Plating/Stripping Behavior of Actual Lithium Metal Anode
Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully under...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 44 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm−2) is probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO4 and FePO4 cathodes, P‐Li | LiFePO4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes.
The working manner of Li metal anodes are probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. There are differences in reactive sites, distribution of dead Li, and voltage polarization. This contribution affords the emerging working principles of Li metal anodes with matching lithium‐containing and lithium‐free cathodes. |
---|---|
AbstractList | Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm−2) is probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO4 and FePO4 cathodes, P‐Li | LiFePO4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes.
The working manner of Li metal anodes are probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. There are differences in reactive sites, distribution of dead Li, and voltage polarization. This contribution affords the emerging working principles of Li metal anodes with matching lithium‐containing and lithium‐free cathodes. Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm−2) is probed with different sequences of Li plating and stripping at 3.0 mA cm−2 and 3.0 mAh cm−2. Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO4 and FePO4 cathodes, P‐Li | LiFePO4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes. Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and stripping behaviors of Li metal anodes with high reactivity and dendrite growth when matching different cathodes in working cells are not fully understood yet. Herein the working manner of very thin Li metal anodes (50 µm, 10 mAh cm −2 ) is probed with different sequences of Li plating and stripping at 3.0 mA cm −2 and 3.0 mAh cm −2 . Dendrite growth and dead Li forms on the surface of the initially plated Li electrode (P‐Li), while Li dendrites form in the pit of the initially stripped Li electrode (S‐Li). This induces the differences in reactive sites, distribution of dead Li, and voltage polarization of Li metal anodes. There is a gap of 15–20 and 13–16 mV for the end voltages between S‐Li and P‐Li during stripping and plating, respectively. When matching LiFePO 4 and FePO 4 cathodes, P‐Li | LiFePO 4 cells exhibit a 30‐cycle longer lifespan with smaller end polarization due to differences in the sequences of Li plating and stripping. This contribution affords emerging working principles for actual Li metal anodes when matching lithium‐containing and lithium‐free cathodes. |
Author | Huang, Jia‐Qi Liu, He Xu, Rui Zhang, Qiang Cheng, Xin‐Bing Zhang, Xue‐Qiang Yan, Chong |
Author_xml | – sequence: 1 givenname: He surname: Liu fullname: Liu, He organization: Tsinghua University – sequence: 2 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing organization: Tsinghua University – sequence: 3 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 4 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Tsinghua University – sequence: 5 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 6 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 7 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkE1Lw0AQhhepYK29eg54TrtfySbHWOoHtCqo52W7mdgtaTZuNkr_vVsqFQRxLjMD88zM-56jQWMbQOiS4AnBmE4VNNsJxSTHlCb8BA1JSnicZhwPjjWjZ2jcdRscgucEMzZE2VOtvGneps_embYNVXQNa_VhrItsFRXa96qOFsavTb-NluBDVzS2hAt0Wqm6g_F3HqHXm_nL7C5ePN7ez4pFrDmlPK4qBlAmkOSQM52RKhVAQZcYaCUgEatSgAYGmRAVo5phCqlaiZWAPHytgI3Q1WFv6-x7D52XG9u7JpyUlJGM50kalIwQP0xpZ7vOQSW18UGYbbxTppYEy71Ncm-TPNoUsMkvrHVmq9zubyA_AJ-mht0_07KYPyx_2C-Mo3xm |
CitedBy_id | crossref_primary_10_1002_aenm_202404175 crossref_primary_10_1016_j_electacta_2022_141100 crossref_primary_10_1039_D1TA02682H crossref_primary_10_1002_advs_202205328 crossref_primary_10_1016_j_cjche_2021_03_021 crossref_primary_10_1007_s12274_024_6856_2 crossref_primary_10_1002_smll_202311193 crossref_primary_10_1016_j_est_2023_109422 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1002_adsu_202300231 crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1016_j_nxnano_2023_100036 crossref_primary_10_3390_nano11030614 crossref_primary_10_1002_adma_202202668 crossref_primary_10_1016_j_cej_2024_150343 crossref_primary_10_1002_smll_202406579 crossref_primary_10_1002_adma_202313034 crossref_primary_10_1002_anie_202105831 crossref_primary_10_1039_D0TA11643B crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1021_acsami_0c13591 crossref_primary_10_1039_D1TA02615A crossref_primary_10_1021_acsami_1c17718 crossref_primary_10_1016_j_scib_2025_01_060 crossref_primary_10_1016_j_ensm_2024_103711 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_adfm_202400348 crossref_primary_10_1002_adma_202110337 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1002_aesr_202000110 crossref_primary_10_1039_D4TA03930K crossref_primary_10_1002_advs_202002144 crossref_primary_10_1021_acs_macromol_0c02032 crossref_primary_10_1021_acs_energyfuels_1c02008 crossref_primary_10_1016_j_jpowsour_2025_236534 crossref_primary_10_1021_acsami_1c11607 crossref_primary_10_1002_adfm_202304617 crossref_primary_10_1002_adma_202002850 crossref_primary_10_1016_j_colsurfa_2022_129104 crossref_primary_10_1039_D1TA04741H crossref_primary_10_1002_smll_202312132 crossref_primary_10_1016_j_jechem_2021_08_032 crossref_primary_10_1016_j_cej_2024_153383 crossref_primary_10_1021_acsami_3c13972 crossref_primary_10_1007_s12598_023_02281_5 crossref_primary_10_1007_s12274_022_5370_7 crossref_primary_10_1016_j_nanoen_2020_104967 crossref_primary_10_1021_acssuschemeng_2c05918 crossref_primary_10_1002_eem2_12746 crossref_primary_10_1002_adma_202106867 crossref_primary_10_1016_j_ensm_2022_10_028 crossref_primary_10_1021_acs_jpclett_2c01340 crossref_primary_10_1016_j_jcis_2023_03_110 crossref_primary_10_1016_j_jcat_2021_10_038 crossref_primary_10_1016_j_joule_2024_09_004 crossref_primary_10_1002_anie_202001816 crossref_primary_10_1007_s11581_020_03689_0 crossref_primary_10_1002_aenm_202400572 crossref_primary_10_1002_elsa_202100154 crossref_primary_10_1021_acsami_2c21133 crossref_primary_10_1002_ange_202308017 crossref_primary_10_1016_j_nanoen_2021_105761 crossref_primary_10_1002_adma_202005305 crossref_primary_10_1039_D4TA01043D crossref_primary_10_1002_adma_202301540 crossref_primary_10_1021_acsami_4c17586 crossref_primary_10_1002_aenm_202303726 crossref_primary_10_1007_s11837_023_06359_4 crossref_primary_10_1016_j_jallcom_2021_158908 crossref_primary_10_1073_pnas_2220419120 crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1016_j_apcatb_2024_124916 crossref_primary_10_1016_j_jpowsour_2022_231730 crossref_primary_10_1016_j_esci_2022_02_002 crossref_primary_10_1002_adma_202100827 crossref_primary_10_1002_aesr_202100197 crossref_primary_10_1016_j_jpowsour_2020_228694 crossref_primary_10_1039_D4QI03139C crossref_primary_10_1002_anie_202308017 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1021_acs_nanolett_0c00789 crossref_primary_10_1016_j_cjche_2021_05_008 crossref_primary_10_1002_eem2_12165 crossref_primary_10_1002_adfm_202213648 crossref_primary_10_1016_j_jcis_2022_03_135 crossref_primary_10_1002_aenm_202203648 crossref_primary_10_1021_jacs_3c05715 crossref_primary_10_1021_acsami_1c11134 crossref_primary_10_1016_j_geits_2024_100179 crossref_primary_10_1149_1945_7111_acd587 crossref_primary_10_1002_ange_202105831 crossref_primary_10_1016_j_jcis_2024_02_014 crossref_primary_10_1021_acsami_4c08605 crossref_primary_10_1021_acsami_4c01530 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1002_cssc_202400569 crossref_primary_10_1002_smll_202307260 crossref_primary_10_1021_acsami_2c04166 crossref_primary_10_1039_D3EE04515C crossref_primary_10_1002_ange_202001816 crossref_primary_10_1016_j_nanoen_2024_110086 crossref_primary_10_1016_j_scriptamat_2021_113835 crossref_primary_10_1016_j_jmatprotec_2021_117159 crossref_primary_10_1038_s41467_022_31461_7 crossref_primary_10_1039_D4EE03102D crossref_primary_10_1021_acs_jpcc_2c02396 crossref_primary_10_1016_j_ensm_2019_12_023 crossref_primary_10_1021_acsmaterialslett_0c00396 crossref_primary_10_1002_anie_202110589 crossref_primary_10_1021_acsenergylett_9b02660 crossref_primary_10_1021_acsami_2c15452 crossref_primary_10_1149_1945_7111_ad0510 crossref_primary_10_1002_aenm_202201056 crossref_primary_10_1016_j_ijhydene_2020_07_279 crossref_primary_10_1016_j_jechem_2021_03_048 crossref_primary_10_1002_sstr_202200010 crossref_primary_10_1002_ange_202410020 crossref_primary_10_1039_D0TA02499F crossref_primary_10_1016_j_cej_2020_127943 crossref_primary_10_1016_j_enchem_2021_100063 crossref_primary_10_1016_j_jechem_2020_08_029 crossref_primary_10_1002_smtd_202100518 crossref_primary_10_1039_D0TA12153C crossref_primary_10_1002_advs_202103910 crossref_primary_10_1016_j_ensm_2021_10_028 crossref_primary_10_1021_acsaem_3c02103 crossref_primary_10_1002_smll_202203222 crossref_primary_10_1002_eem2_70003 crossref_primary_10_1002_adfm_202418033 crossref_primary_10_1007_s11814_024_00174_6 crossref_primary_10_1039_D0TA01044H crossref_primary_10_1002_nano_202000002 crossref_primary_10_1016_j_est_2023_110390 crossref_primary_10_1007_s12274_024_6853_5 crossref_primary_10_1039_D4MH00529E crossref_primary_10_1002_aenm_202402609 crossref_primary_10_1016_j_partic_2020_12_003 crossref_primary_10_1016_j_nanoen_2022_107641 crossref_primary_10_1002_adfm_202424366 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1039_D4TA05871B crossref_primary_10_1016_j_nxnano_2024_100114 crossref_primary_10_1002_batt_202100075 crossref_primary_10_1002_smll_202407395 crossref_primary_10_1007_s11771_021_4881_9 crossref_primary_10_1021_acsnano_4c06149 crossref_primary_10_1002_aenm_202201044 crossref_primary_10_1063_5_0108998 crossref_primary_10_1016_j_mtener_2022_101015 crossref_primary_10_1149_1945_7111_abec98 crossref_primary_10_1016_j_nanoen_2020_105098 crossref_primary_10_1002_aenm_202003674 crossref_primary_10_1002_batt_202000258 crossref_primary_10_1016_j_apsusc_2023_157902 crossref_primary_10_1016_j_mattod_2020_10_021 crossref_primary_10_1039_D4CC06729K crossref_primary_10_1016_j_jechem_2021_04_045 crossref_primary_10_1021_acssuschemeng_4c09291 crossref_primary_10_1021_acsenergylett_2c00003 crossref_primary_10_1016_j_jechem_2021_12_046 crossref_primary_10_1002_adfm_202102128 crossref_primary_10_1002_smll_202407740 crossref_primary_10_1039_D1CS00948F crossref_primary_10_1149_1945_7111_ac7668 crossref_primary_10_1016_j_jpowsour_2022_231348 crossref_primary_10_1002_ange_202309622 crossref_primary_10_1002_aenm_202301266 crossref_primary_10_1002_aenm_201903953 crossref_primary_10_1016_j_jechem_2022_07_027 crossref_primary_10_1002_adfm_202316838 crossref_primary_10_1002_aenm_202201411 crossref_primary_10_1002_inc2_12006 crossref_primary_10_3390_batteries9060299 crossref_primary_10_1002_ange_202104671 crossref_primary_10_1039_D2TA07783C crossref_primary_10_1016_j_jpowsour_2024_235532 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1002_sus2_37 crossref_primary_10_1016_j_nanoen_2024_109835 crossref_primary_10_1002_adma_202211203 crossref_primary_10_1016_j_jpowsour_2022_231215 crossref_primary_10_1002_anie_202309622 crossref_primary_10_1002_anie_202410020 crossref_primary_10_1021_acs_nanolett_4c03387 crossref_primary_10_1039_D1TA09481E crossref_primary_10_1021_acsami_0c17302 crossref_primary_10_1016_j_jechem_2022_01_019 crossref_primary_10_1002_idm2_12077 crossref_primary_10_1007_s11426_020_9984_9 crossref_primary_10_1002_ange_202110589 crossref_primary_10_1016_j_cej_2022_139409 crossref_primary_10_1038_s41586_023_06992_8 crossref_primary_10_1002_anie_202104671 crossref_primary_10_3390_nano13010090 crossref_primary_10_1002_aenm_202101774 crossref_primary_10_1002_smll_202206252 crossref_primary_10_1021_acsami_2c14349 crossref_primary_10_1002_adfm_202009925 crossref_primary_10_1021_acsami_1c07032 crossref_primary_10_1016_j_cej_2023_143530 crossref_primary_10_1002_adma_202305645 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1002_smsc_202100110 crossref_primary_10_1021_acs_energyfuels_0c02111 crossref_primary_10_1016_j_est_2024_110641 crossref_primary_10_1021_acsaem_4c02248 crossref_primary_10_1016_j_trd_2023_103944 crossref_primary_10_1016_j_jallcom_2024_174867 crossref_primary_10_1016_j_ensm_2021_12_032 crossref_primary_10_1016_j_cej_2021_134468 crossref_primary_10_1021_acs_analchem_1c03422 crossref_primary_10_1021_acsami_4c07927 crossref_primary_10_1021_acsomega_4c04118 |
Cites_doi | 10.1038/s41560-019-0338-x 10.1002/adfm.201902220 10.1002/anie.201905712 10.1021/jacs.8b04612 10.1002/adfm.201805638 10.1002/aenm.201800266 10.1038/s41560-018-0196-y 10.1002/adma.201900342 10.1016/j.electacta.2006.02.004 10.1038/s41563-019-0305-8 10.1002/anie.201808714 10.1016/j.jechem.2018.11.016 10.1002/smll.201900269 10.1080/14786440109462590 10.1021/acsenergylett.7b00300 10.1038/s41560-019-0349-7 10.1016/j.chempr.2018.12.002 10.1021/acs.chemrev.7b00115 10.1038/s41565-019-0465-3 10.1002/adma.201705830 10.1002/aenm.201802534 10.1002/aenm.201800635 10.1002/adfm.201900392 10.1126/sciadv.aat3446 10.1016/j.chempr.2018.06.017 10.1038/451652a 10.1021/acsenergylett.8b00935 10.1002/aenm.201900574 10.1002/adma.201804461 10.1002/aenm.201802720 10.1002/aenm.201900260 10.1021/acsenergylett.8b02483 10.1039/C9TA01911A 10.1021/acsenergylett.8b00526 10.1002/adma.201807131 10.1016/j.chempr.2018.05.002 10.1016/j.joule.2019.03.019 10.1103/PhysRevA.42.7355 10.1002/anie.201905251 10.1016/0022-0728(90)87434-L 10.1002/anie.201801513 10.1021/jacs.8b13297 10.1002/adma.201806532 10.1021/acs.chemrev.8b00422 10.1016/j.ensm.2018.03.015 10.1002/anie.201811955 10.1021/cr5003003 10.1002/adfm.201900950 10.1126/sciadv.aau7728 10.1016/j.ensm.2018.03.012 10.1002/anie.201809203 10.1038/s41467-017-00519-2 10.1002/adma.201901645 10.1016/j.chempr.2017.10.017 10.1002/anie.201807034 10.1016/j.joule.2018.06.021 10.1038/s41467-019-08767-0 10.1016/j.eng.2018.10.008 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201902254 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201902254 AENM201902254 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21676160; 21825501; 21805161; 21808121; U1801257 – fundername: China Postdoctoral Science Foundation funderid: 2018M631480 – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4224-ff3eed5e59e93c81f67e2ecd0e2f7e57bd7ece3e877f32c302e6ab7b7e9161ae3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:29:10 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 01:43:31 EDT 2025 Wed Jan 22 16:38:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4224-ff3eed5e59e93c81f67e2ecd0e2f7e57bd7ece3e877f32c302e6ab7b7e9161ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3929-1541 |
PQID | 2318495610 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2318495610 crossref_citationtrail_10_1002_aenm_201902254 crossref_primary_10_1002_aenm_201902254 wiley_primary_10_1002_aenm_201902254_AENM201902254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2019 2019 2018 2019 2018 2019 2018; 29 14 7 2 29 4 3 15 2019 2019 2018; 9 4 15 2019; 9 2018; 3 2018 2018 2019; 4 57 9 2018; 140 2008 2014; 451 114 2019 2017 2017 2018; 29 8 2 57 2018 2018; 30 28 2019 2019; 141 4 2018; 118 1901 2006; 1 51 2019 2019; 9 18 2019; 15 1990 1990; 42 290 2018 2018 2018; 3 4 4 2019 2019 2019 2019 2019 2018 2018 2018; 31 31 37 5 8 8 57 2019 2019 2019 2018; 58 31 5 4 2018 2018; 3 57 2019 2018 2019 2019 2019 2019; 58 30 58 31 4 10 2017; 117 e_1_2_4_21_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_3_3 e_1_2_4_5_1 e_1_2_4_3_2 e_1_2_4_7_1 e_1_2_4_5_2 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_10_1 e_1_2_4_10_2 e_1_2_4_10_3 e_1_2_4_12_1 e_1_2_4_10_4 e_1_2_4_12_2 e_1_2_4_12_3 e_1_2_4_14_1 e_1_2_4_14_2 e_1_2_4_16_1 e_1_2_4_14_3 e_1_2_4_18_1 e_1_2_4_14_5 e_1_2_4_16_2 e_1_2_4_14_6 e_1_2_4_14_7 e_1_2_4_18_2 e_1_2_4_14_8 Zhang R. (e_1_2_4_14_4) 2019 e_1_2_4_20_1 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_4_4 e_1_2_4_6_2 e_1_2_4_4_3 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_11_1 e_1_2_4_11_2 e_1_2_4_11_3 e_1_2_4_13_1 e_1_2_4_11_4 e_1_2_4_13_2 e_1_2_4_11_5 e_1_2_4_13_3 e_1_2_4_15_1 e_1_2_4_11_6 e_1_2_4_13_4 e_1_2_4_13_5 e_1_2_4_17_2 e_1_2_4_13_6 e_1_2_4_17_1 e_1_2_4_13_7 e_1_2_4_19_2 e_1_2_4_13_8 e_1_2_4_17_3 e_1_2_4_19_1 |
References_xml | – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 141 4 start-page: 8441 180 year: 2019 2019 publication-title: J. Am. Chem. Soc. Nat. Energy – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 29 14 7 2 29 4 3 15 start-page: 705 1674 eaat3446 1190 37 year: 2019 2019 2019 2018 2019 2018 2019 2018 publication-title: Adv. Funct. Mater. Nat. Nanotechnol. J. Mater. Chem. A Joule Adv. Funct. Mater. Sci. Adv. Joule Energy Storage Mater. – volume: 451 114 start-page: 652 year: 2008 2014 publication-title: Nature Chem. Rev. – volume: 118 year: 2018 publication-title: Chem. Rev. – volume: 3 4 4 start-page: 674 174 1877 year: 2018 2018 2018 publication-title: Nat. Energy Chem Chem – volume: 3 57 start-page: 2059 5301 year: 2018 2018 publication-title: ACS Energy Lett. Angew. Chem., Int. Ed. – volume: 58 31 5 4 start-page: 74 831 year: 2019 2019 2019 2018 publication-title: Angew. Chem., Int. Ed. Adv. Mater. Chem Engineering – volume: 3 start-page: 1564 year: 2018 publication-title: ACS Energy Lett. – volume: 42 290 start-page: 7355 249 year: 1990 1990 publication-title: Phys. Rev. A J. Electroanal. Chem. – volume: 29 8 2 57 start-page: 336 1321 year: 2019 2017 2017 2018 publication-title: Adv. Funct. Mater. Nat. Commun. ACS Energy Lett. Angew. Chem., Int. Ed. – volume: 1 51 start-page: 45 5334 year: 1901 2006 publication-title: Philos. Mag. Electrochim. Acta – volume: 9 18 start-page: 384 year: 2019 2019 publication-title: Adv. Energy Mater. Nat. Mater. – volume: 58 30 58 31 4 10 start-page: 1094 644 900 year: 2019 2018 2019 2019 2019 2019 publication-title: Angew. Chem., Int. Ed. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. ACS Energy Lett. Nat. Commun. – volume: 31 31 37 5 8 8 57 start-page: 29 eaau7728 year: 2019 2019 2019 2019 2019 2018 2018 2018 publication-title: Adv. Mater. Adv. Mater. J. Energy Chem. Energy Storage Mater. Sci. Adv. Adv. Energy Mater. Adv. Energy Mater. Angew. Chem., Int. Ed. – volume: 15 year: 2019 publication-title: Small – volume: 4 57 9 start-page: 2192 year: 2018 2018 2019 publication-title: Chem Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 140 start-page: 9921 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 30 28 year: 2018 2018 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 9 4 15 start-page: 365 31 year: 2019 2019 2018 publication-title: Adv. Energy Mater. Nat. Energy Energy Storage Mater. – ident: e_1_2_4_5_2 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_4_10_1 doi: 10.1002/adfm.201902220 – ident: e_1_2_4_11_1 doi: 10.1002/anie.201905712 – ident: e_1_2_4_9_1 doi: 10.1021/jacs.8b04612 – ident: e_1_2_4_16_2 doi: 10.1002/adfm.201805638 – ident: e_1_2_4_14_6 doi: 10.1002/aenm.201800266 – ident: e_1_2_4_12_1 doi: 10.1038/s41560-018-0196-y – ident: e_1_2_4_11_4 doi: 10.1002/adma.201900342 – ident: e_1_2_4_19_2 doi: 10.1016/j.electacta.2006.02.004 – ident: e_1_2_4_6_2 doi: 10.1038/s41563-019-0305-8 – year: 2019 ident: e_1_2_4_14_4 publication-title: Energy Storage Mater. – ident: e_1_2_4_14_8 doi: 10.1002/anie.201808714 – ident: e_1_2_4_14_3 doi: 10.1016/j.jechem.2018.11.016 – ident: e_1_2_4_8_1 doi: 10.1002/smll.201900269 – ident: e_1_2_4_19_1 doi: 10.1080/14786440109462590 – ident: e_1_2_4_10_3 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_4_3_2 doi: 10.1038/s41560-019-0349-7 – ident: e_1_2_4_4_3 doi: 10.1016/j.chempr.2018.12.002 – ident: e_1_2_4_20_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_4_13_2 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_4_16_1 doi: 10.1002/adma.201705830 – ident: e_1_2_4_6_1 doi: 10.1002/aenm.201802534 – ident: e_1_2_4_14_7 doi: 10.1002/aenm.201800635 – ident: e_1_2_4_13_1 doi: 10.1002/adfm.201900392 – ident: e_1_2_4_13_6 doi: 10.1126/sciadv.aat3446 – ident: e_1_2_4_17_1 doi: 10.1016/j.chempr.2018.06.017 – ident: e_1_2_4_1_1 doi: 10.1038/451652a – ident: e_1_2_4_7_1 doi: 10.1021/acsenergylett.8b00935 – ident: e_1_2_4_21_1 doi: 10.1002/aenm.201900574 – ident: e_1_2_4_11_2 doi: 10.1002/adma.201804461 – ident: e_1_2_4_3_1 doi: 10.1002/aenm.201802720 – ident: e_1_2_4_17_3 doi: 10.1002/aenm.201900260 – ident: e_1_2_4_11_5 doi: 10.1021/acsenergylett.8b02483 – ident: e_1_2_4_13_3 doi: 10.1039/C9TA01911A – ident: e_1_2_4_15_1 doi: 10.1021/acsenergylett.8b00526 – ident: e_1_2_4_14_1 doi: 10.1002/adma.201807131 – ident: e_1_2_4_12_3 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_4_13_7 doi: 10.1016/j.joule.2019.03.019 – ident: e_1_2_4_18_1 doi: 10.1103/PhysRevA.42.7355 – ident: e_1_2_4_4_1 doi: 10.1002/anie.201905251 – ident: e_1_2_4_18_2 doi: 10.1016/0022-0728(90)87434-L – ident: e_1_2_4_7_2 doi: 10.1002/anie.201801513 – ident: e_1_2_4_5_1 doi: 10.1021/jacs.8b13297 – ident: e_1_2_4_4_2 doi: 10.1002/adma.201806532 – ident: e_1_2_4_2_1 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_4_13_8 doi: 10.1016/j.ensm.2018.03.015 – ident: e_1_2_4_11_3 doi: 10.1002/anie.201811955 – ident: e_1_2_4_1_2 doi: 10.1021/cr5003003 – ident: e_1_2_4_13_5 doi: 10.1002/adfm.201900950 – ident: e_1_2_4_14_5 doi: 10.1126/sciadv.aau7728 – ident: e_1_2_4_3_3 doi: 10.1016/j.ensm.2018.03.012 – ident: e_1_2_4_17_2 doi: 10.1002/anie.201809203 – ident: e_1_2_4_10_2 doi: 10.1038/s41467-017-00519-2 – ident: e_1_2_4_14_2 doi: 10.1002/adma.201901645 – ident: e_1_2_4_12_2 doi: 10.1016/j.chempr.2017.10.017 – ident: e_1_2_4_10_4 doi: 10.1002/anie.201807034 – ident: e_1_2_4_13_4 doi: 10.1016/j.joule.2018.06.021 – ident: e_1_2_4_11_6 doi: 10.1038/s41467-019-08767-0 – ident: e_1_2_4_4_4 doi: 10.1016/j.eng.2018.10.008 |
SSID | ssj0000491033 |
Score | 2.649388 |
Snippet | Lithium (Li) metal anodes exhibits the potential to enable rechargeable Li batteries with a high energy density. However, the irreversible plating and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Anodic polarization Cathodes dead lithium dendrite growth Dendritic structure Electrode polarization Electrodes Flux density Lithium lithium metal anodes lithium plating and stripping Matching Plating Rechargeable batteries Stripping |
Title | Plating/Stripping Behavior of Actual Lithium Metal Anode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902254 https://www.proquest.com/docview/2318495610 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcCh4im2FJQDEgdkmjgPJ8cFWlWoWwFtpdyi2DsukSBFJbnw6xk_k1V59hKtsnay6_k8r8x8IeSFypU2q5LqpkWaAQAVaMVoCZWoslaCFDoPuTopjs6z93VeT49iTHfJIF7LH7_sK7mJVPEcylV3yf6HZMNF8QR-RvniESWMx3-S8QddyKY36-HpcGWYFi484aFJ_i9td8hxN3zuxq-vVqA7HzHgX2_U_yx9GQDYPkD0Ye2PD8U63Wgt1FQLAFZF1F0fqiXeeCOIA2oz4dPYXctL1yOEGR8RmhfztENSuf67SVOiXadF6ZKTMD9n-Ze8eq1mKLJUj87QBjN0TYtbVtgWek0VgB4L6pxsslf-GX0Ymf95rGX3PThZhe9vk22GUQWqxe3lu9XxaUjKYbiUxKlpyvB_zxN9xmx_8yabjswUncxjHOOknN0jOy66iJYWKvfJLegfkLszzsmHpHSg2Q-QiTxkoksVWchEDjKRgUxkIPOInB8enL09ou71GVRm6JhRpVJ0gHLIK6hSWSaq4MBArmNgikPOxZqDhBRKzlXKZBozKFrBBQcMGZIW0sdkq7_s4QmJYiHQz1SiSITIYB1XbVtwdP3RQrFWSlgQ6teikY5bXr_i5EtjWbFZo9euCWu3IC_D-G-WVeW3I_f80jZu531vMCYpdWCfxAvCzHL_5SrNhvh3bzLpKbkzbYM9sjVcjfAM_dFBPHco-glLTX-o |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plating%2FStripping+Behavior+of+Actual+Lithium+Metal+Anode&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+He&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.au=Xu%2C+Rui&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.date=2019-11-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902254&rft.externalDBID=10.1002%252Faenm.201902254&rft.externalDocID=AENM201902254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |