Plating/Stripping Behavior of Actual Lithium Metal Anode

Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully under...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 44
Main Authors Liu, He, Cheng, Xin‐Bing, Xu, Rui, Zhang, Xue‐Qiang, Yan, Chong, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm−2) is probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO4 and FePO4 cathodes, P‐Li | LiFePO4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes. The working manner of Li metal anodes are probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. There are differences in reactive sites, distribution of dead Li, and voltage polarization. This contribution affords the emerging working principles of Li metal anodes with matching lithium‐containing and lithium‐free cathodes.
AbstractList Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm−2) is probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO4 and FePO4 cathodes, P‐Li | LiFePO4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes. The working manner of Li metal anodes are probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. There are differences in reactive sites, distribution of dead Li, and voltage polarization. This contribution affords the emerging working principles of Li metal anodes with matching lithium‐containing and lithium‐free cathodes.
Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm−2) is probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO4 and FePO4 cathodes, P‐Li | LiFePO4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes.
Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm −2 ) is probed with different sequences of Li plating and stripping at 3.0 mA cm −2 and 3.0 mAh cm −2 . Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO 4 and FePO 4 cathodes, P‐Li | LiFePO 4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes.
Author Huang, Jia‐Qi
Liu, He
Xu, Rui
Zhang, Qiang
Cheng, Xin‐Bing
Zhang, Xue‐Qiang
Yan, Chong
Author_xml – sequence: 1
  givenname: He
  surname: Liu
  fullname: Liu, He
  organization: Tsinghua University
– sequence: 2
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Tsinghua University
– sequence: 3
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Tsinghua University
– sequence: 5
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkE1Lw0AQhhepYK29eg54TrtfySbHWOoHtCqo52W7mdgtaTZuNkr_vVsqFQRxLjMD88zM-56jQWMbQOiS4AnBmE4VNNsJxSTHlCb8BA1JSnicZhwPjjWjZ2jcdRscgucEMzZE2VOtvGneps_embYNVXQNa_VhrItsFRXa96qOFsavTb-NluBDVzS2hAt0Wqm6g_F3HqHXm_nL7C5ePN7ez4pFrDmlPK4qBlAmkOSQM52RKhVAQZcYaCUgEatSgAYGmRAVo5phCqlaiZWAPHytgI3Q1WFv6-x7D52XG9u7JpyUlJGM50kalIwQP0xpZ7vOQSW18UGYbbxTppYEy71Ncm-TPNoUsMkvrHVmq9zubyA_AJ-mht0_07KYPyx_2C-Mo3xm
CitedBy_id crossref_primary_10_1002_aenm_202404175
crossref_primary_10_1016_j_electacta_2022_141100
crossref_primary_10_1039_D1TA02682H
crossref_primary_10_1002_advs_202205328
crossref_primary_10_1016_j_cjche_2021_03_021
crossref_primary_10_1007_s12274_024_6856_2
crossref_primary_10_1002_smll_202311193
crossref_primary_10_1016_j_est_2023_109422
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1002_adsu_202300231
crossref_primary_10_1016_S1872_5805_22_60573_0
crossref_primary_10_1016_j_nxnano_2023_100036
crossref_primary_10_3390_nano11030614
crossref_primary_10_1002_adma_202202668
crossref_primary_10_1016_j_cej_2024_150343
crossref_primary_10_1002_smll_202406579
crossref_primary_10_1002_adma_202313034
crossref_primary_10_1002_anie_202105831
crossref_primary_10_1039_D0TA11643B
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1021_acsami_0c13591
crossref_primary_10_1039_D1TA02615A
crossref_primary_10_1021_acsami_1c17718
crossref_primary_10_1016_j_scib_2025_01_060
crossref_primary_10_1016_j_ensm_2024_103711
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_adfm_202400348
crossref_primary_10_1002_adma_202110337
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1002_aesr_202000110
crossref_primary_10_1039_D4TA03930K
crossref_primary_10_1002_advs_202002144
crossref_primary_10_1021_acs_macromol_0c02032
crossref_primary_10_1021_acs_energyfuels_1c02008
crossref_primary_10_1016_j_jpowsour_2025_236534
crossref_primary_10_1021_acsami_1c11607
crossref_primary_10_1002_adfm_202304617
crossref_primary_10_1002_adma_202002850
crossref_primary_10_1016_j_colsurfa_2022_129104
crossref_primary_10_1039_D1TA04741H
crossref_primary_10_1002_smll_202312132
crossref_primary_10_1016_j_jechem_2021_08_032
crossref_primary_10_1016_j_cej_2024_153383
crossref_primary_10_1021_acsami_3c13972
crossref_primary_10_1007_s12598_023_02281_5
crossref_primary_10_1007_s12274_022_5370_7
crossref_primary_10_1016_j_nanoen_2020_104967
crossref_primary_10_1021_acssuschemeng_2c05918
crossref_primary_10_1002_eem2_12746
crossref_primary_10_1002_adma_202106867
crossref_primary_10_1016_j_ensm_2022_10_028
crossref_primary_10_1021_acs_jpclett_2c01340
crossref_primary_10_1016_j_jcis_2023_03_110
crossref_primary_10_1016_j_jcat_2021_10_038
crossref_primary_10_1016_j_joule_2024_09_004
crossref_primary_10_1002_anie_202001816
crossref_primary_10_1007_s11581_020_03689_0
crossref_primary_10_1002_aenm_202400572
crossref_primary_10_1002_elsa_202100154
crossref_primary_10_1021_acsami_2c21133
crossref_primary_10_1002_ange_202308017
crossref_primary_10_1016_j_nanoen_2021_105761
crossref_primary_10_1002_adma_202005305
crossref_primary_10_1039_D4TA01043D
crossref_primary_10_1002_adma_202301540
crossref_primary_10_1021_acsami_4c17586
crossref_primary_10_1002_aenm_202303726
crossref_primary_10_1007_s11837_023_06359_4
crossref_primary_10_1016_j_jallcom_2021_158908
crossref_primary_10_1073_pnas_2220419120
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1016_j_apcatb_2024_124916
crossref_primary_10_1016_j_jpowsour_2022_231730
crossref_primary_10_1016_j_esci_2022_02_002
crossref_primary_10_1002_adma_202100827
crossref_primary_10_1002_aesr_202100197
crossref_primary_10_1016_j_jpowsour_2020_228694
crossref_primary_10_1039_D4QI03139C
crossref_primary_10_1002_anie_202308017
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1021_acs_nanolett_0c00789
crossref_primary_10_1016_j_cjche_2021_05_008
crossref_primary_10_1002_eem2_12165
crossref_primary_10_1002_adfm_202213648
crossref_primary_10_1016_j_jcis_2022_03_135
crossref_primary_10_1002_aenm_202203648
crossref_primary_10_1021_jacs_3c05715
crossref_primary_10_1021_acsami_1c11134
crossref_primary_10_1016_j_geits_2024_100179
crossref_primary_10_1149_1945_7111_acd587
crossref_primary_10_1002_ange_202105831
crossref_primary_10_1016_j_jcis_2024_02_014
crossref_primary_10_1021_acsami_4c08605
crossref_primary_10_1021_acsami_4c01530
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1002_cssc_202400569
crossref_primary_10_1002_smll_202307260
crossref_primary_10_1021_acsami_2c04166
crossref_primary_10_1039_D3EE04515C
crossref_primary_10_1002_ange_202001816
crossref_primary_10_1016_j_nanoen_2024_110086
crossref_primary_10_1016_j_scriptamat_2021_113835
crossref_primary_10_1016_j_jmatprotec_2021_117159
crossref_primary_10_1038_s41467_022_31461_7
crossref_primary_10_1039_D4EE03102D
crossref_primary_10_1021_acs_jpcc_2c02396
crossref_primary_10_1016_j_ensm_2019_12_023
crossref_primary_10_1021_acsmaterialslett_0c00396
crossref_primary_10_1002_anie_202110589
crossref_primary_10_1021_acsenergylett_9b02660
crossref_primary_10_1021_acsami_2c15452
crossref_primary_10_1149_1945_7111_ad0510
crossref_primary_10_1002_aenm_202201056
crossref_primary_10_1016_j_ijhydene_2020_07_279
crossref_primary_10_1016_j_jechem_2021_03_048
crossref_primary_10_1002_sstr_202200010
crossref_primary_10_1002_ange_202410020
crossref_primary_10_1039_D0TA02499F
crossref_primary_10_1016_j_cej_2020_127943
crossref_primary_10_1016_j_enchem_2021_100063
crossref_primary_10_1016_j_jechem_2020_08_029
crossref_primary_10_1002_smtd_202100518
crossref_primary_10_1039_D0TA12153C
crossref_primary_10_1002_advs_202103910
crossref_primary_10_1016_j_ensm_2021_10_028
crossref_primary_10_1021_acsaem_3c02103
crossref_primary_10_1002_smll_202203222
crossref_primary_10_1002_eem2_70003
crossref_primary_10_1002_adfm_202418033
crossref_primary_10_1007_s11814_024_00174_6
crossref_primary_10_1039_D0TA01044H
crossref_primary_10_1002_nano_202000002
crossref_primary_10_1016_j_est_2023_110390
crossref_primary_10_1007_s12274_024_6853_5
crossref_primary_10_1039_D4MH00529E
crossref_primary_10_1002_aenm_202402609
crossref_primary_10_1016_j_partic_2020_12_003
crossref_primary_10_1016_j_nanoen_2022_107641
crossref_primary_10_1002_adfm_202424366
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1039_D4TA05871B
crossref_primary_10_1016_j_nxnano_2024_100114
crossref_primary_10_1002_batt_202100075
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1007_s11771_021_4881_9
crossref_primary_10_1021_acsnano_4c06149
crossref_primary_10_1002_aenm_202201044
crossref_primary_10_1063_5_0108998
crossref_primary_10_1016_j_mtener_2022_101015
crossref_primary_10_1149_1945_7111_abec98
crossref_primary_10_1016_j_nanoen_2020_105098
crossref_primary_10_1002_aenm_202003674
crossref_primary_10_1002_batt_202000258
crossref_primary_10_1016_j_apsusc_2023_157902
crossref_primary_10_1016_j_mattod_2020_10_021
crossref_primary_10_1039_D4CC06729K
crossref_primary_10_1016_j_jechem_2021_04_045
crossref_primary_10_1021_acssuschemeng_4c09291
crossref_primary_10_1021_acsenergylett_2c00003
crossref_primary_10_1016_j_jechem_2021_12_046
crossref_primary_10_1002_adfm_202102128
crossref_primary_10_1002_smll_202407740
crossref_primary_10_1039_D1CS00948F
crossref_primary_10_1149_1945_7111_ac7668
crossref_primary_10_1016_j_jpowsour_2022_231348
crossref_primary_10_1002_ange_202309622
crossref_primary_10_1002_aenm_202301266
crossref_primary_10_1002_aenm_201903953
crossref_primary_10_1016_j_jechem_2022_07_027
crossref_primary_10_1002_adfm_202316838
crossref_primary_10_1002_aenm_202201411
crossref_primary_10_1002_inc2_12006
crossref_primary_10_3390_batteries9060299
crossref_primary_10_1002_ange_202104671
crossref_primary_10_1039_D2TA07783C
crossref_primary_10_1016_j_jpowsour_2024_235532
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1002_sus2_37
crossref_primary_10_1016_j_nanoen_2024_109835
crossref_primary_10_1002_adma_202211203
crossref_primary_10_1016_j_jpowsour_2022_231215
crossref_primary_10_1002_anie_202309622
crossref_primary_10_1002_anie_202410020
crossref_primary_10_1021_acs_nanolett_4c03387
crossref_primary_10_1039_D1TA09481E
crossref_primary_10_1021_acsami_0c17302
crossref_primary_10_1016_j_jechem_2022_01_019
crossref_primary_10_1002_idm2_12077
crossref_primary_10_1007_s11426_020_9984_9
crossref_primary_10_1002_ange_202110589
crossref_primary_10_1016_j_cej_2022_139409
crossref_primary_10_1038_s41586_023_06992_8
crossref_primary_10_1002_anie_202104671
crossref_primary_10_3390_nano13010090
crossref_primary_10_1002_aenm_202101774
crossref_primary_10_1002_smll_202206252
crossref_primary_10_1021_acsami_2c14349
crossref_primary_10_1002_adfm_202009925
crossref_primary_10_1021_acsami_1c07032
crossref_primary_10_1016_j_cej_2023_143530
crossref_primary_10_1002_adma_202305645
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1002_smsc_202100110
crossref_primary_10_1021_acs_energyfuels_0c02111
crossref_primary_10_1016_j_est_2024_110641
crossref_primary_10_1021_acsaem_4c02248
crossref_primary_10_1016_j_trd_2023_103944
crossref_primary_10_1016_j_jallcom_2024_174867
crossref_primary_10_1016_j_ensm_2021_12_032
crossref_primary_10_1016_j_cej_2021_134468
crossref_primary_10_1021_acs_analchem_1c03422
crossref_primary_10_1021_acsami_4c07927
crossref_primary_10_1021_acsomega_4c04118
Cites_doi 10.1038/s41560-019-0338-x
10.1002/adfm.201902220
10.1002/anie.201905712
10.1021/jacs.8b04612
10.1002/adfm.201805638
10.1002/aenm.201800266
10.1038/s41560-018-0196-y
10.1002/adma.201900342
10.1016/j.electacta.2006.02.004
10.1038/s41563-019-0305-8
10.1002/anie.201808714
10.1016/j.jechem.2018.11.016
10.1002/smll.201900269
10.1080/14786440109462590
10.1021/acsenergylett.7b00300
10.1038/s41560-019-0349-7
10.1016/j.chempr.2018.12.002
10.1021/acs.chemrev.7b00115
10.1038/s41565-019-0465-3
10.1002/adma.201705830
10.1002/aenm.201802534
10.1002/aenm.201800635
10.1002/adfm.201900392
10.1126/sciadv.aat3446
10.1016/j.chempr.2018.06.017
10.1038/451652a
10.1021/acsenergylett.8b00935
10.1002/aenm.201900574
10.1002/adma.201804461
10.1002/aenm.201802720
10.1002/aenm.201900260
10.1021/acsenergylett.8b02483
10.1039/C9TA01911A
10.1021/acsenergylett.8b00526
10.1002/adma.201807131
10.1016/j.chempr.2018.05.002
10.1016/j.joule.2019.03.019
10.1103/PhysRevA.42.7355
10.1002/anie.201905251
10.1016/0022-0728(90)87434-L
10.1002/anie.201801513
10.1021/jacs.8b13297
10.1002/adma.201806532
10.1021/acs.chemrev.8b00422
10.1016/j.ensm.2018.03.015
10.1002/anie.201811955
10.1021/cr5003003
10.1002/adfm.201900950
10.1126/sciadv.aau7728
10.1016/j.ensm.2018.03.012
10.1002/anie.201809203
10.1038/s41467-017-00519-2
10.1002/adma.201901645
10.1016/j.chempr.2017.10.017
10.1002/anie.201807034
10.1016/j.joule.2018.06.021
10.1038/s41467-019-08767-0
10.1016/j.eng.2018.10.008
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902254
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201902254
AENM201902254
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21676160; 21825501; 21805161; 21808121; U1801257
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M631480
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4224-ff3eed5e59e93c81f67e2ecd0e2f7e57bd7ece3e877f32c302e6ab7b7e9161ae3
ISSN 1614-6832
IngestDate Fri Jul 25 12:29:10 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 01:43:31 EDT 2025
Wed Jan 22 16:38:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4224-ff3eed5e59e93c81f67e2ecd0e2f7e57bd7ece3e877f32c302e6ab7b7e9161ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3929-1541
PQID 2318495610
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2318495610
crossref_citationtrail_10_1002_aenm_201902254
crossref_primary_10_1002_aenm_201902254
wiley_primary_10_1002_aenm_201902254_AENM201902254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2019 2019 2018 2019 2018 2019 2018; 29 14 7 2 29 4 3 15
2019 2019 2018; 9 4 15
2019; 9
2018; 3
2018 2018 2019; 4 57 9
2018; 140
2008 2014; 451 114
2019 2017 2017 2018; 29 8 2 57
2018 2018; 30 28
2019 2019; 141 4
2018; 118
1901 2006; 1 51
2019 2019; 9 18
2019; 15
1990 1990; 42 290
2018 2018 2018; 3 4 4
2019 2019 2019 2019 2019 2018 2018 2018; 31 31 37 5 8 8 57
2019 2019 2019 2018; 58 31 5 4
2018 2018; 3 57
2019 2018 2019 2019 2019 2019; 58 30 58 31 4 10
2017; 117
e_1_2_4_21_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_3_3
e_1_2_4_5_1
e_1_2_4_3_2
e_1_2_4_7_1
e_1_2_4_5_2
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_10_1
e_1_2_4_10_2
e_1_2_4_10_3
e_1_2_4_12_1
e_1_2_4_10_4
e_1_2_4_12_2
e_1_2_4_12_3
e_1_2_4_14_1
e_1_2_4_14_2
e_1_2_4_16_1
e_1_2_4_14_3
e_1_2_4_18_1
e_1_2_4_14_5
e_1_2_4_16_2
e_1_2_4_14_6
e_1_2_4_14_7
e_1_2_4_18_2
e_1_2_4_14_8
Zhang R. (e_1_2_4_14_4) 2019
e_1_2_4_20_1
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_4_4
e_1_2_4_6_2
e_1_2_4_4_3
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_11_1
e_1_2_4_11_2
e_1_2_4_11_3
e_1_2_4_13_1
e_1_2_4_11_4
e_1_2_4_13_2
e_1_2_4_11_5
e_1_2_4_13_3
e_1_2_4_15_1
e_1_2_4_11_6
e_1_2_4_13_4
e_1_2_4_13_5
e_1_2_4_17_2
e_1_2_4_13_6
e_1_2_4_17_1
e_1_2_4_13_7
e_1_2_4_19_2
e_1_2_4_13_8
e_1_2_4_17_3
e_1_2_4_19_1
References_xml – volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 141 4
  start-page: 8441 180
  year: 2019 2019
  publication-title: J. Am. Chem. Soc. Nat. Energy
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 29 14 7 2 29 4 3 15
  start-page: 705 1674 eaat3446 1190 37
  year: 2019 2019 2019 2018 2019 2018 2019 2018
  publication-title: Adv. Funct. Mater. Nat. Nanotechnol. J. Mater. Chem. A Joule Adv. Funct. Mater. Sci. Adv. Joule Energy Storage Mater.
– volume: 451 114
  start-page: 652
  year: 2008 2014
  publication-title: Nature Chem. Rev.
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 3 4 4
  start-page: 674 174 1877
  year: 2018 2018 2018
  publication-title: Nat. Energy Chem Chem
– volume: 3 57
  start-page: 2059 5301
  year: 2018 2018
  publication-title: ACS Energy Lett. Angew. Chem., Int. Ed.
– volume: 58 31 5 4
  start-page: 74 831
  year: 2019 2019 2019 2018
  publication-title: Angew. Chem., Int. Ed. Adv. Mater. Chem Engineering
– volume: 3
  start-page: 1564
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 42 290
  start-page: 7355 249
  year: 1990 1990
  publication-title: Phys. Rev. A J. Electroanal. Chem.
– volume: 29 8 2 57
  start-page: 336 1321
  year: 2019 2017 2017 2018
  publication-title: Adv. Funct. Mater. Nat. Commun. ACS Energy Lett. Angew. Chem., Int. Ed.
– volume: 1 51
  start-page: 45 5334
  year: 1901 2006
  publication-title: Philos. Mag. Electrochim. Acta
– volume: 9 18
  start-page: 384
  year: 2019 2019
  publication-title: Adv. Energy Mater. Nat. Mater.
– volume: 58 30 58 31 4 10
  start-page: 1094 644 900
  year: 2019 2018 2019 2019 2019 2019
  publication-title: Angew. Chem., Int. Ed. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. ACS Energy Lett. Nat. Commun.
– volume: 31 31 37 5 8 8 57
  start-page: 29 eaau7728
  year: 2019 2019 2019 2019 2019 2018 2018 2018
  publication-title: Adv. Mater. Adv. Mater. J. Energy Chem. Energy Storage Mater. Sci. Adv. Adv. Energy Mater. Adv. Energy Mater. Angew. Chem., Int. Ed.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 4 57 9
  start-page: 2192
  year: 2018 2018 2019
  publication-title: Chem Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 140
  start-page: 9921
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 30 28
  year: 2018 2018
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 9 4 15
  start-page: 365 31
  year: 2019 2019 2018
  publication-title: Adv. Energy Mater. Nat. Energy Energy Storage Mater.
– ident: e_1_2_4_5_2
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_4_10_1
  doi: 10.1002/adfm.201902220
– ident: e_1_2_4_11_1
  doi: 10.1002/anie.201905712
– ident: e_1_2_4_9_1
  doi: 10.1021/jacs.8b04612
– ident: e_1_2_4_16_2
  doi: 10.1002/adfm.201805638
– ident: e_1_2_4_14_6
  doi: 10.1002/aenm.201800266
– ident: e_1_2_4_12_1
  doi: 10.1038/s41560-018-0196-y
– ident: e_1_2_4_11_4
  doi: 10.1002/adma.201900342
– ident: e_1_2_4_19_2
  doi: 10.1016/j.electacta.2006.02.004
– ident: e_1_2_4_6_2
  doi: 10.1038/s41563-019-0305-8
– year: 2019
  ident: e_1_2_4_14_4
  publication-title: Energy Storage Mater.
– ident: e_1_2_4_14_8
  doi: 10.1002/anie.201808714
– ident: e_1_2_4_14_3
  doi: 10.1016/j.jechem.2018.11.016
– ident: e_1_2_4_8_1
  doi: 10.1002/smll.201900269
– ident: e_1_2_4_19_1
  doi: 10.1080/14786440109462590
– ident: e_1_2_4_10_3
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_4_3_2
  doi: 10.1038/s41560-019-0349-7
– ident: e_1_2_4_4_3
  doi: 10.1016/j.chempr.2018.12.002
– ident: e_1_2_4_20_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_4_13_2
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_4_16_1
  doi: 10.1002/adma.201705830
– ident: e_1_2_4_6_1
  doi: 10.1002/aenm.201802534
– ident: e_1_2_4_14_7
  doi: 10.1002/aenm.201800635
– ident: e_1_2_4_13_1
  doi: 10.1002/adfm.201900392
– ident: e_1_2_4_13_6
  doi: 10.1126/sciadv.aat3446
– ident: e_1_2_4_17_1
  doi: 10.1016/j.chempr.2018.06.017
– ident: e_1_2_4_1_1
  doi: 10.1038/451652a
– ident: e_1_2_4_7_1
  doi: 10.1021/acsenergylett.8b00935
– ident: e_1_2_4_21_1
  doi: 10.1002/aenm.201900574
– ident: e_1_2_4_11_2
  doi: 10.1002/adma.201804461
– ident: e_1_2_4_3_1
  doi: 10.1002/aenm.201802720
– ident: e_1_2_4_17_3
  doi: 10.1002/aenm.201900260
– ident: e_1_2_4_11_5
  doi: 10.1021/acsenergylett.8b02483
– ident: e_1_2_4_13_3
  doi: 10.1039/C9TA01911A
– ident: e_1_2_4_15_1
  doi: 10.1021/acsenergylett.8b00526
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201807131
– ident: e_1_2_4_12_3
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_4_13_7
  doi: 10.1016/j.joule.2019.03.019
– ident: e_1_2_4_18_1
  doi: 10.1103/PhysRevA.42.7355
– ident: e_1_2_4_4_1
  doi: 10.1002/anie.201905251
– ident: e_1_2_4_18_2
  doi: 10.1016/0022-0728(90)87434-L
– ident: e_1_2_4_7_2
  doi: 10.1002/anie.201801513
– ident: e_1_2_4_5_1
  doi: 10.1021/jacs.8b13297
– ident: e_1_2_4_4_2
  doi: 10.1002/adma.201806532
– ident: e_1_2_4_2_1
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_4_13_8
  doi: 10.1016/j.ensm.2018.03.015
– ident: e_1_2_4_11_3
  doi: 10.1002/anie.201811955
– ident: e_1_2_4_1_2
  doi: 10.1021/cr5003003
– ident: e_1_2_4_13_5
  doi: 10.1002/adfm.201900950
– ident: e_1_2_4_14_5
  doi: 10.1126/sciadv.aau7728
– ident: e_1_2_4_3_3
  doi: 10.1016/j.ensm.2018.03.012
– ident: e_1_2_4_17_2
  doi: 10.1002/anie.201809203
– ident: e_1_2_4_10_2
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_4_14_2
  doi: 10.1002/adma.201901645
– ident: e_1_2_4_12_2
  doi: 10.1016/j.chempr.2017.10.017
– ident: e_1_2_4_10_4
  doi: 10.1002/anie.201807034
– ident: e_1_2_4_13_4
  doi: 10.1016/j.joule.2018.06.021
– ident: e_1_2_4_11_6
  doi: 10.1038/s41467-019-08767-0
– ident: e_1_2_4_4_4
  doi: 10.1016/j.eng.2018.10.008
SSID ssj0000491033
Score 2.649388
Snippet Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Anodic polarization
Cathodes
dead lithium
dendrite growth
Dendritic structure
Electrode polarization
Electrodes
Flux density
Lithium
lithium metal anodes
lithium plating and stripping
Matching
Plating
Rechargeable batteries
Stripping
Title Plating/Stripping Behavior of Actual Lithium Metal Anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902254
https://www.proquest.com/docview/2318495610
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcCh4im2FJQDEgdkmjgPJ8cFWlWoWwFtpdyi2DsukSBFJbnw6xk_k1V59hKtsnay6_k8r8x8IeSFypU2q5LqpkWaAQAVaMVoCZWoslaCFDoPuTopjs6z93VeT49iTHfJIF7LH7_sK7mJVPEcylV3yf6HZMNF8QR-RvniESWMx3-S8QddyKY36-HpcGWYFi484aFJ_i9td8hxN3zuxq-vVqA7HzHgX2_U_yx9GQDYPkD0Ye2PD8U63Wgt1FQLAFZF1F0fqiXeeCOIA2oz4dPYXctL1yOEGR8RmhfztENSuf67SVOiXadF6ZKTMD9n-Ze8eq1mKLJUj87QBjN0TYtbVtgWek0VgB4L6pxsslf-GX0Ymf95rGX3PThZhe9vk22GUQWqxe3lu9XxaUjKYbiUxKlpyvB_zxN9xmx_8yabjswUncxjHOOknN0jOy66iJYWKvfJLegfkLszzsmHpHSg2Q-QiTxkoksVWchEDjKRgUxkIPOInB8enL09ou71GVRm6JhRpVJ0gHLIK6hSWSaq4MBArmNgikPOxZqDhBRKzlXKZBozKFrBBQcMGZIW0sdkq7_s4QmJYiHQz1SiSITIYB1XbVtwdP3RQrFWSlgQ6teikY5bXr_i5EtjWbFZo9euCWu3IC_D-G-WVeW3I_f80jZu531vMCYpdWCfxAvCzHL_5SrNhvh3bzLpKbkzbYM9sjVcjfAM_dFBPHco-glLTX-o
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plating%2FStripping+Behavior+of+Actual+Lithium+Metal+Anode&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+He&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.au=Xu%2C+Rui&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.date=2019-11-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902254&rft.externalDBID=10.1002%252Faenm.201902254&rft.externalDocID=AENM201902254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon