossref_primary_10_1021_acs_inorgchem_2c02315
crossref_primary_10_1002_smll_201903652
crossref_primary_10_1142_S1793604721400038
crossref_primary_10_1002_adfm_202303211
crossref_primary_10_1016_j_jallcom_2020_157204
crossref_primary_10_1016_j_nanoen_2020_104942
crossref_primary_10_1021_acssuschemeng_3c07220
crossref_primary_10_1002_adfm_202004302
crossref_primary_10_1038_s41586_022_04689_y
crossref_primary_10_1016_j_ensm_2022_10_008
crossref_primary_10_1016_j_jpowsour_2023_233658
crossref_primary_10_1039_C9RA05780C
crossref_primary_10_1016_j_jpowsour_2021_230427
crossref_primary_10_1021_acsaem_2c01567
crossref_primary_10_1002_adfm_202103594
crossref_primary_10_1002_batt_202400443
crossref_primary_10_1002_adma_202005937
crossref_primary_10_1021_acsami_2c00811
crossref_primary_10_1016_j_jallcom_2020_155678
crossref_primary_10_1039_D2EE01067D
crossref_primary_10_1007_s11581_024_05568_4
crossref_primary_10_1016_j_jpowsour_2022_232175
crossref_primary_10_1021_acsami_2c07560
crossref_primary_10_1039_D0TA08879J
crossref_primary_10_1016_j_jallcom_2020_155152
crossref_primary_10_1002_smtd_202001303
crossref_primary_10_1021_acsnano_1c00304
crossref_primary_10_1021_acsnano_9b05960
crossref_primary_10_1149_1945_7111_ac3526
crossref_primary_10_1021_acsami_0c08797
crossref_primary_10_1002_celc_202001374
crossref_primary_10_1016_j_chempr_2022_04_012
crossref_primary_10_1021_acsnano_9b05580
crossref_primary_10_1002_adfm_202300602
crossref_primary_10_1142_S1793604720500277
crossref_primary_10_1002_smll_202500940
crossref_primary_10_1016_j_est_2025_115422
crossref_primary_10_1016_j_cej_2024_155241
crossref_primary_10_1016_j_electacta_2022_140465
crossref_primary_10_1007_s11581_024_05488_3
crossref_primary_10_1016_j_electacta_2021_139467
crossref_primary_10_1002_smll_202107910
crossref_primary_10_1002_anie_202213806
crossref_primary_10_1021_acsami_2c03073
crossref_primary_10_1021_acs_chemrev_1c00327
crossref_primary_10_1016_j_nanoen_2021_106288
crossref_primary_10_1021_acsami_1c06750
crossref_primary_10_1021_acsami_1c20880
crossref_primary_10_1039_D2TA09893H
crossref_primary_10_1002_ange_202419664
Cites_doi 10.1038/ncomms4529
10.1016/j.jpowsour.2012.04.090
10.1149/1.3609849
10.1021/cm200831c
10.1021/ja108588y
10.1016/j.jpowsour.2016.06.027
10.1021/jacs.6b03932
10.1038/s41560-018-0207-z
10.1039/b702425h
10.1039/a908800h
10.1038/ncomms13598
10.1021/jp060099h
10.1021/cr800344k
10.1016/j.electacta.2016.02.043
10.1016/j.jpowsour.2016.11.020
10.1038/ncomms9014
10.1038/s41467-017-02291-9
10.1021/ja410137s
10.1021/acsami.6b09118
10.1016/j.electacta.2016.04.085
10.1021/acsami.7b00070
10.1016/S0378-7753(99)00231-1
10.1021/acs.chemmater.5b03500
10.1002/aenm.201601284
10.1038/s41563-018-0276-1
10.1016/j.cej.2018.03.169
10.1002/advs.201400018
10.1021/acssuschemeng.5b01083
10.1038/s41565-019-0428-8
10.1016/j.electacta.2016.04.180
10.1016/j.jpowsour.2014.09.183
10.1021/jp984316t
10.1021/acsami.6b07431
10.1016/j.electacta.2015.02.027
10.1038/nnano.2016.207
10.1039/C5TA03676C
10.1002/aenm.201502398
10.1038/ncomms9711
10.1016/j.jpowsour.2016.10.042
10.1002/adma.201104106
10.1038/nchem.2471
10.1021/acs.chemmater.7b02930
10.1016/j.jpowsour.2013.02.075
10.1016/j.apsusc.2006.10.044
10.1021/cm5031415
10.1016/S0955-2219(00)00242-9
10.1002/aenm.201300269
10.1002/aenm.201501914
10.1038/nmat3699
10.1007/s41918-019-00032-8
10.1002/adma.201605807
10.1021/cm3005634
10.4209/aaqr.2014.11.0286
10.1107/S1600576715000679
10.1038/s41560-018-0184-2
10.1021/acsami.5b10219
10.1002/aenm.201500274
10.1021/cm070389q
10.1088/1361-6528/aaae50
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201901795
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201901795
AENM201901795
Genre article
GrantInformation_xml – fundername: ANSTO
– fundername: National Natural Science Foundation of China
  funderid: 51474110; 51802357
– fundername: Natural Science Foundation of Hubei Province
  funderid: 2018CFB192; 2018CFB237
– fundername: Australian Research Council
  funderid: FT160100251; LP160101629; DE190100504
– fundername: China Scholarship Council
  funderid: 201608420205
– fundername: Science and Technology Research Program of Young Talent Project of Hubei Provincial Department of Education
  funderid: Q20172904
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4225-189ece6ee782b795b5b92e94c7d84b7ac8bdf598a45f19e7c439a01fe0abe5f93
ISSN 1614-6832
IngestDate Fri Jul 25 12:29:19 EDT 2025
Tue Jul 01 01:43:30 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Wed Jan 22 16:41:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4225-189ece6ee782b795b5b92e94c7d84b7ac8bdf598a45f19e7c439a01fe0abe5f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1254-9514
0000-0003-3464-5301
PQID 2288586393
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2288586393
crossref_primary_10_1002_aenm_201901795
crossref_citationtrail_10_1002_aenm_201901795
wiley_primary_10_1002_aenm_201901795_AENM201901795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2011; 158
2017; 8
2013; 3
1999; 81–82
2019; 14
2014; 26
2019; 18
2000; 2
2017; 9
2014; 136
2015; 48
2018; 3
2014; 5
2013; 12
2015; 177
2007; 253
2013; 236
2010; 110
2011; 23
2016; 193
2012; 24
2012; 215
2007; 17
2015; 2
2015; 15
2007; 19
2018; 29
2015; 6
2015; 5
2015; 3
2019; 2
2016; 207
2016; 206
2018; 345
2006; 110
2017; 29
2016; 325
1999; 103
2015; 7
2011; 133
2016; 11
2001; 21
2016; 4
2015; 273
2016; 6
2016; 7
2018
2016; 138
2016; 335
2017; 341
2016; 28
2016; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
Liu H. (e_1_2_7_20_1) 2015; 7
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Bunsen T. (e_1_2_7_1_1) 2018
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 193
  start-page: 45
  year: 2016
  publication-title: Electrochim. Acta
– volume: 345
  start-page: 364
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 277
  year: 2019
  publication-title: Electrochem. Energy Rev.
– volume: 28
  start-page: 162
  year: 2016
  publication-title: Chem. Mater.
– volume: 26
  start-page: 6272
  year: 2014
  publication-title: Chem. Mater.
– volume: 136
  start-page: 999
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 253
  start-page: 4782
  year: 2007
  publication-title: Appl. Surf. Sci.
– volume: 325
  start-page: 84
  year: 2016
  publication-title: J. Power Sources
– volume: 215
  start-page: 63
  year: 2012
  publication-title: J. Power Sources
– volume: 6
  start-page: 8014
  year: 2015
  publication-title: Nat. Commun.
– volume: 21
  start-page: 659
  year: 2001
  publication-title: J. Eur. Ceram. Soc.
– volume: 18
  start-page: 256
  year: 2019
  publication-title: Nat. Mater.
– year: 2018
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 3
  start-page: 1299
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3529
  year: 2014
  publication-title: Nat. Commun.
– volume: 177
  start-page: 290
  year: 2015
  publication-title: Electrochim. Acta
– volume: 81–82
  start-page: 616
  year: 1999
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  publication-title: Chem. Mater.
– volume: 9
  start-page: 9718
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 3067
  year: 2007
  publication-title: Chem. Mater.
– volume: 24
  start-page: 2692
  year: 2012
  publication-title: Chem. Mater.
– volume: 17
  start-page: 3112
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 255
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 48
  start-page: 280
  year: 2015
  publication-title: J. Appl. Crystallogr.
– volume: 8
  start-page: 2219
  year: 2017
  publication-title: Nat. Commun.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 3
  start-page: 641
  year: 2018
  publication-title: Nat. Energy
– volume: 14
  start-page: 602
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 273
  start-page: 959
  year: 2015
  publication-title: J. Power Sources
– volume: 341
  start-page: 147
  year: 2017
  publication-title: J. Power Sources
– volume: 335
  start-page: 65
  year: 2016
  publication-title: J. Power Sources
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 8711
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 690
  year: 2018
  publication-title: Nat. Energy
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1662
  year: 2015
  publication-title: Aerosol Air Qual. Res.
– volume: 236
  start-page: 250
  year: 2013
  publication-title: J. Power Sources
– volume: 133
  start-page: 4404
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 206
  start-page: 1
  year: 2016
  publication-title: Electrochim. Acta
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 12
  start-page: 827
  year: 2013
  publication-title: Nat. Mater.
– volume: 103
  start-page: 2100
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 1319
  year: 2000
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 4575
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 23
  start-page: 3614
  year: 2011
  publication-title: Chem. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 8824
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1031
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 684
  year: 2016
  publication-title: Nat. Chem.
– volume: 24
  start-page: 1192
  year: 2012
  publication-title: Adv. Mater.
– volume: 110
  start-page: 1278
  year: 2010
  publication-title: Chem. Rev.
– volume: 207
  start-page: 120
  year: 2016
  publication-title: Electrochim. Acta
– volume: 158
  start-page: A1015
  year: 2011
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms4529
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jpowsour.2012.04.090
– ident: e_1_2_7_39_1
  doi: 10.1149/1.3609849
– ident: e_1_2_7_38_1
  doi: 10.1021/cm200831c
– ident: e_1_2_7_57_1
  doi: 10.1021/ja108588y
– volume-title: Global EV outlook 2018: towards cross‐modal electrification
  year: 2018
  ident: e_1_2_7_1_1
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jpowsour.2016.06.027
– ident: e_1_2_7_60_1
  doi: 10.1021/jacs.6b03932
– ident: e_1_2_7_5_1
  doi: 10.1038/s41560-018-0207-z
– ident: e_1_2_7_2_1
  doi: 10.1039/b702425h
– ident: e_1_2_7_45_1
  doi: 10.1039/a908800h
– ident: e_1_2_7_52_1
  doi: 10.1038/ncomms13598
– ident: e_1_2_7_32_1
  doi: 10.1021/jp060099h
– ident: e_1_2_7_42_1
  doi: 10.1021/cr800344k
– ident: e_1_2_7_28_1
  doi: 10.1016/j.electacta.2016.02.043
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jpowsour.2016.11.020
– ident: e_1_2_7_15_1
  doi: 10.1038/ncomms9014
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-017-02291-9
– ident: e_1_2_7_41_1
  doi: 10.1021/ja410137s
– ident: e_1_2_7_9_1
  doi: 10.1021/acsami.6b09118
– volume: 7
  start-page: 191890
  year: 2015
  ident: e_1_2_7_20_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_24_1
  doi: 10.1016/j.electacta.2016.04.085
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.7b00070
– ident: e_1_2_7_43_1
  doi: 10.1016/S0378-7753(99)00231-1
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.chemmater.5b03500
– ident: e_1_2_7_19_1
  doi: 10.1002/aenm.201601284
– ident: e_1_2_7_54_1
  doi: 10.1038/s41563-018-0276-1
– ident: e_1_2_7_47_1
  doi: 10.1016/j.cej.2018.03.169
– ident: e_1_2_7_59_1
  doi: 10.1002/advs.201400018
– ident: e_1_2_7_27_1
  doi: 10.1021/acssuschemeng.5b01083
– ident: e_1_2_7_53_1
  doi: 10.1038/s41565-019-0428-8
– ident: e_1_2_7_10_1
  doi: 10.1016/j.electacta.2016.04.180
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jpowsour.2014.09.183
– ident: e_1_2_7_49_1
  doi: 10.1021/jp984316t
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.6b07431
– ident: e_1_2_7_37_1
  doi: 10.1016/j.electacta.2015.02.027
– ident: e_1_2_7_17_1
  doi: 10.1038/nnano.2016.207
– ident: e_1_2_7_29_1
  doi: 10.1039/C5TA03676C
– ident: e_1_2_7_40_1
  doi: 10.1002/aenm.201502398
– ident: e_1_2_7_4_1
  doi: 10.1038/ncomms9711
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jpowsour.2016.10.042
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201104106
– ident: e_1_2_7_7_1
  doi: 10.1038/nchem.2471
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.chemmater.7b02930
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jpowsour.2013.02.075
– ident: e_1_2_7_44_1
  doi: 10.1016/j.apsusc.2006.10.044
– ident: e_1_2_7_55_1
  doi: 10.1021/cm5031415
– ident: e_1_2_7_31_1
  doi: 10.1016/S0955-2219(00)00242-9
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201300269
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.201501914
– ident: e_1_2_7_58_1
  doi: 10.1038/nmat3699
– ident: e_1_2_7_3_1
  doi: 10.1007/s41918-019-00032-8
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201605807
– ident: e_1_2_7_36_1
  doi: 10.1021/cm3005634
– ident: e_1_2_7_46_1
  doi: 10.4209/aaqr.2014.11.0286
– ident: e_1_2_7_61_1
  doi: 10.1107/S1600576715000679
– ident: e_1_2_7_6_1
  doi: 10.1038/s41560-018-0184-2
– ident: e_1_2_7_50_1
  doi: 10.1021/acsami.5b10219
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.201500274
– ident: e_1_2_7_51_1
  doi: 10.1021/cm070389q
– ident: e_1_2_7_56_1
  doi: 10.1088/1361-6528/aaae50
SSID ssj0000491033
Score 2.6183112
Snippet Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and...
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO 2 and LiMn 2 O 4 ; however, voltage fade...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cathodes
Degradation
Electrical resistivity
Electrode materials
Electrodes
Interfacial bonding
Ion currents
Lithium manganese oxides
Lithium-ion batteries
Li‐rich layered oxide
metal ion migration
Protective coatings
Surface layers
surface‐coating
voltage fade
Title Insight of a Phase Compatible Surface Coating for Long‐Durable Li‐Rich Layered Oxide Cathode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201901795
https://www.proquest.com/docview/2288586393
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMsFOQDEocqkDgv-7iiRQVlC1JbqT0FO7HbIJRF20RqOXHmxG_klzB-5CXevUS7Xm9W9nwZz3i_-YzQUwVBMA3L0guTgHoRk6HHFFEekamWGpFxGuoC5-V-sncUvTmOj2ezryPWUtuI58XnX9aVXMWq0AZ21VWy_2HZ_qbQAK_BvnAFC8P1n2z8uj7XubWtcXx3BguSfb6bStdDHbRrxQvdxJuOL5lpBm7Hb9hp16ZwKqv6Jl1nv53xS32C5_bbi6qUpkZwVU4YQ4uOOCBt5SBEvXa4A0jMrmr1AcB32nN-DHHgpB0YBdblnbRnLR9ctKMI69PGTsd7EsFAuurcKCz6XkLdzqUct1lxps73shHE3KamXYX7NeonF28lY7mstY6ADmdSe0rnVEu77xn_ua-V_t3dX_afX0ObBFIO8Jmbi51ldtDv2EEuFfihqdjohtepgPrkxfRHplHOkLqMEyATwRzeQjdd6oEXFke30UzWd9CNkSDlXfTeIQqvFObYIAoPiMIOUdghCgOisEbU9y_fHJZwVsEbjSLsUIQNirBD0T109Gr38OWe587g8IoIXL0XUCYLmUgJkaSAgYlYMCJZVKQljUTKCypKFTPKo1gFTKYFBLjcD5T0uZCxYuF9tFGvavkA4VTp9SSNlP5rvowTFvIoUoQVia-YEmKOvG7O8sIJ1OtzUj7mVlqb5HqO836O5-hZ3_-TlWb5bc-tzgS5e3zPc0IojSkE6OEcEWOWv9wln8Dk4VW-9AhdHx6XLbTRrFv5GILaRjxxaPsBJjSYpQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+of+a+Phase+Compatible+Surface+Coating+for+Long%E2%80%90Durable+Li%E2%80%90Rich+Layered+Oxide+Cathode&rft.jtitle=Advanced+energy+materials&rft.au=Hu%2C+Sijiang&rft.au=Li%2C+Yu&rft.au=Chen%2C+Yuhua&rft.au=Peng%2C+Jiming&rft.date=2019-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201901795&rft.externalDBID=10.1002%252Faenm.201901795&rft.externalDocID=AENM201901795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon