Deconstructing the microbial necromass continuum to inform soil carbon sequestration

Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used fo...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 36; no. 6; pp. 1396 - 1410
Main Authors Buckeridge, Kate M., Creamer, Courtney, Whitaker, Jeanette
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization. Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers. From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems. Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
AbstractList Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization. Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers. From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems. Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization. Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers. From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems. Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world. Read the free Plain Language Summary for this article on the Journal blog.
Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization.Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers.From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems.Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world.Read the free Plain Language Summary for this article on the Journal blog.
Author Buckeridge, Kate M.
Whitaker, Jeanette
Creamer, Courtney
Author_xml – sequence: 1
  givenname: Kate M.
  orcidid: 0000-0002-3267-4216
  surname: Buckeridge
  fullname: Buckeridge, Kate M.
  email: kate.buckeridge@list.lu
  organization: Luxembourg Institute of Science and Technology
– sequence: 2
  givenname: Courtney
  orcidid: 0000-0001-8270-9387
  surname: Creamer
  fullname: Creamer, Courtney
  organization: U.S. Geological Survey
– sequence: 3
  givenname: Jeanette
  orcidid: 0000-0001-8824-471X
  surname: Whitaker
  fullname: Whitaker, Jeanette
  organization: UK Centre for Ecology & Hydrology
BookMark eNqFUD1PwzAQtVCRaAszqyXmtP6uM6JCAakSS5mtxLHBVWIXOxHqv8f9EAMD3HKnu_fu3b0JGPngDQC3GM1wjjmmgheEUT7DDGF2AcY_nREYIyLKQjJBr8AkpS1CqOSEjMHmwejgUx8H3Tv_DvsPAzunY6hd1UJvctVVKcEMyvNh6GAfoPM2xA6m4Fqoq1gHD5P5HExeU_Uu-Gtwaas2mZtznoK31eNm-VysX59elvfrQjNCWNFoWxpJFmUjcU2k5RzZWmhJSoG5ZrUtcWmRwUgvtNCY1ZxXEjW8oYwjuRB0Cu5Oe3cxHOXVNgzRZ0lFxIJySTGlGcVPqPxLStFYpV1_vDOf61qFkToYqA52qYNd6mhg5s1_8XbRdVXc_8E4K3251uz_g6vV4_LE-waSi4NG
CitedBy_id crossref_primary_10_1016_j_geoderma_2024_116870
crossref_primary_10_1016_j_tim_2022_08_011
crossref_primary_10_1016_j_jenvman_2024_120288
crossref_primary_10_1016_j_fecs_2023_100092
crossref_primary_10_1016_j_jenvman_2024_120289
crossref_primary_10_1016_j_soilbio_2022_108811
crossref_primary_10_1021_acs_est_3c08229
crossref_primary_10_1038_s41467_024_54446_0
crossref_primary_10_3389_fsoil_2022_987178
crossref_primary_10_1002_fee_2724
crossref_primary_10_1007_s11104_023_06149_6
crossref_primary_10_3390_agriculture13010008
crossref_primary_10_1038_s41561_022_01100_3
crossref_primary_10_1016_j_biortech_2024_131740
crossref_primary_10_1016_j_scitotenv_2024_170986
crossref_primary_10_1016_j_apsoil_2025_106049
crossref_primary_10_1007_s11368_024_03775_0
crossref_primary_10_1007_s00374_024_01859_0
crossref_primary_10_1016_j_soilbio_2023_108948
crossref_primary_10_1007_s11104_024_07095_7
crossref_primary_10_1111_nph_19471
crossref_primary_10_1007_s11356_024_34381_9
crossref_primary_10_1016_j_soilbio_2025_109750
crossref_primary_10_1007_s11104_022_05580_5
crossref_primary_10_1016_j_catena_2024_108693
crossref_primary_10_1111_ejss_13433
crossref_primary_10_3389_fmicb_2024_1478134
crossref_primary_10_1007_s11430_024_1474_2
crossref_primary_10_1007_s11104_024_07105_8
crossref_primary_10_1016_j_apsoil_2024_105587
crossref_primary_10_1016_j_scitotenv_2024_178212
crossref_primary_10_1016_j_apsoil_2024_105744
crossref_primary_10_1016_j_soilbio_2023_109205
crossref_primary_10_1111_aec_13428
crossref_primary_10_1016_j_soilbio_2025_109765
crossref_primary_10_1016_j_tim_2024_09_003
crossref_primary_10_1016_j_wasman_2024_01_011
crossref_primary_10_1016_j_heliyon_2024_e34822
crossref_primary_10_1007_s11104_022_05626_8
crossref_primary_10_1016_j_agee_2024_108998
crossref_primary_10_1007_s42832_024_0237_3
crossref_primary_10_3390_agriculture15030238
crossref_primary_10_5194_bg_22_87_2025
crossref_primary_10_1360_N072024_0088
crossref_primary_10_3389_fsufs_2023_1188133
crossref_primary_10_1016_j_scitotenv_2024_172916
crossref_primary_10_1016_j_scitotenv_2024_172635
crossref_primary_10_1016_j_geoderma_2023_116608
crossref_primary_10_1016_j_jenvman_2024_120765
crossref_primary_10_3389_fmicb_2023_1165045
crossref_primary_10_1002_sae2_70046
crossref_primary_10_1002_jpln_202300142
crossref_primary_10_1007_s10021_024_00946_5
crossref_primary_10_1016_j_scitotenv_2023_161713
crossref_primary_10_1016_j_still_2024_106327
crossref_primary_10_1016_j_cej_2024_148970
crossref_primary_10_1111_1462_2920_16462
crossref_primary_10_3390_jof10110772
crossref_primary_10_1007_s11368_024_03794_x
crossref_primary_10_1016_j_apsoil_2025_105951
crossref_primary_10_1016_j_still_2024_106177
crossref_primary_10_1016_j_soilbio_2025_109715
crossref_primary_10_1016_j_still_2024_106211
crossref_primary_10_3390_agronomy14010193
crossref_primary_10_1038_s41467_023_44647_4
crossref_primary_10_1111_gcb_17302
crossref_primary_10_1016_j_apsoil_2025_106011
crossref_primary_10_1016_j_apsoil_2025_106010
crossref_primary_10_1038_s43247_022_00439_0
crossref_primary_10_1128_aem_01543_22
crossref_primary_10_1007_s42729_024_02038_8
crossref_primary_10_1016_j_apsoil_2024_105385
crossref_primary_10_1016_j_apsoil_2024_105781
crossref_primary_10_1016_j_pedobi_2023_150890
crossref_primary_10_1016_j_geoderma_2024_117107
crossref_primary_10_1093_ismeco_ycaf014
crossref_primary_10_1016_j_ejsobi_2023_103573
crossref_primary_10_1016_j_ejsobi_2024_103650
crossref_primary_10_1016_j_scitotenv_2024_178133
crossref_primary_10_1016_j_egg_2024_100279
crossref_primary_10_1016_j_agee_2024_109373
crossref_primary_10_1016_j_foreco_2023_120848
crossref_primary_10_1016_j_soilbio_2023_108952
crossref_primary_10_1016_j_still_2024_106108
crossref_primary_10_1016_j_soilbio_2023_109124
crossref_primary_10_1016_j_soilbio_2024_109323
crossref_primary_10_3389_fsoil_2023_1107432
crossref_primary_10_1016_j_geoderma_2024_116816
crossref_primary_10_1016_j_catena_2023_107676
crossref_primary_10_1093_ismeco_ycaf006
crossref_primary_10_1093_ismeco_ycae038
crossref_primary_10_1016_j_geoderma_2024_117115
crossref_primary_10_1007_s10533_024_01177_5
crossref_primary_10_1016_j_apsoil_2024_105798
crossref_primary_10_1021_acsestengg_2c00411
crossref_primary_10_1016_j_scitotenv_2024_174188
crossref_primary_10_1016_j_fmre_2023_10_025
crossref_primary_10_1016_j_agee_2024_109000
crossref_primary_10_1016_j_catena_2024_108315
crossref_primary_10_1016_j_cej_2024_152496
crossref_primary_10_1016_j_scitotenv_2025_179003
crossref_primary_10_1111_rec_14127
crossref_primary_10_3389_fmicb_2023_1295624
crossref_primary_10_1016_j_soilbio_2023_109250
crossref_primary_10_1016_j_catena_2024_107902
Cites_doi 10.1016/j.soilbio.2016.11.025
10.1111/geb.13159
10.1029/2006JG000258
10.1016/j.gca.2019.06.028
10.1016/j.geoderma.2017.06.005
10.1038/s41467‐020‐19792‐9
10.1016/j.jconhyd.2012.04.007
10.1016/j.soilbio.2020.107720
10.1016/j.gca.2011.03.006
10.1007/s10533‐020‐00736‐w
10.1007/s10533‐018‐0459‐5
10.1016/j.gca.2008.06.015
10.1016/j.foreco.2021.119522
10.1016/S0167‐7012(97)00065‐1
10.1038/ngeo155
10.1016/j.soilbio.2020.107876
10.1111/gcb.15206
10.1021/acs.analchem.5b00116
10.1038/s41558‐018‐0341‐4
10.1021/acs.est.7b04953
10.1016/j.oneear.2020.03.006
10.1016/j.soilbio.2015.10.017
10.1046/j.0028-646x.2001.00190.x
10.1111/j.1461‐0248.2012.01848.x
10.1111/gcb.12113
10.1038/nature16069
10.3389/fmicb.2016.01247
10.1038/nmicrobiol.2017.105
10.1016/S0038‐0717(02)00242‐0
10.1038/nclimate2580
10.1021/es00050a007
10.1038/s42003‐019‐0684‐z
10.1038/s41467‐021‐24192‐8
10.1038/nclimate2361
10.1038/nmicrobiol.2016.242
10.5194/bg‐10‐1717‐2013
10.1046/j.1462‐2920.2000.00086.x
10.2136/sssaj2004.1249
10.1073/pnas.96.7.3404
10.1002/jpln.201900530
10.1016/j.soilbio.2019.107660
10.1016/j.orggeochem.2006.07.018
10.1016/j.geoderma.2008.09.012
10.1021/es071217x
10.1111/j.1469‐8137.2012.04225.x
10.1021/es3039505
10.1038/ncomms3947
10.1038/s43247‐020‐00031‐4
10.1016/j.soilbio.2019.107687
10.1016/j.soilbio.2014.01.025
10.1016/j.soilbio.2003.10.013
10.1016/j.orggeochem.2009.06.008
10.1016/j.soilbio.2018.08.002
10.1038/s41561‐020‐0612‐3
10.1111/gcb.14781
10.2136/vzj2006.0080
10.1016/j.gca.2005.10.012
10.1007/s10533‐020‐00720‐4
10.1016/j.soilbio.2015.09.005
10.1007/s10533‐014‐0009‐8
10.1038/s41564‐018‐0190‐y
10.1128/AEM.00400‐06
10.1016/j.soilbio.2020.108059
10.1016/j.soilbio.2020.107929
10.1016/j.soilbio.2016.08.025
10.1038/s43017‐021‐00162‐y
10.1111/gcb.15538
10.1111/1462‐2920.12545
10.1016/j.soilbio.2015.03.002
10.1016/j.soilbio.2012.11.009
10.1038/s41579‐018‐0057‐5
10.1007/s00374‐021‐01557‐1
10.1007/s11284‐012‐1022‐9
10.1126/science.1097394
10.1111/j.1365‐2389.2010.01244.x
10.2136/sssaj1999.03615995006300010014x
10.1016/S0038‐0717(01)00158‐4
10.1088/1748-9326/ab2c11
10.1007/s10533‐011‐9658‐z
10.1038/s41561‐020‐0634‐x
10.1016/j.geoderma.2017.09.042
10.1016/j.soilbio.2018.04.024
10.1111/j.1365‐2486.2012.02665.x
10.1111/tpj.13569
10.1038/ncomms13630
10.1016/j.geoderma.2020.114785
10.1071/SR9900213
10.1111/1365‐2745.13385
10.1007/BF00260816
10.1111/j.1574‐6941.2001.tb00854.x
10.5194/bg-18-189-2021
10.1111/j.1365‐2389.2004.00639.x
10.1038/nature10905
10.1002/2017JG004186
10.2138/am‐1998‐11‐1243
10.1038/s41467‐017‐01406‐6
10.1016/j.soilbio.2018.09.032
10.1038/s41579‐019‐0158‐9
10.1111/ele.13209
10.1038/s41467‐019‐11993‐1
10.1016/j.soilbio.2021.108189
10.1016/j.advwatres.2006.05.025
10.1038/ngeo2413
10.1098/rsif.2011.0679
10.1016/j.soilbio.2015.06.008
10.1021/acs.est.1c00300
10.1093/femsec/fiaa225
10.1016/j.soilbio.2015.11.020
10.1016/j.soilbio.2016.06.014
10.1016/j.soilbio.2021.108213
10.1016/j.soilbio.2021.108347
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
DOI 10.1111/1365-2435.14014
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Entomology Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1410
ExternalDocumentID 10_1111_1365_2435_14014
FEC14014
Genre reviewArticle
GrantInformation_xml – fundername: Natural Environment Research Council
  funderid: NE/R016429/1; NE/S005137/1
– fundername: U.S. Geological Survey Climate R&D Program
  funderid: ZT00U4U30
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c4224-dcf9e8279d81b28f550fb6c829615c4bf919f0e10c7c6c14b55a80d5d34508763
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 25 20:55:18 EDT 2025
Tue Jul 01 01:15:53 EDT 2025
Thu Apr 24 22:55:13 EDT 2025
Wed Jan 22 16:24:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4224-dcf9e8279d81b28f550fb6c829615c4bf919f0e10c7c6c14b55a80d5d34508763
Notes Handling Editor
Ji Chen
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3267-4216
0000-0001-8270-9387
0000-0001-8824-471X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14014
PQID 2673583133
PQPubID 1066355
PageCount 15
ParticipantIDs proquest_journals_2673583133
crossref_citationtrail_10_1111_1365_2435_14014
crossref_primary_10_1111_1365_2435_14014
wiley_primary_10_1111_1365_2435_14014_FEC14014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 484
2019; 10
2019; 14
2006; 37
2019; 17
2021; 160
2012; 18
2020; 13
1998; 83
2020; 11
2012; 15
2018; 8
2018; 3
2013; 58
2021; 156
2020; 96
2019; 22
2004; 36
2015; 85
2015; 88
2019; 25
2015; 87
2007; 6
2021; 153
2015; 91
2014; 121
2012; 136–137
2020; 141
2019; 2
2020; 142
2020; 148
2003; 35
2011; 75
2020; 149
1995
2015; 528
2021; 384
2016; 94
2016; 93
2016; 18
2004; 304
2021; 57
2004; 55
2012; 196
2016; 7
2020a; 141
2001; 151
2012; 111
2016; 2
2020; 151
2021; 498
1990; 28
1997; 30
2001; 37
2018; 16
2020; 29
2017; 305
2006; 70
2017; 8
2017; 2
2009; 40
2013; 28
2006; 72
2018; 127
2018; 123
2018; 126
2004; 68
2016; 102
2000; 2
2008; 148
2016; 103
1994; 28
2007; 30
2008; 1
2008; 72
2010; 61
2013; 19
2014; 5
2014; 4
2020; 2
2020; 1
2018; 139
2000
2013; 10
1999; 96
2015; 5
2013; 47
2021; 2
2002; 34
2020; 183
1999; 63
2020b; 26
2015; 8
2019; 260
2020; 108
2007; 112
2017; 91
2021; 12
2021
2020
1988; 6
2021; 18
2018; 312
2017; 12
2018; 52
2007; 41
2014; 72
2017; 107
2012; 9
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_101_1
e_1_2_13_43_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_92_1
Chenu C. (e_1_2_13_26_1) 1995
e_1_2_13_117_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_112_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_70_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
e_1_2_13_91_1
Amelung W. (e_1_2_13_4_1) 2000
e_1_2_13_95_1
e_1_2_13_116_1
e_1_2_13_99_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_111_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_71_1
e_1_2_13_5_1
e_1_2_13_108_1
e_1_2_13_49_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_90_1
Kopittke P. M. (e_1_2_13_66_1) 2017; 12
e_1_2_13_94_1
Donhauser J. (e_1_2_13_35_1) 2020
e_1_2_13_98_1
e_1_2_13_19_1
Quiquampoix H. (e_1_2_13_96_1) 1995
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
e_1_2_13_107_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_102_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_80_1
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_39_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_113_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_89_1
e_1_2_13_28_1
References_xml – volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
– volume: 149
  year: 2020
  article-title: Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil
  publication-title: Soil Biology & Biochemistry
– volume: 148
  year: 2020
  article-title: The physical structure of soil: Determinant and consequence of trophic interactions
  publication-title: Soil Biology & Biochemistry
– volume: 2
  start-page: 16242
  year: 2016
  article-title: Relic DNA is abundant in soil and obscures estimates of soil microbial diversity
  publication-title: Nature Microbiology
– volume: 7
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Soil fungal: Bacterial ratios are linked to altered carbon cycling
  publication-title: Frontiers in Microbiology
– volume: 8
  start-page: 441
  year: 2015
  end-page: 444
  article-title: Future productivity and carbon storage limited by terrestrial nutrient availability
  publication-title: Nature Geoscience
– volume: 96
  start-page: 3404
  year: 1999
  end-page: 3411
  article-title: Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 34
  start-page: 139
  year: 2002
  end-page: 162
  article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
  publication-title: Soil Biology & Biochemistry
– volume: 87
  start-page: 5206
  year: 2015
  end-page: 5215
  article-title: Advanced solvent based methods for molecular characterization of soil organic matter by high‐resolution mass spectrometry
  publication-title: Analytical Chemistry
– volume: 156
  year: 2021
  article-title: Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai‐Tibet alpine grasslands
  publication-title: Soil Biology & Biochemistry
– volume: 18
  start-page: 38
  year: 2016
  end-page: 49
  article-title: Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria
  publication-title: Environmental Microbiology
– volume: 72
  start-page: 163
  year: 2014
  end-page: 171
  article-title: Measuring the soil‐microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms
  publication-title: Soil Biology & Biochemistry
– volume: 29
  start-page: 1829
  year: 2020
  end-page: 1839
  article-title: The vertical distribution and control of microbial necromass carbon in forest soils
  publication-title: Global Ecology and Biogeography
– volume: 12
  start-page: 3218
  year: 2017
  end-page: 3221
  article-title: Nitrogen‐rich microbial products provide new organo‐mineral associations for the stabilization of soil organic matter
  publication-title: Global Change Biology
– volume: 3
  start-page: 870
  year: 2018
  end-page: 880
  article-title: Host‐linked soil viral ecology along a permafrost thaw gradient
  publication-title: Nat. Microbiol
– volume: 96
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Restoring degraded microbiome function with self‐assembled communities
  publication-title: FEMS Microbiology Ecology
– volume: 63
  start-page: 86
  year: 1999
  end-page: 92
  article-title: Amino sugars in native grassland soils along a climosequence in North America
  publication-title: Soil Science Society of America Journal
– volume: 148
  start-page: 113
  year: 2008
  end-page: 119
  article-title: Preferential sequestration of microbial carbon in subsoils of a glacial‐landscape toposequence, Dane County, WI, USA
  publication-title: Geoderma
– volume: 94
  start-page: 173
  year: 2016
  end-page: 180
  article-title: Switchgrass rhizospheres stimulate microbial biomass but deplete microbial necromass in agricultural soils of the upper Midwest, USA
  publication-title: Soil Biology & Biochemistry
– volume: 484
  start-page: 101
  year: 2012
  end-page: 104
  article-title: Endospore abundance, microbial growth and necromass turnover in deep sub‐seafloor sediment
  publication-title: Nature
– volume: 151
  year: 2020
  article-title: Patterns and determinants of soil microbial residues from tropical to boreal forests
  publication-title: Soil Biology & Biochemistry
– volume: 72
  start-page: 4725
  year: 2008
  end-page: 4744
  article-title: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter
  publication-title: Geochimica et Cosmochimica Acta
– volume: 151
  start-page: 237
  year: 2020
  end-page: 249
  article-title: Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency
  publication-title: Biogeochemistry
– volume: 35
  start-page: 101
  year: 2003
  end-page: 118
  article-title: Contribution of lignin and polysaccharides to the refractory carbon pool in C‐depleted arable soils
  publication-title: Soil Biology & Biochemistry
– volume: 141
  year: 2020
  article-title: Direct measurement of the in situ decomposition of microbial‐derived soil organic matter
  publication-title: Soil Biology & Biochemistry
– volume: 2
  start-page: 402
  year: 2021
  end-page: 421
  article-title: Dynamic interactions at the mineral–organic matter interface
  publication-title: Nature Reviews Earth & Environment
– volume: 15
  start-page: 1257
  year: 2012
  end-page: 1265
  article-title: The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems
  publication-title: Ecology Letters
– volume: 37
  start-page: 1680
  year: 2006
  end-page: 1693
  article-title: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index
  publication-title: Organic Geochemistry
– volume: 2
  start-page: 441
  year: 2019
  article-title: Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass
  publication-title: Communications Biology
– volume: 41
  start-page: 8070
  year: 2007
  end-page: 8076
  article-title: Microbially derived inputs to soil organic matter: Are current estimates too low?
  publication-title: Environmental Science and Technology
– volume: 142
  year: 2020
  article-title: Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming
  publication-title: Soil Biology & Biochemistry
– volume: 26
  start-page: 5277
  year: 2020b
  end-page: 5289
  article-title: Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover
  publication-title: Global Change Biology
– volume: 156
  year: 2021
  article-title: Plant‐ or microbial‐derived? A review on the molecular composition of stabilized soil organic matter
  publication-title: Soil Biology & Biochemistry
– volume: 30
  start-page: 193
  year: 1997
  end-page: 203
  article-title: Use of confocal laser scanning microscopy on soil thin‐sections for improved characterization of microbial growth in unconsolidated soils and aquifer materials
  publication-title: Journal of Microbiol Methods
– volume: 102
  start-page: 14
  year: 2016
  end-page: 17
  article-title: The sapro‐rhizosphere: Carbon flow from saprotrophic fungi into fungus‐feeding bacteria
  publication-title: Soil Biology & Biochemistry
– volume: 91
  start-page: 279
  year: 2015
  end-page: 290
  article-title: Microbial physiology and necromass regulate agricultural soil carbon accumulation
  publication-title: Soil Biology & Biochemistry
– volume: 52
  start-page: 1036
  year: 2018
  end-page: 1044
  article-title: Adsorption and molecular fractionation of dissolved organic matter on iron‐bearing mineral matrices of varying crystallinity
  publication-title: Environmental Science and Technology
– volume: 6
  start-page: 189
  year: 1988
  end-page: 203
  article-title: Microenvironments of soil microorganisms
  publication-title: Biology and Fertility of Soils
– volume: 139
  start-page: 103
  year: 2018
  end-page: 122
  article-title: Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes
  publication-title: Biogeochemistry
– volume: 12
  start-page: 4115
  year: 2021
  article-title: Particulate organic matter as a functional soil component for persistent soil organic carbon
  publication-title: Nature Communications
– volume: 28
  start-page: 683
  year: 2013
  end-page: 695
  article-title: Soil organic matter dynamics: A biological perspective derived from the use of compound‐specific isotopes studies
  publication-title: Ecological Research
– volume: 55
  start-page: 739
  year: 2004
  end-page: 750
  article-title: Spatial location of carbon decomposition in the soil pore system
  publication-title: European Journal of Soil Science
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  article-title: Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils
  publication-title: New Phytologist
– volume: 1
  start-page: 238
  year: 2008
  end-page: 242
  article-title: Spatial complexity of soil organic matter forms at nanometre scales
  publication-title: Nature Geoscience
– volume: 18
  start-page: 189
  year: 2021
  end-page: 205
  article-title: Millennial‐age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: C‐based evidence for stabilization of microbial necromass
  publication-title: Biogeosciences
– volume: 68
  start-page: 1249
  year: 2004
  end-page: 1255
  article-title: Preferential accumulation of microbial carbon in aggregate structures of no‐tillage soils
  publication-title: Soil Science Society of America Journal
– start-page: 251
  year: 2000
  end-page: 290
– volume: 107
  start-page: 133
  year: 2017
  end-page: 143
  article-title: Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains
  publication-title: Soil Biology & Biochemistry
– volume: 72
  start-page: 5342
  year: 2006
  end-page: 5348
  article-title: Identification of bacterial micropredators distinctively active in a soil microbial food web
  publication-title: Applied and Environment Microbiology
– volume: 1
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization
  publication-title: Communications Earth & Environment
– volume: 57
  start-page: 673
  issue: 5
  year: 2021
  end-page: 684
  article-title: Long‐term elevated CO and warming enhance microbial necromass carbon accumulation in a paddy soil
  publication-title: Biology and Fertility of Soils
– volume: 6
  start-page: 298
  year: 2007
  end-page: 305
  article-title: Extracellular polymeric substances affecting pore‐scale hydrologic conditions for bacterial activity in unsaturated soils
  publication-title: Vadose Zone Journal
– start-page: 321
  year: 1995
  end-page: 333
– start-page: 1
  year: 2021
  end-page: 18
  article-title: Microbial metabolic response to winter warming stabilizes soil carbon
  publication-title: Global Change Biology
– volume: 75
  start-page: 3135
  year: 2011
  end-page: 3154
  article-title: Stabilization of extracellular polymeric substances ( ) by adsorption to and coprecipitation with Al forms
  publication-title: Geochimica et Cosmochimica Acta
– volume: 8
  start-page: 1104
  year: 2018
  end-page: 1108
  article-title: Climate‐driven thresholds in reactive mineral retention of soil carbon at the global scale
  publication-title: Nature Climate Change
– volume: 312
  start-page: 86
  year: 2018
  end-page: 94
  article-title: Food for microorganisms: Position‐specific C labeling and C‐PLFA analysis reveals preferences for sorbed or necromass C
  publication-title: Geoderma
– volume: 123
  start-page: 577
  year: 2018
  end-page: 590
  article-title: Necromass as a limited source of energy for microorganisms in marine sediments
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 16
  start-page: 616
  year: 2018
  end-page: 627
  article-title: Bacterial adhesion at the single‐cell level
  publication-title: Nature Reviews Microbiology
– volume: 108
  start-page: 1845
  year: 2020
  end-page: 1859
  article-title: Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types
  publication-title: Journal of Ecology
– start-page: 217
  year: 1995
  end-page: 233
– volume: 127
  start-page: 305
  year: 2018
  end-page: 317
  article-title: Viruses in soil: Nano‐scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions
  publication-title: Soil Biology & Biochemistry
– volume: 9
  start-page: 1302
  year: 2012
  end-page: 1310
  article-title: Microbial diversity affects self‐organization of the soil – Microbe system with consequences for function
  publication-title: Journal of the Royal Society, Interface
– volume: 5
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils
  publication-title: Nature Communications
– volume: 103
  start-page: 201
  year: 2016
  end-page: 212
  article-title: Is the fate of glucose‐derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size?
  publication-title: Soil Biology & Biochemistry
– volume: 47
  start-page: 3158
  year: 2013
  end-page: 3166
  article-title: STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite
  publication-title: Environmental Science and Technology
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nature Climate Change
– volume: 85
  start-page: 153
  year: 2015
  end-page: 161
  article-title: Environmental stress response limits microbial necromass contributions to soil organic carbon
  publication-title: Soil Biology & Biochemistry
– volume: 151
  start-page: 459
  year: 2001
  end-page: 468
  article-title: Soil physics, fungal epidemiology and the spread of Rhizoctonia solani
  publication-title: New Phytologist
– start-page: 1
  year: 2020
  end-page: 22
  article-title: High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high‐mountain soils
  publication-title: Global Change Biology
– volume: 70
  start-page: 827
  year: 2006
  end-page: 838
  article-title: Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis
  publication-title: Geochimica et Cosmochimica Acta
– volume: 2
  start-page: 349
  year: 2020
  end-page: 360
  article-title: Distinct assembly processes and microbial communities constrain soil organic carbon formation
  publication-title: One Earth
– volume: 13
  start-page: 687
  year: 2020
  end-page: 692
  article-title: Molecular trade‐offs in soil organic carbon composition at continental scale
  publication-title: Nature Geoscience
– volume: 7
  start-page: 13630
  year: 2016
  article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls
  publication-title: Nature Communications
– volume: 91
  start-page: 340
  year: 2017
  end-page: 354
  article-title: Laser‐ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia
  publication-title: The Plant Journal
– volume: 14
  start-page: 083004
  year: 2019
  article-title: What do we know about soil carbon destabilization?
  publication-title: Environmental Research Letters
– volume: 13
  start-page: 529
  year: 2020
  end-page: 534
  article-title: Persistence of soil organic carbon caused by functional complexity
  publication-title: Nature Geoscience
– volume: 136–137
  start-page: 1
  year: 2012
  end-page: 9
  article-title: Sand box experiments with bioclogging of porous media: Hydraulic conductivity reductions
  publication-title: Journal of Contaminant Hydrology
– volume: 141
  year: 2020a
  article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition
  publication-title: Soil Biology & Biochemistry
– volume: 36
  start-page: 399
  year: 2004
  end-page: 407
  article-title: Amino sugars and muramic acid – Biomarkers for soil microbial community structure analysis
  publication-title: Soil Biology & Biochemistry
– volume: 93
  start-page: 38
  year: 2016
  end-page: 49
  article-title: The decomposition of ectomycorrhizal fungal necromass
  publication-title: Soil Biology & Biochemistry
– volume: 22
  start-page: 498
  year: 2019
  end-page: 505
  article-title: Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming
  publication-title: Ecology Letters
– volume: 11
  start-page: 6103
  year: 2020
  article-title: Organo–organic and organo–mineral interfaces in soil at the nanometer scale
  publication-title: Nature Communications
– volume: 40
  start-page: 978
  year: 2009
  end-page: 985
  article-title: Fate of microbial biomass‐derived amino acids in soil and their contribution to soil organic matter
  publication-title: Organic Geochemistry
– volume: 121
  start-page: 409
  year: 2014
  end-page: 424
  article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals
  publication-title: Biogeochemistry
– volume: 153
  start-page: 1
  year: 2021
  end-page: 15
  article-title: A combined microbial and ecosystem metric of carbon retention efficiency explains land cover‐dependent soil microbial biodiversity–ecosystem function relationships
  publication-title: Biogeochemistry
– volume: 183
  start-page: 27
  year: 2020
  end-page: 41
  article-title: The multilayer model of soil mineral–organic interfaces – A review
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 88
  start-page: 390
  year: 2015
  end-page: 402
  article-title: Contribution of sorption, DOC transport and microbial interactions to the C age of a soil organic carbon profile: Insights from a calibrated process model
  publication-title: Soil Biology & Biochemistry
– volume: 260
  start-page: 161
  year: 2019
  end-page: 176
  article-title: Mineralogy dictates the initial mechanism of microbial necromass association
  publication-title: Geochimica et Cosmochimica Acta
– volume: 28
  start-page: 38
  year: 1994
  end-page: 46
  article-title: Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models
  publication-title: Environmental Science and Technology
– volume: 112
  start-page: 1
  year: 2007
  end-page: 8
  article-title: Conservation of soil organic matter through cryoturbation in arctic soils in Siberia
  publication-title: Journal of Geophysical Research
– volume: 111
  start-page: 41
  year: 2012
  end-page: 55
  article-title: SOM genesis: Microbial biomass as a significant source
  publication-title: Biogeochemistry
– volume: 10
  start-page: 1717
  year: 2013
  end-page: 1736
  article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
  publication-title: Biogeosciences
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
– volume: 304
  start-page: 1634
  year: 2004
  end-page: 1637
  article-title: Interactions and self‐organization in the soil‐microbe complex
  publication-title: Science
– volume: 58
  start-page: 216
  year: 2013
  end-page: 234
  article-title: Soil enzymes in a changing environment: Current knowledge and future directions
  publication-title: Soil Biology & Biochemistry
– volume: 17
  start-page: 247
  year: 2019
  end-page: 260
  article-title: Bacteria and archaea on Earth and their abundance in biofilms
  publication-title: Nature Reviews Microbiology
– volume: 2
  start-page: 1
  year: 2017
  end-page: 6
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
– volume: 10
  issue: 1
  year: 2019
  article-title: Plant roots increase both decomposition and stable organic matter formation in boreal forest soil
  publication-title: Nature Communications
– volume: 4
  start-page: 903
  year: 2014
  end-page: 906
  article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil
  publication-title: Nature Climate Change
– volume: 28
  start-page: 213
  year: 1990
  end-page: 225
  article-title: Solid‐state CP/MAS C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose
  publication-title: Australian Journal of Soil Research
– volume: 30
  start-page: 1505
  year: 2007
  end-page: 1527
  article-title: Physical constraints affecting bacterial habitats and activity in unsaturated porous media – A review
  publication-title: Advances in Water Resources
– volume: 384
  year: 2021
  article-title: Soil organic matter in major pedogenic soil groups
  publication-title: Geoderma
– volume: 498
  year: 2021
  article-title: Decomposition and transformations along the continuum from litter to soil organic matter in forest soils
  publication-title: Forest Ecology and Management
– volume: 25
  start-page: 3578
  year: 2019
  end-page: 3590
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Global Change Biology
– volume: 18
  start-page: 1781
  year: 2012
  end-page: 1796
  article-title: Soil organic matter turnover is governed by accessibility not recalcitrance
  publication-title: Global Change Biology
– volume: 2
  start-page: 161
  year: 2000
  end-page: 168
  article-title: “Clay hutches”: A novel interaction between bacteria and clay minerals
  publication-title: Environmental Microbiology
– start-page: 1
  year: 2021
  end-page: 36
  article-title: Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues
  publication-title: Environmental Science & Technology
– volume: 37
  start-page: 67
  issue: 1
  year: 2001
  end-page: 77
  article-title: Quantification of the in situ distribution of soil bacteria by large‐scale imaging of thin sections of undisturbed soil
  publication-title: FEMS Microbiology Ecology
– volume: 160
  year: 2021
  article-title: Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms
  publication-title: Soil Biology & Biochemistry
– volume: 83
  start-page: 1551
  year: 1998
  end-page: 1563
  article-title: Experimental observations of the effects of bacteria on aluminosilicate weathering
  publication-title: American Mineralogist
– volume: 61
  start-page: 504
  year: 2010
  end-page: 513
  article-title: Microbial uptake of low‐molecular‐weight organic substances out‐competes sorption in soil
  publication-title: European Journal of Soil Science
– volume: 126
  start-page: 76
  year: 2018
  end-page: 81
  article-title: The afterlife effects of fungal morphology: Contrasting decomposition rates between diffuse and rhizomorphic necromass
  publication-title: Soil Biology & Biochemistry
– volume: 305
  start-page: 382
  year: 2017
  end-page: 393
  article-title: Quantitative characterization of soil micro‐aggregates: New opportunities from sub‐micron resolution synchrotron X‐ray microtomography
  publication-title: Geoderma
– volume: 8
  start-page: 1771
  year: 2017
  article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization
  publication-title: Nature Communications
– volume: 123
  start-page: 115
  year: 2018
  end-page: 125
  article-title: Significant release and microbial utilization of amino sugars and D‐amino acid enantiomers from microbial cell wall decomposition in soils
  publication-title: Soil Biology & Biochemistry
– ident: e_1_2_13_12_1
  doi: 10.1016/j.soilbio.2016.11.025
– ident: e_1_2_13_88_1
  doi: 10.1111/geb.13159
– ident: e_1_2_13_57_1
  doi: 10.1029/2006JG000258
– ident: e_1_2_13_30_1
  doi: 10.1016/j.gca.2019.06.028
– ident: e_1_2_13_110_1
  doi: 10.1016/j.geoderma.2017.06.005
– ident: e_1_2_13_94_1
  doi: 10.1038/s41467‐020‐19792‐9
– ident: e_1_2_13_99_1
  doi: 10.1016/j.jconhyd.2012.04.007
– ident: e_1_2_13_33_1
  doi: 10.1016/j.soilbio.2020.107720
– ident: e_1_2_13_84_1
  doi: 10.1016/j.gca.2011.03.006
– ident: e_1_2_13_39_1
  doi: 10.1007/s10533‐020‐00736‐w
– ident: e_1_2_13_56_1
  doi: 10.1007/s10533‐018‐0459‐5
– ident: e_1_2_13_83_1
  doi: 10.1016/j.gca.2008.06.015
– ident: e_1_2_13_95_1
  doi: 10.1016/j.foreco.2021.119522
– ident: e_1_2_13_34_1
  doi: 10.1016/S0167‐7012(97)00065‐1
– ident: e_1_2_13_71_1
  doi: 10.1038/ngeo155
– ident: e_1_2_13_38_1
  doi: 10.1016/j.soilbio.2020.107876
– ident: e_1_2_13_112_1
  doi: 10.1111/gcb.15206
– ident: e_1_2_13_104_1
  doi: 10.1021/acs.analchem.5b00116
– ident: e_1_2_13_67_1
  doi: 10.1038/s41558‐018‐0341‐4
– ident: e_1_2_13_28_1
  doi: 10.1021/acs.est.7b04953
– ident: e_1_2_13_8_1
  doi: 10.1016/j.oneear.2020.03.006
– ident: e_1_2_13_41_1
  doi: 10.1016/j.soilbio.2015.10.017
– ident: e_1_2_13_93_1
  doi: 10.1046/j.0028-646x.2001.00190.x
– ident: e_1_2_13_105_1
  doi: 10.1111/j.1461‐0248.2012.01848.x
– ident: e_1_2_13_27_1
  doi: 10.1111/gcb.12113
– volume: 12
  start-page: 3218
  year: 2017
  ident: e_1_2_13_66_1
  article-title: Nitrogen‐rich microbial products provide new organo‐mineral associations for the stabilization of soil organic matter
  publication-title: Global Change Biology
– ident: e_1_2_13_70_1
  doi: 10.1038/nature16069
– ident: e_1_2_13_81_1
  doi: 10.3389/fmicb.2016.01247
– ident: e_1_2_13_75_1
  doi: 10.1038/nmicrobiol.2017.105
– ident: e_1_2_13_62_1
  doi: 10.1016/S0038‐0717(02)00242‐0
– ident: e_1_2_13_60_1
  doi: 10.1038/nclimate2580
– ident: e_1_2_13_50_1
  doi: 10.1021/es00050a007
– ident: e_1_2_13_6_1
  doi: 10.1038/s42003‐019‐0684‐z
– ident: e_1_2_13_115_1
  doi: 10.1038/s41467‐021‐24192‐8
– ident: e_1_2_13_52_1
  doi: 10.1038/nclimate2361
– ident: e_1_2_13_23_1
  doi: 10.1038/nmicrobiol.2016.242
– ident: e_1_2_13_107_1
  doi: 10.5194/bg‐10‐1717‐2013
– ident: e_1_2_13_80_1
  doi: 10.1046/j.1462‐2920.2000.00086.x
– ident: e_1_2_13_101_1
  doi: 10.2136/sssaj2004.1249
– ident: e_1_2_13_15_1
  doi: 10.1073/pnas.96.7.3404
– ident: e_1_2_13_45_1
  doi: 10.1002/jpln.201900530
– ident: e_1_2_13_54_1
  doi: 10.1016/j.soilbio.2019.107660
– ident: e_1_2_13_113_1
  doi: 10.1016/j.orggeochem.2006.07.018
– ident: e_1_2_13_73_1
  doi: 10.1016/j.geoderma.2008.09.012
– ident: e_1_2_13_100_1
  doi: 10.1021/es071217x
– ident: e_1_2_13_82_1
  doi: 10.1111/j.1469‐8137.2012.04225.x
– ident: e_1_2_13_76_1
  doi: 10.1021/es3039505
– start-page: 321
  volume-title: ACS Symposium series
  year: 1995
  ident: e_1_2_13_96_1
– ident: e_1_2_13_109_1
  doi: 10.1038/ncomms3947
– start-page: 1
  year: 2020
  ident: e_1_2_13_35_1
  article-title: High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high‐mountain soils
  publication-title: Global Change Biology
– ident: e_1_2_13_21_1
  doi: 10.1038/s43247‐020‐00031‐4
– ident: e_1_2_13_111_1
  doi: 10.1016/j.soilbio.2019.107687
– ident: e_1_2_13_97_1
  doi: 10.1016/j.soilbio.2014.01.025
– ident: e_1_2_13_48_1
  doi: 10.1016/j.soilbio.2003.10.013
– start-page: 217
  volume-title: Environmental impact of soil component interactions
  year: 1995
  ident: e_1_2_13_26_1
– ident: e_1_2_13_86_1
  doi: 10.1016/j.orggeochem.2009.06.008
– ident: e_1_2_13_24_1
  doi: 10.1016/j.soilbio.2018.08.002
– ident: e_1_2_13_69_1
  doi: 10.1038/s41561‐020‐0612‐3
– ident: e_1_2_13_72_1
  doi: 10.1111/gcb.14781
– ident: e_1_2_13_91_1
  doi: 10.2136/vzj2006.0080
– ident: e_1_2_13_90_1
  doi: 10.1016/j.gca.2005.10.012
– ident: e_1_2_13_46_1
  doi: 10.1007/s10533‐020‐00720‐4
– ident: e_1_2_13_59_1
  doi: 10.1016/j.soilbio.2015.09.005
– ident: e_1_2_13_98_1
  doi: 10.1007/s10533‐014‐0009‐8
– ident: e_1_2_13_37_1
  doi: 10.1038/s41564‐018‐0190‐y
– ident: e_1_2_13_79_1
  doi: 10.1128/AEM.00400‐06
– ident: e_1_2_13_25_1
  doi: 10.1016/j.soilbio.2020.108059
– ident: e_1_2_13_20_1
  doi: 10.1016/j.soilbio.2020.107929
– ident: e_1_2_13_31_1
  doi: 10.1016/j.soilbio.2016.08.025
– ident: e_1_2_13_63_1
  doi: 10.1038/s43017‐021‐00162‐y
– ident: e_1_2_13_106_1
  doi: 10.1111/gcb.15538
– ident: e_1_2_13_10_1
  doi: 10.1111/1462‐2920.12545
– ident: e_1_2_13_32_1
  doi: 10.1016/j.soilbio.2015.03.002
– ident: e_1_2_13_22_1
  doi: 10.1016/j.soilbio.2012.11.009
– ident: e_1_2_13_18_1
  doi: 10.1038/s41579‐018‐0057‐5
– ident: e_1_2_13_77_1
  doi: 10.1007/s00374‐021‐01557‐1
– ident: e_1_2_13_49_1
  doi: 10.1007/s11284‐012‐1022‐9
– ident: e_1_2_13_116_1
  doi: 10.1126/science.1097394
– ident: e_1_2_13_42_1
  doi: 10.1111/j.1365‐2389.2010.01244.x
– ident: e_1_2_13_5_1
  doi: 10.2136/sssaj1999.03615995006300010014x
– ident: e_1_2_13_64_1
  doi: 10.1016/S0038‐0717(01)00158‐4
– ident: e_1_2_13_11_1
  doi: 10.1088/1748-9326/ab2c11
– ident: e_1_2_13_85_1
  doi: 10.1007/s10533‐011‐9658‐z
– ident: e_1_2_13_53_1
  doi: 10.1038/s41561‐020‐0634‐x
– ident: e_1_2_13_9_1
  doi: 10.1016/j.geoderma.2017.09.042
– ident: e_1_2_13_55_1
  doi: 10.1016/j.soilbio.2018.04.024
– ident: e_1_2_13_36_1
  doi: 10.1111/j.1365‐2486.2012.02665.x
– ident: e_1_2_13_102_1
  doi: 10.1111/tpj.13569
– ident: e_1_2_13_58_1
  doi: 10.1038/ncomms13630
– ident: e_1_2_13_65_1
  doi: 10.1016/j.geoderma.2020.114785
– ident: e_1_2_13_13_1
  doi: 10.1071/SR9900213
– ident: e_1_2_13_17_1
  doi: 10.1111/1365‐2745.13385
– ident: e_1_2_13_44_1
  doi: 10.1007/BF00260816
– ident: e_1_2_13_89_1
  doi: 10.1111/j.1574‐6941.2001.tb00854.x
– start-page: 251
  volume-title: Assessment methods for soil carbon
  year: 2000
  ident: e_1_2_13_4_1
– ident: e_1_2_13_47_1
  doi: 10.5194/bg-18-189-2021
– ident: e_1_2_13_103_1
  doi: 10.1111/j.1365‐2389.2004.00639.x
– ident: e_1_2_13_78_1
  doi: 10.1038/nature10905
– ident: e_1_2_13_19_1
  doi: 10.1002/2017JG004186
– ident: e_1_2_13_16_1
  doi: 10.2138/am‐1998‐11‐1243
– ident: e_1_2_13_61_1
  doi: 10.1038/s41467‐017‐01406‐6
– ident: e_1_2_13_68_1
  doi: 10.1016/j.soilbio.2018.09.032
– ident: e_1_2_13_43_1
  doi: 10.1038/s41579‐019‐0158‐9
– ident: e_1_2_13_40_1
  doi: 10.1111/ele.13209
– ident: e_1_2_13_2_1
  doi: 10.1038/s41467‐019‐11993‐1
– ident: e_1_2_13_7_1
  doi: 10.1016/j.soilbio.2021.108189
– ident: e_1_2_13_92_1
  doi: 10.1016/j.advwatres.2006.05.025
– ident: e_1_2_13_114_1
  doi: 10.1038/ngeo2413
– ident: e_1_2_13_29_1
  doi: 10.1098/rsif.2011.0679
– ident: e_1_2_13_3_1
  doi: 10.1016/j.soilbio.2015.06.008
– ident: e_1_2_13_87_1
  doi: 10.1021/acs.est.1c00300
– ident: e_1_2_13_51_1
  doi: 10.1093/femsec/fiaa225
– ident: e_1_2_13_74_1
  doi: 10.1016/j.soilbio.2015.11.020
– ident: e_1_2_13_14_1
  doi: 10.1016/j.soilbio.2016.06.014
– ident: e_1_2_13_117_1
  doi: 10.1016/j.soilbio.2021.108213
– ident: e_1_2_13_108_1
  doi: 10.1016/j.soilbio.2021.108347
SSID ssj0009522
Score 2.6685233
SecondaryResourceType review_article
Snippet Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1396
SubjectTerms amino sugars
Biofilms
Carbon
Carbon sequestration
Climate change
Destabilization
Ecosystems
Food chains
Food webs
microbial necromass continuum
Microorganisms
necromass recycling
Organic carbon
persistence
Recycling
soil carbon sequestration
Soil dynamics
Soil structure
Soils
stabilization
Title Deconstructing the microbial necromass continuum to inform soil carbon sequestration
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14014
https://www.proquest.com/docview/2673583133
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86EHzxezidkgcffOlo0zZtHmV2DEER2cC30qaJDLdW7Pagf713abvNgYj4FkquH7lc7nfp3S-EXHEeSDxWxwp0Flqe9mwrCQSzXNfRjmZMKVNbdf_Ah2Pv7tlvsgmxFqbih1huuKFlmPUaDTxJyzUjr_KzwNv3MEZARlC8grDoia3R7lb_ERgXFnhatyb3wVyeDfnvfmkFNtchq_E5g32SNm9bpZq89hbztCc_N4gc__U5B2SvRqT0pppCh2RL5Udkpzqj8gNakaxb7WhVFAcC9apQHpPRLUbVNRNt_kIBU9LZxDA8Qb9cYcofYHSKafGTfLGY0XlBK8ZWWhaTKZXJe1rk1KR1Nzy-J2Q8iEb9oVWf1mBJD3CAlUktVMgCkQESZqGG0EenXIZMAGiSXqqFI7StHFsGkkvHS30_Ce3Mz1zPN7x4bdLKi1ydEqoBdfgu0wyrq7jmoYB5I5xM8cxVGbc7pNfoKpY1lTmeqDGNm5AGRzPG0YzNaHbI9VLgrWLx-Llrt1F-XJtzGTMeuH7oQjwPjzZa_O028SDqm8bZXwXOyS7DEguz09MlLVCeugDgM08vyTbzHi_NDP8CGfr1lg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG50xujF34vTqT148AKBAoUezWSZuu1gtmQ3MkprFjcwbjvoX-9rgQ1NjDHeemgL9PX1fa-89z2Erin1uSqrY_gyCQxXupYx9hkxHMeWtiRECJ1b1evTztB9GHmjSi5Mzg-xunBTmqHPa6Xg6kK6ouV5gBaYe1M5Ce4m2lJ1vbVb9UQqxLv5nwRCmQG21inofVQ0z7cJvlqmNdysglZtddr7iJfvmwebvJjLRWzyj29Ujv_7oAO0V4BSfJvvokO0IdIjtJ2XqXyHVsiLVj1c58XBgOJgmB-jwZ1yrAsy2vQZA6zEs4kmeYJ-qVBRfwDTsYqMn6TL5QwvMpyTtuJ5NpliPn6LsxTryO6SyvcEDdvhoNUxioINBncBChgJl0wExGcJgGESSPB-ZEx5QBjgJu7GktlMWsK2uM8pt93Y88aBlXiJ43qaGq-OammWilOEJQAPzyGSqAQrKmnAYOswOxE0cURCrQYyS2FFvGAzV0U1plHp1ajVjNRqRno1G-hmNeA1J_L4uWuzlH5UaPQ8ItR3vMABlx4ercX42zRRO2zpxtlfB1yhnc6g14269_3Hc7RLVMaFvvhpohoIUlwADlrEl3qjfwK_Qvja
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCMTCu6JQwAMDS6rEcZx4RH2IZ4VQK7FFjR-ook0r2g7w6zk7SVsqIYTYPNhO4ruzv3PuvkPokrFQmLI6Tqhl5FBNXacXcuL4vqc9TYhSNrfqsc1uuvTuJSiiCU0uTMYPMb9wM5Zh92tj4GOpl4w8i8-C075mfAS6jjYocyOj2I1nssS7m_1IIIw7cNT6ObuPCeZZmeD7wbRAm8uY1R46rV2UFK-bxZq81WbTpCY-V5gc__U9e2gnh6T4OtOhfbSm0gO0mRWp_IBWU-StcnORFQcD8m1hcog6DeNW51S06SsGUImHfUvxBP1SZWL-AKRjExffT2ezIZ6OcEbZiiej_gCL3nsySrGN6y6IfI9Qt9Xs1G-cvFyDIygAAUcKzVVEQi4BCpNIg--jEyYiwgE1CZpo7nHtKs8VoWDCo0kQ9CJXBtKngSXGK6NSOkrVMcIaYEfgE01MehXTLOKgONyTiklfSeZWUK2QVSxyLnNTUmMQFz6NWc3YrGZsV7OCruYDxhmNx89dq4Xw49yeJzFhoR9EPjj08Ggrxd-miVvNum2c_HXABdp6arTih9v2_SnaJibdwt76VFEJ5KjOAARNk3Or5l_i__eS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconstructing+the+microbial+necromass+continuum+to+inform+soil+carbon+sequestration&rft.jtitle=Functional+ecology&rft.au=Buckeridge%2C+Kate+M.&rft.au=Creamer%2C+Courtney&rft.au=Whitaker%2C+Jeanette&rft.date=2022-06-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=36&rft.issue=6&rft.spage=1396&rft.epage=1410&rft_id=info:doi/10.1111%2F1365-2435.14014&rft.externalDBID=10.1111%252F1365-2435.14014&rft.externalDocID=FEC14014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon