MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors

The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negativel...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 6; no. 8
Main Authors Yang, Jian, Bao, Weizhai, Jaumaux, Pauline, Zhang, Songtao, Wang, Chengyin, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials. After the discussion of synthesis methods, structures, and properties of MXenes, different kinds of MXene‐based composites are introduced. Thereafter, the article focuses on their synthesis methods and applications in batteries and supercapacitors. Furthermore, the ways to improve the electrochemical performance of MXene‐based composites are also analyzed. Finally, some suggestions for improving the electrochemical performance of MXenes are proposed.
AbstractList The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials.
The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti 3 C 2 T x (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials.
The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx (MXene). The surface of MXenes etched by hydrofluoric acid has hydrophilic groups (F, OH, and O), which leads the surface to be negatively charged. Consequently, the negatively charged surface can facilitate the compounding of MXenes with other positively charged materials and prevent MXenes from aggregating with some negatively charged substances, thus promoting the formation of a stable dispersion. The MXene‐based composites have better electrochemical performance than both precursors due to synergistic effects. This review elaborates and discusses the development of MXene‐based composites. It is aimed to summarize the various methods of fabricating MXene‐based composites. The applications of MXene‐based composites in batteries and supercapacitors are presented along with analysis of their excellent electrochemical performances. Finally, the authors propose the approach for further enhancing the electrochemical performances of MXene‐based composite electrode materials. After the discussion of synthesis methods, structures, and properties of MXenes, different kinds of MXene‐based composites are introduced. Thereafter, the article focuses on their synthesis methods and applications in batteries and supercapacitors. Furthermore, the ways to improve the electrochemical performance of MXene‐based composites are also analyzed. Finally, some suggestions for improving the electrochemical performance of MXenes are proposed.
Author Bao, Weizhai
Jaumaux, Pauline
Wang, Guoxiu
Yang, Jian
Zhang, Songtao
Wang, Chengyin
Author_xml – sequence: 1
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: Yangzhou University
– sequence: 2
  givenname: Weizhai
  surname: Bao
  fullname: Bao, Weizhai
  organization: University of Technology Sydney
– sequence: 3
  givenname: Pauline
  surname: Jaumaux
  fullname: Jaumaux, Pauline
  organization: University of Technology Sydney
– sequence: 4
  givenname: Songtao
  surname: Zhang
  fullname: Zhang, Songtao
  organization: Yangzhou University
– sequence: 5
  givenname: Chengyin
  surname: Wang
  fullname: Wang, Chengyin
  email: wangcy@yzu.edu.cn
  organization: Yangzhou University
– sequence: 6
  givenname: Guoxiu
  orcidid: 0000-0003-4295-8578
  surname: Wang
  fullname: Wang, Guoxiu
  email: guoxiu.wang@uts.edu.cn
  organization: University of Technology Sydney
BookMark eNqFkE1Lw0AQhhepYK29eg54Tt2PZJt4a-tXoUWwCt6WzWZit6S7cTdFevMn-Bv9JaZGVATxNMPwPjPzvoeoY6wBhI4JHhCM6anM13pAMUkwxTjaQ11KUh4OWYw7P_oD1Pd-hTEmhBKasC7K5g9g4O3ldSw95MHErivrdQ3-LFhsTb0Er30gTR6MqqrUStbaGh9oE9yCWkr3CDIrIRjLuganoZUuNhU4JSupdG2dP0L7hSw99D9rD91fXtxNrsPZzdV0MpqFKqI0ChXjaZQQlXGWR1yRYTNkSmZFGhFOOEQspiwtEkYLFcdKAh5mBZekyJM04YSwHjpp91bOPm3A12JlN840JwVt3PImG5I0qqhVKWe9d1CI5ssPW7WTuhQEi12gYheo-Aq0wQa_sMrptXTbv4G0BZ51Cdt_1GJ0Pp9-s--SA4tn
CitedBy_id crossref_primary_10_1021_acsanm_9b00289
crossref_primary_10_3390_s24144465
crossref_primary_10_15251_CL_2022_1911_771
crossref_primary_10_1002_celc_202100781
crossref_primary_10_1021_acsanm_3c04389
crossref_primary_10_1016_j_jpowsour_2023_232870
crossref_primary_10_1039_D0MH01446J
crossref_primary_10_1039_D3CY01098H
crossref_primary_10_1002_adfm_202105043
crossref_primary_10_1002_adfm_202005305
crossref_primary_10_3389_fchem_2022_991481
crossref_primary_10_1016_j_apsusc_2022_153796
crossref_primary_10_1007_s11581_021_04343_z
crossref_primary_10_1039_C9NR10980C
crossref_primary_10_1016_j_ceramint_2022_03_165
crossref_primary_10_1016_j_compositesb_2022_109862
crossref_primary_10_1016_j_pmatsci_2020_100733
crossref_primary_10_1002_eem2_12058
crossref_primary_10_1016_j_jtice_2024_105364
crossref_primary_10_1039_C9NR07646H
crossref_primary_10_1088_1361_6528_acc7a8
crossref_primary_10_1016_j_jpowsour_2024_234404
crossref_primary_10_1007_s12274_022_5053_4
crossref_primary_10_1088_1361_6528_ac0190
crossref_primary_10_1016_j_mtcomm_2023_106143
crossref_primary_10_1016_j_mtchem_2024_102338
crossref_primary_10_1039_D2TA01140A
crossref_primary_10_1002_mame_202400433
crossref_primary_10_1016_j_surfin_2022_102493
crossref_primary_10_3390_coatings12040516
crossref_primary_10_1021_acsami_0c01959
crossref_primary_10_1016_j_compositesa_2024_108682
crossref_primary_10_1016_j_ceramint_2023_03_238
crossref_primary_10_1557_s43579_024_00601_z
crossref_primary_10_1002_aenm_202204019
crossref_primary_10_1021_acsapm_4c01336
crossref_primary_10_1002_smll_202105883
crossref_primary_10_1016_j_est_2024_115167
crossref_primary_10_1016_j_cap_2023_06_011
crossref_primary_10_1016_j_est_2023_109564
crossref_primary_10_1039_D3NA00874F
crossref_primary_10_1002_smll_202300283
crossref_primary_10_1016_j_mattod_2020_12_004
crossref_primary_10_1149_1945_7111_ac2fc6
crossref_primary_10_1016_j_chemosphere_2024_141838
crossref_primary_10_1016_j_jallcom_2024_176281
crossref_primary_10_1126_sciadv_abb5367
crossref_primary_10_1002_smtd_202100451
crossref_primary_10_1002_adfm_202405224
crossref_primary_10_1007_s12598_021_01895_x
crossref_primary_10_1002_admi_202100903
crossref_primary_10_1021_acsomega_9b03662
crossref_primary_10_3390_molecules29010002
crossref_primary_10_1016_j_memsci_2020_118051
crossref_primary_10_3390_polym14163433
crossref_primary_10_1109_TED_2020_3021625
crossref_primary_10_3390_mi14071477
crossref_primary_10_1021_acs_langmuir_3c01682
crossref_primary_10_1016_j_apcatb_2023_123585
crossref_primary_10_3390_cryst13081234
crossref_primary_10_1002_batt_201900165
crossref_primary_10_1002_chem_202000191
crossref_primary_10_1002_smll_202201740
crossref_primary_10_1007_s40544_020_0401_4
crossref_primary_10_3390_surfaces5010001
crossref_primary_10_1051_e3sconf_202130901062
crossref_primary_10_1016_j_jiec_2024_08_016
crossref_primary_10_1002_elsa_202100030
crossref_primary_10_1063_5_0026984
crossref_primary_10_1021_acsanm_2c01304
crossref_primary_10_1016_j_ensm_2020_12_004
crossref_primary_10_1021_acsaelm_3c00076
crossref_primary_10_1016_j_ccr_2020_213439
crossref_primary_10_1088_1361_648X_ac9f93
crossref_primary_10_1002_adfm_202110267
crossref_primary_10_1002_er_7833
crossref_primary_10_1002_smll_202208253
crossref_primary_10_1016_j_jallcom_2020_157950
crossref_primary_10_1021_acsomega_4c04849
crossref_primary_10_1007_s00604_022_05426_y
crossref_primary_10_1007_s41918_021_00110_w
crossref_primary_10_1016_j_seppur_2022_122752
crossref_primary_10_1016_j_cej_2021_131107
crossref_primary_10_1080_14686996_2023_2242262
crossref_primary_10_1016_j_jcis_2022_03_007
crossref_primary_10_1016_j_est_2023_109182
crossref_primary_10_1093_nsr_nwaa075
crossref_primary_10_1016_j_est_2024_110583
crossref_primary_10_1002_cssc_201901487
crossref_primary_10_1016_j_colsurfa_2019_124282
crossref_primary_10_1002_cey2_442
crossref_primary_10_1002_EXP_20210024
crossref_primary_10_1021_acs_energyfuels_0c03939
crossref_primary_10_1016_j_compositesb_2021_108867
crossref_primary_10_1039_C9NR08217D
crossref_primary_10_1016_j_cis_2022_102730
crossref_primary_10_1002_slct_202300018
crossref_primary_10_3390_ma14206008
crossref_primary_10_1007_s13346_024_01572_3
crossref_primary_10_1021_acsomega_3c02002
crossref_primary_10_1002_smll_202309572
crossref_primary_10_1007_s12274_021_3933_7
crossref_primary_10_1016_j_compositesb_2023_110888
crossref_primary_10_1016_j_molstruc_2022_132958
crossref_primary_10_1002_smtd_202101599
crossref_primary_10_1002_smll_202303911
crossref_primary_10_1016_j_chemosphere_2022_133542
crossref_primary_10_1002_admi_201902008
crossref_primary_10_1088_2515_7655_abceac
crossref_primary_10_1016_j_electacta_2023_142022
crossref_primary_10_1016_j_jcis_2022_05_090
crossref_primary_10_1186_s11671_021_03510_5
crossref_primary_10_1016_j_porgcoat_2024_108606
crossref_primary_10_3389_fbioe_2022_1024453
crossref_primary_10_1002_adfm_202100015
crossref_primary_10_1007_s41127_023_00069_z
crossref_primary_10_1039_D0TA12624A
crossref_primary_10_1016_j_colsurfa_2023_132050
crossref_primary_10_1039_D0DT01030H
crossref_primary_10_1016_j_cej_2022_135338
crossref_primary_10_1002_batt_202200402
crossref_primary_10_1016_j_jelechem_2020_114538
crossref_primary_10_1016_j_est_2023_107334
crossref_primary_10_1080_25740881_2021_1906901
crossref_primary_10_1039_C9TA04902A
crossref_primary_10_1016_j_synthmet_2023_117384
crossref_primary_10_1002_asia_202100974
crossref_primary_10_1016_j_cej_2024_149502
crossref_primary_10_1016_j_apsusc_2020_146985
crossref_primary_10_1016_j_est_2024_112711
crossref_primary_10_1021_acsaem_4c02777
crossref_primary_10_1039_D2TA02357A
crossref_primary_10_1039_D0TA11103A
crossref_primary_10_1016_j_coche_2021_100710
crossref_primary_10_1007_s11664_022_09456_3
crossref_primary_10_1016_j_jpowsour_2021_230731
crossref_primary_10_1016_j_cis_2023_103077
crossref_primary_10_1016_j_est_2023_107888
crossref_primary_10_1002_cey2_639
crossref_primary_10_1039_D1MA00189B
crossref_primary_10_3390_w15071267
crossref_primary_10_1002_adfm_202000706
crossref_primary_10_1002_aenm_202300351
crossref_primary_10_1002_eem2_12454
crossref_primary_10_1016_j_matlet_2020_128721
crossref_primary_10_1016_j_est_2024_113810
crossref_primary_10_1016_j_cej_2021_131380
crossref_primary_10_1088_2515_7655_ad1c43
crossref_primary_10_1016_j_est_2024_111751
crossref_primary_10_1002_mame_202100556
crossref_primary_10_1039_D4TA04211E
crossref_primary_10_1021_acsami_2c09669
crossref_primary_10_1016_j_nanoen_2024_110214
crossref_primary_10_1016_j_cis_2024_103373
crossref_primary_10_1002_admt_202001189
crossref_primary_10_1016_j_carbon_2020_07_041
crossref_primary_10_1016_j_matchemphys_2024_129914
crossref_primary_10_1016_j_ceramint_2021_04_197
crossref_primary_10_1016_j_cej_2021_133582
crossref_primary_10_1016_j_est_2024_113269
crossref_primary_10_3390_cryst13071005
crossref_primary_10_1016_j_matlet_2022_132328
crossref_primary_10_1016_j_jallcom_2023_171007
crossref_primary_10_1002_asia_202100519
crossref_primary_10_1039_D0TA08023C
crossref_primary_10_1002_batt_201900153
crossref_primary_10_1016_j_cej_2020_127169
crossref_primary_10_1016_j_mtsust_2023_100350
crossref_primary_10_1002_admi_202101838
crossref_primary_10_1080_21622515_2025_2466757
crossref_primary_10_1016_j_cej_2020_125428
crossref_primary_10_1016_j_jhazmat_2025_137288
crossref_primary_10_1016_j_est_2024_114127
crossref_primary_10_1016_j_est_2024_112741
crossref_primary_10_1021_acsaem_1c01396
crossref_primary_10_1016_j_jechem_2021_03_017
crossref_primary_10_1007_s42114_024_01121_z
crossref_primary_10_3390_c9040091
crossref_primary_10_1016_j_cej_2021_132489
crossref_primary_10_1016_j_ensm_2024_103538
crossref_primary_10_1016_j_surfin_2021_101393
crossref_primary_10_1021_acsomega_3c07752
crossref_primary_10_1016_j_flatc_2024_100692
crossref_primary_10_1021_acsami_0c12879
crossref_primary_10_1016_j_ssi_2021_115655
crossref_primary_10_1016_j_jallcom_2020_156229
crossref_primary_10_1016_j_chemosphere_2022_137643
crossref_primary_10_1002_aesr_202300231
crossref_primary_10_1002_slct_202004181
crossref_primary_10_1039_C9NJ06201G
crossref_primary_10_1016_j_nanoen_2022_107702
crossref_primary_10_1021_acsaelm_3c01443
crossref_primary_10_1016_j_colsurfa_2025_136721
crossref_primary_10_1002_aelm_202000168
crossref_primary_10_1016_j_apmt_2023_101993
crossref_primary_10_3390_nano13020345
crossref_primary_10_3390_cryst12081099
crossref_primary_10_1016_j_jcis_2022_03_073
crossref_primary_10_1021_acsanm_1c03112
crossref_primary_10_1002_admi_202200579
crossref_primary_10_1021_acs_chemmater_9b04408
crossref_primary_10_1016_j_jpowsour_2020_228961
crossref_primary_10_1016_j_cej_2019_123669
crossref_primary_10_1002_elan_201900288
crossref_primary_10_1016_j_est_2024_110868
crossref_primary_10_1002_eem2_12090
crossref_primary_10_1039_D3TA06548K
crossref_primary_10_1016_j_est_2024_111033
crossref_primary_10_1016_j_matchemphys_2024_130076
crossref_primary_10_1016_j_carbon_2021_07_102
crossref_primary_10_1016_j_desal_2025_118763
crossref_primary_10_1016_j_cej_2023_143786
crossref_primary_10_1002_adma_202404199
crossref_primary_10_1016_j_mseb_2023_116355
crossref_primary_10_1021_acs_cgd_3c00206
crossref_primary_10_1002_aenm_202100451
crossref_primary_10_1021_acsnano_1c09004
crossref_primary_10_1016_j_jtice_2023_104740
crossref_primary_10_1142_S1793292023500480
crossref_primary_10_1016_j_pmatsci_2023_101166
crossref_primary_10_1016_j_jallcom_2020_158547
crossref_primary_10_1016_j_microc_2023_109016
crossref_primary_10_1016_j_seppur_2023_123992
crossref_primary_10_1039_D1MA01199E
crossref_primary_10_1016_j_jcis_2024_05_183
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1016_j_est_2021_103572
crossref_primary_10_1039_D4TA00328D
crossref_primary_10_12677_AAC_2023_134055
crossref_primary_10_1016_j_jelechem_2021_115652
crossref_primary_10_1039_D2DT01898E
crossref_primary_10_1002_smll_202206126
crossref_primary_10_1021_acsami_9b14783
crossref_primary_10_1016_j_jcis_2022_09_107
crossref_primary_10_1016_j_jcis_2023_06_110
crossref_primary_10_1002_aenm_201901997
crossref_primary_10_1016_j_memsci_2022_121168
crossref_primary_10_1021_acsabm_4c00880
crossref_primary_10_1109_JPHOTOV_2024_3496475
crossref_primary_10_1002_aesr_202000038
crossref_primary_10_3390_app10041320
Cites_doi 10.1038/srep27971
10.1039/C4TA02638A
10.1021/acs.nanolett.6b01265
10.1021/acs.nanolett.5b00737
10.1021/nl400378j
10.1016/j.jechem.2017.08.004
10.1016/j.electacta.2017.11.004
10.1021/acsnano.7b06251
10.1039/C4CC07220K
10.1039/C4RA17304J
10.1021/acs.chemmater.6b01244
10.1021/acsami.5b03863
10.1002/aenm.201502161
10.1016/j.jallcom.2016.05.221
10.1039/C7TA05721K
10.1002/aenm.201602014
10.1038/nmat4374
10.1039/C7TA07999K
10.1021/acsami.5b11973
10.1038/s41467-017-02529-6
10.1039/C7RA00184C
10.1039/C7TA10394H
10.1038/ncomms14627
10.1021/acs.chemmater.5b01623
10.1039/c4cc00840e
10.1002/adma.201702410
10.1016/j.joule.2018.10.017
10.1016/j.jallcom.2017.10.223
10.1039/C6CC05357B
10.1039/C4TA06557C
10.1016/j.nanoen.2015.07.028
10.1039/C5NR09303A
10.1021/acs.chemmater.6b03933
10.1039/C6CP00330C
10.1039/C6RA15384D
10.1021/acsami.8b13750
10.1016/j.jcat.2018.03.009
10.1039/C7CC02026K
10.1021/acsnano.7b06909
10.1073/pnas.1414215111
10.1016/j.apsusc.2016.05.060
10.1039/C2EE23284G
10.1088/1361-6528/aa9ab0
10.1002/app.45295
10.1002/anie.201410174
10.1038/ncomms14949
10.1021/cr500062v
10.1021/acssuschemeng.8b00047
10.1002/adma.201500604
10.1002/anie.201509758
10.1021/acsnano.5b06958
10.1039/C7TA00149E
10.1039/C6CP06018H
10.1016/j.jpowsour.2013.09.132
10.1021/acs.jpclett.8b00200
10.1038/s41598-017-13805-2
10.1002/adma.201201205
10.1007/s10854-017-8446-5
10.1002/adma.201504705
10.1016/j.jallcom.2017.11.250
10.1016/j.cej.2017.10.007
10.1016/j.electacta.2013.01.057
10.1149/2.0981605jes
10.1002/anie.201304762
10.1038/s41598-017-01714-3
10.1021/ja308463r
10.1002/chem.201702387
10.1039/c3ta00031a
10.1039/c3cp52037d
10.1038/nature02140
10.1016/j.nanoen.2017.06.009
10.1021/acsami.6b04198
10.1002/aenm.201702485
10.1039/C7RA03402D
10.1002/adfm.201603704
10.1038/natrevmats.2016.98
10.1088/0957-4484/26/26/265705
10.1002/adfm.201600682
10.1016/j.jpowsour.2016.07.062
10.1002/ange.201606643
10.1557/mrc.2012.25
10.1039/C5TA01855B
10.1021/acsnano.8b02908
10.1021/acs.analchem.7b02701
10.1039/C8TC01404C
10.1002/cssc.201600165
10.1016/j.electacta.2015.12.132
10.1039/C6TA06772G
10.1039/C7RA00126F
10.1039/C6NJ02695H
10.1016/j.joule.2017.12.010
10.1021/acsami.6b04481
10.1039/C6RA15651G
10.1039/C6RA13491B
10.1016/j.electacta.2017.09.144
10.1039/C6RA27505B
10.1016/j.comptc.2012.02.034
10.1002/cssc.201702317
10.1038/srep18829
10.1038/s41929-018-0195-1
10.1039/C8CP01123K
10.1016/j.matchemphys.2013.10.008
10.1002/adfm.201102860
10.1021/acsenergylett.8b01062
10.1039/C6TA03832H
10.1039/C6NR00546B
10.1016/j.carbon.2016.11.030
10.1016/j.nanoen.2017.02.043
10.1002/aenm.201601372
10.1002/adma.201707334
10.1038/nenergy.2017.105
10.1021/acs.chemmater.7b02441
10.1021/ja508154e
10.1038/s41598-017-09401-z
10.1002/adfm.201702807
10.1038/srep32049
10.1016/j.joule.2018.09.011
10.1002/anie.201402513
10.1039/C6FD00251J
10.1021/acs.jpcc.6b09109
10.1016/j.joule.2018.02.018
10.1016/j.matdes.2015.12.084
10.1016/j.jpowsour.2015.12.036
10.1021/cm500641a
10.1016/j.jallcom.2016.10.127
10.1016/j.nanoen.2018.01.030
10.1002/aenm.201401660
10.1039/C3TA15423H
10.1021/ar400011z
10.1016/j.ijhydene.2015.01.122
10.1002/adma.201703284
10.1016/j.electacta.2016.04.009
10.1021/acs.nanolett.7b02698
10.1016/j.electacta.2016.12.173
10.1021/am501144q
10.1021/acsami.6b04767
10.1002/adma.201603040
10.1016/j.matchemphys.2017.05.057
10.1039/C6TC05226F
10.1016/j.jpowsour.2015.03.017
10.1002/aenm.201600969
10.1021/acsenergylett.7b01063
10.1016/j.cej.2017.12.155
10.1016/j.electacta.2018.03.168
10.1038/ncomms2664
10.1021/acsnano.8b01459
10.1021/acsnano.7b03129
10.1021/acs.chemmater.6b01275
10.1039/C6TA00554C
10.1088/1468-6996/15/1/014208
10.1021/acsnano.7b01108
10.1038/s41598-017-14018-3
10.1002/aelm.201700339
10.1038/s41598-017-14504-8
10.1039/C6NR01462C
10.1039/C5CS00517E
10.1038/nmat4386
10.1016/j.jallcom.2011.04.152
10.1021/acsami.7b13822
10.1149/2.0041706jes
10.1039/C5CC04229A
10.1002/aenm.201400815
10.1016/j.elecom.2017.05.009
10.1039/C6CP00138F
10.1126/science.aag2421
10.1039/c3ta12032e
10.1039/C8NR00313K
10.1016/j.joule.2017.09.008
10.1039/C7TA10888E
10.1039/C6TC03917K
10.1088/2053-1583/aabb81
10.1039/C5TA10307J
10.1039/C8NR00380G
10.1039/C6TC04349F
10.1016/j.joule.2017.08.019
10.1021/acsami.6b01490
10.1007/s12274-017-1659-3
10.1038/nature13970
10.1038/s41467-017-00395-w
10.1002/aelm.201600050
10.1021/acs.accounts.7b00481
10.1039/C4TA03503H
10.1021/acsnano.6b00181
10.1038/srep36422
10.1039/c4ta01751j
10.1039/C6NR02253G
10.1021/acs.jpclett.5b00868
10.1039/C6RA10384G
10.1007/s11434-014-0164-2
10.1002/anie.201802232
10.1063/1.4960155
10.1002/anie.201710616
10.1016/j.jpowsour.2018.06.084
10.1016/j.snb.2018.02.124
10.1016/j.materresbull.2016.12.049
10.1021/acsnano.5b07333
10.1002/celc.201600059
10.1038/nmat3367
10.1002/adma.201704156
10.1021/acsami.7b17386
10.1371/journal.pone.0183705
10.1039/C7TA03228E
10.1126/sciadv.aat0491
10.1039/C5CC08801A
10.1016/j.elecom.2014.09.002
10.1002/adfm.201705506
10.1038/ncomms7544
10.1039/C7TA11347A
10.1016/j.jpowsour.2017.05.081
10.1002/aelm.201700617
10.1016/j.ijhydene.2015.05.168
10.1016/j.jelechem.2017.12.079
10.1002/anie.201504693
10.1021/acs.jpclett.6b03064
10.1039/C7TA08261D
10.1126/science.1246501
10.1002/cssc.201801224
10.1039/C7TC01765K
10.1039/C7TC00140A
10.1021/jp500861n
10.1021/acsami.5b05401
10.1016/j.pnsc.2018.03.003
10.1021/acsnano.7b01638
10.1039/C4CS00102H
10.1038/nchem.2085
10.1039/c3cs60407a
10.1039/C5CC04722F
10.1002/adfm.201202502
10.1002/aenm.201602725
10.1038/ncomms13907
10.1016/j.ensm.2016.07.001
10.1002/adma.201304138
10.1126/science.1241488
10.1007/s12274-015-0966-9
10.1039/C7DT02688A
10.1021/nn204153h
10.1002/smll.201801203
10.1039/C5RA25028E
10.1039/C7TA09350K
10.1016/j.matlet.2018.03.049
10.1002/anie.201405314
10.1002/celc.201700060
10.1016/j.jpowsour.2016.07.095
10.1016/j.memsci.2016.05.048
10.1002/aenm.201601873
10.1021/acssuschemeng.6b01698
10.1039/C4TC01721H
10.1002/adfm.201600357
10.1021/acsami.6b09027
10.1016/j.electacta.2018.02.090
10.1002/adma.201607017
10.1016/j.nanoen.2016.06.005
10.1016/j.jhazmat.2016.01.053
10.1021/nl200658a
10.1039/C4DT02058H
10.1039/c2jm33992g
10.1016/j.nanoen.2017.11.044
10.1016/j.jcis.2017.09.104
10.1002/adfm.201303296
10.1021/acs.inorgchem.6b03057
10.1016/j.nanoen.2016.10.062
10.1002/adma.201102306
10.1039/C5CS00914F
10.1002/adma.201404140
10.1016/j.jpowsour.2016.12.042
10.1021/acsnano.6b06089
10.1149/2.1421712jes
10.1021/acsnano.6b07668
10.1021/acsnano.7b07672
10.1016/j.electacta.2017.01.025
10.1039/C1CS15078B
10.1016/j.ensm.2018.05.010
10.1021/acs.chemmater.8b00156
10.1016/j.bios.2015.08.004
10.1039/C4CP05666C
10.1016/j.electacta.2018.03.118
10.1002/aenm.201703043
10.1088/0957-4484/26/13/135703
10.1016/j.jpowsour.2016.03.066
10.1039/C4TA02583K
10.1021/ja512820k
10.1021/acsnano.7b01409
10.1016/j.jallcom.2017.12.116
10.1039/C6TA04628B
10.1039/C7TA09001C
10.1515/epoly-2017-0017
10.1002/adfm.201701264
10.1038/srep16329
10.1016/j.polymer.2016.09.011
10.1002/adfm.201600771
10.1016/j.nanoen.2015.02.022
10.1039/C7TA02689G
10.1021/acsami.6b08089
10.1039/C5NR06513E
10.1002/aenm.201601847
10.1039/C6NR00002A
10.1039/C4RA13800G
10.1002/anie.201800887
10.1038/nnano.2014.207
10.1016/j.jechem.2017.10.030
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201802004
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_201802004
ADMI201802004
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 21375116
– fundername: Natural Science Foundation of the Higher Education Institutions of Jiangsu Province
  funderid: 17KJB150045
– fundername: Australian Research Council
  funderid: DP160104340; DP170100436; DP180102297
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AFKRA
AFPKN
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PTHSS
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4224-c369481cb63d46c172243cabf941616e435239f832fc55cae07bf6a1fd8986113
ISSN 2196-7350
IngestDate Fri Jul 25 11:40:04 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Tue Jul 01 00:39:32 EDT 2025
Sat Aug 24 00:50:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4224-c369481cb63d46c172243cabf941616e435239f832fc55cae07bf6a1fd8986113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4295-8578
PQID 2212618018
PQPubID 2034582
PageCount 32
ParticipantIDs proquest_journals_2212618018
crossref_citationtrail_10_1002_admi_201802004
crossref_primary_10_1002_admi_201802004
wiley_primary_10_1002_admi_201802004_ADMI201802004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2013; 4
2013; 1
2017; 81
2016; 308
2016; 306
2015; 74
2017; 89
2014; 26
2016; 30
2014; 24
2018; 44
2012; 11
2013; 6
2016; 384
2014; 136
2018; 46
2018; 6
2018; 9
2014; 248
2018; 8
2018; 3
2018; 2
2018; 5
2012; 134
2018; 4
2015; 137
2018; 732
2018; 1
2018; 735
2018; 338
2013; 52
2018; 334
2014; 15
2018; 30
2017; 164
2018; 738
2017; 200
2012; 24
2012; 22
2016; 45
2018; 29
2018; 28
2018; 220
2019; 3
2015; 51
2016; 327
2015; 54
2016; 10
2016; 685
2014; 48
2013; 92
2016; 326
2013; 341
2016; 92
2016; 202
2016; 18
2017; 254
2017; 134
2016; 16
2018; 20
2018; 27
2017; 258
2016; 163
2014; 43
2012; 989
2016; 4
2016; 5
2016; 6
2017; 53
2016; 2
2016; 3
2018; 511
2017; 56
2018; 12
2014; 143
2016; 28
2018; 11
2018; 10
2016; 26
2016; 8
2016; 9
2018; 14
2012; 41
2017; 5
2018; 361
2017; 7
2017; 41
2017; 8
2017; 1
2017; 2
2017; 4
2015; 347
2016; 109
2013; 23
2017; 46
2016; 102
2011; 11
2017; 199
2017; 113
2017; 9
2017; 359
2013; 15
2014; 2
2018; 810
2016; 515
2015; 40
2013; 13
2017; 38
2015; 44
2017; 34
2014; 59
2016; 353
2011; 23
2014; 9
2014; 50
2014; 6
2016; 190
2014; 53
2018; 263
2015; 284
2014; 118
2015; 13
2015; 15
2015; 14
2015; 6
2015; 17
2015; 5
2014; 516
2015; 3
2013; 46
2017; 27
2017; 23
2018; 268
2016; 52
2016; 128
2017; 29
2017; 695
2014; 111
2015; 7
2016; 120
2014; 114
2016; 55
2015; 26
2018; 396
2012; 2
2015; 27
2003; 426
2018; 271
2011; 509
2017; 17
2017; 11
2017; 10
2017; 12
2017
2018; 51
2013
2012; 6
2017; 342
2017; 225
2018; 57
2017; 228
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_290_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_301_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_299_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
Gan L.‐Y. (e_1_2_8_193_1) 2013
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_302_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_292_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_293_1
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_294_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_295_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_285_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
Xue Q. (e_1_2_8_271_1) 2017
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_300_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 5
  start-page: 17442
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 2762
  year: 2015
  publication-title: RSC Adv.
– volume: 27
  start-page: 5314
  year: 2015
  publication-title: Chem. Mater.
– volume: 3
  start-page: 879
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 22280
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 695
  start-page: 818
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 41
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 13531
  year: 2015
  publication-title: Chem. Commun.
– volume: 6
  start-page: 4102
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 8103
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 4296
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 164
  start-page: A2654
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 24
  start-page: 3562
  year: 2012
  publication-title: Adv. Mater.
– volume: 11
  start-page: 688
  year: 2018
  publication-title: ChemSusChem
– volume: 7
  start-page: 8915
  year: 2017
  publication-title: Sci Rep.
– volume: 17
  start-page: 27
  year: 2015
  publication-title: Nano Energy
– volume: 18
  start-page: 5099
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 163
  start-page: A785
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 113
  start-page: 63
  year: 2017
  publication-title: Carbon
– volume: 6
  start-page: 7442
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  start-page: 72069
  year: 2016
  publication-title: RSC Adv.
– volume: 26
  start-page: 992
  year: 2014
  publication-title: Adv. Mater.
– volume: 17
  start-page: 5740
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  start-page: 27467
  year: 2016
  publication-title: RSC Adv.
– volume: 7
  start-page: 17510
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 6051
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 20494
  year: 2017
  publication-title: RSC Adv.
– volume: 1
  start-page: 4845
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 134
  start-page: 16909
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4617
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 5906
  year: 2018
  publication-title: Nanoscale
– volume: 2
  start-page: 778
  year: 2018
  publication-title: Joule
– volume: 50
  start-page: 4192
  year: 2014
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1490
  year: 2016
  publication-title: ChemSusChem
– volume: 12
  start-page: 8048
  year: 2018
  publication-title: ACS Nano
– volume: 4
  start-page: 12913
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 73
  year: 2018
  publication-title: J. Energy Chem.
– volume: 2
  start-page: 16098
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 29
  start-page: 035403
  year: 2018
  publication-title: Nanotechnology
– volume: 4
  start-page: eaat0491
  year: 2018
  publication-title: Sci. Adv.
– volume: 46
  start-page: 1878
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 13401
  year: 2017
  publication-title: Sci. Rep.
– volume: 26
  start-page: 2374
  year: 2014
  publication-title: Chem. Mater.
– volume: 4
  start-page: 5993
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 271
  start-page: 165
  year: 2018
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 3522
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1707334
  year: 2018
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1801203
  year: 2018
  publication-title: Small
– volume: 54
  start-page: 10258
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 1138
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 5906
  year: 2017
  publication-title: ACS Nano
– volume: 143
  start-page: 740
  year: 2014
  publication-title: Mater. Chem. Phys.
– volume: 28
  start-page: 1517
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1223
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 511
  start-page: 128
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 1601873
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 8637
  year: 2017
  publication-title: Chem. Mater.
– volume: 136
  start-page: 16270
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6005
  year: 2018
  publication-title: Nanoscale
– volume: 3
  start-page: 132
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 5260
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 111
  start-page: 16676
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 16092
  year: 2015
  publication-title: Chem. Commun.
– volume: 7
  start-page: 1598
  year: 2017
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1702485
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 978
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 57
  start-page: 5444
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 74
  start-page: 1022
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 5
  start-page: 22113
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 8892
  year: 2017
  publication-title: ACS Nano
– volume: 30
  start-page: 1704156
  year: 2018
  publication-title: Adv. Mater.
– volume: 347
  start-page: 1246501
  year: 2015
  publication-title: Science
– volume: 1
  start-page: 229
  year: 2017
  publication-title: Joule
– volume: 5
  start-page: 12027
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 5328
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1700339
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 3
  start-page: 164
  year: 2019
  publication-title: Joule
– volume: 27
  start-page: 1701264
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 4881
  year: 2018
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 16
  start-page: 4243
  year: 2016
  publication-title: Nano Lett.
– volume: 2
  start-page: 17105
  year: 2017
  publication-title: Nat. Energy
– volume: 15
  start-page: 4955
  year: 2015
  publication-title: Nano Lett.
– volume: 685
  start-page: 194
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 516
  start-page: 78
  year: 2014
  publication-title: Nature
– volume: 59
  start-page: 2186
  year: 2014
  publication-title: Chin. Sci. Bull.
– volume: 396
  start-page: 683
  year: 2018
  publication-title: J. Power Sources
– volume: 89
  start-page: 16
  year: 2017
  publication-title: Mater. Res. Bull.
– volume: 6
  start-page: 3543
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1703043
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 341
  start-page: 1502
  year: 2013
  publication-title: Science
– volume: 26
  start-page: 265705
  year: 2015
  publication-title: Nanotechnology
– volume: 12
  start-page: 3928
  year: 2018
  publication-title: ACS Nano
– volume: 5
  start-page: 180
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 426
  start-page: 424
  year: 2003
  publication-title: Nature
– volume: 38
  start-page: 368
  year: 2017
  publication-title: Nano Energy
– volume: 228
  start-page: 282
  year: 2017
  publication-title: Electrochim. Acta
– volume: 92
  start-page: 427
  year: 2013
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 2078
  year: 2013
  publication-title: Nano Lett.
– volume: 7
  start-page: 13097
  year: 2017
  publication-title: RSC Adv.
– volume: 515
  start-page: 175
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 199
  start-page: 393
  year: 2017
  publication-title: Faraday Discuss.
– volume: 15
  start-page: 12543
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 985
  year: 2018
  publication-title: Nat. Catal.
– volume: 810
  start-page: 27
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 40
  start-page: 3883
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 327
  start-page: 519
  year: 2016
  publication-title: J. Power Sources
– volume: 15
  start-page: 014208
  year: 2014
  publication-title: Sci. Technol. Adv. Mater.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 26
  start-page: 4143
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 14782
  year: 2017
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1601847
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3334
  year: 2016
  publication-title: ACS Nano
– volume: 28
  start-page: 1705506
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 989
  start-page: 27
  year: 2012
  publication-title: Comput. Theor. Chem.
– volume: 284
  start-page: 38
  year: 2015
  publication-title: J. Power Sources
– volume: 8
  start-page: 74
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 13672
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 3507
  year: 2016
  publication-title: Chem. Mater.
– volume: 28
  start-page: 3937
  year: 2016
  publication-title: Chem. Mater.
– volume: 6
  start-page: 36422
  year: 2016
  publication-title: Sci. Rep.
– volume: 18
  start-page: 32937
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 4305
  year: 2017
  publication-title: Nano Res.
– volume: 57
  start-page: 1846
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 29427
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 12914
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 738
  start-page: 130
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 43
  start-page: 6537
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 591
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 1401660
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 353
  start-page: 1137
  year: 2016
  publication-title: Science
– volume: 56
  start-page: 3489
  year: 2017
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 279
  year: 2019
  publication-title: Joule
– volume: 5
  start-page: 4068
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 12445
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 33779
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 043109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 7123
  year: 2015
  publication-title: Dalton Trans.
– volume: 30
  start-page: 1703284
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  start-page: 10
  year: 2018
  publication-title: Joule
– volume: 8
  start-page: 11385
  year: 2016
  publication-title: Nanoscale
– volume: 4
  start-page: 6763
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 23
  start-page: 2185
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1716
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1322
  year: 2012
  publication-title: ACS Nano
– volume: 6
  start-page: 6544
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2488
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 32049
  year: 2016
  publication-title: Sci. Rep.
– volume: 53
  start-page: 10673
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 8746
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 114
  start-page: 11751
  year: 2014
  publication-title: Chem. Rev.
– volume: 306
  start-page: 510
  year: 2016
  publication-title: J. Power Sources
– volume: 41
  start-page: 666
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 16329
  year: 2015
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1602014
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 443
  year: 2017
  publication-title: Joule
– volume: 46
  start-page: 20
  year: 2018
  publication-title: Nano Energy
– volume: 3
  start-page: 2094
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 4960
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 19390
  year: 2015
  publication-title: Nanoscale
– volume: 4
  start-page: 11143
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 98506
  year: 2016
  publication-title: RSC Adv.
– volume: 6
  start-page: 1234
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 56
  year: 2018
  publication-title: ACS Nano
– volume: 29
  start-page: 1702410
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 155
  year: 2018
  publication-title: Nat. Commun.
– volume: 268
  start-page: 503
  year: 2018
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 3634
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 208
  year: 2015
  publication-title: Nano Energy
– volume: 8
  start-page: 14949
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1600969
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 338
  start-page: 27
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 14334
  year: 2014
  publication-title: J. M. Chem. A
– volume: 8
  start-page: 859
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 342
  start-page: 64
  year: 2017
  publication-title: J. Power Sources
– volume: 44
  start-page: 103
  year: 2018
  publication-title: Nano Energy
– volume: 27
  start-page: 339
  year: 2015
  publication-title: Adv. Mater.
– volume: 327
  start-page: 221
  year: 2016
  publication-title: J. Power Sources
– volume: 326
  start-page: 686
  year: 2016
  publication-title: J. Power Sources
– volume: 29
  start-page: 1607017
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1602725
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 2715
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 263
  start-page: 360
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 24
  start-page: 2772
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 6883
  year: 2017
  publication-title: Chem. Commun.
– volume: 22
  start-page: 2560
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2393
  year: 2017
  publication-title: ACS Nano
– volume: 34
  start-page: 249
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 1911
  year: 2018
  publication-title: ChemSusChem
– volume: 6
  start-page: 2305
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 102
  start-page: 119
  year: 2016
  publication-title: Polymer
– volume: 254
  start-page: 308
  year: 2017
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 513
  year: 2016
  publication-title: Nano Energy
– volume: 134
  start-page: 45295
  year: 2017
  publication-title: J. Appl. Polym. Sci.
– volume: 732
  start-page: 448
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 11998
  year: 2017
  publication-title: RSC Adv.
– volume: 14
  start-page: 306
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 9128
  year: 2016
  publication-title: Nanoscale
– volume: 2
  start-page: 14339
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 12613
  year: 2017
  publication-title: Chem. – Eur. J.
– volume: 48
  start-page: 118
  year: 2014
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: 7085
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 1702807
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 13528
  year: 2016
  publication-title: Chem. Commun.
– volume: 12
  start-page: 3209
  year: 2018
  publication-title: ACS Nano
– volume: 5
  start-page: 5956
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 17
  start-page: 373
  year: 2017
  publication-title: e‐Polymers
– volume: 11
  start-page: 384
  year: 2017
  publication-title: ACS Nano
– volume: 30
  start-page: 603
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 81591
  year: 2016
  publication-title: RSC Adv.
– volume: 26
  start-page: 135703
  year: 2015
  publication-title: Nanotechnology
– volume: 41
  start-page: 2793
  year: 2017
  publication-title: New J. Chem.
– volume: 54
  start-page: 3907
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 8859
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 735
  start-page: 1262
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 10379
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 41314
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 361
  start-page: 255
  year: 2018
  publication-title: J. Catal.
– volume: 509
  start-page: 7778
  year: 2011
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 24698
  year: 2017
  publication-title: RSC Adv.
– volume: 22
  start-page: 17437
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 322
  year: 2017
  publication-title: Nat. Commun.
– volume: 12
  start-page: e0183705
  year: 2017
  publication-title: PLoS One
– volume: 10
  start-page: 3674
  year: 2016
  publication-title: ACS Nano
– volume: 120
  start-page: 28432
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 13186
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 200
  start-page: 179
  year: 2017
  publication-title: Mater. Chem. Phys.
– volume: 7
  start-page: 13833
  year: 2017
  publication-title: Sci. Rep.
– volume: 11
  start-page: 2459
  year: 2017
  publication-title: ACS Nano
– volume: 202
  start-page: 24
  year: 2016
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 5690
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 133
  year: 2012
  publication-title: MRS Commun.
– volume: 190
  start-page: 346
  year: 2016
  publication-title: Electrochim. Acta
– volume: 258
  start-page: 291
  year: 2017
  publication-title: Electrochim. Acta
– volume: 57
  start-page: 6115
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2491
  year: 2016
  publication-title: ACS Nano
– volume: 225
  start-page: 416
  year: 2017
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 3303
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 7580
  year: 2016
  publication-title: Nanoscale
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 45
  start-page: 1750
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 161
  year: 2018
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 857
  year: 2016
  publication-title: Nano Res.
– volume: 5
  start-page: 032002
  year: 2018
  publication-title: 2D Mater.
– volume: 20
  start-page: 11405
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 6904
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 3501
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 11173
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1079
  year: 2015
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1560
  year: 2017
  publication-title: ChemElectroChem
– volume: 4
  start-page: 4871
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 220
  start-page: 305
  year: 2018
  publication-title: Mater. Lett.
– volume: 4
  start-page: 1700617
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 52
  start-page: 705
  year: 2016
  publication-title: Chem. Commun.
– volume: 28
  start-page: 133
  year: 2018
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 6
  start-page: 27971
  year: 2016
  publication-title: Sci. Rep.
– volume: 384
  start-page: 287
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 164
  start-page: A923
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 1601372
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 40
  start-page: 9217
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 2
  start-page: 15889
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 88934
  year: 2016
  publication-title: RSC Adv.
– volume: 118
  start-page: 5593
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 1135
  year: 2015
  publication-title: Nat. Mater.
– volume: 8
  start-page: 14627
  year: 2017
  publication-title: Nat. Commun.
– volume: 9
  start-page: 768
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 1400815
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 4877
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 18806
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3039
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 2731
  year: 2017
  publication-title: Chem. Mater.
– volume: 5
  start-page: 25403
  year: 2015
  publication-title: RSC Adv.
– volume: 6
  start-page: 18829
  year: 2016
  publication-title: Sci. Rep.
– volume: 8
  start-page: 15661
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1603040
  year: 2017
  publication-title: Adv. Mater.
– volume: 46
  start-page: 14880
  year: 2017
  publication-title: Dalton Trans.
– volume: 3
  start-page: 14096
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 560
  year: 2012
  publication-title: Nat. Mater.
– volume: 3
  start-page: 689
  year: 2016
  publication-title: ChemElectroChem
– volume: 30
  start-page: 2687
  year: 2018
  publication-title: Chem. Mater.
– volume: 11
  start-page: 5800
  year: 2017
  publication-title: ACS Nano
– volume: 2
  start-page: 11185
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 89
  start-page: 12108
  year: 2017
  publication-title: Anal. Chem.
– volume: 12
  start-page: 2381
  year: 2018
  publication-title: ACS Nano
– volume: 271
  start-page: 351
  year: 2018
  publication-title: Electrochim. Acta
– volume: 92
  start-page: 682
  year: 2016
  publication-title: Mater. Des.
– volume: 2
  start-page: 1600050
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 359
  start-page: 332
  year: 2017
  publication-title: J. Power Sources
– volume: 45
  start-page: 118
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 4162
  year: 2016
  publication-title: Adv. Funct. Mater.
– start-page: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 51
  start-page: 314
  year: 2015
  publication-title: Chem. Commun.
– volume: 8
  start-page: 13907
  year: 2017
  publication-title: Nat. Commun.
– volume: 334
  start-page: 932
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 128
  start-page: 14789
  year: 2016
  publication-title: Angew. Chem.
– volume: 248
  start-page: 570
  year: 2014
  publication-title: J. Power Sources
– volume: 6
  start-page: 1502161
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 2337
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 9997
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 81
  start-page: 48
  year: 2017
  publication-title: Electrochem. Commun.
– volume: 11
  start-page: 2644
  year: 2011
  publication-title: Nano Lett.
– volume: 308
  start-page: 402
  year: 2016
  publication-title: J. Hazard. Mater.
– ident: e_1_2_8_38_1
  doi: 10.1038/srep27971
– ident: e_1_2_8_111_1
  doi: 10.1039/C4TA02638A
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.nanolett.6b01265
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.nanolett.5b00737
– ident: e_1_2_8_276_1
  doi: 10.1021/nl400378j
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jechem.2017.08.004
– ident: e_1_2_8_156_1
  doi: 10.1016/j.electacta.2017.11.004
– ident: e_1_2_8_104_1
  doi: 10.1021/acsnano.7b06251
– ident: e_1_2_8_203_1
  doi: 10.1039/C4CC07220K
– ident: e_1_2_8_22_1
  doi: 10.1039/C4RA17304J
– ident: e_1_2_8_176_1
  doi: 10.1021/acs.chemmater.6b01244
– ident: e_1_2_8_97_1
  doi: 10.1021/acsami.5b03863
– ident: e_1_2_8_158_1
  doi: 10.1002/aenm.201502161
– ident: e_1_2_8_165_1
  doi: 10.1016/j.jallcom.2016.05.221
– ident: e_1_2_8_141_1
  doi: 10.1039/C7TA05721K
– ident: e_1_2_8_144_1
  doi: 10.1002/aenm.201602014
– ident: e_1_2_8_37_1
  doi: 10.1038/nmat4374
– ident: e_1_2_8_142_1
  doi: 10.1039/C7TA07999K
– ident: e_1_2_8_175_1
  doi: 10.1021/acsami.5b11973
– ident: e_1_2_8_119_1
  doi: 10.1038/s41467-017-02529-6
– ident: e_1_2_8_210_1
  doi: 10.1039/C7RA00184C
– ident: e_1_2_8_251_1
  doi: 10.1039/C7TA10394H
– ident: e_1_2_8_68_1
  doi: 10.1038/ncomms14627
– ident: e_1_2_8_118_1
  doi: 10.1021/acs.chemmater.5b01623
– ident: e_1_2_8_192_1
  doi: 10.1039/c4cc00840e
– ident: e_1_2_8_121_1
  doi: 10.1002/adma.201702410
– ident: e_1_2_8_39_1
  doi: 10.1016/j.joule.2018.10.017
– ident: e_1_2_8_174_1
  doi: 10.1016/j.jallcom.2017.10.223
– ident: e_1_2_8_6_1
  doi: 10.1039/C6CC05357B
– ident: e_1_2_8_93_1
  doi: 10.1039/C4TA06557C
– ident: e_1_2_8_56_1
  doi: 10.1016/j.nanoen.2015.07.028
– ident: e_1_2_8_77_1
  doi: 10.1039/C5NR09303A
– ident: e_1_2_8_212_1
  doi: 10.1021/acs.chemmater.6b03933
– ident: e_1_2_8_32_1
  doi: 10.1039/C6CP00330C
– ident: e_1_2_8_171_1
  doi: 10.1039/C6RA15384D
– ident: e_1_2_8_268_1
  doi: 10.1021/acsami.8b13750
– ident: e_1_2_8_65_1
  doi: 10.1016/j.jcat.2018.03.009
– ident: e_1_2_8_270_1
  doi: 10.1039/C7CC02026K
– ident: e_1_2_8_300_1
  doi: 10.1021/acsnano.7b06909
– ident: e_1_2_8_103_1
  doi: 10.1073/pnas.1414215111
– ident: e_1_2_8_89_1
  doi: 10.1016/j.apsusc.2016.05.060
– ident: e_1_2_8_278_1
  doi: 10.1039/C2EE23284G
– ident: e_1_2_8_200_1
  doi: 10.1088/1361-6528/aa9ab0
– ident: e_1_2_8_206_1
  doi: 10.1002/app.45295
– ident: e_1_2_8_228_1
  doi: 10.1002/anie.201410174
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms14949
– ident: e_1_2_8_255_1
  doi: 10.1021/cr500062v
– ident: e_1_2_8_282_1
  doi: 10.1021/acssuschemeng.8b00047
– ident: e_1_2_8_151_1
  doi: 10.1002/adma.201500604
– ident: e_1_2_8_230_1
  doi: 10.1002/anie.201509758
– ident: e_1_2_8_253_1
  doi: 10.1021/acsnano.5b06958
– ident: e_1_2_8_204_1
  doi: 10.1039/C7TA00149E
– ident: e_1_2_8_234_1
  doi: 10.1039/C6CP06018H
– ident: e_1_2_8_277_1
  doi: 10.1016/j.jpowsour.2013.09.132
– ident: e_1_2_8_280_1
  doi: 10.1021/acs.jpclett.8b00200
– ident: e_1_2_8_286_1
  doi: 10.1038/s41598-017-13805-2
– ident: e_1_2_8_198_1
  doi: 10.1002/adma.201201205
– ident: e_1_2_8_247_1
  doi: 10.1007/s10854-017-8446-5
– ident: e_1_2_8_73_1
  doi: 10.1002/adma.201504705
– ident: e_1_2_8_267_1
  doi: 10.1016/j.jallcom.2017.11.250
– ident: e_1_2_8_266_1
  doi: 10.1016/j.cej.2017.10.007
– ident: e_1_2_8_172_1
  doi: 10.1016/j.electacta.2013.01.057
– ident: e_1_2_8_180_1
  doi: 10.1149/2.0981605jes
– ident: e_1_2_8_256_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_8_116_1
  doi: 10.1038/s41598-017-01714-3
– ident: e_1_2_8_96_1
  doi: 10.1021/ja308463r
– ident: e_1_2_8_143_1
  doi: 10.1002/chem.201702387
– ident: e_1_2_8_246_1
  doi: 10.1039/c3ta00031a
– ident: e_1_2_8_259_1
  doi: 10.1039/c3cp52037d
– ident: e_1_2_8_190_1
  doi: 10.1038/nature02140
– year: 2017
  ident: e_1_2_8_271_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_123_1
  doi: 10.1016/j.nanoen.2017.06.009
– ident: e_1_2_8_149_1
  doi: 10.1021/acsami.6b04198
– ident: e_1_2_8_258_1
  doi: 10.1002/aenm.201702485
– ident: e_1_2_8_188_1
  doi: 10.1039/C7RA03402D
– ident: e_1_2_8_66_1
  doi: 10.1002/adfm.201603704
– ident: e_1_2_8_125_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_8_101_1
  doi: 10.1088/0957-4484/26/26/265705
– ident: e_1_2_8_181_1
  doi: 10.1002/adfm.201600682
– ident: e_1_2_8_187_1
  doi: 10.1016/j.jpowsour.2016.07.062
– ident: e_1_2_8_90_1
  doi: 10.1002/ange.201606643
– ident: e_1_2_8_100_1
  doi: 10.1557/mrc.2012.25
– ident: e_1_2_8_71_1
  doi: 10.1039/C5TA01855B
– ident: e_1_2_8_301_1
  doi: 10.1021/acsnano.8b02908
– ident: e_1_2_8_220_1
  doi: 10.1021/acs.analchem.7b02701
– ident: e_1_2_8_67_1
  doi: 10.1039/C8TC01404C
– ident: e_1_2_8_163_1
  doi: 10.1002/cssc.201600165
– ident: e_1_2_8_145_1
  doi: 10.1016/j.electacta.2015.12.132
– ident: e_1_2_8_18_1
  doi: 10.1039/C6TA06772G
– ident: e_1_2_8_27_1
  doi: 10.1039/C7RA00126F
– ident: e_1_2_8_3_1
  doi: 10.1039/C6NJ02695H
– ident: e_1_2_8_58_1
  doi: 10.1016/j.joule.2017.12.010
– ident: e_1_2_8_64_1
  doi: 10.1021/acsami.6b04481
– ident: e_1_2_8_166_1
  doi: 10.1039/C6RA15651G
– ident: e_1_2_8_49_1
  doi: 10.1039/C6RA13491B
– ident: e_1_2_8_161_1
  doi: 10.1016/j.electacta.2017.09.144
– ident: e_1_2_8_26_1
  doi: 10.1039/C6RA27505B
– ident: e_1_2_8_94_1
  doi: 10.1016/j.comptc.2012.02.034
– ident: e_1_2_8_170_1
  doi: 10.1002/cssc.201702317
– ident: e_1_2_8_30_1
  doi: 10.1038/srep18829
– ident: e_1_2_8_214_1
  doi: 10.1038/s41929-018-0195-1
– ident: e_1_2_8_62_1
  doi: 10.1039/C8CP01123K
– ident: e_1_2_8_133_1
  doi: 10.1016/j.matchemphys.2013.10.008
– ident: e_1_2_8_147_1
  doi: 10.1002/adfm.201102860
– ident: e_1_2_8_302_1
  doi: 10.1021/acsenergylett.8b01062
– ident: e_1_2_8_78_1
  doi: 10.1039/C6TA03832H
– ident: e_1_2_8_10_1
  doi: 10.1039/C6NR00546B
– ident: e_1_2_8_231_1
  doi: 10.1016/j.carbon.2016.11.030
– ident: e_1_2_8_164_1
  doi: 10.1016/j.nanoen.2017.02.043
– ident: e_1_2_8_298_1
  doi: 10.1002/aenm.201601372
– ident: e_1_2_8_241_1
  doi: 10.1002/adma.201707334
– ident: e_1_2_8_28_1
  doi: 10.1038/nenergy.2017.105
– ident: e_1_2_8_185_1
  doi: 10.1021/acs.chemmater.7b02441
– ident: e_1_2_8_263_1
  doi: 10.1021/ja508154e
– ident: e_1_2_8_110_1
  doi: 10.1038/s41598-017-09401-z
– ident: e_1_2_8_213_1
  doi: 10.1002/adfm.201702807
– ident: e_1_2_8_59_1
  doi: 10.1038/srep32049
– ident: e_1_2_8_52_1
  doi: 10.1016/j.joule.2018.09.011
– ident: e_1_2_8_87_1
  doi: 10.1002/anie.201402513
– ident: e_1_2_8_55_1
  doi: 10.1039/C6FD00251J
– ident: e_1_2_8_238_1
  doi: 10.1021/acs.jpcc.6b09109
– ident: e_1_2_8_264_1
  doi: 10.1016/j.joule.2018.02.018
– ident: e_1_2_8_209_1
  doi: 10.1016/j.matdes.2015.12.084
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jpowsour.2015.12.036
– ident: e_1_2_8_80_1
  doi: 10.1021/cm500641a
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jallcom.2016.10.127
– ident: e_1_2_8_183_1
  doi: 10.1016/j.nanoen.2018.01.030
– ident: e_1_2_8_273_1
  doi: 10.1002/aenm.201401660
– ident: e_1_2_8_134_1
  doi: 10.1039/C3TA15423H
– ident: e_1_2_8_274_1
  doi: 10.1021/ar400011z
– ident: e_1_2_8_218_1
  doi: 10.1016/j.ijhydene.2015.01.122
– ident: e_1_2_8_120_1
  doi: 10.1002/adma.201703284
– ident: e_1_2_8_167_1
  doi: 10.1016/j.electacta.2016.04.009
– ident: e_1_2_8_236_1
  doi: 10.1021/acs.nanolett.7b02698
– ident: e_1_2_8_287_1
  doi: 10.1016/j.electacta.2016.12.173
– ident: e_1_2_8_54_1
  doi: 10.1021/am501144q
– ident: e_1_2_8_140_1
  doi: 10.1021/acsami.6b04767
– ident: e_1_2_8_153_1
  doi: 10.1002/adma.201603040
– ident: e_1_2_8_177_1
  doi: 10.1016/j.matchemphys.2017.05.057
– ident: e_1_2_8_157_1
  doi: 10.1039/C6TC05226F
– ident: e_1_2_8_152_1
  doi: 10.1016/j.jpowsour.2015.03.017
– ident: e_1_2_8_202_1
  doi: 10.1002/aenm.201600969
– ident: e_1_2_8_284_1
  doi: 10.1021/acsenergylett.7b01063
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cej.2017.12.155
– ident: e_1_2_8_283_1
  doi: 10.1016/j.electacta.2018.03.168
– ident: e_1_2_8_91_1
  doi: 10.1038/ncomms2664
– ident: e_1_2_8_250_1
  doi: 10.1021/acsnano.8b01459
– ident: e_1_2_8_95_1
  doi: 10.1021/acsnano.7b03129
– ident: e_1_2_8_159_1
  doi: 10.1021/acs.chemmater.6b01275
– ident: e_1_2_8_215_1
  doi: 10.1039/C6TA00554C
– ident: e_1_2_8_16_1
  doi: 10.1088/1468-6996/15/1/014208
– ident: e_1_2_8_252_1
  doi: 10.1021/acsnano.7b01108
– ident: e_1_2_8_109_1
  doi: 10.1038/s41598-017-14018-3
– ident: e_1_2_8_296_1
  doi: 10.1002/aelm.201700339
– ident: e_1_2_8_128_1
  doi: 10.1038/s41598-017-14504-8
– ident: e_1_2_8_237_1
  doi: 10.1039/C6NR01462C
– ident: e_1_2_8_9_1
  doi: 10.1039/C5CS00517E
– ident: e_1_2_8_36_1
  doi: 10.1038/nmat4386
– ident: e_1_2_8_135_1
  doi: 10.1016/j.jallcom.2011.04.152
– ident: e_1_2_8_162_1
  doi: 10.1021/acsami.7b13822
– ident: e_1_2_8_288_1
  doi: 10.1149/2.0041706jes
– ident: e_1_2_8_199_1
  doi: 10.1039/C5CC04229A
– ident: e_1_2_8_281_1
  doi: 10.1002/aenm.201400815
– ident: e_1_2_8_88_1
  doi: 10.1016/j.elecom.2017.05.009
– ident: e_1_2_8_245_1
  doi: 10.1039/C6CP00138F
– ident: e_1_2_8_43_1
  doi: 10.1126/science.aag2421
– ident: e_1_2_8_112_1
  doi: 10.1039/c3ta12032e
– ident: e_1_2_8_291_1
  doi: 10.1039/C8NR00313K
– ident: e_1_2_8_42_1
  doi: 10.1016/j.joule.2017.09.008
– ident: e_1_2_8_60_1
  doi: 10.1039/C7TA10888E
– ident: e_1_2_8_115_1
  doi: 10.1039/C6TC03917K
– ident: e_1_2_8_13_1
  doi: 10.1088/2053-1583/aabb81
– ident: e_1_2_8_229_1
  doi: 10.1039/C5TA10307J
– ident: e_1_2_8_235_1
  doi: 10.1039/C8NR00380G
– ident: e_1_2_8_232_1
  doi: 10.1039/C6TC04349F
– ident: e_1_2_8_72_1
  doi: 10.1016/j.joule.2017.08.019
– ident: e_1_2_8_92_1
  doi: 10.1021/acsami.6b01490
– ident: e_1_2_8_5_1
  doi: 10.1007/s12274-017-1659-3
– ident: e_1_2_8_29_1
  doi: 10.1038/nature13970
– ident: e_1_2_8_129_1
  doi: 10.1038/s41467-017-00395-w
– ident: e_1_2_8_81_1
  doi: 10.1002/aelm.201600050
– ident: e_1_2_8_279_1
  doi: 10.1021/acs.accounts.7b00481
– ident: e_1_2_8_57_1
  doi: 10.1039/C4TA03503H
– ident: e_1_2_8_117_1
  doi: 10.1021/acsnano.6b00181
– ident: e_1_2_8_221_1
  doi: 10.1038/srep36422
– ident: e_1_2_8_261_1
  doi: 10.1039/c4ta01751j
– ident: e_1_2_8_84_1
  doi: 10.1039/C6NR02253G
– ident: e_1_2_8_53_1
  doi: 10.1021/acs.jpclett.5b00868
– ident: e_1_2_8_201_1
  doi: 10.1039/C6RA10384G
– ident: e_1_2_8_160_1
  doi: 10.1007/s11434-014-0164-2
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.201802232
– ident: e_1_2_8_139_1
  doi: 10.1063/1.4960155
– ident: e_1_2_8_243_1
  doi: 10.1002/anie.201710616
– ident: e_1_2_8_295_1
  doi: 10.1016/j.jpowsour.2018.06.084
– ident: e_1_2_8_61_1
  doi: 10.1016/j.snb.2018.02.124
– ident: e_1_2_8_178_1
  doi: 10.1016/j.materresbull.2016.12.049
– ident: e_1_2_8_225_1
  doi: 10.1021/acsnano.5b07333
– ident: e_1_2_8_148_1
  doi: 10.1002/celc.201600059
– ident: e_1_2_8_233_1
  doi: 10.1038/nmat3367
– ident: e_1_2_8_138_1
  doi: 10.1002/adma.201704156
– ident: e_1_2_8_244_1
  doi: 10.1021/acsami.7b17386
– ident: e_1_2_8_211_1
  doi: 10.1371/journal.pone.0183705
– ident: e_1_2_8_137_1
  doi: 10.1039/C7TA03228E
– ident: e_1_2_8_299_1
  doi: 10.1126/sciadv.aat0491
– ident: e_1_2_8_227_1
  doi: 10.1039/C5CC08801A
– ident: e_1_2_8_289_1
  doi: 10.1016/j.elecom.2014.09.002
– ident: e_1_2_8_297_1
  doi: 10.1002/adfm.201705506
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms7544
– ident: e_1_2_8_124_1
  doi: 10.1039/C7TA11347A
– ident: e_1_2_8_184_1
  doi: 10.1016/j.jpowsour.2017.05.081
– ident: e_1_2_8_76_1
  doi: 10.1002/aelm.201700617
– ident: e_1_2_8_217_1
  doi: 10.1016/j.ijhydene.2015.05.168
– ident: e_1_2_8_242_1
  doi: 10.1016/j.jelechem.2017.12.079
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.201504693
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.jpclett.6b03064
– ident: e_1_2_8_262_1
  doi: 10.1039/C7TA08261D
– ident: e_1_2_8_105_1
  doi: 10.1126/science.1246501
– ident: e_1_2_8_275_1
  doi: 10.1002/cssc.201801224
– ident: e_1_2_8_122_1
  doi: 10.1039/C7TC01765K
– ident: e_1_2_8_47_1
  doi: 10.1039/C7TC00140A
– ident: e_1_2_8_194_1
  doi: 10.1021/jp500861n
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.5b05401
– ident: e_1_2_8_34_1
  doi: 10.1016/j.pnsc.2018.03.003
– ident: e_1_2_8_69_1
  doi: 10.1021/acsnano.7b01638
– ident: e_1_2_8_2_1
  doi: 10.1039/C4CS00102H
– ident: e_1_2_8_8_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_8_7_1
  doi: 10.1039/c3cs60407a
– ident: e_1_2_8_222_1
  doi: 10.1039/C5CC04722F
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.201202502
– ident: e_1_2_8_83_1
  doi: 10.1002/aenm.201602725
– ident: e_1_2_8_173_1
  doi: 10.1038/ncomms13907
– ident: e_1_2_8_265_1
  doi: 10.1016/j.ensm.2016.07.001
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_8_48_1
  doi: 10.1126/science.1241488
– ident: e_1_2_8_12_1
  doi: 10.1007/s12274-015-0966-9
– ident: e_1_2_8_154_1
  doi: 10.1039/C7DT02688A
– ident: e_1_2_8_21_1
  doi: 10.1021/nn204153h
– ident: e_1_2_8_294_1
  doi: 10.1002/smll.201801203
– ident: e_1_2_8_50_1
  doi: 10.1039/C5RA25028E
– ident: e_1_2_8_86_1
  doi: 10.1039/C7TA09350K
– ident: e_1_2_8_290_1
  doi: 10.1016/j.matlet.2018.03.049
– ident: e_1_2_8_272_1
  doi: 10.1002/anie.201405314
– ident: e_1_2_8_195_1
  doi: 10.1002/celc.201700060
– ident: e_1_2_8_226_1
  doi: 10.1016/j.jpowsour.2016.07.095
– ident: e_1_2_8_207_1
  doi: 10.1016/j.memsci.2016.05.048
– ident: e_1_2_8_82_1
  doi: 10.1002/aenm.201601873
– ident: e_1_2_8_219_1
  doi: 10.1021/acssuschemeng.6b01698
– ident: e_1_2_8_106_1
  doi: 10.1039/C4TC01721H
– ident: e_1_2_8_107_1
  doi: 10.1002/adfm.201600357
– ident: e_1_2_8_74_1
  doi: 10.1021/acsami.6b09027
– ident: e_1_2_8_240_1
  doi: 10.1016/j.electacta.2018.02.090
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.201607017
– ident: e_1_2_8_126_1
  doi: 10.1016/j.nanoen.2016.06.005
– ident: e_1_2_8_113_1
  doi: 10.1016/j.jhazmat.2016.01.053
– ident: e_1_2_8_254_1
  doi: 10.1021/nl200658a
– ident: e_1_2_8_70_1
  doi: 10.1039/C4DT02058H
– ident: e_1_2_8_191_1
  doi: 10.1039/c2jm33992g
– ident: e_1_2_8_102_1
  doi: 10.1016/j.nanoen.2017.11.044
– ident: e_1_2_8_132_1
  doi: 10.1016/j.jcis.2017.09.104
– ident: e_1_2_8_146_1
  doi: 10.1002/adfm.201303296
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.inorgchem.6b03057
– ident: e_1_2_8_169_1
  doi: 10.1016/j.nanoen.2016.10.062
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_8_1_1
  doi: 10.1039/C5CS00914F
– ident: e_1_2_8_155_1
  doi: 10.1002/adma.201404140
– ident: e_1_2_8_51_1
  doi: 10.1016/j.jpowsour.2016.12.042
– ident: e_1_2_8_130_1
  doi: 10.1021/acsnano.6b06089
– ident: e_1_2_8_196_1
  doi: 10.1149/2.1421712jes
– ident: e_1_2_8_224_1
  doi: 10.1021/acsnano.6b07668
– ident: e_1_2_8_257_1
  doi: 10.1021/acsnano.7b07672
– ident: e_1_2_8_186_1
  doi: 10.1016/j.electacta.2017.01.025
– ident: e_1_2_8_285_1
  doi: 10.1039/C1CS15078B
– ident: e_1_2_8_269_1
  doi: 10.1016/j.ensm.2018.05.010
– ident: e_1_2_8_114_1
  doi: 10.1021/acs.chemmater.8b00156
– ident: e_1_2_8_189_1
  doi: 10.1016/j.bios.2015.08.004
– ident: e_1_2_8_33_1
  doi: 10.1039/C4CP05666C
– ident: e_1_2_8_248_1
  doi: 10.1016/j.electacta.2018.03.118
– ident: e_1_2_8_292_1
  doi: 10.1002/aenm.201703043
– ident: e_1_2_8_63_1
  doi: 10.1088/0957-4484/26/13/135703
– ident: e_1_2_8_150_1
  doi: 10.1016/j.jpowsour.2016.03.066
– ident: e_1_2_8_182_1
  doi: 10.1039/C4TA02583K
– ident: e_1_2_8_239_1
  doi: 10.1021/ja512820k
– ident: e_1_2_8_223_1
  doi: 10.1021/acsnano.7b01409
– ident: e_1_2_8_249_1
  doi: 10.1016/j.jallcom.2017.12.116
– ident: e_1_2_8_98_1
  doi: 10.1039/C6TA04628B
– ident: e_1_2_8_99_1
  doi: 10.1039/C7TA09001C
– ident: e_1_2_8_208_1
  doi: 10.1515/epoly-2017-0017
– ident: e_1_2_8_131_1
  doi: 10.1002/adfm.201701264
– ident: e_1_2_8_40_1
  doi: 10.1038/srep16329
– ident: e_1_2_8_205_1
  doi: 10.1016/j.polymer.2016.09.011
– ident: e_1_2_8_197_1
  doi: 10.1002/adfm.201600771
– ident: e_1_2_8_260_1
  doi: 10.1016/j.nanoen.2015.02.022
– ident: e_1_2_8_168_1
  doi: 10.1039/C7TA02689G
– ident: e_1_2_8_216_1
  doi: 10.1021/acsami.6b08089
– ident: e_1_2_8_108_1
  doi: 10.1039/C5NR06513E
– ident: e_1_2_8_136_1
  doi: 10.1002/aenm.201601847
– start-page: 87
  year: 2013
  ident: e_1_2_8_193_1
  publication-title: Phys. Rev. B
– ident: e_1_2_8_179_1
  doi: 10.1039/C6NR00002A
– ident: e_1_2_8_23_1
  doi: 10.1039/C4RA13800G
– ident: e_1_2_8_85_1
  doi: 10.1002/anie.201800887
– ident: e_1_2_8_4_1
  doi: 10.1038/nnano.2014.207
– ident: e_1_2_8_293_1
  doi: 10.1016/j.jechem.2017.10.030
SSID ssj0001121283
Score 2.5812984
SecondaryResourceType review_article
Snippet The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti3C2Tx...
The family of 2D transition metal carbides, nitrides, and carbonitrides (collectively called MXenes) is rapidly studied since the initial synthesis of Ti 3 C 2...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Batteries
Carbon nitride
Composite materials
Electrochemical analysis
Electrode materials
Hydrofluoric acid
Lithium
lithium‐ion batteries
Metal carbides
MXenes
MXene‐based composites
Rechargeable batteries
sodium‐ion batteries
Supercapacitors
Synthesis
Transition metals
Title MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201802004
https://www.proquest.com/docview/2212618018
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGVkhsEE9RaFEWSKxSEidxYnZTCiqVhg0dGLGJbMeGSDQzmk6ktis-gV3_r1_CtZ04HiivbqJR4kkU3-P7cI6PEXpWcSpySVWopFRhyqFgZVkehRxHvAKD44TphcKTd-Rgmh7OstlodOGxltoV3xXnV64ruY5V4RzYVa-S_Q_LupvCCfgN9oUjWBiO_2TjyQw8laMr7EFAqswA10Qsy3V7f9ZAhqdFR_QE-XixTh-HnFELJUmzfMoqbULhbNmc7UIuBURSUev9ePwcdtzTBiDZtW9pRCeWSrO7nBfp5qEPPfjtMTMv-1HW519Y7bg7rD1m7WlPU_S-8w-T2fPm84rN_RmKmHrEFuPIwCmSME-swOyuvOJc54mJB7jCC8kuYP3i761-LKuOa83SKyKDDhfZ-q_5rmX257ZWB3h_8tZdv4E2MdQf4EA3xx-mn6bD9F0MMd-IvLo36SVBI_xi_SHrKc9Qx_jVkElnju6g210dEowtqO6ikWzuoZuGDyxO7iNuoHX57bsBVTCA6mXgIBUATgIfUkHdBD6kAgcp0_QnSD1A0zevj14dhN12HKFIIdELRUK0tI_gJKlSIiDzxWkiGFdUF8lEQuKNE6ogRCiRZYLJKOeKsFhVBS1IHCcP0UYzb-QjFPAs51mSKUIzlcaKMaqinLKIK5nzShZbKOx7rBSdVr3eMuVraVW2cal7uHQ9vIWeu_YLq9Ly25bbvQHKbiSflBhsSaBBDA_Gxih_uUu5BpLH1_nTE3RrGCvbaGO1bOUO5Lcr_rTD2g_7IqDS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFL34QHQjPvFtFoqrYps26URwMb6YUceNjgxuapImMKBVrCLu_AR_xV_yS7xpOzO6EEFw2XKblvs8SW9OADZSJXRshPWsMdaLFE5YJYt9T1FfpWhwGkq3Ubh1xhvt6LjDOkPw3tsLU_JD9BfcXGQU-doFuFuQ3h6whsr0tut6s2q-s3TVV3liXp5x1pbvNg_QxJuUHh1e7De86mABT0dYsjwdckdSohUP04hrrOE0CrVUVji4zw1CCBoKi85uNWNaGj9WlsvApjVR40EQ4rjDMOqgFAbSaP2yfdUeLOwEWA0K-k9MBtyLQ-b3yCJ9uv39o78XwwHC_YqTi0J3NAWTFUIl9dKlpmHIZDMwVnSK6nwWVKuD6fHj9W0P619KXD5xfV8m3yHnLxnCybybE5mlpP7l1zjpZgQBqmNlMm6vFilpPXGWXoieP92bB41lW3fd4T9z0P4Xfc7DSHaXmQUgisWKhcxywWwUWCmF9WMhfWVNrFJTWwSvp7FEVyzm7jCNm6TkX6aJ03DS1_AibPXl70v-jh8lV3oGSKo4zhOKtuQoEOCLaWGUX0ZJ6getZv9q6S8PrcN446J1mpw2z06WYQLvi7JVaAVGHh-ezCqioEe1Vvkdgev_dvVPvzYSbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7BoqJeKkqpCqWtD6CeIhwndtZIHLZsVyywqBIsWnFJ_Sut1IYVASFufYQ-Cs_UJ-k4ye7CoaqExDGR40Qz4_k-O-PPAFtWS5M56SPvnI9SjRNWxTMaaUa1RYezRIWNwoMTcTBMD0d8tAD3070wtT7EbMEtjIwqX4cBPrF-Zy4aquzPcSjNatPg6Kas8sjd3eKkrdzrd9HD24z1vp7tH0TNuQKRSRGxIpOIoFFitEhsKgxCOEsTo7SXge0LhwyCJdJjrHvDuVGOZtoLFXvblm0Rxwn2uwhLHKGQtmCpcz68GM7XdWIEg0r9E3OBiLKE06lWJGU7jz_6MRbOCe5DmlzhXG8FXjUElXTqiHoNC65YhRdVoagp34AejDA7_vn1-wvCnyUhnYSyL1fuktO7AtlkOS6JKizpPPgzTsYFQX4aRJlc2KpFalVPnKRXTU9vJu7KIGqbcTj7Zw2Gz2LPt9AqLgv3DojmmeYJ90Jyn8ZeKelpJhXV3mXauvY6RFOL5aYRMQ9nafzIa_lllgcL5zMLr8PnWftJLd_xz5abUwfkzTAuc4a-FNggxhezyin_6SXvdAf92dXGUx76BMvfur38uH9y9B5e4m1ZFwptQuv66sZ9QA50rT82YUfg-3NH-l-9iRGO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MXene%E2%80%90Based+Composites%3A+Synthesis+and+Applications+in+Rechargeable+Batteries+and+Supercapacitors&rft.jtitle=Advanced+materials+interfaces&rft.au=Yang%2C+Jian&rft.au=Bao%2C+Weizhai&rft.au=Jaumaux%2C+Pauline&rft.au=Zhang%2C+Songtao&rft.date=2019-04-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=6&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201802004&rft.externalDBID=10.1002%252Fadmi.201802004&rft.externalDocID=ADMI201802004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon