MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors
The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negativel...
Saved in:
Published in | Advanced materials interfaces Vol. 6; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials.
After the discussion of synthesis methods, structures, and properties of MXenes, different kinds of MXene‐based composites are introduced. Thereafter, the article focuses on their synthesis methods and applications in batteries and supercapacitors. Furthermore, the ways to improve the electrochemical performance of MXene‐based composites are also analyzed. Finally, some suggestions for improving the electrochemical performance of MXenes are proposed. |
---|---|
AbstractList | The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials. The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti 3 C 2 T x (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials. The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials. After the discussion of synthesis methods, structures, and properties of MXenes, different kinds of MXene‐based composites are introduced. Thereafter, the article focuses on their synthesis methods and applications in batteries and supercapacitors. Furthermore, the ways to improve the electrochemical performance of MXene‐based composites are also analyzed. Finally, some suggestions for improving the electrochemical performance of MXenes are proposed. |
Author | Bao, Weizhai Jaumaux, Pauline Wang, Guoxiu Yang, Jian Zhang, Songtao Wang, Chengyin |
Author_xml | – sequence: 1 givenname: Jian surname: Yang fullname: Yang, Jian organization: Yangzhou University – sequence: 2 givenname: Weizhai surname: Bao fullname: Bao, Weizhai organization: University of Technology Sydney – sequence: 3 givenname: Pauline surname: Jaumaux fullname: Jaumaux, Pauline organization: University of Technology Sydney – sequence: 4 givenname: Songtao surname: Zhang fullname: Zhang, Songtao organization: Yangzhou University – sequence: 5 givenname: Chengyin surname: Wang fullname: Wang, Chengyin email: wangcy@yzu.edu.cn organization: Yangzhou University – sequence: 6 givenname: Guoxiu orcidid: 0000-0003-4295-8578 surname: Wang fullname: Wang, Guoxiu email: guoxiu.wang@uts.edu.cn organization: University of Technology Sydney |
BookMark | eNqFkE1Lw0AQhhepYK29eg54Tt2PZJt4a-tXoUWwCt6WzWZit6S7cTdFevMn-Bv9JaZGVATxNMPwPjPzvoeoY6wBhI4JHhCM6anM13pAMUkwxTjaQ11KUh4OWYw7P_oD1Pd-hTEmhBKasC7K5g9g4O3ldSw95MHErivrdQ3-LFhsTb0Er30gTR6MqqrUStbaGh9oE9yCWkr3CDIrIRjLuganoZUuNhU4JSupdG2dP0L7hSw99D9rD91fXtxNrsPZzdV0MpqFKqI0ChXjaZQQlXGWR1yRYTNkSmZFGhFOOEQspiwtEkYLFcdKAh5mBZekyJM04YSwHjpp91bOPm3A12JlN840JwVt3PImG5I0qqhVKWe9d1CI5ssPW7WTuhQEi12gYheo-Aq0wQa_sMrptXTbv4G0BZ51Cdt_1GJ0Pp9-s--SA4tn |
CitedBy_id | crossref_primary_10_1021_acsanm_9b00289 crossref_primary_10_3390_s24144465 crossref_primary_10_15251_CL_2022_1911_771 crossref_primary_10_1002_celc_202100781 crossref_primary_10_1021_acsanm_3c04389 crossref_primary_10_1016_j_jpowsour_2023_232870 crossref_primary_10_1039_D0MH01446J crossref_primary_10_1039_D3CY01098H crossref_primary_10_1002_adfm_202105043 crossref_primary_10_1002_adfm_202005305 crossref_primary_10_3389_fchem_2022_991481 crossref_primary_10_1016_j_apsusc_2022_153796 crossref_primary_10_1007_s11581_021_04343_z crossref_primary_10_1039_C9NR10980C crossref_primary_10_1016_j_ceramint_2022_03_165 crossref_primary_10_1016_j_compositesb_2022_109862 crossref_primary_10_1016_j_pmatsci_2020_100733 crossref_primary_10_1002_eem2_12058 crossref_primary_10_1016_j_jtice_2024_105364 crossref_primary_10_1039_C9NR07646H crossref_primary_10_1088_1361_6528_acc7a8 crossref_primary_10_1016_j_jpowsour_2024_234404 crossref_primary_10_1007_s12274_022_5053_4 crossref_primary_10_1088_1361_6528_ac0190 crossref_primary_10_1016_j_mtcomm_2023_106143 crossref_primary_10_1016_j_mtchem_2024_102338 crossref_primary_10_1039_D2TA01140A crossref_primary_10_1002_mame_202400433 crossref_primary_10_1016_j_surfin_2022_102493 crossref_primary_10_3390_coatings12040516 crossref_primary_10_1021_acsami_0c01959 crossref_primary_10_1016_j_compositesa_2024_108682 crossref_primary_10_1016_j_ceramint_2023_03_238 crossref_primary_10_1557_s43579_024_00601_z crossref_primary_10_1002_aenm_202204019 crossref_primary_10_1021_acsapm_4c01336 crossref_primary_10_1002_smll_202105883 crossref_primary_10_1016_j_est_2024_115167 crossref_primary_10_1016_j_cap_2023_06_011 crossref_primary_10_1016_j_est_2023_109564 crossref_primary_10_1039_D3NA00874F crossref_primary_10_1002_smll_202300283 crossref_primary_10_1016_j_mattod_2020_12_004 crossref_primary_10_1149_1945_7111_ac2fc6 crossref_primary_10_1016_j_chemosphere_2024_141838 crossref_primary_10_1016_j_jallcom_2024_176281 crossref_primary_10_1126_sciadv_abb5367 crossref_primary_10_1002_smtd_202100451 crossref_primary_10_1002_adfm_202405224 crossref_primary_10_1007_s12598_021_01895_x crossref_primary_10_1002_admi_202100903 crossref_primary_10_1021_acsomega_9b03662 crossref_primary_10_3390_molecules29010002 crossref_primary_10_1016_j_memsci_2020_118051 crossref_primary_10_3390_polym14163433 crossref_primary_10_1109_TED_2020_3021625 crossref_primary_10_3390_mi14071477 crossref_primary_10_1021_acs_langmuir_3c01682 crossref_primary_10_1016_j_apcatb_2023_123585 crossref_primary_10_3390_cryst13081234 crossref_primary_10_1002_batt_201900165 crossref_primary_10_1002_chem_202000191 crossref_primary_10_1002_smll_202201740 crossref_primary_10_1007_s40544_020_0401_4 crossref_primary_10_3390_surfaces5010001 crossref_primary_10_1051_e3sconf_202130901062 crossref_primary_10_1016_j_jiec_2024_08_016 crossref_primary_10_1002_elsa_202100030 crossref_primary_10_1063_5_0026984 crossref_primary_10_1021_acsanm_2c01304 crossref_primary_10_1016_j_ensm_2020_12_004 crossref_primary_10_1021_acsaelm_3c00076 crossref_primary_10_1016_j_ccr_2020_213439 crossref_primary_10_1088_1361_648X_ac9f93 crossref_primary_10_1002_adfm_202110267 crossref_primary_10_1002_er_7833 crossref_primary_10_1002_smll_202208253 crossref_primary_10_1016_j_jallcom_2020_157950 crossref_primary_10_1021_acsomega_4c04849 crossref_primary_10_1007_s00604_022_05426_y crossref_primary_10_1007_s41918_021_00110_w crossref_primary_10_1016_j_seppur_2022_122752 crossref_primary_10_1016_j_cej_2021_131107 crossref_primary_10_1080_14686996_2023_2242262 crossref_primary_10_1016_j_jcis_2022_03_007 crossref_primary_10_1016_j_est_2023_109182 crossref_primary_10_1093_nsr_nwaa075 crossref_primary_10_1016_j_est_2024_110583 crossref_primary_10_1002_cssc_201901487 crossref_primary_10_1016_j_colsurfa_2019_124282 crossref_primary_10_1002_cey2_442 crossref_primary_10_1002_EXP_20210024 crossref_primary_10_1021_acs_energyfuels_0c03939 crossref_primary_10_1016_j_compositesb_2021_108867 crossref_primary_10_1039_C9NR08217D crossref_primary_10_1016_j_cis_2022_102730 crossref_primary_10_1002_slct_202300018 crossref_primary_10_3390_ma14206008 crossref_primary_10_1007_s13346_024_01572_3 crossref_primary_10_1021_acsomega_3c02002 crossref_primary_10_1002_smll_202309572 crossref_primary_10_1007_s12274_021_3933_7 crossref_primary_10_1016_j_compositesb_2023_110888 crossref_primary_10_1016_j_molstruc_2022_132958 crossref_primary_10_1002_smtd_202101599 crossref_primary_10_1002_smll_202303911 crossref_primary_10_1016_j_chemosphere_2022_133542 crossref_primary_10_1002_admi_201902008 crossref_primary_10_1088_2515_7655_abceac crossref_primary_10_1016_j_electacta_2023_142022 crossref_primary_10_1016_j_jcis_2022_05_090 crossref_primary_10_1186_s11671_021_03510_5 crossref_primary_10_1016_j_porgcoat_2024_108606 crossref_primary_10_3389_fbioe_2022_1024453 crossref_primary_10_1002_adfm_202100015 crossref_primary_10_1007_s41127_023_00069_z crossref_primary_10_1039_D0TA12624A crossref_primary_10_1016_j_colsurfa_2023_132050 crossref_primary_10_1039_D0DT01030H crossref_primary_10_1016_j_cej_2022_135338 crossref_primary_10_1002_batt_202200402 crossref_primary_10_1016_j_jelechem_2020_114538 crossref_primary_10_1016_j_est_2023_107334 crossref_primary_10_1080_25740881_2021_1906901 crossref_primary_10_1039_C9TA04902A crossref_primary_10_1016_j_synthmet_2023_117384 crossref_primary_10_1002_asia_202100974 crossref_primary_10_1016_j_cej_2024_149502 crossref_primary_10_1016_j_apsusc_2020_146985 crossref_primary_10_1016_j_est_2024_112711 crossref_primary_10_1021_acsaem_4c02777 crossref_primary_10_1039_D2TA02357A crossref_primary_10_1039_D0TA11103A crossref_primary_10_1016_j_coche_2021_100710 crossref_primary_10_1007_s11664_022_09456_3 crossref_primary_10_1016_j_jpowsour_2021_230731 crossref_primary_10_1016_j_cis_2023_103077 crossref_primary_10_1016_j_est_2023_107888 crossref_primary_10_1002_cey2_639 crossref_primary_10_1039_D1MA00189B crossref_primary_10_3390_w15071267 crossref_primary_10_1002_adfm_202000706 crossref_primary_10_1002_aenm_202300351 crossref_primary_10_1002_eem2_12454 crossref_primary_10_1016_j_matlet_2020_128721 crossref_primary_10_1016_j_est_2024_113810 crossref_primary_10_1016_j_cej_2021_131380 crossref_primary_10_1088_2515_7655_ad1c43 crossref_primary_10_1016_j_est_2024_111751 crossref_primary_10_1002_mame_202100556 crossref_primary_10_1039_D4TA04211E crossref_primary_10_1021_acsami_2c09669 crossref_primary_10_1016_j_nanoen_2024_110214 crossref_primary_10_1016_j_cis_2024_103373 crossref_primary_10_1002_admt_202001189 crossref_primary_10_1016_j_carbon_2020_07_041 crossref_primary_10_1016_j_matchemphys_2024_129914 crossref_primary_10_1016_j_ceramint_2021_04_197 crossref_primary_10_1016_j_cej_2021_133582 crossref_primary_10_1016_j_est_2024_113269 crossref_primary_10_3390_cryst13071005 crossref_primary_10_1016_j_matlet_2022_132328 crossref_primary_10_1016_j_jallcom_2023_171007 crossref_primary_10_1002_asia_202100519 crossref_primary_10_1039_D0TA08023C crossref_primary_10_1002_batt_201900153 crossref_primary_10_1016_j_cej_2020_127169 crossref_primary_10_1016_j_mtsust_2023_100350 crossref_primary_10_1002_admi_202101838 crossref_primary_10_1080_21622515_2025_2466757 crossref_primary_10_1016_j_cej_2020_125428 crossref_primary_10_1016_j_jhazmat_2025_137288 crossref_primary_10_1016_j_est_2024_114127 crossref_primary_10_1016_j_est_2024_112741 crossref_primary_10_1021_acsaem_1c01396 crossref_primary_10_1016_j_jechem_2021_03_017 crossref_primary_10_1007_s42114_024_01121_z crossref_primary_10_3390_c9040091 crossref_primary_10_1016_j_cej_2021_132489 crossref_primary_10_1016_j_ensm_2024_103538 crossref_primary_10_1016_j_surfin_2021_101393 crossref_primary_10_1021_acsomega_3c07752 crossref_primary_10_1016_j_flatc_2024_100692 crossref_primary_10_1021_acsami_0c12879 crossref_primary_10_1016_j_ssi_2021_115655 crossref_primary_10_1016_j_jallcom_2020_156229 crossref_primary_10_1016_j_chemosphere_2022_137643 crossref_primary_10_1002_aesr_202300231 crossref_primary_10_1002_slct_202004181 crossref_primary_10_1039_C9NJ06201G crossref_primary_10_1016_j_nanoen_2022_107702 crossref_primary_10_1021_acsaelm_3c01443 crossref_primary_10_1016_j_colsurfa_2025_136721 crossref_primary_10_1002_aelm_202000168 crossref_primary_10_1016_j_apmt_2023_101993 crossref_primary_10_3390_nano13020345 crossref_primary_10_3390_cryst12081099 crossref_primary_10_1016_j_jcis_2022_03_073 crossref_primary_10_1021_acsanm_1c03112 crossref_primary_10_1002_admi_202200579 crossref_primary_10_1021_acs_chemmater_9b04408 crossref_primary_10_1016_j_jpowsour_2020_228961 crossref_primary_10_1016_j_cej_2019_123669 crossref_primary_10_1002_elan_201900288 crossref_primary_10_1016_j_est_2024_110868 crossref_primary_10_1002_eem2_12090 crossref_primary_10_1039_D3TA06548K crossref_primary_10_1016_j_est_2024_111033 crossref_primary_10_1016_j_matchemphys_2024_130076 crossref_primary_10_1016_j_carbon_2021_07_102 crossref_primary_10_1016_j_desal_2025_118763 crossref_primary_10_1016_j_cej_2023_143786 crossref_primary_10_1002_adma_202404199 crossref_primary_10_1016_j_mseb_2023_116355 crossref_primary_10_1021_acs_cgd_3c00206 crossref_primary_10_1002_aenm_202100451 crossref_primary_10_1021_acsnano_1c09004 crossref_primary_10_1016_j_jtice_2023_104740 crossref_primary_10_1142_S1793292023500480 crossref_primary_10_1016_j_pmatsci_2023_101166 crossref_primary_10_1016_j_jallcom_2020_158547 crossref_primary_10_1016_j_microc_2023_109016 crossref_primary_10_1016_j_seppur_2023_123992 crossref_primary_10_1039_D1MA01199E crossref_primary_10_1016_j_jcis_2024_05_183 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1016_j_est_2021_103572 crossref_primary_10_1039_D4TA00328D crossref_primary_10_12677_AAC_2023_134055 crossref_primary_10_1016_j_jelechem_2021_115652 crossref_primary_10_1039_D2DT01898E crossref_primary_10_1002_smll_202206126 crossref_primary_10_1021_acsami_9b14783 crossref_primary_10_1016_j_jcis_2022_09_107 crossref_primary_10_1016_j_jcis_2023_06_110 crossref_primary_10_1002_aenm_201901997 crossref_primary_10_1016_j_memsci_2022_121168 crossref_primary_10_1021_acsabm_4c00880 crossref_primary_10_1109_JPHOTOV_2024_3496475 crossref_primary_10_1002_aesr_202000038 crossref_primary_10_3390_app10041320 |
Cites_doi | 10.1038/srep27971 10.1039/C4TA02638A 10.1021/acs.nanolett.6b01265 10.1021/acs.nanolett.5b00737 10.1021/nl400378j 10.1016/j.jechem.2017.08.004 10.1016/j.electacta.2017.11.004 10.1021/acsnano.7b06251 10.1039/C4CC07220K 10.1039/C4RA17304J 10.1021/acs.chemmater.6b01244 10.1021/acsami.5b03863 10.1002/aenm.201502161 10.1016/j.jallcom.2016.05.221 10.1039/C7TA05721K 10.1002/aenm.201602014 10.1038/nmat4374 10.1039/C7TA07999K 10.1021/acsami.5b11973 10.1038/s41467-017-02529-6 10.1039/C7RA00184C 10.1039/C7TA10394H 10.1038/ncomms14627 10.1021/acs.chemmater.5b01623 10.1039/c4cc00840e 10.1002/adma.201702410 10.1016/j.joule.2018.10.017 10.1016/j.jallcom.2017.10.223 10.1039/C6CC05357B 10.1039/C4TA06557C 10.1016/j.nanoen.2015.07.028 10.1039/C5NR09303A 10.1021/acs.chemmater.6b03933 10.1039/C6CP00330C 10.1039/C6RA15384D 10.1021/acsami.8b13750 10.1016/j.jcat.2018.03.009 10.1039/C7CC02026K 10.1021/acsnano.7b06909 10.1073/pnas.1414215111 10.1016/j.apsusc.2016.05.060 10.1039/C2EE23284G 10.1088/1361-6528/aa9ab0 10.1002/app.45295 10.1002/anie.201410174 10.1038/ncomms14949 10.1021/cr500062v 10.1021/acssuschemeng.8b00047 10.1002/adma.201500604 10.1002/anie.201509758 10.1021/acsnano.5b06958 10.1039/C7TA00149E 10.1039/C6CP06018H 10.1016/j.jpowsour.2013.09.132 10.1021/acs.jpclett.8b00200 10.1038/s41598-017-13805-2 10.1002/adma.201201205 10.1007/s10854-017-8446-5 10.1002/adma.201504705 10.1016/j.jallcom.2017.11.250 10.1016/j.cej.2017.10.007 10.1016/j.electacta.2013.01.057 10.1149/2.0981605jes 10.1002/anie.201304762 10.1038/s41598-017-01714-3 10.1021/ja308463r 10.1002/chem.201702387 10.1039/c3ta00031a 10.1039/c3cp52037d 10.1038/nature02140 10.1016/j.nanoen.2017.06.009 10.1021/acsami.6b04198 10.1002/aenm.201702485 10.1039/C7RA03402D 10.1002/adfm.201603704 10.1038/natrevmats.2016.98 10.1088/0957-4484/26/26/265705 10.1002/adfm.201600682 10.1016/j.jpowsour.2016.07.062 10.1002/ange.201606643 10.1557/mrc.2012.25 10.1039/C5TA01855B 10.1021/acsnano.8b02908 10.1021/acs.analchem.7b02701 10.1039/C8TC01404C 10.1002/cssc.201600165 10.1016/j.electacta.2015.12.132 10.1039/C6TA06772G 10.1039/C7RA00126F 10.1039/C6NJ02695H 10.1016/j.joule.2017.12.010 10.1021/acsami.6b04481 10.1039/C6RA15651G 10.1039/C6RA13491B 10.1016/j.electacta.2017.09.144 10.1039/C6RA27505B 10.1016/j.comptc.2012.02.034 10.1002/cssc.201702317 10.1038/srep18829 10.1038/s41929-018-0195-1 10.1039/C8CP01123K 10.1016/j.matchemphys.2013.10.008 10.1002/adfm.201102860 10.1021/acsenergylett.8b01062 10.1039/C6TA03832H 10.1039/C6NR00546B 10.1016/j.carbon.2016.11.030 10.1016/j.nanoen.2017.02.043 10.1002/aenm.201601372 10.1002/adma.201707334 10.1038/nenergy.2017.105 10.1021/acs.chemmater.7b02441 10.1021/ja508154e 10.1038/s41598-017-09401-z 10.1002/adfm.201702807 10.1038/srep32049 10.1016/j.joule.2018.09.011 10.1002/anie.201402513 10.1039/C6FD00251J 10.1021/acs.jpcc.6b09109 10.1016/j.joule.2018.02.018 10.1016/j.matdes.2015.12.084 10.1016/j.jpowsour.2015.12.036 10.1021/cm500641a 10.1016/j.jallcom.2016.10.127 10.1016/j.nanoen.2018.01.030 10.1002/aenm.201401660 10.1039/C3TA15423H 10.1021/ar400011z 10.1016/j.ijhydene.2015.01.122 10.1002/adma.201703284 10.1016/j.electacta.2016.04.009 10.1021/acs.nanolett.7b02698 10.1016/j.electacta.2016.12.173 10.1021/am501144q 10.1021/acsami.6b04767 10.1002/adma.201603040 10.1016/j.matchemphys.2017.05.057 10.1039/C6TC05226F 10.1016/j.jpowsour.2015.03.017 10.1002/aenm.201600969 10.1021/acsenergylett.7b01063 10.1016/j.cej.2017.12.155 10.1016/j.electacta.2018.03.168 10.1038/ncomms2664 10.1021/acsnano.8b01459 10.1021/acsnano.7b03129 10.1021/acs.chemmater.6b01275 10.1039/C6TA00554C 10.1088/1468-6996/15/1/014208 10.1021/acsnano.7b01108 10.1038/s41598-017-14018-3 10.1002/aelm.201700339 10.1038/s41598-017-14504-8 10.1039/C6NR01462C 10.1039/C5CS00517E 10.1038/nmat4386 10.1016/j.jallcom.2011.04.152 10.1021/acsami.7b13822 10.1149/2.0041706jes 10.1039/C5CC04229A 10.1002/aenm.201400815 10.1016/j.elecom.2017.05.009 10.1039/C6CP00138F 10.1126/science.aag2421 10.1039/c3ta12032e 10.1039/C8NR00313K 10.1016/j.joule.2017.09.008 10.1039/C7TA10888E 10.1039/C6TC03917K 10.1088/2053-1583/aabb81 10.1039/C5TA10307J 10.1039/C8NR00380G 10.1039/C6TC04349F 10.1016/j.joule.2017.08.019 10.1021/acsami.6b01490 10.1007/s12274-017-1659-3 10.1038/nature13970 10.1038/s41467-017-00395-w 10.1002/aelm.201600050 10.1021/acs.accounts.7b00481 10.1039/C4TA03503H 10.1021/acsnano.6b00181 10.1038/srep36422 10.1039/c4ta01751j 10.1039/C6NR02253G 10.1021/acs.jpclett.5b00868 10.1039/C6RA10384G 10.1007/s11434-014-0164-2 10.1002/anie.201802232 10.1063/1.4960155 10.1002/anie.201710616 10.1016/j.jpowsour.2018.06.084 10.1016/j.snb.2018.02.124 10.1016/j.materresbull.2016.12.049 10.1021/acsnano.5b07333 10.1002/celc.201600059 10.1038/nmat3367 10.1002/adma.201704156 10.1021/acsami.7b17386 10.1371/journal.pone.0183705 10.1039/C7TA03228E 10.1126/sciadv.aat0491 10.1039/C5CC08801A 10.1016/j.elecom.2014.09.002 10.1002/adfm.201705506 10.1038/ncomms7544 10.1039/C7TA11347A 10.1016/j.jpowsour.2017.05.081 10.1002/aelm.201700617 10.1016/j.ijhydene.2015.05.168 10.1016/j.jelechem.2017.12.079 10.1002/anie.201504693 10.1021/acs.jpclett.6b03064 10.1039/C7TA08261D 10.1126/science.1246501 10.1002/cssc.201801224 10.1039/C7TC01765K 10.1039/C7TC00140A 10.1021/jp500861n 10.1021/acsami.5b05401 10.1016/j.pnsc.2018.03.003 10.1021/acsnano.7b01638 10.1039/C4CS00102H 10.1038/nchem.2085 10.1039/c3cs60407a 10.1039/C5CC04722F 10.1002/adfm.201202502 10.1002/aenm.201602725 10.1038/ncomms13907 10.1016/j.ensm.2016.07.001 10.1002/adma.201304138 10.1126/science.1241488 10.1007/s12274-015-0966-9 10.1039/C7DT02688A 10.1021/nn204153h 10.1002/smll.201801203 10.1039/C5RA25028E 10.1039/C7TA09350K 10.1016/j.matlet.2018.03.049 10.1002/anie.201405314 10.1002/celc.201700060 10.1016/j.jpowsour.2016.07.095 10.1016/j.memsci.2016.05.048 10.1002/aenm.201601873 10.1021/acssuschemeng.6b01698 10.1039/C4TC01721H 10.1002/adfm.201600357 10.1021/acsami.6b09027 10.1016/j.electacta.2018.02.090 10.1002/adma.201607017 10.1016/j.nanoen.2016.06.005 10.1016/j.jhazmat.2016.01.053 10.1021/nl200658a 10.1039/C4DT02058H 10.1039/c2jm33992g 10.1016/j.nanoen.2017.11.044 10.1016/j.jcis.2017.09.104 10.1002/adfm.201303296 10.1021/acs.inorgchem.6b03057 10.1016/j.nanoen.2016.10.062 10.1002/adma.201102306 10.1039/C5CS00914F 10.1002/adma.201404140 10.1016/j.jpowsour.2016.12.042 10.1021/acsnano.6b06089 10.1149/2.1421712jes 10.1021/acsnano.6b07668 10.1021/acsnano.7b07672 10.1016/j.electacta.2017.01.025 10.1039/C1CS15078B 10.1016/j.ensm.2018.05.010 10.1021/acs.chemmater.8b00156 10.1016/j.bios.2015.08.004 10.1039/C4CP05666C 10.1016/j.electacta.2018.03.118 10.1002/aenm.201703043 10.1088/0957-4484/26/13/135703 10.1016/j.jpowsour.2016.03.066 10.1039/C4TA02583K 10.1021/ja512820k 10.1021/acsnano.7b01409 10.1016/j.jallcom.2017.12.116 10.1039/C6TA04628B 10.1039/C7TA09001C 10.1515/epoly-2017-0017 10.1002/adfm.201701264 10.1038/srep16329 10.1016/j.polymer.2016.09.011 10.1002/adfm.201600771 10.1016/j.nanoen.2015.02.022 10.1039/C7TA02689G 10.1021/acsami.6b08089 10.1039/C5NR06513E 10.1002/aenm.201601847 10.1039/C6NR00002A 10.1039/C4RA13800G 10.1002/anie.201800887 10.1038/nnano.2014.207 10.1016/j.jechem.2017.10.030 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.201802004 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_201802004 ADMI201802004 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 21375116 – fundername: Natural Science Foundation of the Higher Education Institutions of Jiangsu Province funderid: 17KJB150045 – fundername: Australian Research Council funderid: DP160104340; DP170100436; DP180102297 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJCF ABJNI ACCMX ADMLS AFKRA AFPKN ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PTHSS 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4224-c369481cb63d46c172243cabf941616e435239f832fc55cae07bf6a1fd8986113 |
ISSN | 2196-7350 |
IngestDate | Fri Jul 25 11:40:04 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 01 00:39:32 EDT 2025 Sat Aug 24 00:50:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4224-c369481cb63d46c172243cabf941616e435239f832fc55cae07bf6a1fd8986113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4295-8578 |
PQID | 2212618018 |
PQPubID | 2034582 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2212618018 crossref_citationtrail_10_1002_admi_201802004 crossref_primary_10_1002_admi_201802004 wiley_primary_10_1002_admi_201802004_ADMI201802004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2013; 4 2013; 1 2017; 81 2016; 308 2016; 306 2015; 74 2017; 89 2014; 26 2016; 30 2014; 24 2018; 44 2012; 11 2013; 6 2016; 384 2014; 136 2018; 46 2018; 6 2018; 9 2014; 248 2018; 8 2018; 3 2018; 2 2018; 5 2012; 134 2018; 4 2015; 137 2018; 732 2018; 1 2018; 735 2018; 338 2013; 52 2018; 334 2014; 15 2018; 30 2017; 164 2018; 738 2017; 200 2012; 24 2012; 22 2016; 45 2018; 29 2018; 28 2018; 220 2019; 3 2015; 51 2016; 327 2015; 54 2016; 10 2016; 685 2014; 48 2013; 92 2016; 326 2013; 341 2016; 92 2016; 202 2016; 18 2017; 254 2017; 134 2016; 16 2018; 20 2018; 27 2017; 258 2016; 163 2014; 43 2012; 989 2016; 4 2016; 5 2016; 6 2017; 53 2016; 2 2016; 3 2018; 511 2017; 56 2018; 12 2014; 143 2016; 28 2018; 11 2018; 10 2016; 26 2016; 8 2016; 9 2018; 14 2012; 41 2017; 5 2018; 361 2017; 7 2017; 41 2017; 8 2017; 1 2017; 2 2017; 4 2015; 347 2016; 109 2013; 23 2017; 46 2016; 102 2011; 11 2017; 199 2017; 113 2017; 9 2017; 359 2013; 15 2014; 2 2018; 810 2016; 515 2015; 40 2013; 13 2017; 38 2015; 44 2017; 34 2014; 59 2016; 353 2011; 23 2014; 9 2014; 50 2014; 6 2016; 190 2014; 53 2018; 263 2015; 284 2014; 118 2015; 13 2015; 15 2015; 14 2015; 6 2015; 17 2015; 5 2014; 516 2015; 3 2013; 46 2017; 27 2017; 23 2018; 268 2016; 52 2016; 128 2017; 29 2017; 695 2014; 111 2015; 7 2016; 120 2014; 114 2016; 55 2015; 26 2018; 396 2012; 2 2015; 27 2003; 426 2018; 271 2011; 509 2017; 17 2017; 11 2017; 10 2017; 12 2017 2018; 51 2013 2012; 6 2017; 342 2017; 225 2018; 57 2017; 228 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_290_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_299_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 Gan L.‐Y. (e_1_2_8_193_1) 2013 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_302_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_294_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_285_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 Xue Q. (e_1_2_8_271_1) 2017 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 5 start-page: 17442 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 2762 year: 2015 publication-title: RSC Adv. – volume: 27 start-page: 5314 year: 2015 publication-title: Chem. Mater. – volume: 3 start-page: 879 year: 2015 publication-title: J. Mater. Chem. C – volume: 8 start-page: 22280 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 695 start-page: 818 year: 2017 publication-title: J. Alloys Compd. – volume: 6 start-page: 41 year: 2013 publication-title: Energy Environ. Sci. – volume: 51 start-page: 13531 year: 2015 publication-title: Chem. Commun. – volume: 6 start-page: 4102 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 8103 year: 2014 publication-title: J. Mater. Chem. A – volume: 9 start-page: 4296 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 164 start-page: A2654 year: 2017 publication-title: J. Electrochem. Soc. – volume: 24 start-page: 3562 year: 2012 publication-title: Adv. Mater. – volume: 11 start-page: 688 year: 2018 publication-title: ChemSusChem – volume: 7 start-page: 8915 year: 2017 publication-title: Sci Rep. – volume: 17 start-page: 27 year: 2015 publication-title: Nano Energy – volume: 18 start-page: 5099 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 163 start-page: A785 year: 2016 publication-title: J. Electrochem. Soc. – volume: 113 start-page: 63 year: 2017 publication-title: Carbon – volume: 6 start-page: 7442 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 6 start-page: 72069 year: 2016 publication-title: RSC Adv. – volume: 26 start-page: 992 year: 2014 publication-title: Adv. Mater. – volume: 17 start-page: 5740 year: 2017 publication-title: Nano Lett. – volume: 6 start-page: 27467 year: 2016 publication-title: RSC Adv. – volume: 7 start-page: 17510 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 6051 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 20494 year: 2017 publication-title: RSC Adv. – volume: 1 start-page: 4845 year: 2013 publication-title: J. Mater. Chem. A – volume: 134 start-page: 16909 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4617 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 start-page: 5906 year: 2018 publication-title: Nanoscale – volume: 2 start-page: 778 year: 2018 publication-title: Joule – volume: 50 start-page: 4192 year: 2014 publication-title: Chem. Commun. – volume: 9 start-page: 1490 year: 2016 publication-title: ChemSusChem – volume: 12 start-page: 8048 year: 2018 publication-title: ACS Nano – volume: 4 start-page: 12913 year: 2016 publication-title: J. Mater. Chem. A – volume: 27 start-page: 73 year: 2018 publication-title: J. Energy Chem. – volume: 2 start-page: 16098 year: 2017 publication-title: Nat. Rev. Mater. – volume: 29 start-page: 035403 year: 2018 publication-title: Nanotechnology – volume: 4 start-page: eaat0491 year: 2018 publication-title: Sci. Adv. – volume: 46 start-page: 1878 year: 2013 publication-title: Acc. Chem. Res. – volume: 7 start-page: 13401 year: 2017 publication-title: Sci. Rep. – volume: 26 start-page: 2374 year: 2014 publication-title: Chem. Mater. – volume: 4 start-page: 5993 year: 2016 publication-title: J. Mater. Chem. A – volume: 271 start-page: 165 year: 2018 publication-title: Electrochim. Acta – volume: 6 start-page: 3522 year: 2018 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1707334 year: 2018 publication-title: Adv. Mater. – volume: 14 start-page: 1801203 year: 2018 publication-title: Small – volume: 54 start-page: 10258 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 1138 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 5906 year: 2017 publication-title: ACS Nano – volume: 143 start-page: 740 year: 2014 publication-title: Mater. Chem. Phys. – volume: 28 start-page: 1517 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 1223 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 511 start-page: 128 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 1601873 year: 2017 publication-title: Adv. Energy Mater. – volume: 29 start-page: 8637 year: 2017 publication-title: Chem. Mater. – volume: 136 start-page: 16270 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6005 year: 2018 publication-title: Nanoscale – volume: 3 start-page: 132 year: 2018 publication-title: ACS Energy Lett. – volume: 5 start-page: 5260 year: 2017 publication-title: J. Mater. Chem. A – volume: 111 start-page: 16676 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 16092 year: 2015 publication-title: Chem. Commun. – volume: 7 start-page: 1598 year: 2017 publication-title: Sci. Rep. – volume: 8 start-page: 1702485 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 978 year: 2017 publication-title: J. Mater. Chem. C – volume: 57 start-page: 5444 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 74 start-page: 1022 year: 2015 publication-title: Biosens. Bioelectron. – volume: 5 start-page: 22113 year: 2017 publication-title: J. Mater. Chem. A – volume: 11 start-page: 8892 year: 2017 publication-title: ACS Nano – volume: 30 start-page: 1704156 year: 2018 publication-title: Adv. Mater. – volume: 347 start-page: 1246501 year: 2015 publication-title: Science – volume: 1 start-page: 229 year: 2017 publication-title: Joule – volume: 5 start-page: 12027 year: 2017 publication-title: J. Mater. Chem. A – volume: 26 start-page: 5328 year: 2016 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1700339 year: 2018 publication-title: Adv. Electron. Mater. – volume: 3 start-page: 164 year: 2019 publication-title: Joule – volume: 27 start-page: 1701264 year: 2017 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 4881 year: 2018 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 16 start-page: 4243 year: 2016 publication-title: Nano Lett. – volume: 2 start-page: 17105 year: 2017 publication-title: Nat. Energy – volume: 15 start-page: 4955 year: 2015 publication-title: Nano Lett. – volume: 685 start-page: 194 year: 2016 publication-title: J. Alloys Compd. – volume: 516 start-page: 78 year: 2014 publication-title: Nature – volume: 59 start-page: 2186 year: 2014 publication-title: Chin. Sci. Bull. – volume: 396 start-page: 683 year: 2018 publication-title: J. Power Sources – volume: 89 start-page: 16 year: 2017 publication-title: Mater. Res. Bull. – volume: 6 start-page: 3543 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1703043 year: 2018 publication-title: Adv. Energy Mater. – volume: 341 start-page: 1502 year: 2013 publication-title: Science – volume: 26 start-page: 265705 year: 2015 publication-title: Nanotechnology – volume: 12 start-page: 3928 year: 2018 publication-title: ACS Nano – volume: 5 start-page: 180 year: 2016 publication-title: Energy Storage Mater. – volume: 426 start-page: 424 year: 2003 publication-title: Nature – volume: 38 start-page: 368 year: 2017 publication-title: Nano Energy – volume: 228 start-page: 282 year: 2017 publication-title: Electrochim. Acta – volume: 92 start-page: 427 year: 2013 publication-title: Electrochim. Acta – volume: 13 start-page: 2078 year: 2013 publication-title: Nano Lett. – volume: 7 start-page: 13097 year: 2017 publication-title: RSC Adv. – volume: 515 start-page: 175 year: 2016 publication-title: J. Membr. Sci. – volume: 199 start-page: 393 year: 2017 publication-title: Faraday Discuss. – volume: 15 start-page: 12543 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 985 year: 2018 publication-title: Nat. Catal. – volume: 810 start-page: 27 year: 2018 publication-title: J. Electroanal. Chem. – volume: 40 start-page: 3883 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 327 start-page: 519 year: 2016 publication-title: J. Power Sources – volume: 15 start-page: 014208 year: 2014 publication-title: Sci. Technol. Adv. Mater. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 26 start-page: 4143 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 14782 year: 2017 publication-title: Sci. Rep. – volume: 7 start-page: 1601847 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 3334 year: 2016 publication-title: ACS Nano – volume: 28 start-page: 1705506 year: 2018 publication-title: Adv. Funct. Mater. – volume: 989 start-page: 27 year: 2012 publication-title: Comput. Theor. Chem. – volume: 284 start-page: 38 year: 2015 publication-title: J. Power Sources – volume: 8 start-page: 74 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 13672 year: 2013 publication-title: J. Mater. Chem. A – volume: 28 start-page: 3507 year: 2016 publication-title: Chem. Mater. – volume: 28 start-page: 3937 year: 2016 publication-title: Chem. Mater. – volume: 6 start-page: 36422 year: 2016 publication-title: Sci. Rep. – volume: 18 start-page: 32937 year: 2016 publication-title: Phys. Chem. Chem. Phys. – year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 4305 year: 2017 publication-title: Nano Res. – volume: 57 start-page: 1846 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 29427 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 12914 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 738 start-page: 130 year: 2018 publication-title: J. Alloys Compd. – volume: 43 start-page: 6537 year: 2014 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 591 year: 2018 publication-title: Acc. Chem. Res. – volume: 5 start-page: 1401660 year: 2015 publication-title: Adv. Energy Mater. – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 56 start-page: 3489 year: 2017 publication-title: Inorg. Chem. – volume: 3 start-page: 279 year: 2019 publication-title: Joule – volume: 5 start-page: 4068 year: 2017 publication-title: J. Mater. Chem. C – volume: 5 start-page: 12445 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 33779 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 043109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 44 start-page: 7123 year: 2015 publication-title: Dalton Trans. – volume: 30 start-page: 1703284 year: 2018 publication-title: Adv. Mater. – volume: 2 start-page: 10 year: 2018 publication-title: Joule – volume: 8 start-page: 11385 year: 2016 publication-title: Nanoscale – volume: 4 start-page: 6763 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 23 start-page: 2185 year: 2013 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1716 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 1322 year: 2012 publication-title: ACS Nano – volume: 6 start-page: 6544 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 2488 year: 2017 publication-title: J. Mater. Chem. C – volume: 6 start-page: 32049 year: 2016 publication-title: Sci. Rep. – volume: 53 start-page: 10673 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 8746 year: 2016 publication-title: Adv. Funct. Mater. – volume: 114 start-page: 11751 year: 2014 publication-title: Chem. Rev. – volume: 306 start-page: 510 year: 2016 publication-title: J. Power Sources – volume: 41 start-page: 666 year: 2012 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 16329 year: 2015 publication-title: Sci. Rep. – volume: 7 start-page: 1602014 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 443 year: 2017 publication-title: Joule – volume: 46 start-page: 20 year: 2018 publication-title: Nano Energy – volume: 3 start-page: 2094 year: 2018 publication-title: ACS Energy Lett. – volume: 3 start-page: 4960 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 start-page: 19390 year: 2015 publication-title: Nanoscale – volume: 4 start-page: 11143 year: 2016 publication-title: J. Mater. Chem. C – volume: 6 start-page: 98506 year: 2016 publication-title: RSC Adv. – volume: 6 start-page: 1234 year: 2018 publication-title: J. Mater. Chem. A – volume: 12 start-page: 56 year: 2018 publication-title: ACS Nano – volume: 29 start-page: 1702410 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 155 year: 2018 publication-title: Nat. Commun. – volume: 268 start-page: 503 year: 2018 publication-title: Electrochim. Acta – volume: 10 start-page: 3634 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 208 year: 2015 publication-title: Nano Energy – volume: 8 start-page: 14949 year: 2017 publication-title: Nat. Commun. – volume: 6 start-page: 1600969 year: 2016 publication-title: Adv. Energy Mater. – volume: 338 start-page: 27 year: 2018 publication-title: Chem. Eng. J. – volume: 2 start-page: 14334 year: 2014 publication-title: J. M. Chem. A – volume: 8 start-page: 859 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 342 start-page: 64 year: 2017 publication-title: J. Power Sources – volume: 44 start-page: 103 year: 2018 publication-title: Nano Energy – volume: 27 start-page: 339 year: 2015 publication-title: Adv. Mater. – volume: 327 start-page: 221 year: 2016 publication-title: J. Power Sources – volume: 326 start-page: 686 year: 2016 publication-title: J. Power Sources – volume: 29 start-page: 1607017 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 1602725 year: 2017 publication-title: Adv. Energy Mater. – volume: 137 start-page: 2715 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 263 start-page: 360 year: 2018 publication-title: Sens. Actuators, B – volume: 24 start-page: 2772 year: 2014 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 6883 year: 2017 publication-title: Chem. Commun. – volume: 22 start-page: 2560 year: 2012 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2393 year: 2017 publication-title: ACS Nano – volume: 34 start-page: 249 year: 2017 publication-title: Nano Energy – volume: 11 start-page: 1911 year: 2018 publication-title: ChemSusChem – volume: 6 start-page: 2305 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 102 start-page: 119 year: 2016 publication-title: Polymer – volume: 254 start-page: 308 year: 2017 publication-title: Electrochim. Acta – volume: 26 start-page: 513 year: 2016 publication-title: Nano Energy – volume: 134 start-page: 45295 year: 2017 publication-title: J. Appl. Polym. Sci. – volume: 732 start-page: 448 year: 2018 publication-title: J. Alloys Compd. – volume: 7 start-page: 11998 year: 2017 publication-title: RSC Adv. – volume: 14 start-page: 306 year: 2018 publication-title: Energy Storage Mater. – volume: 8 start-page: 9128 year: 2016 publication-title: Nanoscale – volume: 2 start-page: 14339 year: 2014 publication-title: J. Mater. Chem. A – volume: 23 start-page: 12613 year: 2017 publication-title: Chem. – Eur. J. – volume: 48 start-page: 118 year: 2014 publication-title: Electrochem. Commun. – volume: 8 start-page: 7085 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 1702807 year: 2017 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 13528 year: 2016 publication-title: Chem. Commun. – volume: 12 start-page: 3209 year: 2018 publication-title: ACS Nano – volume: 5 start-page: 5956 year: 2017 publication-title: J. Mater. Chem. C – volume: 17 start-page: 373 year: 2017 publication-title: e‐Polymers – volume: 11 start-page: 384 year: 2017 publication-title: ACS Nano – volume: 30 start-page: 603 year: 2016 publication-title: Nano Energy – volume: 6 start-page: 81591 year: 2016 publication-title: RSC Adv. – volume: 26 start-page: 135703 year: 2015 publication-title: Nanotechnology – volume: 41 start-page: 2793 year: 2017 publication-title: New J. Chem. – volume: 54 start-page: 3907 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 8859 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 735 start-page: 1262 year: 2018 publication-title: J. Alloys Compd. – volume: 4 start-page: 10379 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 41314 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 361 start-page: 255 year: 2018 publication-title: J. Catal. – volume: 509 start-page: 7778 year: 2011 publication-title: J. Alloys Compd. – volume: 7 start-page: 24698 year: 2017 publication-title: RSC Adv. – volume: 22 start-page: 17437 year: 2012 publication-title: J. Mater. Chem. – volume: 8 start-page: 322 year: 2017 publication-title: Nat. Commun. – volume: 12 start-page: e0183705 year: 2017 publication-title: PLoS One – volume: 10 start-page: 3674 year: 2016 publication-title: ACS Nano – volume: 120 start-page: 28432 year: 2016 publication-title: J. Phys. Chem. C – volume: 52 start-page: 13186 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 200 start-page: 179 year: 2017 publication-title: Mater. Chem. Phys. – volume: 7 start-page: 13833 year: 2017 publication-title: Sci. Rep. – volume: 11 start-page: 2459 year: 2017 publication-title: ACS Nano – volume: 202 start-page: 24 year: 2016 publication-title: Electrochim. Acta – volume: 6 start-page: 5690 year: 2018 publication-title: J. Mater. Chem. C – volume: 2 start-page: 133 year: 2012 publication-title: MRS Commun. – volume: 190 start-page: 346 year: 2016 publication-title: Electrochim. Acta – volume: 258 start-page: 291 year: 2017 publication-title: Electrochim. Acta – volume: 57 start-page: 6115 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2491 year: 2016 publication-title: ACS Nano – volume: 225 start-page: 416 year: 2017 publication-title: Electrochim. Acta – volume: 43 start-page: 3303 year: 2014 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 7580 year: 2016 publication-title: Nanoscale – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 45 start-page: 1750 year: 2016 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 161 year: 2018 publication-title: J. Energy Chem. – volume: 9 start-page: 857 year: 2016 publication-title: Nano Res. – volume: 5 start-page: 032002 year: 2018 publication-title: 2D Mater. – volume: 20 start-page: 11405 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 6904 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 3501 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 11173 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1079 year: 2015 publication-title: Nat. Mater. – volume: 4 start-page: 1560 year: 2017 publication-title: ChemElectroChem – volume: 4 start-page: 4871 year: 2016 publication-title: J. Mater. Chem. A – volume: 220 start-page: 305 year: 2018 publication-title: Mater. Lett. – volume: 4 start-page: 1700617 year: 2018 publication-title: Adv. Electron. Mater. – volume: 52 start-page: 705 year: 2016 publication-title: Chem. Commun. – volume: 28 start-page: 133 year: 2018 publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 6 start-page: 27971 year: 2016 publication-title: Sci. Rep. – volume: 384 start-page: 287 year: 2016 publication-title: Appl. Surf. Sci. – volume: 164 start-page: A923 year: 2017 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 1601372 year: 2016 publication-title: Adv. Energy Mater. – volume: 40 start-page: 9217 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 2 start-page: 15889 year: 2014 publication-title: J. Mater. Chem. A – volume: 6 start-page: 88934 year: 2016 publication-title: RSC Adv. – volume: 118 start-page: 5593 year: 2014 publication-title: J. Phys. Chem. C – volume: 14 start-page: 1135 year: 2015 publication-title: Nat. Mater. – volume: 8 start-page: 14627 year: 2017 publication-title: Nat. Commun. – volume: 9 start-page: 768 year: 2014 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 1400815 year: 2015 publication-title: Adv. Energy Mater. – volume: 53 start-page: 4877 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 18806 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 3039 year: 2017 publication-title: J. Mater. Chem. A – volume: 29 start-page: 2731 year: 2017 publication-title: Chem. Mater. – volume: 5 start-page: 25403 year: 2015 publication-title: RSC Adv. – volume: 6 start-page: 18829 year: 2016 publication-title: Sci. Rep. – volume: 8 start-page: 15661 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1603040 year: 2017 publication-title: Adv. Mater. – volume: 46 start-page: 14880 year: 2017 publication-title: Dalton Trans. – volume: 3 start-page: 14096 year: 2015 publication-title: J. Mater. Chem. A – volume: 11 start-page: 560 year: 2012 publication-title: Nat. Mater. – volume: 3 start-page: 689 year: 2016 publication-title: ChemElectroChem – volume: 30 start-page: 2687 year: 2018 publication-title: Chem. Mater. – volume: 11 start-page: 5800 year: 2017 publication-title: ACS Nano – volume: 2 start-page: 11185 year: 2014 publication-title: J. Mater. Chem. A – volume: 89 start-page: 12108 year: 2017 publication-title: Anal. Chem. – volume: 12 start-page: 2381 year: 2018 publication-title: ACS Nano – volume: 271 start-page: 351 year: 2018 publication-title: Electrochim. Acta – volume: 92 start-page: 682 year: 2016 publication-title: Mater. Des. – volume: 2 start-page: 1600050 year: 2016 publication-title: Adv. Electron. Mater. – volume: 359 start-page: 332 year: 2017 publication-title: J. Power Sources – volume: 45 start-page: 118 year: 2016 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 4162 year: 2016 publication-title: Adv. Funct. Mater. – start-page: 87 year: 2013 publication-title: Phys. Rev. B – volume: 51 start-page: 314 year: 2015 publication-title: Chem. Commun. – volume: 8 start-page: 13907 year: 2017 publication-title: Nat. Commun. – volume: 334 start-page: 932 year: 2018 publication-title: Chem. Eng. J. – volume: 128 start-page: 14789 year: 2016 publication-title: Angew. Chem. – volume: 248 start-page: 570 year: 2014 publication-title: J. Power Sources – volume: 6 start-page: 1502161 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 2337 year: 2018 publication-title: J. Mater. Chem. A – volume: 17 start-page: 9997 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 81 start-page: 48 year: 2017 publication-title: Electrochem. Commun. – volume: 11 start-page: 2644 year: 2011 publication-title: Nano Lett. – volume: 308 start-page: 402 year: 2016 publication-title: J. Hazard. Mater. – ident: e_1_2_8_38_1 doi: 10.1038/srep27971 – ident: e_1_2_8_111_1 doi: 10.1039/C4TA02638A – ident: e_1_2_8_41_1 doi: 10.1021/acs.nanolett.6b01265 – ident: e_1_2_8_79_1 doi: 10.1021/acs.nanolett.5b00737 – ident: e_1_2_8_276_1 doi: 10.1021/nl400378j – ident: e_1_2_8_14_1 doi: 10.1016/j.jechem.2017.08.004 – ident: e_1_2_8_156_1 doi: 10.1016/j.electacta.2017.11.004 – ident: e_1_2_8_104_1 doi: 10.1021/acsnano.7b06251 – ident: e_1_2_8_203_1 doi: 10.1039/C4CC07220K – ident: e_1_2_8_22_1 doi: 10.1039/C4RA17304J – ident: e_1_2_8_176_1 doi: 10.1021/acs.chemmater.6b01244 – ident: e_1_2_8_97_1 doi: 10.1021/acsami.5b03863 – ident: e_1_2_8_158_1 doi: 10.1002/aenm.201502161 – ident: e_1_2_8_165_1 doi: 10.1016/j.jallcom.2016.05.221 – ident: e_1_2_8_141_1 doi: 10.1039/C7TA05721K – ident: e_1_2_8_144_1 doi: 10.1002/aenm.201602014 – ident: e_1_2_8_37_1 doi: 10.1038/nmat4374 – ident: e_1_2_8_142_1 doi: 10.1039/C7TA07999K – ident: e_1_2_8_175_1 doi: 10.1021/acsami.5b11973 – ident: e_1_2_8_119_1 doi: 10.1038/s41467-017-02529-6 – ident: e_1_2_8_210_1 doi: 10.1039/C7RA00184C – ident: e_1_2_8_251_1 doi: 10.1039/C7TA10394H – ident: e_1_2_8_68_1 doi: 10.1038/ncomms14627 – ident: e_1_2_8_118_1 doi: 10.1021/acs.chemmater.5b01623 – ident: e_1_2_8_192_1 doi: 10.1039/c4cc00840e – ident: e_1_2_8_121_1 doi: 10.1002/adma.201702410 – ident: e_1_2_8_39_1 doi: 10.1016/j.joule.2018.10.017 – ident: e_1_2_8_174_1 doi: 10.1016/j.jallcom.2017.10.223 – ident: e_1_2_8_6_1 doi: 10.1039/C6CC05357B – ident: e_1_2_8_93_1 doi: 10.1039/C4TA06557C – ident: e_1_2_8_56_1 doi: 10.1016/j.nanoen.2015.07.028 – ident: e_1_2_8_77_1 doi: 10.1039/C5NR09303A – ident: e_1_2_8_212_1 doi: 10.1021/acs.chemmater.6b03933 – ident: e_1_2_8_32_1 doi: 10.1039/C6CP00330C – ident: e_1_2_8_171_1 doi: 10.1039/C6RA15384D – ident: e_1_2_8_268_1 doi: 10.1021/acsami.8b13750 – ident: e_1_2_8_65_1 doi: 10.1016/j.jcat.2018.03.009 – ident: e_1_2_8_270_1 doi: 10.1039/C7CC02026K – ident: e_1_2_8_300_1 doi: 10.1021/acsnano.7b06909 – ident: e_1_2_8_103_1 doi: 10.1073/pnas.1414215111 – ident: e_1_2_8_89_1 doi: 10.1016/j.apsusc.2016.05.060 – ident: e_1_2_8_278_1 doi: 10.1039/C2EE23284G – ident: e_1_2_8_200_1 doi: 10.1088/1361-6528/aa9ab0 – ident: e_1_2_8_206_1 doi: 10.1002/app.45295 – ident: e_1_2_8_228_1 doi: 10.1002/anie.201410174 – ident: e_1_2_8_20_1 doi: 10.1038/ncomms14949 – ident: e_1_2_8_255_1 doi: 10.1021/cr500062v – ident: e_1_2_8_282_1 doi: 10.1021/acssuschemeng.8b00047 – ident: e_1_2_8_151_1 doi: 10.1002/adma.201500604 – ident: e_1_2_8_230_1 doi: 10.1002/anie.201509758 – ident: e_1_2_8_253_1 doi: 10.1021/acsnano.5b06958 – ident: e_1_2_8_204_1 doi: 10.1039/C7TA00149E – ident: e_1_2_8_234_1 doi: 10.1039/C6CP06018H – ident: e_1_2_8_277_1 doi: 10.1016/j.jpowsour.2013.09.132 – ident: e_1_2_8_280_1 doi: 10.1021/acs.jpclett.8b00200 – ident: e_1_2_8_286_1 doi: 10.1038/s41598-017-13805-2 – ident: e_1_2_8_198_1 doi: 10.1002/adma.201201205 – ident: e_1_2_8_247_1 doi: 10.1007/s10854-017-8446-5 – ident: e_1_2_8_73_1 doi: 10.1002/adma.201504705 – ident: e_1_2_8_267_1 doi: 10.1016/j.jallcom.2017.11.250 – ident: e_1_2_8_266_1 doi: 10.1016/j.cej.2017.10.007 – ident: e_1_2_8_172_1 doi: 10.1016/j.electacta.2013.01.057 – ident: e_1_2_8_180_1 doi: 10.1149/2.0981605jes – ident: e_1_2_8_256_1 doi: 10.1002/anie.201304762 – ident: e_1_2_8_116_1 doi: 10.1038/s41598-017-01714-3 – ident: e_1_2_8_96_1 doi: 10.1021/ja308463r – ident: e_1_2_8_143_1 doi: 10.1002/chem.201702387 – ident: e_1_2_8_246_1 doi: 10.1039/c3ta00031a – ident: e_1_2_8_259_1 doi: 10.1039/c3cp52037d – ident: e_1_2_8_190_1 doi: 10.1038/nature02140 – year: 2017 ident: e_1_2_8_271_1 publication-title: J. Mater. Chem. A – ident: e_1_2_8_123_1 doi: 10.1016/j.nanoen.2017.06.009 – ident: e_1_2_8_149_1 doi: 10.1021/acsami.6b04198 – ident: e_1_2_8_258_1 doi: 10.1002/aenm.201702485 – ident: e_1_2_8_188_1 doi: 10.1039/C7RA03402D – ident: e_1_2_8_66_1 doi: 10.1002/adfm.201603704 – ident: e_1_2_8_125_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_8_101_1 doi: 10.1088/0957-4484/26/26/265705 – ident: e_1_2_8_181_1 doi: 10.1002/adfm.201600682 – ident: e_1_2_8_187_1 doi: 10.1016/j.jpowsour.2016.07.062 – ident: e_1_2_8_90_1 doi: 10.1002/ange.201606643 – ident: e_1_2_8_100_1 doi: 10.1557/mrc.2012.25 – ident: e_1_2_8_71_1 doi: 10.1039/C5TA01855B – ident: e_1_2_8_301_1 doi: 10.1021/acsnano.8b02908 – ident: e_1_2_8_220_1 doi: 10.1021/acs.analchem.7b02701 – ident: e_1_2_8_67_1 doi: 10.1039/C8TC01404C – ident: e_1_2_8_163_1 doi: 10.1002/cssc.201600165 – ident: e_1_2_8_145_1 doi: 10.1016/j.electacta.2015.12.132 – ident: e_1_2_8_18_1 doi: 10.1039/C6TA06772G – ident: e_1_2_8_27_1 doi: 10.1039/C7RA00126F – ident: e_1_2_8_3_1 doi: 10.1039/C6NJ02695H – ident: e_1_2_8_58_1 doi: 10.1016/j.joule.2017.12.010 – ident: e_1_2_8_64_1 doi: 10.1021/acsami.6b04481 – ident: e_1_2_8_166_1 doi: 10.1039/C6RA15651G – ident: e_1_2_8_49_1 doi: 10.1039/C6RA13491B – ident: e_1_2_8_161_1 doi: 10.1016/j.electacta.2017.09.144 – ident: e_1_2_8_26_1 doi: 10.1039/C6RA27505B – ident: e_1_2_8_94_1 doi: 10.1016/j.comptc.2012.02.034 – ident: e_1_2_8_170_1 doi: 10.1002/cssc.201702317 – ident: e_1_2_8_30_1 doi: 10.1038/srep18829 – ident: e_1_2_8_214_1 doi: 10.1038/s41929-018-0195-1 – ident: e_1_2_8_62_1 doi: 10.1039/C8CP01123K – ident: e_1_2_8_133_1 doi: 10.1016/j.matchemphys.2013.10.008 – ident: e_1_2_8_147_1 doi: 10.1002/adfm.201102860 – ident: e_1_2_8_302_1 doi: 10.1021/acsenergylett.8b01062 – ident: e_1_2_8_78_1 doi: 10.1039/C6TA03832H – ident: e_1_2_8_10_1 doi: 10.1039/C6NR00546B – ident: e_1_2_8_231_1 doi: 10.1016/j.carbon.2016.11.030 – ident: e_1_2_8_164_1 doi: 10.1016/j.nanoen.2017.02.043 – ident: e_1_2_8_298_1 doi: 10.1002/aenm.201601372 – ident: e_1_2_8_241_1 doi: 10.1002/adma.201707334 – ident: e_1_2_8_28_1 doi: 10.1038/nenergy.2017.105 – ident: e_1_2_8_185_1 doi: 10.1021/acs.chemmater.7b02441 – ident: e_1_2_8_263_1 doi: 10.1021/ja508154e – ident: e_1_2_8_110_1 doi: 10.1038/s41598-017-09401-z – ident: e_1_2_8_213_1 doi: 10.1002/adfm.201702807 – ident: e_1_2_8_59_1 doi: 10.1038/srep32049 – ident: e_1_2_8_52_1 doi: 10.1016/j.joule.2018.09.011 – ident: e_1_2_8_87_1 doi: 10.1002/anie.201402513 – ident: e_1_2_8_55_1 doi: 10.1039/C6FD00251J – ident: e_1_2_8_238_1 doi: 10.1021/acs.jpcc.6b09109 – ident: e_1_2_8_264_1 doi: 10.1016/j.joule.2018.02.018 – ident: e_1_2_8_209_1 doi: 10.1016/j.matdes.2015.12.084 – ident: e_1_2_8_75_1 doi: 10.1016/j.jpowsour.2015.12.036 – ident: e_1_2_8_80_1 doi: 10.1021/cm500641a – ident: e_1_2_8_25_1 doi: 10.1016/j.jallcom.2016.10.127 – ident: e_1_2_8_183_1 doi: 10.1016/j.nanoen.2018.01.030 – ident: e_1_2_8_273_1 doi: 10.1002/aenm.201401660 – ident: e_1_2_8_134_1 doi: 10.1039/C3TA15423H – ident: e_1_2_8_274_1 doi: 10.1021/ar400011z – ident: e_1_2_8_218_1 doi: 10.1016/j.ijhydene.2015.01.122 – ident: e_1_2_8_120_1 doi: 10.1002/adma.201703284 – ident: e_1_2_8_167_1 doi: 10.1016/j.electacta.2016.04.009 – ident: e_1_2_8_236_1 doi: 10.1021/acs.nanolett.7b02698 – ident: e_1_2_8_287_1 doi: 10.1016/j.electacta.2016.12.173 – ident: e_1_2_8_54_1 doi: 10.1021/am501144q – ident: e_1_2_8_140_1 doi: 10.1021/acsami.6b04767 – ident: e_1_2_8_153_1 doi: 10.1002/adma.201603040 – ident: e_1_2_8_177_1 doi: 10.1016/j.matchemphys.2017.05.057 – ident: e_1_2_8_157_1 doi: 10.1039/C6TC05226F – ident: e_1_2_8_152_1 doi: 10.1016/j.jpowsour.2015.03.017 – ident: e_1_2_8_202_1 doi: 10.1002/aenm.201600969 – ident: e_1_2_8_284_1 doi: 10.1021/acsenergylett.7b01063 – ident: e_1_2_8_15_1 doi: 10.1016/j.cej.2017.12.155 – ident: e_1_2_8_283_1 doi: 10.1016/j.electacta.2018.03.168 – ident: e_1_2_8_91_1 doi: 10.1038/ncomms2664 – ident: e_1_2_8_250_1 doi: 10.1021/acsnano.8b01459 – ident: e_1_2_8_95_1 doi: 10.1021/acsnano.7b03129 – ident: e_1_2_8_159_1 doi: 10.1021/acs.chemmater.6b01275 – ident: e_1_2_8_215_1 doi: 10.1039/C6TA00554C – ident: e_1_2_8_16_1 doi: 10.1088/1468-6996/15/1/014208 – ident: e_1_2_8_252_1 doi: 10.1021/acsnano.7b01108 – ident: e_1_2_8_109_1 doi: 10.1038/s41598-017-14018-3 – ident: e_1_2_8_296_1 doi: 10.1002/aelm.201700339 – ident: e_1_2_8_128_1 doi: 10.1038/s41598-017-14504-8 – ident: e_1_2_8_237_1 doi: 10.1039/C6NR01462C – ident: e_1_2_8_9_1 doi: 10.1039/C5CS00517E – ident: e_1_2_8_36_1 doi: 10.1038/nmat4386 – ident: e_1_2_8_135_1 doi: 10.1016/j.jallcom.2011.04.152 – ident: e_1_2_8_162_1 doi: 10.1021/acsami.7b13822 – ident: e_1_2_8_288_1 doi: 10.1149/2.0041706jes – ident: e_1_2_8_199_1 doi: 10.1039/C5CC04229A – ident: e_1_2_8_281_1 doi: 10.1002/aenm.201400815 – ident: e_1_2_8_88_1 doi: 10.1016/j.elecom.2017.05.009 – ident: e_1_2_8_245_1 doi: 10.1039/C6CP00138F – ident: e_1_2_8_43_1 doi: 10.1126/science.aag2421 – ident: e_1_2_8_112_1 doi: 10.1039/c3ta12032e – ident: e_1_2_8_291_1 doi: 10.1039/C8NR00313K – ident: e_1_2_8_42_1 doi: 10.1016/j.joule.2017.09.008 – ident: e_1_2_8_60_1 doi: 10.1039/C7TA10888E – ident: e_1_2_8_115_1 doi: 10.1039/C6TC03917K – ident: e_1_2_8_13_1 doi: 10.1088/2053-1583/aabb81 – ident: e_1_2_8_229_1 doi: 10.1039/C5TA10307J – ident: e_1_2_8_235_1 doi: 10.1039/C8NR00380G – ident: e_1_2_8_232_1 doi: 10.1039/C6TC04349F – ident: e_1_2_8_72_1 doi: 10.1016/j.joule.2017.08.019 – ident: e_1_2_8_92_1 doi: 10.1021/acsami.6b01490 – ident: e_1_2_8_5_1 doi: 10.1007/s12274-017-1659-3 – ident: e_1_2_8_29_1 doi: 10.1038/nature13970 – ident: e_1_2_8_129_1 doi: 10.1038/s41467-017-00395-w – ident: e_1_2_8_81_1 doi: 10.1002/aelm.201600050 – ident: e_1_2_8_279_1 doi: 10.1021/acs.accounts.7b00481 – ident: e_1_2_8_57_1 doi: 10.1039/C4TA03503H – ident: e_1_2_8_117_1 doi: 10.1021/acsnano.6b00181 – ident: e_1_2_8_221_1 doi: 10.1038/srep36422 – ident: e_1_2_8_261_1 doi: 10.1039/c4ta01751j – ident: e_1_2_8_84_1 doi: 10.1039/C6NR02253G – ident: e_1_2_8_53_1 doi: 10.1021/acs.jpclett.5b00868 – ident: e_1_2_8_201_1 doi: 10.1039/C6RA10384G – ident: e_1_2_8_160_1 doi: 10.1007/s11434-014-0164-2 – ident: e_1_2_8_17_1 doi: 10.1002/anie.201802232 – ident: e_1_2_8_139_1 doi: 10.1063/1.4960155 – ident: e_1_2_8_243_1 doi: 10.1002/anie.201710616 – ident: e_1_2_8_295_1 doi: 10.1016/j.jpowsour.2018.06.084 – ident: e_1_2_8_61_1 doi: 10.1016/j.snb.2018.02.124 – ident: e_1_2_8_178_1 doi: 10.1016/j.materresbull.2016.12.049 – ident: e_1_2_8_225_1 doi: 10.1021/acsnano.5b07333 – ident: e_1_2_8_148_1 doi: 10.1002/celc.201600059 – ident: e_1_2_8_233_1 doi: 10.1038/nmat3367 – ident: e_1_2_8_138_1 doi: 10.1002/adma.201704156 – ident: e_1_2_8_244_1 doi: 10.1021/acsami.7b17386 – ident: e_1_2_8_211_1 doi: 10.1371/journal.pone.0183705 – ident: e_1_2_8_137_1 doi: 10.1039/C7TA03228E – ident: e_1_2_8_299_1 doi: 10.1126/sciadv.aat0491 – ident: e_1_2_8_227_1 doi: 10.1039/C5CC08801A – ident: e_1_2_8_289_1 doi: 10.1016/j.elecom.2014.09.002 – ident: e_1_2_8_297_1 doi: 10.1002/adfm.201705506 – ident: e_1_2_8_24_1 doi: 10.1038/ncomms7544 – ident: e_1_2_8_124_1 doi: 10.1039/C7TA11347A – ident: e_1_2_8_184_1 doi: 10.1016/j.jpowsour.2017.05.081 – ident: e_1_2_8_76_1 doi: 10.1002/aelm.201700617 – ident: e_1_2_8_217_1 doi: 10.1016/j.ijhydene.2015.05.168 – ident: e_1_2_8_242_1 doi: 10.1016/j.jelechem.2017.12.079 – ident: e_1_2_8_11_1 doi: 10.1002/anie.201504693 – ident: e_1_2_8_46_1 doi: 10.1021/acs.jpclett.6b03064 – ident: e_1_2_8_262_1 doi: 10.1039/C7TA08261D – ident: e_1_2_8_105_1 doi: 10.1126/science.1246501 – ident: e_1_2_8_275_1 doi: 10.1002/cssc.201801224 – ident: e_1_2_8_122_1 doi: 10.1039/C7TC01765K – ident: e_1_2_8_47_1 doi: 10.1039/C7TC00140A – ident: e_1_2_8_194_1 doi: 10.1021/jp500861n – ident: e_1_2_8_31_1 doi: 10.1021/acsami.5b05401 – ident: e_1_2_8_34_1 doi: 10.1016/j.pnsc.2018.03.003 – ident: e_1_2_8_69_1 doi: 10.1021/acsnano.7b01638 – ident: e_1_2_8_2_1 doi: 10.1039/C4CS00102H – ident: e_1_2_8_8_1 doi: 10.1038/nchem.2085 – ident: e_1_2_8_7_1 doi: 10.1039/c3cs60407a – ident: e_1_2_8_222_1 doi: 10.1039/C5CC04722F – ident: e_1_2_8_45_1 doi: 10.1002/adfm.201202502 – ident: e_1_2_8_83_1 doi: 10.1002/aenm.201602725 – ident: e_1_2_8_173_1 doi: 10.1038/ncomms13907 – ident: e_1_2_8_265_1 doi: 10.1016/j.ensm.2016.07.001 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201304138 – ident: e_1_2_8_48_1 doi: 10.1126/science.1241488 – ident: e_1_2_8_12_1 doi: 10.1007/s12274-015-0966-9 – ident: e_1_2_8_154_1 doi: 10.1039/C7DT02688A – ident: e_1_2_8_21_1 doi: 10.1021/nn204153h – ident: e_1_2_8_294_1 doi: 10.1002/smll.201801203 – ident: e_1_2_8_50_1 doi: 10.1039/C5RA25028E – ident: e_1_2_8_86_1 doi: 10.1039/C7TA09350K – ident: e_1_2_8_290_1 doi: 10.1016/j.matlet.2018.03.049 – ident: e_1_2_8_272_1 doi: 10.1002/anie.201405314 – ident: e_1_2_8_195_1 doi: 10.1002/celc.201700060 – ident: e_1_2_8_226_1 doi: 10.1016/j.jpowsour.2016.07.095 – ident: e_1_2_8_207_1 doi: 10.1016/j.memsci.2016.05.048 – ident: e_1_2_8_82_1 doi: 10.1002/aenm.201601873 – ident: e_1_2_8_219_1 doi: 10.1021/acssuschemeng.6b01698 – ident: e_1_2_8_106_1 doi: 10.1039/C4TC01721H – ident: e_1_2_8_107_1 doi: 10.1002/adfm.201600357 – ident: e_1_2_8_74_1 doi: 10.1021/acsami.6b09027 – ident: e_1_2_8_240_1 doi: 10.1016/j.electacta.2018.02.090 – ident: e_1_2_8_127_1 doi: 10.1002/adma.201607017 – ident: e_1_2_8_126_1 doi: 10.1016/j.nanoen.2016.06.005 – ident: e_1_2_8_113_1 doi: 10.1016/j.jhazmat.2016.01.053 – ident: e_1_2_8_254_1 doi: 10.1021/nl200658a – ident: e_1_2_8_70_1 doi: 10.1039/C4DT02058H – ident: e_1_2_8_191_1 doi: 10.1039/c2jm33992g – ident: e_1_2_8_102_1 doi: 10.1016/j.nanoen.2017.11.044 – ident: e_1_2_8_132_1 doi: 10.1016/j.jcis.2017.09.104 – ident: e_1_2_8_146_1 doi: 10.1002/adfm.201303296 – ident: e_1_2_8_19_1 doi: 10.1021/acs.inorgchem.6b03057 – ident: e_1_2_8_169_1 doi: 10.1016/j.nanoen.2016.10.062 – ident: e_1_2_8_44_1 doi: 10.1002/adma.201102306 – ident: e_1_2_8_1_1 doi: 10.1039/C5CS00914F – ident: e_1_2_8_155_1 doi: 10.1002/adma.201404140 – ident: e_1_2_8_51_1 doi: 10.1016/j.jpowsour.2016.12.042 – ident: e_1_2_8_130_1 doi: 10.1021/acsnano.6b06089 – ident: e_1_2_8_196_1 doi: 10.1149/2.1421712jes – ident: e_1_2_8_224_1 doi: 10.1021/acsnano.6b07668 – ident: e_1_2_8_257_1 doi: 10.1021/acsnano.7b07672 – ident: e_1_2_8_186_1 doi: 10.1016/j.electacta.2017.01.025 – ident: e_1_2_8_285_1 doi: 10.1039/C1CS15078B – ident: e_1_2_8_269_1 doi: 10.1016/j.ensm.2018.05.010 – ident: e_1_2_8_114_1 doi: 10.1021/acs.chemmater.8b00156 – ident: e_1_2_8_189_1 doi: 10.1016/j.bios.2015.08.004 – ident: e_1_2_8_33_1 doi: 10.1039/C4CP05666C – ident: e_1_2_8_248_1 doi: 10.1016/j.electacta.2018.03.118 – ident: e_1_2_8_292_1 doi: 10.1002/aenm.201703043 – ident: e_1_2_8_63_1 doi: 10.1088/0957-4484/26/13/135703 – ident: e_1_2_8_150_1 doi: 10.1016/j.jpowsour.2016.03.066 – ident: e_1_2_8_182_1 doi: 10.1039/C4TA02583K – ident: e_1_2_8_239_1 doi: 10.1021/ja512820k – ident: e_1_2_8_223_1 doi: 10.1021/acsnano.7b01409 – ident: e_1_2_8_249_1 doi: 10.1016/j.jallcom.2017.12.116 – ident: e_1_2_8_98_1 doi: 10.1039/C6TA04628B – ident: e_1_2_8_99_1 doi: 10.1039/C7TA09001C – ident: e_1_2_8_208_1 doi: 10.1515/epoly-2017-0017 – ident: e_1_2_8_131_1 doi: 10.1002/adfm.201701264 – ident: e_1_2_8_40_1 doi: 10.1038/srep16329 – ident: e_1_2_8_205_1 doi: 10.1016/j.polymer.2016.09.011 – ident: e_1_2_8_197_1 doi: 10.1002/adfm.201600771 – ident: e_1_2_8_260_1 doi: 10.1016/j.nanoen.2015.02.022 – ident: e_1_2_8_168_1 doi: 10.1039/C7TA02689G – ident: e_1_2_8_216_1 doi: 10.1021/acsami.6b08089 – ident: e_1_2_8_108_1 doi: 10.1039/C5NR06513E – ident: e_1_2_8_136_1 doi: 10.1002/aenm.201601847 – start-page: 87 year: 2013 ident: e_1_2_8_193_1 publication-title: Phys. Rev. B – ident: e_1_2_8_179_1 doi: 10.1039/C6NR00002A – ident: e_1_2_8_23_1 doi: 10.1039/C4RA13800G – ident: e_1_2_8_85_1 doi: 10.1002/anie.201800887 – ident: e_1_2_8_4_1 doi: 10.1038/nnano.2014.207 – ident: e_1_2_8_293_1 doi: 10.1016/j.jechem.2017.10.030 |
SSID | ssj0001121283 |
Score | 2.5812984 |
SecondaryResourceType | review_article |
Snippet | The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx... The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti 3 C 2... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Batteries Carbon nitride Composite materials Electrochemical analysis Electrode materials Hydrofluoric acid Lithium lithium‐ion batteries Metal carbides MXenes MXene‐based composites Rechargeable batteries sodium‐ion batteries Supercapacitors Synthesis Transition metals |
Title | MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201802004 https://www.proquest.com/docview/2212618018 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGVkhsEE9RaFEWSKxSEidxYnZTCiqVhg0dGLGJbMeGSDQzmk6ktis-gV3_r1_CtZ04HiivbqJR4kkU3-P7cI6PEXpWcSpySVWopFRhyqFgZVkehRxHvAKD44TphcKTd-Rgmh7OstlodOGxltoV3xXnV64ruY5V4RzYVa-S_Q_LupvCCfgN9oUjWBiO_2TjyQw8laMr7EFAqswA10Qsy3V7f9ZAhqdFR_QE-XixTh-HnFELJUmzfMoqbULhbNmc7UIuBURSUev9ePwcdtzTBiDZtW9pRCeWSrO7nBfp5qEPPfjtMTMv-1HW519Y7bg7rD1m7WlPU_S-8w-T2fPm84rN_RmKmHrEFuPIwCmSME-swOyuvOJc54mJB7jCC8kuYP3i761-LKuOa83SKyKDDhfZ-q_5rmX257ZWB3h_8tZdv4E2MdQf4EA3xx-mn6bD9F0MMd-IvLo36SVBI_xi_SHrKc9Qx_jVkElnju6g210dEowtqO6ikWzuoZuGDyxO7iNuoHX57bsBVTCA6mXgIBUATgIfUkHdBD6kAgcp0_QnSD1A0zevj14dhN12HKFIIdELRUK0tI_gJKlSIiDzxWkiGFdUF8lEQuKNE6ogRCiRZYLJKOeKsFhVBS1IHCcP0UYzb-QjFPAs51mSKUIzlcaKMaqinLKIK5nzShZbKOx7rBSdVr3eMuVraVW2cal7uHQ9vIWeu_YLq9Ly25bbvQHKbiSflBhsSaBBDA_Gxih_uUu5BpLH1_nTE3RrGCvbaGO1bOUO5Lcr_rTD2g_7IqDS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFL34QHQjPvFtFoqrYps26URwMb6YUceNjgxuapImMKBVrCLu_AR_xV_yS7xpOzO6EEFw2XKblvs8SW9OADZSJXRshPWsMdaLFE5YJYt9T1FfpWhwGkq3Ubh1xhvt6LjDOkPw3tsLU_JD9BfcXGQU-doFuFuQ3h6whsr0tut6s2q-s3TVV3liXp5x1pbvNg_QxJuUHh1e7De86mABT0dYsjwdckdSohUP04hrrOE0CrVUVji4zw1CCBoKi85uNWNaGj9WlsvApjVR40EQ4rjDMOqgFAbSaP2yfdUeLOwEWA0K-k9MBtyLQ-b3yCJ9uv39o78XwwHC_YqTi0J3NAWTFUIl9dKlpmHIZDMwVnSK6nwWVKuD6fHj9W0P619KXD5xfV8m3yHnLxnCybybE5mlpP7l1zjpZgQBqmNlMm6vFilpPXGWXoieP92bB41lW3fd4T9z0P4Xfc7DSHaXmQUgisWKhcxywWwUWCmF9WMhfWVNrFJTWwSvp7FEVyzm7jCNm6TkX6aJ03DS1_AibPXl70v-jh8lV3oGSKo4zhOKtuQoEOCLaWGUX0ZJ6getZv9q6S8PrcN446J1mpw2z06WYQLvi7JVaAVGHh-ezCqioEe1Vvkdgev_dvVPvzYSbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7BoqJeKkqpCqWtD6CeIhwndtZIHLZsVyywqBIsWnFJ_Sut1IYVASFufYQ-Cs_UJ-k4ye7CoaqExDGR40Qz4_k-O-PPAFtWS5M56SPvnI9SjRNWxTMaaUa1RYezRIWNwoMTcTBMD0d8tAD3070wtT7EbMEtjIwqX4cBPrF-Zy4aquzPcSjNatPg6Kas8sjd3eKkrdzrd9HD24z1vp7tH0TNuQKRSRGxIpOIoFFitEhsKgxCOEsTo7SXge0LhwyCJdJjrHvDuVGOZtoLFXvblm0Rxwn2uwhLHKGQtmCpcz68GM7XdWIEg0r9E3OBiLKE06lWJGU7jz_6MRbOCe5DmlzhXG8FXjUElXTqiHoNC65YhRdVoagp34AejDA7_vn1-wvCnyUhnYSyL1fuktO7AtlkOS6JKizpPPgzTsYFQX4aRJlc2KpFalVPnKRXTU9vJu7KIGqbcTj7Zw2Gz2LPt9AqLgv3DojmmeYJ90Jyn8ZeKelpJhXV3mXauvY6RFOL5aYRMQ9nafzIa_lllgcL5zMLr8PnWftJLd_xz5abUwfkzTAuc4a-FNggxhezyin_6SXvdAf92dXGUx76BMvfur38uH9y9B5e4m1ZFwptQuv66sZ9QA50rT82YUfg-3NH-l-9iRGO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene%E2%80%90Based+Composites%3A+Synthesis+and+Applications+in+Rechargeable+Batteries+and+Supercapacitors&rft.jtitle=Advanced+materials+interfaces&rft.au=Yang%2C+Jian&rft.au=Bao%2C+Weizhai&rft.au=Jaumaux%2C+Pauline&rft.au=Zhang%2C+Songtao&rft.date=2019-04-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=6&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201802004&rft.externalDBID=10.1002%252Fadmi.201802004&rft.externalDocID=ADMI201802004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |