Deconstructing the microbial necromass continuum to inform soil carbon sequestration
Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used fo...
Saved in:
Published in | Functional ecology Vol. 36; no. 6; pp. 1396 - 1410 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization.
Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers.
From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems.
Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world.
Read the free Plain Language Summary for this article on the Journal blog.
Read the free Plain Language Summary for this article on the Journal blog. |
---|---|
AbstractList | Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization.
Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers.
From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems.
Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world.
Read the free Plain Language Summary for this article on the Journal blog.
Read the free Plain Language Summary for this article on the Journal blog. Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization. Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers. From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems. Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world. Read the free Plain Language Summary for this article on the Journal blog. Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks and its susceptibility to global change is becoming standard practice in soil carbon research. However, the typical proxies used for necromass carbon do not reveal the dynamic nature of necromass carbon flows and transformations within soil that ultimately determine necromass persistence. In this review, we define and deconstruct four stages of the necromass continuum: production, recycling, stabilization and destabilization.Current understanding of necromass dynamics is described for each continuum stage. We highlight recent advances, methodological limitations and knowledge gaps which need to be addressed to determine necromass pool sizes and transformations. We discuss the dominant controls on necromass process rates and aspects of soil microscale structure including biofilms and food web interactions. The relative importance of each stage of the continuum is then compared in contrasting ecosystems and for climate change drivers.From the perspective of the continuum, we draw three conclusions to inform future research. First, controls on necromass persistence are more clearly defined when viewed through the lens of the continuum; second, destabilization is the least understood stage of the continuum with recycling also poorly evidenced outside of a few ecosystems; and third, the response of necromass process rates to climate change is unresolved for most continuum stages and ecosystems.Future mechanistic research focused on the role of biotic and abiotic soil microscale structure in determining necromass process rates and the relative importance of organo–mineral and organo–organo interactions can inform necromass persistence in different climate change scenarios. Our review demonstrates that deconstructing the necromass continuum is key to predicting the vulnerability and persistence of necromass carbon in a changing world.Read the free Plain Language Summary for this article on the Journal blog. |
Author | Buckeridge, Kate M. Whitaker, Jeanette Creamer, Courtney |
Author_xml | – sequence: 1 givenname: Kate M. orcidid: 0000-0002-3267-4216 surname: Buckeridge fullname: Buckeridge, Kate M. email: kate.buckeridge@list.lu organization: Luxembourg Institute of Science and Technology – sequence: 2 givenname: Courtney orcidid: 0000-0001-8270-9387 surname: Creamer fullname: Creamer, Courtney organization: U.S. Geological Survey – sequence: 3 givenname: Jeanette orcidid: 0000-0001-8824-471X surname: Whitaker fullname: Whitaker, Jeanette organization: UK Centre for Ecology & Hydrology |
BookMark | eNqFUD1PwzAQtVCRaAszqyXmtP6uM6JCAakSS5mtxLHBVWIXOxHqv8f9EAMD3HKnu_fu3b0JGPngDQC3GM1wjjmmgheEUT7DDGF2AcY_nREYIyLKQjJBr8AkpS1CqOSEjMHmwejgUx8H3Tv_DvsPAzunY6hd1UJvctVVKcEMyvNh6GAfoPM2xA6m4Fqoq1gHD5P5HExeU_Uu-Gtwaas2mZtznoK31eNm-VysX59elvfrQjNCWNFoWxpJFmUjcU2k5RzZWmhJSoG5ZrUtcWmRwUgvtNCY1ZxXEjW8oYwjuRB0Cu5Oe3cxHOXVNgzRZ0lFxIJySTGlGcVPqPxLStFYpV1_vDOf61qFkToYqA52qYNd6mhg5s1_8XbRdVXc_8E4K3251uz_g6vV4_LE-waSi4NG |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2024_116870 crossref_primary_10_1016_j_tim_2022_08_011 crossref_primary_10_1016_j_jenvman_2024_120288 crossref_primary_10_1016_j_fecs_2023_100092 crossref_primary_10_1016_j_jenvman_2024_120289 crossref_primary_10_1016_j_soilbio_2022_108811 crossref_primary_10_1021_acs_est_3c08229 crossref_primary_10_1038_s41467_024_54446_0 crossref_primary_10_3389_fsoil_2022_987178 crossref_primary_10_1002_fee_2724 crossref_primary_10_1007_s11104_023_06149_6 crossref_primary_10_3390_agriculture13010008 crossref_primary_10_1038_s41561_022_01100_3 crossref_primary_10_1016_j_biortech_2024_131740 crossref_primary_10_1016_j_scitotenv_2024_170986 crossref_primary_10_1016_j_apsoil_2025_106049 crossref_primary_10_1007_s11368_024_03775_0 crossref_primary_10_1007_s00374_024_01859_0 crossref_primary_10_1016_j_soilbio_2023_108948 crossref_primary_10_1007_s11104_024_07095_7 crossref_primary_10_1111_nph_19471 crossref_primary_10_1007_s11356_024_34381_9 crossref_primary_10_1016_j_soilbio_2025_109750 crossref_primary_10_1007_s11104_022_05580_5 crossref_primary_10_1016_j_catena_2024_108693 crossref_primary_10_1111_ejss_13433 crossref_primary_10_3389_fmicb_2024_1478134 crossref_primary_10_1007_s11430_024_1474_2 crossref_primary_10_1007_s11104_024_07105_8 crossref_primary_10_1016_j_apsoil_2024_105587 crossref_primary_10_1016_j_scitotenv_2024_178212 crossref_primary_10_1016_j_apsoil_2024_105744 crossref_primary_10_1016_j_soilbio_2023_109205 crossref_primary_10_1111_aec_13428 crossref_primary_10_1016_j_soilbio_2025_109765 crossref_primary_10_1016_j_tim_2024_09_003 crossref_primary_10_1016_j_wasman_2024_01_011 crossref_primary_10_1016_j_heliyon_2024_e34822 crossref_primary_10_1007_s11104_022_05626_8 crossref_primary_10_1016_j_agee_2024_108998 crossref_primary_10_1007_s42832_024_0237_3 crossref_primary_10_3390_agriculture15030238 crossref_primary_10_5194_bg_22_87_2025 crossref_primary_10_1360_N072024_0088 crossref_primary_10_3389_fsufs_2023_1188133 crossref_primary_10_1016_j_scitotenv_2024_172916 crossref_primary_10_1016_j_scitotenv_2024_172635 crossref_primary_10_1016_j_geoderma_2023_116608 crossref_primary_10_1016_j_jenvman_2024_120765 crossref_primary_10_3389_fmicb_2023_1165045 crossref_primary_10_1002_sae2_70046 crossref_primary_10_1002_jpln_202300142 crossref_primary_10_1007_s10021_024_00946_5 crossref_primary_10_1016_j_scitotenv_2023_161713 crossref_primary_10_1016_j_still_2024_106327 crossref_primary_10_1016_j_cej_2024_148970 crossref_primary_10_1111_1462_2920_16462 crossref_primary_10_3390_jof10110772 crossref_primary_10_1007_s11368_024_03794_x crossref_primary_10_1016_j_apsoil_2025_105951 crossref_primary_10_1016_j_still_2024_106177 crossref_primary_10_1016_j_soilbio_2025_109715 crossref_primary_10_1016_j_still_2024_106211 crossref_primary_10_3390_agronomy14010193 crossref_primary_10_1038_s41467_023_44647_4 crossref_primary_10_1111_gcb_17302 crossref_primary_10_1016_j_apsoil_2025_106011 crossref_primary_10_1016_j_apsoil_2025_106010 crossref_primary_10_1038_s43247_022_00439_0 crossref_primary_10_1128_aem_01543_22 crossref_primary_10_1007_s42729_024_02038_8 crossref_primary_10_1016_j_apsoil_2024_105385 crossref_primary_10_1016_j_apsoil_2024_105781 crossref_primary_10_1016_j_pedobi_2023_150890 crossref_primary_10_1016_j_geoderma_2024_117107 crossref_primary_10_1093_ismeco_ycaf014 crossref_primary_10_1016_j_ejsobi_2023_103573 crossref_primary_10_1016_j_ejsobi_2024_103650 crossref_primary_10_1016_j_scitotenv_2024_178133 crossref_primary_10_1016_j_egg_2024_100279 crossref_primary_10_1016_j_agee_2024_109373 crossref_primary_10_1016_j_foreco_2023_120848 crossref_primary_10_1016_j_soilbio_2023_108952 crossref_primary_10_1016_j_still_2024_106108 crossref_primary_10_1016_j_soilbio_2023_109124 crossref_primary_10_1016_j_soilbio_2024_109323 crossref_primary_10_3389_fsoil_2023_1107432 crossref_primary_10_1016_j_geoderma_2024_116816 crossref_primary_10_1016_j_catena_2023_107676 crossref_primary_10_1093_ismeco_ycaf006 crossref_primary_10_1093_ismeco_ycae038 crossref_primary_10_1016_j_geoderma_2024_117115 crossref_primary_10_1007_s10533_024_01177_5 crossref_primary_10_1016_j_apsoil_2024_105798 crossref_primary_10_1021_acsestengg_2c00411 crossref_primary_10_1016_j_scitotenv_2024_174188 crossref_primary_10_1016_j_fmre_2023_10_025 crossref_primary_10_1016_j_agee_2024_109000 crossref_primary_10_1016_j_catena_2024_108315 crossref_primary_10_1016_j_cej_2024_152496 crossref_primary_10_1016_j_scitotenv_2025_179003 crossref_primary_10_1111_rec_14127 crossref_primary_10_3389_fmicb_2023_1295624 crossref_primary_10_1016_j_soilbio_2023_109250 crossref_primary_10_1016_j_catena_2024_107902 |
Cites_doi | 10.1016/j.soilbio.2016.11.025 10.1111/geb.13159 10.1029/2006JG000258 10.1016/j.gca.2019.06.028 10.1016/j.geoderma.2017.06.005 10.1038/s41467‐020‐19792‐9 10.1016/j.jconhyd.2012.04.007 10.1016/j.soilbio.2020.107720 10.1016/j.gca.2011.03.006 10.1007/s10533‐020‐00736‐w 10.1007/s10533‐018‐0459‐5 10.1016/j.gca.2008.06.015 10.1016/j.foreco.2021.119522 10.1016/S0167‐7012(97)00065‐1 10.1038/ngeo155 10.1016/j.soilbio.2020.107876 10.1111/gcb.15206 10.1021/acs.analchem.5b00116 10.1038/s41558‐018‐0341‐4 10.1021/acs.est.7b04953 10.1016/j.oneear.2020.03.006 10.1016/j.soilbio.2015.10.017 10.1046/j.0028-646x.2001.00190.x 10.1111/j.1461‐0248.2012.01848.x 10.1111/gcb.12113 10.1038/nature16069 10.3389/fmicb.2016.01247 10.1038/nmicrobiol.2017.105 10.1016/S0038‐0717(02)00242‐0 10.1038/nclimate2580 10.1021/es00050a007 10.1038/s42003‐019‐0684‐z 10.1038/s41467‐021‐24192‐8 10.1038/nclimate2361 10.1038/nmicrobiol.2016.242 10.5194/bg‐10‐1717‐2013 10.1046/j.1462‐2920.2000.00086.x 10.2136/sssaj2004.1249 10.1073/pnas.96.7.3404 10.1002/jpln.201900530 10.1016/j.soilbio.2019.107660 10.1016/j.orggeochem.2006.07.018 10.1016/j.geoderma.2008.09.012 10.1021/es071217x 10.1111/j.1469‐8137.2012.04225.x 10.1021/es3039505 10.1038/ncomms3947 10.1038/s43247‐020‐00031‐4 10.1016/j.soilbio.2019.107687 10.1016/j.soilbio.2014.01.025 10.1016/j.soilbio.2003.10.013 10.1016/j.orggeochem.2009.06.008 10.1016/j.soilbio.2018.08.002 10.1038/s41561‐020‐0612‐3 10.1111/gcb.14781 10.2136/vzj2006.0080 10.1016/j.gca.2005.10.012 10.1007/s10533‐020‐00720‐4 10.1016/j.soilbio.2015.09.005 10.1007/s10533‐014‐0009‐8 10.1038/s41564‐018‐0190‐y 10.1128/AEM.00400‐06 10.1016/j.soilbio.2020.108059 10.1016/j.soilbio.2020.107929 10.1016/j.soilbio.2016.08.025 10.1038/s43017‐021‐00162‐y 10.1111/gcb.15538 10.1111/1462‐2920.12545 10.1016/j.soilbio.2015.03.002 10.1016/j.soilbio.2012.11.009 10.1038/s41579‐018‐0057‐5 10.1007/s00374‐021‐01557‐1 10.1007/s11284‐012‐1022‐9 10.1126/science.1097394 10.1111/j.1365‐2389.2010.01244.x 10.2136/sssaj1999.03615995006300010014x 10.1016/S0038‐0717(01)00158‐4 10.1088/1748-9326/ab2c11 10.1007/s10533‐011‐9658‐z 10.1038/s41561‐020‐0634‐x 10.1016/j.geoderma.2017.09.042 10.1016/j.soilbio.2018.04.024 10.1111/j.1365‐2486.2012.02665.x 10.1111/tpj.13569 10.1038/ncomms13630 10.1016/j.geoderma.2020.114785 10.1071/SR9900213 10.1111/1365‐2745.13385 10.1007/BF00260816 10.1111/j.1574‐6941.2001.tb00854.x 10.5194/bg-18-189-2021 10.1111/j.1365‐2389.2004.00639.x 10.1038/nature10905 10.1002/2017JG004186 10.2138/am‐1998‐11‐1243 10.1038/s41467‐017‐01406‐6 10.1016/j.soilbio.2018.09.032 10.1038/s41579‐019‐0158‐9 10.1111/ele.13209 10.1038/s41467‐019‐11993‐1 10.1016/j.soilbio.2021.108189 10.1016/j.advwatres.2006.05.025 10.1038/ngeo2413 10.1098/rsif.2011.0679 10.1016/j.soilbio.2015.06.008 10.1021/acs.est.1c00300 10.1093/femsec/fiaa225 10.1016/j.soilbio.2015.11.020 10.1016/j.soilbio.2016.06.014 10.1016/j.soilbio.2021.108213 10.1016/j.soilbio.2021.108347 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/1365-2435.14014 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1410 |
ExternalDocumentID | 10_1111_1365_2435_14014 FEC14014 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Environment Research Council funderid: NE/R016429/1; NE/S005137/1 – fundername: U.S. Geological Survey Climate R&D Program funderid: ZT00U4U30 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 |
ID | FETCH-LOGICAL-c4224-dcf9e8279d81b28f550fb6c829615c4bf919f0e10c7c6c14b55a80d5d34508763 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 25 20:55:18 EDT 2025 Tue Jul 01 01:15:53 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 Wed Jan 22 16:24:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4224-dcf9e8279d81b28f550fb6c829615c4bf919f0e10c7c6c14b55a80d5d34508763 |
Notes | Handling Editor Ji Chen ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3267-4216 0000-0001-8270-9387 0000-0001-8824-471X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14014 |
PQID | 2673583133 |
PQPubID | 1066355 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2673583133 crossref_citationtrail_10_1111_1365_2435_14014 crossref_primary_10_1111_1365_2435_14014 wiley_primary_10_1111_1365_2435_14014_FEC14014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 484 2019; 10 2019; 14 2006; 37 2019; 17 2021; 160 2012; 18 2020; 13 1998; 83 2020; 11 2012; 15 2018; 8 2018; 3 2013; 58 2021; 156 2020; 96 2019; 22 2004; 36 2015; 85 2015; 88 2019; 25 2015; 87 2007; 6 2021; 153 2015; 91 2014; 121 2012; 136–137 2020; 141 2019; 2 2020; 142 2020; 148 2003; 35 2011; 75 2020; 149 1995 2015; 528 2021; 384 2016; 94 2016; 93 2016; 18 2004; 304 2021; 57 2004; 55 2012; 196 2016; 7 2020a; 141 2001; 151 2012; 111 2016; 2 2020; 151 2021; 498 1990; 28 1997; 30 2001; 37 2018; 16 2020; 29 2017; 305 2006; 70 2017; 8 2017; 2 2009; 40 2013; 28 2006; 72 2018; 127 2018; 123 2018; 126 2004; 68 2016; 102 2000; 2 2008; 148 2016; 103 1994; 28 2007; 30 2008; 1 2008; 72 2010; 61 2013; 19 2014; 5 2014; 4 2020; 2 2020; 1 2018; 139 2000 2013; 10 1999; 96 2015; 5 2013; 47 2021; 2 2002; 34 2020; 183 1999; 63 2020b; 26 2015; 8 2019; 260 2020; 108 2007; 112 2017; 91 2021; 12 2021 2020 1988; 6 2021; 18 2018; 312 2017; 12 2018; 52 2007; 41 2014; 72 2017; 107 2012; 9 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_92_1 Chenu C. (e_1_2_13_26_1) 1995 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_112_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_70_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_86_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_91_1 Amelung W. (e_1_2_13_4_1) 2000 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 Kopittke P. M. (e_1_2_13_66_1) 2017; 12 e_1_2_13_94_1 Donhauser J. (e_1_2_13_35_1) 2020 e_1_2_13_98_1 e_1_2_13_19_1 Quiquampoix H. (e_1_2_13_96_1) 1995 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 e_1_2_13_107_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_39_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 528 start-page: 60 year: 2015 end-page: 68 article-title: The contentious nature of soil organic matter publication-title: Nature – volume: 149 year: 2020 article-title: Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil publication-title: Soil Biology & Biochemistry – volume: 148 year: 2020 article-title: The physical structure of soil: Determinant and consequence of trophic interactions publication-title: Soil Biology & Biochemistry – volume: 2 start-page: 16242 year: 2016 article-title: Relic DNA is abundant in soil and obscures estimates of soil microbial diversity publication-title: Nature Microbiology – volume: 7 start-page: 1 year: 2016 end-page: 11 article-title: Soil fungal: Bacterial ratios are linked to altered carbon cycling publication-title: Frontiers in Microbiology – volume: 8 start-page: 441 year: 2015 end-page: 444 article-title: Future productivity and carbon storage limited by terrestrial nutrient availability publication-title: Nature Geoscience – volume: 96 start-page: 3404 year: 1999 end-page: 3411 article-title: Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 34 start-page: 139 year: 2002 end-page: 162 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biology & Biochemistry – volume: 87 start-page: 5206 year: 2015 end-page: 5215 article-title: Advanced solvent based methods for molecular characterization of soil organic matter by high‐resolution mass spectrometry publication-title: Analytical Chemistry – volume: 156 year: 2021 article-title: Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai‐Tibet alpine grasslands publication-title: Soil Biology & Biochemistry – volume: 18 start-page: 38 year: 2016 end-page: 49 article-title: Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria publication-title: Environmental Microbiology – volume: 72 start-page: 163 year: 2014 end-page: 171 article-title: Measuring the soil‐microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms publication-title: Soil Biology & Biochemistry – volume: 29 start-page: 1829 year: 2020 end-page: 1839 article-title: The vertical distribution and control of microbial necromass carbon in forest soils publication-title: Global Ecology and Biogeography – volume: 12 start-page: 3218 year: 2017 end-page: 3221 article-title: Nitrogen‐rich microbial products provide new organo‐mineral associations for the stabilization of soil organic matter publication-title: Global Change Biology – volume: 3 start-page: 870 year: 2018 end-page: 880 article-title: Host‐linked soil viral ecology along a permafrost thaw gradient publication-title: Nat. Microbiol – volume: 96 start-page: 1 year: 2020 end-page: 9 article-title: Restoring degraded microbiome function with self‐assembled communities publication-title: FEMS Microbiology Ecology – volume: 63 start-page: 86 year: 1999 end-page: 92 article-title: Amino sugars in native grassland soils along a climosequence in North America publication-title: Soil Science Society of America Journal – volume: 148 start-page: 113 year: 2008 end-page: 119 article-title: Preferential sequestration of microbial carbon in subsoils of a glacial‐landscape toposequence, Dane County, WI, USA publication-title: Geoderma – volume: 94 start-page: 173 year: 2016 end-page: 180 article-title: Switchgrass rhizospheres stimulate microbial biomass but deplete microbial necromass in agricultural soils of the upper Midwest, USA publication-title: Soil Biology & Biochemistry – volume: 484 start-page: 101 year: 2012 end-page: 104 article-title: Endospore abundance, microbial growth and necromass turnover in deep sub‐seafloor sediment publication-title: Nature – volume: 151 year: 2020 article-title: Patterns and determinants of soil microbial residues from tropical to boreal forests publication-title: Soil Biology & Biochemistry – volume: 72 start-page: 4725 year: 2008 end-page: 4744 article-title: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter publication-title: Geochimica et Cosmochimica Acta – volume: 151 start-page: 237 year: 2020 end-page: 249 article-title: Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency publication-title: Biogeochemistry – volume: 35 start-page: 101 year: 2003 end-page: 118 article-title: Contribution of lignin and polysaccharides to the refractory carbon pool in C‐depleted arable soils publication-title: Soil Biology & Biochemistry – volume: 141 year: 2020 article-title: Direct measurement of the in situ decomposition of microbial‐derived soil organic matter publication-title: Soil Biology & Biochemistry – volume: 2 start-page: 402 year: 2021 end-page: 421 article-title: Dynamic interactions at the mineral–organic matter interface publication-title: Nature Reviews Earth & Environment – volume: 15 start-page: 1257 year: 2012 end-page: 1265 article-title: The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems publication-title: Ecology Letters – volume: 37 start-page: 1680 year: 2006 end-page: 1693 article-title: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index publication-title: Organic Geochemistry – volume: 2 start-page: 441 year: 2019 article-title: Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass publication-title: Communications Biology – volume: 41 start-page: 8070 year: 2007 end-page: 8076 article-title: Microbially derived inputs to soil organic matter: Are current estimates too low? publication-title: Environmental Science and Technology – volume: 142 year: 2020 article-title: Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming publication-title: Soil Biology & Biochemistry – volume: 26 start-page: 5277 year: 2020b end-page: 5289 article-title: Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover publication-title: Global Change Biology – volume: 156 year: 2021 article-title: Plant‐ or microbial‐derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biology & Biochemistry – volume: 30 start-page: 193 year: 1997 end-page: 203 article-title: Use of confocal laser scanning microscopy on soil thin‐sections for improved characterization of microbial growth in unconsolidated soils and aquifer materials publication-title: Journal of Microbiol Methods – volume: 102 start-page: 14 year: 2016 end-page: 17 article-title: The sapro‐rhizosphere: Carbon flow from saprotrophic fungi into fungus‐feeding bacteria publication-title: Soil Biology & Biochemistry – volume: 91 start-page: 279 year: 2015 end-page: 290 article-title: Microbial physiology and necromass regulate agricultural soil carbon accumulation publication-title: Soil Biology & Biochemistry – volume: 52 start-page: 1036 year: 2018 end-page: 1044 article-title: Adsorption and molecular fractionation of dissolved organic matter on iron‐bearing mineral matrices of varying crystallinity publication-title: Environmental Science and Technology – volume: 6 start-page: 189 year: 1988 end-page: 203 article-title: Microenvironments of soil microorganisms publication-title: Biology and Fertility of Soils – volume: 139 start-page: 103 year: 2018 end-page: 122 article-title: Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes publication-title: Biogeochemistry – volume: 12 start-page: 4115 year: 2021 article-title: Particulate organic matter as a functional soil component for persistent soil organic carbon publication-title: Nature Communications – volume: 28 start-page: 683 year: 2013 end-page: 695 article-title: Soil organic matter dynamics: A biological perspective derived from the use of compound‐specific isotopes studies publication-title: Ecological Research – volume: 55 start-page: 739 year: 2004 end-page: 750 article-title: Spatial location of carbon decomposition in the soil pore system publication-title: European Journal of Soil Science – volume: 196 start-page: 79 year: 2012 end-page: 91 article-title: Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils publication-title: New Phytologist – volume: 1 start-page: 238 year: 2008 end-page: 242 article-title: Spatial complexity of soil organic matter forms at nanometre scales publication-title: Nature Geoscience – volume: 18 start-page: 189 year: 2021 end-page: 205 article-title: Millennial‐age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: C‐based evidence for stabilization of microbial necromass publication-title: Biogeosciences – volume: 68 start-page: 1249 year: 2004 end-page: 1255 article-title: Preferential accumulation of microbial carbon in aggregate structures of no‐tillage soils publication-title: Soil Science Society of America Journal – start-page: 251 year: 2000 end-page: 290 – volume: 107 start-page: 133 year: 2017 end-page: 143 article-title: Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains publication-title: Soil Biology & Biochemistry – volume: 72 start-page: 5342 year: 2006 end-page: 5348 article-title: Identification of bacterial micropredators distinctively active in a soil microbial food web publication-title: Applied and Environment Microbiology – volume: 1 start-page: 1 year: 2020 end-page: 9 article-title: Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization publication-title: Communications Earth & Environment – volume: 57 start-page: 673 issue: 5 year: 2021 end-page: 684 article-title: Long‐term elevated CO and warming enhance microbial necromass carbon accumulation in a paddy soil publication-title: Biology and Fertility of Soils – volume: 6 start-page: 298 year: 2007 end-page: 305 article-title: Extracellular polymeric substances affecting pore‐scale hydrologic conditions for bacterial activity in unsaturated soils publication-title: Vadose Zone Journal – start-page: 321 year: 1995 end-page: 333 – start-page: 1 year: 2021 end-page: 18 article-title: Microbial metabolic response to winter warming stabilizes soil carbon publication-title: Global Change Biology – volume: 75 start-page: 3135 year: 2011 end-page: 3154 article-title: Stabilization of extracellular polymeric substances ( ) by adsorption to and coprecipitation with Al forms publication-title: Geochimica et Cosmochimica Acta – volume: 8 start-page: 1104 year: 2018 end-page: 1108 article-title: Climate‐driven thresholds in reactive mineral retention of soil carbon at the global scale publication-title: Nature Climate Change – volume: 312 start-page: 86 year: 2018 end-page: 94 article-title: Food for microorganisms: Position‐specific C labeling and C‐PLFA analysis reveals preferences for sorbed or necromass C publication-title: Geoderma – volume: 123 start-page: 577 year: 2018 end-page: 590 article-title: Necromass as a limited source of energy for microorganisms in marine sediments publication-title: Journal of Geophysical Research: Biogeosciences – volume: 16 start-page: 616 year: 2018 end-page: 627 article-title: Bacterial adhesion at the single‐cell level publication-title: Nature Reviews Microbiology – volume: 108 start-page: 1845 year: 2020 end-page: 1859 article-title: Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types publication-title: Journal of Ecology – start-page: 217 year: 1995 end-page: 233 – volume: 127 start-page: 305 year: 2018 end-page: 317 article-title: Viruses in soil: Nano‐scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions publication-title: Soil Biology & Biochemistry – volume: 9 start-page: 1302 year: 2012 end-page: 1310 article-title: Microbial diversity affects self‐organization of the soil – Microbe system with consequences for function publication-title: Journal of the Royal Society, Interface – volume: 5 start-page: 1 year: 2014 end-page: 7 article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils publication-title: Nature Communications – volume: 103 start-page: 201 year: 2016 end-page: 212 article-title: Is the fate of glucose‐derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size? publication-title: Soil Biology & Biochemistry – volume: 47 start-page: 3158 year: 2013 end-page: 3166 article-title: STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite publication-title: Environmental Science and Technology – volume: 5 start-page: 588 year: 2015 end-page: 595 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nature Climate Change – volume: 85 start-page: 153 year: 2015 end-page: 161 article-title: Environmental stress response limits microbial necromass contributions to soil organic carbon publication-title: Soil Biology & Biochemistry – volume: 151 start-page: 459 year: 2001 end-page: 468 article-title: Soil physics, fungal epidemiology and the spread of Rhizoctonia solani publication-title: New Phytologist – start-page: 1 year: 2020 end-page: 22 article-title: High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high‐mountain soils publication-title: Global Change Biology – volume: 70 start-page: 827 year: 2006 end-page: 838 article-title: Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis publication-title: Geochimica et Cosmochimica Acta – volume: 2 start-page: 349 year: 2020 end-page: 360 article-title: Distinct assembly processes and microbial communities constrain soil organic carbon formation publication-title: One Earth – volume: 13 start-page: 687 year: 2020 end-page: 692 article-title: Molecular trade‐offs in soil organic carbon composition at continental scale publication-title: Nature Geoscience – volume: 7 start-page: 13630 year: 2016 article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls publication-title: Nature Communications – volume: 91 start-page: 340 year: 2017 end-page: 354 article-title: Laser‐ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia publication-title: The Plant Journal – volume: 14 start-page: 083004 year: 2019 article-title: What do we know about soil carbon destabilization? publication-title: Environmental Research Letters – volume: 13 start-page: 529 year: 2020 end-page: 534 article-title: Persistence of soil organic carbon caused by functional complexity publication-title: Nature Geoscience – volume: 136–137 start-page: 1 year: 2012 end-page: 9 article-title: Sand box experiments with bioclogging of porous media: Hydraulic conductivity reductions publication-title: Journal of Contaminant Hydrology – volume: 141 year: 2020a article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition publication-title: Soil Biology & Biochemistry – volume: 36 start-page: 399 year: 2004 end-page: 407 article-title: Amino sugars and muramic acid – Biomarkers for soil microbial community structure analysis publication-title: Soil Biology & Biochemistry – volume: 93 start-page: 38 year: 2016 end-page: 49 article-title: The decomposition of ectomycorrhizal fungal necromass publication-title: Soil Biology & Biochemistry – volume: 22 start-page: 498 year: 2019 end-page: 505 article-title: Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming publication-title: Ecology Letters – volume: 11 start-page: 6103 year: 2020 article-title: Organo–organic and organo–mineral interfaces in soil at the nanometer scale publication-title: Nature Communications – volume: 40 start-page: 978 year: 2009 end-page: 985 article-title: Fate of microbial biomass‐derived amino acids in soil and their contribution to soil organic matter publication-title: Organic Geochemistry – volume: 121 start-page: 409 year: 2014 end-page: 424 article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals publication-title: Biogeochemistry – volume: 153 start-page: 1 year: 2021 end-page: 15 article-title: A combined microbial and ecosystem metric of carbon retention efficiency explains land cover‐dependent soil microbial biodiversity–ecosystem function relationships publication-title: Biogeochemistry – volume: 183 start-page: 27 year: 2020 end-page: 41 article-title: The multilayer model of soil mineral–organic interfaces – A review publication-title: Journal of Plant Nutrition and Soil Science – volume: 88 start-page: 390 year: 2015 end-page: 402 article-title: Contribution of sorption, DOC transport and microbial interactions to the C age of a soil organic carbon profile: Insights from a calibrated process model publication-title: Soil Biology & Biochemistry – volume: 260 start-page: 161 year: 2019 end-page: 176 article-title: Mineralogy dictates the initial mechanism of microbial necromass association publication-title: Geochimica et Cosmochimica Acta – volume: 28 start-page: 38 year: 1994 end-page: 46 article-title: Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models publication-title: Environmental Science and Technology – volume: 112 start-page: 1 year: 2007 end-page: 8 article-title: Conservation of soil organic matter through cryoturbation in arctic soils in Siberia publication-title: Journal of Geophysical Research – volume: 111 start-page: 41 year: 2012 end-page: 55 article-title: SOM genesis: Microbial biomass as a significant source publication-title: Biogeochemistry – volume: 10 start-page: 1717 year: 2013 end-page: 1736 article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations publication-title: Biogeosciences – volume: 19 start-page: 988 year: 2013 end-page: 995 article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology – volume: 304 start-page: 1634 year: 2004 end-page: 1637 article-title: Interactions and self‐organization in the soil‐microbe complex publication-title: Science – volume: 58 start-page: 216 year: 2013 end-page: 234 article-title: Soil enzymes in a changing environment: Current knowledge and future directions publication-title: Soil Biology & Biochemistry – volume: 17 start-page: 247 year: 2019 end-page: 260 article-title: Bacteria and archaea on Earth and their abundance in biofilms publication-title: Nature Reviews Microbiology – volume: 2 start-page: 1 year: 2017 end-page: 6 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nature Microbiology – volume: 10 issue: 1 year: 2019 article-title: Plant roots increase both decomposition and stable organic matter formation in boreal forest soil publication-title: Nature Communications – volume: 4 start-page: 903 year: 2014 end-page: 906 article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil publication-title: Nature Climate Change – volume: 28 start-page: 213 year: 1990 end-page: 225 article-title: Solid‐state CP/MAS C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose publication-title: Australian Journal of Soil Research – volume: 30 start-page: 1505 year: 2007 end-page: 1527 article-title: Physical constraints affecting bacterial habitats and activity in unsaturated porous media – A review publication-title: Advances in Water Resources – volume: 384 year: 2021 article-title: Soil organic matter in major pedogenic soil groups publication-title: Geoderma – volume: 498 year: 2021 article-title: Decomposition and transformations along the continuum from litter to soil organic matter in forest soils publication-title: Forest Ecology and Management – volume: 25 start-page: 3578 year: 2019 end-page: 3590 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Global Change Biology – volume: 18 start-page: 1781 year: 2012 end-page: 1796 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Global Change Biology – volume: 2 start-page: 161 year: 2000 end-page: 168 article-title: “Clay hutches”: A novel interaction between bacteria and clay minerals publication-title: Environmental Microbiology – start-page: 1 year: 2021 end-page: 36 article-title: Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues publication-title: Environmental Science & Technology – volume: 37 start-page: 67 issue: 1 year: 2001 end-page: 77 article-title: Quantification of the in situ distribution of soil bacteria by large‐scale imaging of thin sections of undisturbed soil publication-title: FEMS Microbiology Ecology – volume: 160 year: 2021 article-title: Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms publication-title: Soil Biology & Biochemistry – volume: 83 start-page: 1551 year: 1998 end-page: 1563 article-title: Experimental observations of the effects of bacteria on aluminosilicate weathering publication-title: American Mineralogist – volume: 61 start-page: 504 year: 2010 end-page: 513 article-title: Microbial uptake of low‐molecular‐weight organic substances out‐competes sorption in soil publication-title: European Journal of Soil Science – volume: 126 start-page: 76 year: 2018 end-page: 81 article-title: The afterlife effects of fungal morphology: Contrasting decomposition rates between diffuse and rhizomorphic necromass publication-title: Soil Biology & Biochemistry – volume: 305 start-page: 382 year: 2017 end-page: 393 article-title: Quantitative characterization of soil micro‐aggregates: New opportunities from sub‐micron resolution synchrotron X‐ray microtomography publication-title: Geoderma – volume: 8 start-page: 1771 year: 2017 article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization publication-title: Nature Communications – volume: 123 start-page: 115 year: 2018 end-page: 125 article-title: Significant release and microbial utilization of amino sugars and D‐amino acid enantiomers from microbial cell wall decomposition in soils publication-title: Soil Biology & Biochemistry – ident: e_1_2_13_12_1 doi: 10.1016/j.soilbio.2016.11.025 – ident: e_1_2_13_88_1 doi: 10.1111/geb.13159 – ident: e_1_2_13_57_1 doi: 10.1029/2006JG000258 – ident: e_1_2_13_30_1 doi: 10.1016/j.gca.2019.06.028 – ident: e_1_2_13_110_1 doi: 10.1016/j.geoderma.2017.06.005 – ident: e_1_2_13_94_1 doi: 10.1038/s41467‐020‐19792‐9 – ident: e_1_2_13_99_1 doi: 10.1016/j.jconhyd.2012.04.007 – ident: e_1_2_13_33_1 doi: 10.1016/j.soilbio.2020.107720 – ident: e_1_2_13_84_1 doi: 10.1016/j.gca.2011.03.006 – ident: e_1_2_13_39_1 doi: 10.1007/s10533‐020‐00736‐w – ident: e_1_2_13_56_1 doi: 10.1007/s10533‐018‐0459‐5 – ident: e_1_2_13_83_1 doi: 10.1016/j.gca.2008.06.015 – ident: e_1_2_13_95_1 doi: 10.1016/j.foreco.2021.119522 – ident: e_1_2_13_34_1 doi: 10.1016/S0167‐7012(97)00065‐1 – ident: e_1_2_13_71_1 doi: 10.1038/ngeo155 – ident: e_1_2_13_38_1 doi: 10.1016/j.soilbio.2020.107876 – ident: e_1_2_13_112_1 doi: 10.1111/gcb.15206 – ident: e_1_2_13_104_1 doi: 10.1021/acs.analchem.5b00116 – ident: e_1_2_13_67_1 doi: 10.1038/s41558‐018‐0341‐4 – ident: e_1_2_13_28_1 doi: 10.1021/acs.est.7b04953 – ident: e_1_2_13_8_1 doi: 10.1016/j.oneear.2020.03.006 – ident: e_1_2_13_41_1 doi: 10.1016/j.soilbio.2015.10.017 – ident: e_1_2_13_93_1 doi: 10.1046/j.0028-646x.2001.00190.x – ident: e_1_2_13_105_1 doi: 10.1111/j.1461‐0248.2012.01848.x – ident: e_1_2_13_27_1 doi: 10.1111/gcb.12113 – volume: 12 start-page: 3218 year: 2017 ident: e_1_2_13_66_1 article-title: Nitrogen‐rich microbial products provide new organo‐mineral associations for the stabilization of soil organic matter publication-title: Global Change Biology – ident: e_1_2_13_70_1 doi: 10.1038/nature16069 – ident: e_1_2_13_81_1 doi: 10.3389/fmicb.2016.01247 – ident: e_1_2_13_75_1 doi: 10.1038/nmicrobiol.2017.105 – ident: e_1_2_13_62_1 doi: 10.1016/S0038‐0717(02)00242‐0 – ident: e_1_2_13_60_1 doi: 10.1038/nclimate2580 – ident: e_1_2_13_50_1 doi: 10.1021/es00050a007 – ident: e_1_2_13_6_1 doi: 10.1038/s42003‐019‐0684‐z – ident: e_1_2_13_115_1 doi: 10.1038/s41467‐021‐24192‐8 – ident: e_1_2_13_52_1 doi: 10.1038/nclimate2361 – ident: e_1_2_13_23_1 doi: 10.1038/nmicrobiol.2016.242 – ident: e_1_2_13_107_1 doi: 10.5194/bg‐10‐1717‐2013 – ident: e_1_2_13_80_1 doi: 10.1046/j.1462‐2920.2000.00086.x – ident: e_1_2_13_101_1 doi: 10.2136/sssaj2004.1249 – ident: e_1_2_13_15_1 doi: 10.1073/pnas.96.7.3404 – ident: e_1_2_13_45_1 doi: 10.1002/jpln.201900530 – ident: e_1_2_13_54_1 doi: 10.1016/j.soilbio.2019.107660 – ident: e_1_2_13_113_1 doi: 10.1016/j.orggeochem.2006.07.018 – ident: e_1_2_13_73_1 doi: 10.1016/j.geoderma.2008.09.012 – ident: e_1_2_13_100_1 doi: 10.1021/es071217x – ident: e_1_2_13_82_1 doi: 10.1111/j.1469‐8137.2012.04225.x – ident: e_1_2_13_76_1 doi: 10.1021/es3039505 – start-page: 321 volume-title: ACS Symposium series year: 1995 ident: e_1_2_13_96_1 – ident: e_1_2_13_109_1 doi: 10.1038/ncomms3947 – start-page: 1 year: 2020 ident: e_1_2_13_35_1 article-title: High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high‐mountain soils publication-title: Global Change Biology – ident: e_1_2_13_21_1 doi: 10.1038/s43247‐020‐00031‐4 – ident: e_1_2_13_111_1 doi: 10.1016/j.soilbio.2019.107687 – ident: e_1_2_13_97_1 doi: 10.1016/j.soilbio.2014.01.025 – ident: e_1_2_13_48_1 doi: 10.1016/j.soilbio.2003.10.013 – start-page: 217 volume-title: Environmental impact of soil component interactions year: 1995 ident: e_1_2_13_26_1 – ident: e_1_2_13_86_1 doi: 10.1016/j.orggeochem.2009.06.008 – ident: e_1_2_13_24_1 doi: 10.1016/j.soilbio.2018.08.002 – ident: e_1_2_13_69_1 doi: 10.1038/s41561‐020‐0612‐3 – ident: e_1_2_13_72_1 doi: 10.1111/gcb.14781 – ident: e_1_2_13_91_1 doi: 10.2136/vzj2006.0080 – ident: e_1_2_13_90_1 doi: 10.1016/j.gca.2005.10.012 – ident: e_1_2_13_46_1 doi: 10.1007/s10533‐020‐00720‐4 – ident: e_1_2_13_59_1 doi: 10.1016/j.soilbio.2015.09.005 – ident: e_1_2_13_98_1 doi: 10.1007/s10533‐014‐0009‐8 – ident: e_1_2_13_37_1 doi: 10.1038/s41564‐018‐0190‐y – ident: e_1_2_13_79_1 doi: 10.1128/AEM.00400‐06 – ident: e_1_2_13_25_1 doi: 10.1016/j.soilbio.2020.108059 – ident: e_1_2_13_20_1 doi: 10.1016/j.soilbio.2020.107929 – ident: e_1_2_13_31_1 doi: 10.1016/j.soilbio.2016.08.025 – ident: e_1_2_13_63_1 doi: 10.1038/s43017‐021‐00162‐y – ident: e_1_2_13_106_1 doi: 10.1111/gcb.15538 – ident: e_1_2_13_10_1 doi: 10.1111/1462‐2920.12545 – ident: e_1_2_13_32_1 doi: 10.1016/j.soilbio.2015.03.002 – ident: e_1_2_13_22_1 doi: 10.1016/j.soilbio.2012.11.009 – ident: e_1_2_13_18_1 doi: 10.1038/s41579‐018‐0057‐5 – ident: e_1_2_13_77_1 doi: 10.1007/s00374‐021‐01557‐1 – ident: e_1_2_13_49_1 doi: 10.1007/s11284‐012‐1022‐9 – ident: e_1_2_13_116_1 doi: 10.1126/science.1097394 – ident: e_1_2_13_42_1 doi: 10.1111/j.1365‐2389.2010.01244.x – ident: e_1_2_13_5_1 doi: 10.2136/sssaj1999.03615995006300010014x – ident: e_1_2_13_64_1 doi: 10.1016/S0038‐0717(01)00158‐4 – ident: e_1_2_13_11_1 doi: 10.1088/1748-9326/ab2c11 – ident: e_1_2_13_85_1 doi: 10.1007/s10533‐011‐9658‐z – ident: e_1_2_13_53_1 doi: 10.1038/s41561‐020‐0634‐x – ident: e_1_2_13_9_1 doi: 10.1016/j.geoderma.2017.09.042 – ident: e_1_2_13_55_1 doi: 10.1016/j.soilbio.2018.04.024 – ident: e_1_2_13_36_1 doi: 10.1111/j.1365‐2486.2012.02665.x – ident: e_1_2_13_102_1 doi: 10.1111/tpj.13569 – ident: e_1_2_13_58_1 doi: 10.1038/ncomms13630 – ident: e_1_2_13_65_1 doi: 10.1016/j.geoderma.2020.114785 – ident: e_1_2_13_13_1 doi: 10.1071/SR9900213 – ident: e_1_2_13_17_1 doi: 10.1111/1365‐2745.13385 – ident: e_1_2_13_44_1 doi: 10.1007/BF00260816 – ident: e_1_2_13_89_1 doi: 10.1111/j.1574‐6941.2001.tb00854.x – start-page: 251 volume-title: Assessment methods for soil carbon year: 2000 ident: e_1_2_13_4_1 – ident: e_1_2_13_47_1 doi: 10.5194/bg-18-189-2021 – ident: e_1_2_13_103_1 doi: 10.1111/j.1365‐2389.2004.00639.x – ident: e_1_2_13_78_1 doi: 10.1038/nature10905 – ident: e_1_2_13_19_1 doi: 10.1002/2017JG004186 – ident: e_1_2_13_16_1 doi: 10.2138/am‐1998‐11‐1243 – ident: e_1_2_13_61_1 doi: 10.1038/s41467‐017‐01406‐6 – ident: e_1_2_13_68_1 doi: 10.1016/j.soilbio.2018.09.032 – ident: e_1_2_13_43_1 doi: 10.1038/s41579‐019‐0158‐9 – ident: e_1_2_13_40_1 doi: 10.1111/ele.13209 – ident: e_1_2_13_2_1 doi: 10.1038/s41467‐019‐11993‐1 – ident: e_1_2_13_7_1 doi: 10.1016/j.soilbio.2021.108189 – ident: e_1_2_13_92_1 doi: 10.1016/j.advwatres.2006.05.025 – ident: e_1_2_13_114_1 doi: 10.1038/ngeo2413 – ident: e_1_2_13_29_1 doi: 10.1098/rsif.2011.0679 – ident: e_1_2_13_3_1 doi: 10.1016/j.soilbio.2015.06.008 – ident: e_1_2_13_87_1 doi: 10.1021/acs.est.1c00300 – ident: e_1_2_13_51_1 doi: 10.1093/femsec/fiaa225 – ident: e_1_2_13_74_1 doi: 10.1016/j.soilbio.2015.11.020 – ident: e_1_2_13_14_1 doi: 10.1016/j.soilbio.2016.06.014 – ident: e_1_2_13_117_1 doi: 10.1016/j.soilbio.2021.108213 – ident: e_1_2_13_108_1 doi: 10.1016/j.soilbio.2021.108347 |
SSID | ssj0009522 |
Score | 2.6685233 |
SecondaryResourceType | review_article |
Snippet | Microbial necromass is a large, dynamic and persistent component of soil organic carbon, the dominant terrestrial carbon pool. Quantification of necromass... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1396 |
SubjectTerms | amino sugars Biofilms Carbon Carbon sequestration Climate change Destabilization Ecosystems Food chains Food webs microbial necromass continuum Microorganisms necromass recycling Organic carbon persistence Recycling soil carbon sequestration Soil dynamics Soil structure Soils stabilization |
Title | Deconstructing the microbial necromass continuum to inform soil carbon sequestration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14014 https://www.proquest.com/docview/2673583133 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86EHzxezidkgcffOlo0zZtHmV2DEER2cC30qaJDLdW7Pagf713abvNgYj4FkquH7lc7nfp3S-EXHEeSDxWxwp0Flqe9mwrCQSzXNfRjmZMKVNbdf_Ah2Pv7tlvsgmxFqbih1huuKFlmPUaDTxJyzUjr_KzwNv3MEZARlC8grDoia3R7lb_ERgXFnhatyb3wVyeDfnvfmkFNtchq_E5g32SNm9bpZq89hbztCc_N4gc__U5B2SvRqT0pppCh2RL5Udkpzqj8gNakaxb7WhVFAcC9apQHpPRLUbVNRNt_kIBU9LZxDA8Qb9cYcofYHSKafGTfLGY0XlBK8ZWWhaTKZXJe1rk1KR1Nzy-J2Q8iEb9oVWf1mBJD3CAlUktVMgCkQESZqGG0EenXIZMAGiSXqqFI7StHFsGkkvHS30_Ce3Mz1zPN7x4bdLKi1ydEqoBdfgu0wyrq7jmoYB5I5xM8cxVGbc7pNfoKpY1lTmeqDGNm5AGRzPG0YzNaHbI9VLgrWLx-Llrt1F-XJtzGTMeuH7oQjwPjzZa_O028SDqm8bZXwXOyS7DEguz09MlLVCeugDgM08vyTbzHi_NDP8CGfr1lg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG50xujF34vTqT148AKBAoUezWSZuu1gtmQ3MkprFjcwbjvoX-9rgQ1NjDHeemgL9PX1fa-89z2Erin1uSqrY_gyCQxXupYx9hkxHMeWtiRECJ1b1evTztB9GHmjSi5Mzg-xunBTmqHPa6Xg6kK6ouV5gBaYe1M5Ce4m2lJ1vbVb9UQqxLv5nwRCmQG21inofVQ0z7cJvlqmNdysglZtddr7iJfvmwebvJjLRWzyj29Ujv_7oAO0V4BSfJvvokO0IdIjtJ2XqXyHVsiLVj1c58XBgOJgmB-jwZ1yrAsy2vQZA6zEs4kmeYJ-qVBRfwDTsYqMn6TL5QwvMpyTtuJ5NpliPn6LsxTryO6SyvcEDdvhoNUxioINBncBChgJl0wExGcJgGESSPB-ZEx5QBjgJu7GktlMWsK2uM8pt93Y88aBlXiJ43qaGq-OammWilOEJQAPzyGSqAQrKmnAYOswOxE0cURCrQYyS2FFvGAzV0U1plHp1ajVjNRqRno1G-hmNeA1J_L4uWuzlH5UaPQ8ItR3vMABlx4ercX42zRRO2zpxtlfB1yhnc6g14269_3Hc7RLVMaFvvhpohoIUlwADlrEl3qjfwK_Qvja |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCMTCu6JQwAMDS6rEcZx4RH2IZ4VQK7FFjR-ook0r2g7w6zk7SVsqIYTYPNhO4ruzv3PuvkPokrFQmLI6Tqhl5FBNXacXcuL4vqc9TYhSNrfqsc1uuvTuJSiiCU0uTMYPMb9wM5Zh92tj4GOpl4w8i8-C075mfAS6jjYocyOj2I1nssS7m_1IIIw7cNT6ObuPCeZZmeD7wbRAm8uY1R46rV2UFK-bxZq81WbTpCY-V5gc__U9e2gnh6T4OtOhfbSm0gO0mRWp_IBWU-StcnORFQcD8m1hcog6DeNW51S06SsGUImHfUvxBP1SZWL-AKRjExffT2ezIZ6OcEbZiiej_gCL3nsySrGN6y6IfI9Qt9Xs1G-cvFyDIygAAUcKzVVEQi4BCpNIg--jEyYiwgE1CZpo7nHtKs8VoWDCo0kQ9CJXBtKngSXGK6NSOkrVMcIaYEfgE01MehXTLOKgONyTiklfSeZWUK2QVSxyLnNTUmMQFz6NWc3YrGZsV7OCruYDxhmNx89dq4Xw49yeJzFhoR9EPjj08Ggrxd-miVvNum2c_HXABdp6arTih9v2_SnaJibdwt76VFEJ5KjOAARNk3Or5l_i__eS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconstructing+the+microbial+necromass+continuum+to+inform+soil+carbon+sequestration&rft.jtitle=Functional+ecology&rft.au=Buckeridge%2C+Kate+M.&rft.au=Creamer%2C+Courtney&rft.au=Whitaker%2C+Jeanette&rft.date=2022-06-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=36&rft.issue=6&rft.spage=1396&rft.epage=1410&rft_id=info:doi/10.1111%2F1365-2435.14014&rft.externalDBID=10.1111%252F1365-2435.14014&rft.externalDocID=FEC14014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |