Insight of a Phase Compatible Surface Coating for Long‐Durable Li‐Rich Layered Oxide Cathode
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0....
Saved in:
Published in | Advanced energy materials Vol. 9; no. 34 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3−y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is MnOM bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g−1 at 1 C (260 mA g−1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g−1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.
A facile surface engineering strategy is used to introduce a phase‐compatible La0.8Sr0.2MnO3−y (LSM) coating with an R3¯c hexagonal symmetry to a Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material with hexagonal R3¯m symmetry. The electrode bulk structure is stabilized by the coating by the heterostructural MnOM (Ni, Co, or Mn) bonding at the LSM/LM interface. |
---|---|
AbstractList | Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO
2
and LiMn
2
O
4
; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La
0.8
Sr
0.2
MnO
3−
y
(LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li
1.2
Ni
0.13
Co
0.13
Mn
0.54
O
2
(LM) cathode material. The LSM is MnO
M
bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g
−1
at 1 C (260 mA g
−1
) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g
−1
at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries. Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3−y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is MnOM bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g−1 at 1 C (260 mA g−1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g−1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries. A facile surface engineering strategy is used to introduce a phase‐compatible La0.8Sr0.2MnO3−y (LSM) coating with an R3¯c hexagonal symmetry to a Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material with hexagonal R3¯m symmetry. The electrode bulk structure is stabilized by the coating by the heterostructural MnOM (Ni, Co, or Mn) bonding at the LSM/LM interface. Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3−y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is MnOM bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g−1 at 1 C (260 mA g−1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g−1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries. |
Author | Hu, Sijiang Li, Yu Guo, Zaiping Wang, Hongqiang Li, Qingyu Peng, Jiming Zhou, Tengfei Pang, Wei Kong Chen, Yuhua Peterson, Vanessa K. Didier, Christophe |
Author_xml | – sequence: 1 givenname: Sijiang orcidid: 0000-0002-1254-9514 surname: Hu fullname: Hu, Sijiang organization: University of Wollongong – sequence: 2 givenname: Yu surname: Li fullname: Li, Yu organization: Guangxi Normal University – sequence: 3 givenname: Yuhua surname: Chen fullname: Chen, Yuhua organization: Guangxi Normal University – sequence: 4 givenname: Jiming surname: Peng fullname: Peng, Jiming organization: Guangxi Normal University – sequence: 5 givenname: Tengfei surname: Zhou fullname: Zhou, Tengfei organization: University of Wollongong – sequence: 6 givenname: Wei Kong surname: Pang fullname: Pang, Wei Kong email: wkpang@uow.edu.au organization: University of Wollongong – sequence: 7 givenname: Christophe surname: Didier fullname: Didier, Christophe organization: Australian Nuclear Science and Technology Organization – sequence: 8 givenname: Vanessa K. surname: Peterson fullname: Peterson, Vanessa K. organization: Australian Nuclear Science and Technology Organization – sequence: 9 givenname: Hongqiang surname: Wang fullname: Wang, Hongqiang email: whq74@gxnu.edu.cn, whq74@126.com organization: Guangxi Normal University – sequence: 10 givenname: Qingyu surname: Li fullname: Li, Qingyu organization: Guangxi Normal University – sequence: 11 givenname: Zaiping orcidid: 0000-0003-3464-5301 surname: Guo fullname: Guo, Zaiping email: zguo@uow.edu.au organization: University of Wollongong |
BookMark | eNqFkE1PAjEQhhuDiYhcPTfxDLbdLtseCaKSrGL8OK_d7hRKli12lyg3f4K_0V9iCQYTE-Nc5iPvM5N5j1GrchUgdEpJnxLCzhVUyz4jVBKayPgAtemA8t5AcNLa1xE7Qt26XpAQXFISRW30PKlqO5s32Bms8N1c1YBHbrlSjc1LwA9rb5TejsKgmmHjPE5dNft8_7hYe7WVpDY091bPcao24KHA0zdbBEQ1c1fACTo0qqyh-5076Oly_Di67qXTq8lomPY0ZyzuUSFBwwAgESwPH-RxLhlIrpNC8DxRWuSFiaVQPDZUQqJ5JBWhBojKITYy6qCz3d6Vdy9rqJts4da-CiczxoSIxSCSUVD1dyrtXV17MNnK26Xym4ySbGtktjUy2xsZAP4L0LYJXriq8cqWf2Nyh73aEjb_HMmG49ubH_YLnEeL7Q |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118038 crossref_primary_10_1016_j_ensm_2021_05_005 crossref_primary_10_1021_acsami_2c12739 crossref_primary_10_1016_j_cej_2021_130723 crossref_primary_10_1002_ange_202213806 crossref_primary_10_1016_j_matchemphys_2022_126228 crossref_primary_10_1002_aenm_202404459 crossref_primary_10_1016_j_jcis_2021_03_038 crossref_primary_10_1016_j_jcis_2022_10_105 crossref_primary_10_1002_adma_201905245 crossref_primary_10_1038_s41560_023_01289_6 crossref_primary_10_1038_s41467_020_17396_x crossref_primary_10_1002_advs_202405175 crossref_primary_10_1002_aenm_202203354 crossref_primary_10_1007_s12034_024_03226_z crossref_primary_10_1016_j_nanoen_2020_104995 crossref_primary_10_1002_smll_202307419 crossref_primary_10_1007_s43673_024_00138_2 crossref_primary_10_1039_D2NR04074C crossref_primary_10_1002_adfm_202310873 crossref_primary_10_1016_j_jechem_2022_03_046 crossref_primary_10_1002_cjoc_202000387 crossref_primary_10_1002_eem2_12610 crossref_primary_10_1016_j_jechem_2021_01_034 crossref_primary_10_1016_j_jallcom_2023_170050 crossref_primary_10_1021_acscentsci_0c01200 crossref_primary_10_1016_j_ceramint_2020_09_114 crossref_primary_10_1021_acsami_1c01351 crossref_primary_10_1002_adfm_202422482 crossref_primary_10_1016_j_mtener_2024_101709 crossref_primary_10_1021_acsami_0c16589 crossref_primary_10_1002_adma_202404982 crossref_primary_10_1016_j_jpowsour_2024_235981 crossref_primary_10_1007_s12274_023_6133_9 crossref_primary_10_1016_j_cjsc_2023_100060 crossref_primary_10_1039_C9TA09327C crossref_primary_10_1039_D4TA01403K crossref_primary_10_1002_aenm_201903634 crossref_primary_10_1680_jsuin_21_00010 crossref_primary_10_1016_j_electacta_2024_144727 crossref_primary_10_1016_j_cej_2021_132985 crossref_primary_10_1039_D0NR08980J crossref_primary_10_1016_j_jpowsour_2024_234805 crossref_primary_10_1016_j_nanoen_2021_106665 crossref_primary_10_1016_j_jechem_2024_03_050 crossref_primary_10_1016_j_powtec_2020_12_016 crossref_primary_10_1016_j_electacta_2020_135959 crossref_primary_10_1002_smll_202405659 crossref_primary_10_1016_j_electacta_2023_143700 crossref_primary_10_1002_aenm_202002506 crossref_primary_10_1021_acsami_1c16743 crossref_primary_10_1021_acsami_4c04281 crossref_primary_10_1016_j_jpowsour_2023_232653 crossref_primary_10_1021_acsami_1c04647 crossref_primary_10_1021_acsenergylett_9b02048 crossref_primary_10_1002_adfm_202304979 crossref_primary_10_1016_j_ceramint_2020_07_124 crossref_primary_10_1002_ange_202309049 crossref_primary_10_1002_adma_202414195 crossref_primary_10_1039_D0TA09609A crossref_primary_10_1016_j_ensm_2022_02_043 crossref_primary_10_1016_j_ensm_2024_103783 crossref_primary_10_1021_acsnano_1c02023 crossref_primary_10_1016_j_ensm_2024_103304 crossref_primary_10_1007_s12274_022_5003_1 crossref_primary_10_1039_D4EE00726C crossref_primary_10_1002_aenm_202103894 crossref_primary_10_1007_s40820_021_00643_1 crossref_primary_10_1016_j_cej_2024_151257 crossref_primary_10_1039_C9TA12683J crossref_primary_10_1016_j_jssc_2021_122411 crossref_primary_10_1007_s13233_020_8175_0 crossref_primary_10_1021_acsami_2c09937 crossref_primary_10_1039_D4EE02329C crossref_primary_10_1021_acsami_1c11180 crossref_primary_10_1016_j_jechem_2021_01_024 crossref_primary_10_1039_D3CC02195E crossref_primary_10_1016_j_jpowsour_2021_230048 crossref_primary_10_1016_j_mattod_2020_12_017 crossref_primary_10_1016_j_nanoen_2021_106760 crossref_primary_10_1021_acsami_9b21264 crossref_primary_10_1002_anie_202309049 crossref_primary_10_1021_acs_iecr_2c01350 crossref_primary_10_1002_cssc_202101901 crossref_primary_10_1016_j_cej_2020_126306 crossref_primary_10_1002_chem_202003987 crossref_primary_10_1016_j_matt_2020_12_004 crossref_primary_10_1016_j_ensm_2020_11_034 crossref_primary_10_1016_j_apsusc_2024_162114 crossref_primary_10_1021_acs_jpcc_1c10126 crossref_primary_10_1002_adfm_202425669 crossref_primary_10_1002_adma_202001358 crossref_primary_10_1002_smll_202307292 crossref_primary_10_1021_acsami_4c00291 crossref_primary_10_1039_D2TA02228A crossref_primary_10_1021_acs_chemmater_0c03460 crossref_primary_10_1039_D1QI00687H crossref_primary_10_1002_anie_202419664 crossref_primary_10_1007_s12274_023_5613_2 crossref_primary_10_1016_j_electacta_2019_135116 crossref_primary_10_1126_sciadv_add5189 crossref_primary_10_1002_adma_202000496 crossref_primary_10_1002_adma_202108543 crossref_primary_10_1016_j_est_2021_103112 crossref_primary_10_1002_smll_202008132 crossref_primary_10_1515_ntrev_2024_0034 crossref_primary_10_1039_D4SC03006K crossref_primary_10_1002_chem_202302569 crossref_primary_10_1016_j_electacta_2020_136082 crossref_primary_10_1021_acs_inorgchem_2c02315 crossref_primary_10_1002_smll_201903652 crossref_primary_10_1142_S1793604721400038 crossref_primary_10_1002_adfm_202303211 crossref_primary_10_1016_j_jallcom_2020_157204 crossref_primary_10_1016_j_nanoen_2020_104942 crossref_primary_10_1021_acssuschemeng_3c07220 crossref_primary_10_1002_adfm_202004302 crossref_primary_10_1038_s41586_022_04689_y crossref_primary_10_1016_j_ensm_2022_10_008 crossref_primary_10_1016_j_jpowsour_2023_233658 crossref_primary_10_1039_C9RA05780C crossref_primary_10_1016_j_jpowsour_2021_230427 crossref_primary_10_1021_acsaem_2c01567 crossref_primary_10_1002_adfm_202103594 crossref_primary_10_1002_batt_202400443 crossref_primary_10_1002_adma_202005937 crossref_primary_10_1021_acsami_2c00811 crossref_primary_10_1016_j_jallcom_2020_155678 crossref_primary_10_1039_D2EE01067D crossref_primary_10_1007_s11581_024_05568_4 crossref_primary_10_1016_j_jpowsour_2022_232175 crossref_primary_10_1021_acsami_2c07560 crossref_primary_10_1039_D0TA08879J crossref_primary_10_1016_j_jallcom_2020_155152 crossref_primary_10_1002_smtd_202001303 crossref_primary_10_1021_acsnano_1c00304 crossref_primary_10_1021_acsnano_9b05960 crossref_primary_10_1149_1945_7111_ac3526 crossref_primary_10_1021_acsami_0c08797 crossref_primary_10_1002_celc_202001374 crossref_primary_10_1016_j_chempr_2022_04_012 crossref_primary_10_1021_acsnano_9b05580 crossref_primary_10_1002_adfm_202300602 crossref_primary_10_1142_S1793604720500277 crossref_primary_10_1002_smll_202500940 crossref_primary_10_1016_j_est_2025_115422 crossref_primary_10_1016_j_cej_2024_155241 crossref_primary_10_1016_j_electacta_2022_140465 crossref_primary_10_1007_s11581_024_05488_3 crossref_primary_10_1016_j_electacta_2021_139467 crossref_primary_10_1002_smll_202107910 crossref_primary_10_1002_anie_202213806 crossref_primary_10_1021_acsami_2c03073 crossref_primary_10_1021_acs_chemrev_1c00327 crossref_primary_10_1016_j_nanoen_2021_106288 crossref_primary_10_1021_acsami_1c06750 crossref_primary_10_1021_acsami_1c20880 crossref_primary_10_1039_D2TA09893H crossref_primary_10_1002_ange_202419664 |
Cites_doi | 10.1038/ncomms4529 10.1016/j.jpowsour.2012.04.090 10.1149/1.3609849 10.1021/cm200831c 10.1021/ja108588y 10.1016/j.jpowsour.2016.06.027 10.1021/jacs.6b03932 10.1038/s41560-018-0207-z 10.1039/b702425h 10.1039/a908800h 10.1038/ncomms13598 10.1021/jp060099h 10.1021/cr800344k 10.1016/j.electacta.2016.02.043 10.1016/j.jpowsour.2016.11.020 10.1038/ncomms9014 10.1038/s41467-017-02291-9 10.1021/ja410137s 10.1021/acsami.6b09118 10.1016/j.electacta.2016.04.085 10.1021/acsami.7b00070 10.1016/S0378-7753(99)00231-1 10.1021/acs.chemmater.5b03500 10.1002/aenm.201601284 10.1038/s41563-018-0276-1 10.1016/j.cej.2018.03.169 10.1002/advs.201400018 10.1021/acssuschemeng.5b01083 10.1038/s41565-019-0428-8 10.1016/j.electacta.2016.04.180 10.1016/j.jpowsour.2014.09.183 10.1021/jp984316t 10.1021/acsami.6b07431 10.1016/j.electacta.2015.02.027 10.1038/nnano.2016.207 10.1039/C5TA03676C 10.1002/aenm.201502398 10.1038/ncomms9711 10.1016/j.jpowsour.2016.10.042 10.1002/adma.201104106 10.1038/nchem.2471 10.1021/acs.chemmater.7b02930 10.1016/j.jpowsour.2013.02.075 10.1016/j.apsusc.2006.10.044 10.1021/cm5031415 10.1016/S0955-2219(00)00242-9 10.1002/aenm.201300269 10.1002/aenm.201501914 10.1038/nmat3699 10.1007/s41918-019-00032-8 10.1002/adma.201605807 10.1021/cm3005634 10.4209/aaqr.2014.11.0286 10.1107/S1600576715000679 10.1038/s41560-018-0184-2 10.1021/acsami.5b10219 10.1002/aenm.201500274 10.1021/cm070389q 10.1088/1361-6528/aaae50 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201901795 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201901795 AENM201901795 |
Genre | article |
GrantInformation_xml | – fundername: ANSTO – fundername: National Natural Science Foundation of China funderid: 51474110; 51802357 – fundername: Natural Science Foundation of Hubei Province funderid: 2018CFB192; 2018CFB237 – fundername: Australian Research Council funderid: FT160100251; LP160101629; DE190100504 – fundername: China Scholarship Council funderid: 201608420205 – fundername: Science and Technology Research Program of Young Talent Project of Hubei Provincial Department of Education funderid: Q20172904 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4225-189ece6ee782b795b5b92e94c7d84b7ac8bdf598a45f19e7c439a01fe0abe5f93 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:29:19 EDT 2025 Tue Jul 01 01:43:30 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Wed Jan 22 16:41:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4225-189ece6ee782b795b5b92e94c7d84b7ac8bdf598a45f19e7c439a01fe0abe5f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1254-9514 0000-0003-3464-5301 |
PQID | 2288586393 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2288586393 crossref_primary_10_1002_aenm_201901795 crossref_citationtrail_10_1002_aenm_201901795 wiley_primary_10_1002_aenm_201901795_AENM201901795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2011; 158 2017; 8 2013; 3 1999; 81–82 2019; 14 2014; 26 2019; 18 2000; 2 2017; 9 2014; 136 2015; 48 2018; 3 2014; 5 2013; 12 2015; 177 2007; 253 2013; 236 2010; 110 2011; 23 2016; 193 2012; 24 2012; 215 2007; 17 2015; 2 2015; 15 2007; 19 2018; 29 2015; 6 2015; 5 2015; 3 2019; 2 2016; 207 2016; 206 2018; 345 2006; 110 2017; 29 2016; 325 1999; 103 2015; 7 2011; 133 2016; 11 2001; 21 2016; 4 2015; 273 2016; 6 2016; 7 2018 2016; 138 2016; 335 2017; 341 2016; 28 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 Liu H. (e_1_2_7_20_1) 2015; 7 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Bunsen T. (e_1_2_7_1_1) 2018 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 193 start-page: 45 year: 2016 publication-title: Electrochim. Acta – volume: 345 start-page: 364 year: 2018 publication-title: Chem. Eng. J. – volume: 2 start-page: 277 year: 2019 publication-title: Electrochem. Energy Rev. – volume: 28 start-page: 162 year: 2016 publication-title: Chem. Mater. – volume: 26 start-page: 6272 year: 2014 publication-title: Chem. Mater. – volume: 136 start-page: 999 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 253 start-page: 4782 year: 2007 publication-title: Appl. Surf. Sci. – volume: 325 start-page: 84 year: 2016 publication-title: J. Power Sources – volume: 215 start-page: 63 year: 2012 publication-title: J. Power Sources – volume: 6 start-page: 8014 year: 2015 publication-title: Nat. Commun. – volume: 21 start-page: 659 year: 2001 publication-title: J. Eur. Ceram. Soc. – volume: 18 start-page: 256 year: 2019 publication-title: Nat. Mater. – year: 2018 – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 3 start-page: 1299 year: 2013 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 3529 year: 2014 publication-title: Nat. Commun. – volume: 177 start-page: 290 year: 2015 publication-title: Electrochim. Acta – volume: 81–82 start-page: 616 year: 1999 publication-title: J. Power Sources – volume: 29 year: 2017 publication-title: Chem. Mater. – volume: 9 start-page: 9718 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 3067 year: 2007 publication-title: Chem. Mater. – volume: 24 start-page: 2692 year: 2012 publication-title: Chem. Mater. – volume: 17 start-page: 3112 year: 2007 publication-title: J. Mater. Chem. – volume: 4 start-page: 255 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 48 start-page: 280 year: 2015 publication-title: J. Appl. Crystallogr. – volume: 8 start-page: 2219 year: 2017 publication-title: Nat. Commun. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 3 start-page: 641 year: 2018 publication-title: Nat. Energy – volume: 14 start-page: 602 year: 2019 publication-title: Nat. Nanotechnol. – volume: 273 start-page: 959 year: 2015 publication-title: J. Power Sources – volume: 341 start-page: 147 year: 2017 publication-title: J. Power Sources – volume: 335 start-page: 65 year: 2016 publication-title: J. Power Sources – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 8711 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 690 year: 2018 publication-title: Nat. Energy – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 15 start-page: 1662 year: 2015 publication-title: Aerosol Air Qual. Res. – volume: 236 start-page: 250 year: 2013 publication-title: J. Power Sources – volume: 133 start-page: 4404 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 206 start-page: 1 year: 2016 publication-title: Electrochim. Acta – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 12 start-page: 827 year: 2013 publication-title: Nat. Mater. – volume: 103 start-page: 2100 year: 1999 publication-title: J. Phys. Chem. B – volume: 2 start-page: 1319 year: 2000 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 4575 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 110 year: 2006 publication-title: J. Phys. Chem. B – volume: 23 start-page: 3614 year: 2011 publication-title: Chem. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 138 start-page: 8824 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1031 year: 2016 publication-title: Nat. Nanotechnol. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 684 year: 2016 publication-title: Nat. Chem. – volume: 24 start-page: 1192 year: 2012 publication-title: Adv. Mater. – volume: 110 start-page: 1278 year: 2010 publication-title: Chem. Rev. – volume: 207 start-page: 120 year: 2016 publication-title: Electrochim. Acta – volume: 158 start-page: A1015 year: 2011 publication-title: J. Electrochem. Soc. – ident: e_1_2_7_18_1 doi: 10.1038/ncomms4529 – ident: e_1_2_7_33_1 doi: 10.1016/j.jpowsour.2012.04.090 – ident: e_1_2_7_39_1 doi: 10.1149/1.3609849 – ident: e_1_2_7_38_1 doi: 10.1021/cm200831c – ident: e_1_2_7_57_1 doi: 10.1021/ja108588y – volume-title: Global EV outlook 2018: towards cross‐modal electrification year: 2018 ident: e_1_2_7_1_1 – ident: e_1_2_7_21_1 doi: 10.1016/j.jpowsour.2016.06.027 – ident: e_1_2_7_60_1 doi: 10.1021/jacs.6b03932 – ident: e_1_2_7_5_1 doi: 10.1038/s41560-018-0207-z – ident: e_1_2_7_2_1 doi: 10.1039/b702425h – ident: e_1_2_7_45_1 doi: 10.1039/a908800h – ident: e_1_2_7_52_1 doi: 10.1038/ncomms13598 – ident: e_1_2_7_32_1 doi: 10.1021/jp060099h – ident: e_1_2_7_42_1 doi: 10.1021/cr800344k – ident: e_1_2_7_28_1 doi: 10.1016/j.electacta.2016.02.043 – ident: e_1_2_7_25_1 doi: 10.1016/j.jpowsour.2016.11.020 – ident: e_1_2_7_15_1 doi: 10.1038/ncomms9014 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-017-02291-9 – ident: e_1_2_7_41_1 doi: 10.1021/ja410137s – ident: e_1_2_7_9_1 doi: 10.1021/acsami.6b09118 – volume: 7 start-page: 191890 year: 2015 ident: e_1_2_7_20_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_24_1 doi: 10.1016/j.electacta.2016.04.085 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.7b00070 – ident: e_1_2_7_43_1 doi: 10.1016/S0378-7753(99)00231-1 – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemmater.5b03500 – ident: e_1_2_7_19_1 doi: 10.1002/aenm.201601284 – ident: e_1_2_7_54_1 doi: 10.1038/s41563-018-0276-1 – ident: e_1_2_7_47_1 doi: 10.1016/j.cej.2018.03.169 – ident: e_1_2_7_59_1 doi: 10.1002/advs.201400018 – ident: e_1_2_7_27_1 doi: 10.1021/acssuschemeng.5b01083 – ident: e_1_2_7_53_1 doi: 10.1038/s41565-019-0428-8 – ident: e_1_2_7_10_1 doi: 10.1016/j.electacta.2016.04.180 – ident: e_1_2_7_34_1 doi: 10.1016/j.jpowsour.2014.09.183 – ident: e_1_2_7_49_1 doi: 10.1021/jp984316t – ident: e_1_2_7_12_1 doi: 10.1021/acsami.6b07431 – ident: e_1_2_7_37_1 doi: 10.1016/j.electacta.2015.02.027 – ident: e_1_2_7_17_1 doi: 10.1038/nnano.2016.207 – ident: e_1_2_7_29_1 doi: 10.1039/C5TA03676C – ident: e_1_2_7_40_1 doi: 10.1002/aenm.201502398 – ident: e_1_2_7_4_1 doi: 10.1038/ncomms9711 – ident: e_1_2_7_11_1 doi: 10.1016/j.jpowsour.2016.10.042 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201104106 – ident: e_1_2_7_7_1 doi: 10.1038/nchem.2471 – ident: e_1_2_7_16_1 doi: 10.1021/acs.chemmater.7b02930 – ident: e_1_2_7_35_1 doi: 10.1016/j.jpowsour.2013.02.075 – ident: e_1_2_7_44_1 doi: 10.1016/j.apsusc.2006.10.044 – ident: e_1_2_7_55_1 doi: 10.1021/cm5031415 – ident: e_1_2_7_31_1 doi: 10.1016/S0955-2219(00)00242-9 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201300269 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.201501914 – ident: e_1_2_7_58_1 doi: 10.1038/nmat3699 – ident: e_1_2_7_3_1 doi: 10.1007/s41918-019-00032-8 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201605807 – ident: e_1_2_7_36_1 doi: 10.1021/cm3005634 – ident: e_1_2_7_46_1 doi: 10.4209/aaqr.2014.11.0286 – ident: e_1_2_7_61_1 doi: 10.1107/S1600576715000679 – ident: e_1_2_7_6_1 doi: 10.1038/s41560-018-0184-2 – ident: e_1_2_7_50_1 doi: 10.1021/acsami.5b10219 – ident: e_1_2_7_30_1 doi: 10.1002/aenm.201500274 – ident: e_1_2_7_51_1 doi: 10.1021/cm070389q – ident: e_1_2_7_56_1 doi: 10.1088/1361-6528/aaae50 |
SSID | ssj0000491033 |
Score | 2.6183112 |
Snippet | Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and... Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO 2 and LiMn 2 O 4 ; however, voltage fade... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cathodes Degradation Electrical resistivity Electrode materials Electrodes Interfacial bonding Ion currents Lithium manganese oxides Lithium-ion batteries Li‐rich layered oxide metal ion migration Protective coatings Surface layers surface‐coating voltage fade |
Title | Insight of a Phase Compatible Surface Coating for Long‐Durable Li‐Rich Layered Oxide Cathode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201901795 https://www.proquest.com/docview/2288586393 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMsFOQDEocqkDgv-7iiRQVlC1JbqT0FO7HbIJRF20RqOXHmxG_klzB-5CXevUS7Xm9W9nwZz3i_-YzQUwVBMA3L0guTgHoRk6HHFFEekamWGpFxGuoC5-V-sncUvTmOj2ezryPWUtuI58XnX9aVXMWq0AZ21VWy_2HZ_qbQAK_BvnAFC8P1n2z8uj7XubWtcXx3BguSfb6bStdDHbRrxQvdxJuOL5lpBm7Hb9hp16ZwKqv6Jl1nv53xS32C5_bbi6qUpkZwVU4YQ4uOOCBt5SBEvXa4A0jMrmr1AcB32nN-DHHgpB0YBdblnbRnLR9ctKMI69PGTsd7EsFAuurcKCz6XkLdzqUct1lxps73shHE3KamXYX7NeonF28lY7mstY6ADmdSe0rnVEu77xn_ua-V_t3dX_afX0ObBFIO8Jmbi51ldtDv2EEuFfihqdjohtepgPrkxfRHplHOkLqMEyATwRzeQjdd6oEXFke30UzWd9CNkSDlXfTeIQqvFObYIAoPiMIOUdghCgOisEbU9y_fHJZwVsEbjSLsUIQNirBD0T109Gr38OWe587g8IoIXL0XUCYLmUgJkaSAgYlYMCJZVKQljUTKCypKFTPKo1gFTKYFBLjcD5T0uZCxYuF9tFGvavkA4VTp9SSNlP5rvowTFvIoUoQVia-YEmKOvG7O8sIJ1OtzUj7mVlqb5HqO836O5-hZ3_-TlWb5bc-tzgS5e3zPc0IojSkE6OEcEWOWv9wln8Dk4VW-9AhdHx6XLbTRrFv5GILaRjxxaPsBJjSYpQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+of+a+Phase+Compatible+Surface+Coating+for+Long%E2%80%90Durable+Li%E2%80%90Rich+Layered+Oxide+Cathode&rft.jtitle=Advanced+energy+materials&rft.au=Hu%2C+Sijiang&rft.au=Li%2C+Yu&rft.au=Chen%2C+Yuhua&rft.au=Peng%2C+Jiming&rft.date=2019-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201901795&rft.externalDBID=10.1002%252Faenm.201901795&rft.externalDocID=AENM201901795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |