Covalent Assembly of Two‐Dimensional COF‐on‐MXene Heterostructures Enables Fast Charging Lithium Hosts
2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical sp...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 25 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti3C2Tx nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li+ transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components.
Nanoporous 2D MXene@COF heterostructures are synthesized through the covalent assembly of COF‐LZU1 with an interface‐initiated imine bonding. MXene@COF exhibits high crystallinity, stability, and hierarchical porosity. The ordered 2D channels and uniform nucleation sites boost the Li deposition kinetics, resulting in dendrite‐free and fast‐charging lithium metal batteries. |
---|---|
AbstractList | 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti3C2Tx nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li+ transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components. 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti3C2Tx nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li+ transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components. Nanoporous 2D MXene@COF heterostructures are synthesized through the covalent assembly of COF‐LZU1 with an interface‐initiated imine bonding. MXene@COF exhibits high crystallinity, stability, and hierarchical porosity. The ordered 2D channels and uniform nucleation sites boost the Li deposition kinetics, resulting in dendrite‐free and fast‐charging lithium metal batteries. 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti 3 C 2 T x nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li + transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components. |
Author | Ming, FangWang Hedhili, Mohamed N. Li, Zhen Lai, Zhiping Guo, Dong Shinde, Digambar B. Alshareef, Husam N. Cao, Li Huang, Gang Li, Chunyang Yuan, Youyou |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0002-1055-482X surname: Guo fullname: Guo, Dong organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: FangWang surname: Ming fullname: Ming, FangWang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Digambar B. surname: Shinde fullname: Shinde, Digambar B. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Li surname: Cao fullname: Cao, Li organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Gang surname: Huang fullname: Huang, Gang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Chunyang surname: Li fullname: Li, Chunyang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Zhen surname: Li fullname: Li, Zhen organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Youyou surname: Yuan fullname: Yuan, Youyou organization: King Abdullah University of Science and Technology (KAUST) – sequence: 9 givenname: Mohamed N. surname: Hedhili fullname: Hedhili, Mohamed N. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 10 givenname: Husam N. surname: Alshareef fullname: Alshareef, Husam N. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 11 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BookMark | eNqFkM1KAzEUhYMoWKtb1wHXrUnmpzPLMrVWaOmmQnfDTSZTIzNJTTJKdz6Cz-iTmFKpIIibey6X81045wKdaqMlQteUDCkh7Baquh0ywiihNI9PUI-mNB1EhGWnx52uz9GFc8-E0NEoinuoKcwrNFJ7PHZOtrzZYVPj1Zv5fP-YqFZqp4yGBhfLabgYHcZiLbXEM-mlNc7bTvjOSofvNPAm6BScx8UT2I3SGzxX_kl1LZ4Fq7tEZzU0Tl59ax89Tu9WxWwwX94_FOP5QMSMxQOeZKQSPKtBJKziMQVIcohomqU8YQLCXpEcEppHIuUykSkwmiVyxCrKeS2iPro5_N1a89JJ58tn09kQw5UsiWmWxylhwRUfXCLkcFbWpVAefMjrLaimpKTc91ruey2PvQZs-AvbWtWC3f0N5AfgTTVy94-7HE-mix_2C5o3kYE |
CitedBy_id | crossref_primary_10_1021_jacs_4c01620 crossref_primary_10_1002_advs_202206933 crossref_primary_10_1016_j_jcis_2022_08_098 crossref_primary_10_1039_D4QM00359D crossref_primary_10_1002_ange_202216874 crossref_primary_10_1007_s12274_023_5532_2 crossref_primary_10_1002_chem_202402876 crossref_primary_10_1039_D3GC03778A crossref_primary_10_1016_j_cej_2021_132510 crossref_primary_10_1002_anie_202307195 crossref_primary_10_1021_acsnano_3c08240 crossref_primary_10_1021_acsnano_4c17836 crossref_primary_10_1039_D3TA05714C crossref_primary_10_1039_D2TA02237K crossref_primary_10_1021_acssuschemeng_4c10134 crossref_primary_10_1039_D3QI02243A crossref_primary_10_3390_molecules28165953 crossref_primary_10_1002_ange_202319355 crossref_primary_10_1002_smll_202410544 crossref_primary_10_1016_j_jcis_2022_05_157 crossref_primary_10_1002_advs_202304874 crossref_primary_10_1002_aenm_202201181 crossref_primary_10_1016_j_jpowsour_2021_230901 crossref_primary_10_1021_acsnano_4c05040 crossref_primary_10_1016_j_cej_2023_146975 crossref_primary_10_1007_s43979_024_00110_x crossref_primary_10_1002_smll_202401457 crossref_primary_10_1002_adfm_202400348 crossref_primary_10_1016_j_carbon_2023_118616 crossref_primary_10_1002_anie_202319355 crossref_primary_10_1002_smll_202305730 crossref_primary_10_1002_admi_202202058 crossref_primary_10_1016_j_jpowsour_2024_234759 crossref_primary_10_1039_D4TA08466G crossref_primary_10_1039_D1NR07209A crossref_primary_10_1002_anie_202218343 crossref_primary_10_1002_cnl2_135 crossref_primary_10_1021_acsanm_4c06960 crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1039_D3QM00288H crossref_primary_10_1002_adfm_202210184 crossref_primary_10_1515_nanoph_2022_0228 crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1002_smll_202312019 crossref_primary_10_1016_j_nanoen_2024_110042 crossref_primary_10_1016_j_cej_2024_154351 crossref_primary_10_1021_acs_chemrev_4c00565 crossref_primary_10_1002_adfm_202303111 crossref_primary_10_1002_aenm_202200072 crossref_primary_10_1021_acsanm_2c03634 crossref_primary_10_6023_A22070303 crossref_primary_10_1021_acsaem_2c00734 crossref_primary_10_1016_j_jallcom_2024_174786 crossref_primary_10_1016_S1872_5805_23_60767_X crossref_primary_10_1002_ange_202218343 crossref_primary_10_1002_adfm_202304568 crossref_primary_10_1016_j_cej_2024_154997 crossref_primary_10_1016_j_est_2023_109555 crossref_primary_10_1002_aenm_202300725 crossref_primary_10_1002_adma_202307186 crossref_primary_10_1039_D3CS00572K crossref_primary_10_1021_acsmaterialslett_2c00810 crossref_primary_10_1002_advs_202404328 crossref_primary_10_1002_adma_202300841 crossref_primary_10_1021_acsami_2c15092 crossref_primary_10_1021_acsnano_4c17087 crossref_primary_10_1002_aesr_202300103 crossref_primary_10_1002_pol_20240114 crossref_primary_10_1002_cey2_272 crossref_primary_10_1039_D3CC01951A crossref_primary_10_1039_D3NR01306E crossref_primary_10_1021_acsami_3c12755 crossref_primary_10_1093_nsr_nwae045 crossref_primary_10_1002_advs_202409290 crossref_primary_10_1002_aenm_202202860 crossref_primary_10_1002_advs_202308087 crossref_primary_10_1002_chem_202302201 crossref_primary_10_1002_inf2_70011 crossref_primary_10_1002_celc_202200340 crossref_primary_10_1002_smll_202309580 crossref_primary_10_1002_adma_202201410 crossref_primary_10_1021_acsanm_2c03218 crossref_primary_10_1021_acssuschemeng_3c07466 crossref_primary_10_1021_acsnano_1c09194 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1039_D2NR04526E crossref_primary_10_1002_EXP_20220144 crossref_primary_10_1002_ange_202307195 crossref_primary_10_1021_acs_cgd_3c00206 crossref_primary_10_1007_s12613_023_2696_4 crossref_primary_10_1039_D1MH01882E crossref_primary_10_1002_anie_202406511 crossref_primary_10_1039_D3TA00696D crossref_primary_10_1016_j_envres_2022_114699 crossref_primary_10_1021_acsami_1c25264 crossref_primary_10_1021_acscatal_4c03630 crossref_primary_10_1016_j_apcatb_2024_124143 crossref_primary_10_1002_aenm_202200308 crossref_primary_10_1002_smll_202308598 crossref_primary_10_1016_j_ceramint_2023_11_284 crossref_primary_10_1016_j_cej_2022_135293 crossref_primary_10_1002_jssc_70077 crossref_primary_10_1021_jacs_3c10691 crossref_primary_10_1021_acsami_1c22787 crossref_primary_10_1002_ange_202406511 crossref_primary_10_1002_aenm_202203540 crossref_primary_10_1007_s11581_023_05294_3 crossref_primary_10_1002_batt_202200402 crossref_primary_10_1002_sstr_202300279 crossref_primary_10_1039_D3CS00782K crossref_primary_10_1002_anie_202216874 crossref_primary_10_1021_acsnano_2c02841 |
Cites_doi | 10.1038/s41467-018-02889-7 10.1002/ange.202007063 10.1002/aenm.201900219 10.1038/nenergy.2017.119 10.1016/j.nanoen.2016.06.005 10.1134/S1023193520050110 10.1021/jacs.0c00927 10.1002/adma.202003920 10.1021/jacs.9b11774 10.1038/nnano.2017.16 10.1002/anie.201913802 10.1002/adma.202004039 10.1021/acsnano.0c03042 10.1002/adma.201905879 10.1021/jacs.9b00543 10.1016/j.joule.2018.07.022 10.1016/j.nantod.2020.100991 10.1038/s41560-018-0276-z 10.1002/anie.202000375 10.1021/jacs.0c00054 10.1002/adma.201907242 10.1038/nenergy.2016.10 10.1002/adma.201901478 10.1016/j.ensm.2019.11.002 10.1038/s41467-020-15991-6 10.1016/j.joule.2020.02.006 10.1021/acsnano.7b01409 10.1016/j.ensm.2019.03.029 10.1021/jacs.9b01226 10.1002/smll.201801423 10.1038/ncomms4710 10.1021/acs.nanolett.8b04376 10.1039/C7TC01324H 10.1038/s41467-019-09932-1 10.1021/jacs.7b02648 10.1039/C9CS00883G 10.1039/D0SC01679A 10.1002/anie.202003004 10.1002/eem2.12073 10.1039/D0CS00199F 10.1002/adma.201504705 10.1002/adma.201804165 10.1016/j.nanoen.2020.104769 10.1002/aenm.201802350 10.1002/aenm.201802561 10.1002/adfm.201805946 10.1002/adma.201805334 10.1016/j.nanoen.2019.05.011 10.3389/fchem.2019.00827 10.1002/adma.201901820 10.1039/C9CS00636B 10.1021/jacs.7b06640 10.1002/anie.201814324 10.1038/s41565-019-0427-9 10.1039/C6EE01674J 10.1021/acsnano.0c06944 10.1002/anie.201710616 10.1038/s41560-019-0338-x 10.1021/acs.chemrev.9b00482 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202101194 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202101194 ADFM202101194 |
Genre | article |
GrantInformation_xml | – fundername: KAUST Baseline funderid: BAS/1/1375‐01 – fundername: KAUST competitive research funderid: URF/1/3769‐01 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4224-b580dcb8fac52db41aa59a31686b52ca9a3d09a5193c6be5e6a2185e72d1bbfc3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:29:17 EDT 2025 Tue Jul 01 04:12:29 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Wed Jan 22 16:29:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4224-b580dcb8fac52db41aa59a31686b52ca9a3d09a5193c6be5e6a2185e72d1bbfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9555-6009 0000-0002-1055-482X |
PQID | 2541894602 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2541894602 crossref_citationtrail_10_1002_adfm_202101194 crossref_primary_10_1002_adfm_202101194 wiley_primary_10_1002_adfm_202101194_ADFM202101194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2019; 4 2017; 2 2019; 31 2020; 142 2020; 120 2019; 10 2019; 58 2019; 14 2020; 59 2019; 19 2020; 14 2020; 35 2020; 56 2020; 11 2020; 33 2020; 32 2019; 141 2017; 139 2018; 9 2018; 8 2018; 3 2014; 5 2020; 4 2016; 1 2018; 2 2020; 3 2019; 61 2020; 73 2020; 132 2017; 11 2019; 23 2017; 12 2019; 25 2020; 49 2019; 29 2018; 30 2016; 28 2016; 26 2016; 9 2018; 14 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 14 start-page: 594 year: 2019 publication-title: Nat. Nanotechnol. – volume: 59 start-page: 2 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 142 start-page: 6872 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5090 year: 2017 publication-title: J. Mater. Chem. C – volume: 139 start-page: 4258 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 14 year: 2018 publication-title: Small – volume: 59 start-page: 7743 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 1 year: 2016 publication-title: Nat. Energy – volume: 142 start-page: 2012 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 6490 year: 2020 publication-title: Chem. Rev. – volume: 141 start-page: 5880 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 19 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 61 start-page: 478 year: 2019 publication-title: Nano Energy – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1076 year: 2018 publication-title: Nat. Energy – volume: 58 start-page: 2437 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 2852 year: 2020 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 2077 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 827 year: 2019 publication-title: Front. Chem. – volume: 10 start-page: 1896 year: 2019 publication-title: Nat. Commun. – volume: 49 start-page: 2701 year: 2020 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 513 year: 2016 publication-title: Nano Energy – volume: 2 start-page: 2091 year: 2018 publication-title: Joule – volume: 11 start-page: 5434 year: 2020 publication-title: Chem. Sci. – volume: 19 start-page: 494 year: 2019 publication-title: Nano Lett. – volume: 14 start-page: 8678 year: 2020 publication-title: ACS Nano – volume: 5 start-page: 3710 year: 2014 publication-title: Nat. Commun. – volume: 57 start-page: 1846 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 160 year: 2020 publication-title: Energy Environ. Mater. – volume: 142 start-page: 4862 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1517 year: 2016 publication-title: Adv. Mater. – volume: 59 start-page: 3678 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 33 year: 2020 publication-title: Adv. Mater. – volume: 23 start-page: 556 year: 2019 publication-title: Energy Storage Mater. – volume: 25 start-page: 33 year: 2019 publication-title: Energy Storage Mater. – volume: 132 year: 2020 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 start-page: 539 year: 2020 publication-title: Joule – volume: 11 start-page: 5800 year: 2017 publication-title: ACS Nano – volume: 141 start-page: 6623 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 9 start-page: 576 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 3221 year: 2016 publication-title: Energy Environ. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 56 start-page: 365 year: 2020 publication-title: Russ. J. Electrochem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 49 start-page: 5407 year: 2020 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 35 year: 2020 publication-title: Nano Today – ident: e_1_2_7_5_1 doi: 10.1038/s41467-018-02889-7 – ident: e_1_2_7_19_1 doi: 10.1002/ange.202007063 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.201900219 – ident: e_1_2_7_33_1 doi: 10.1038/nenergy.2017.119 – ident: e_1_2_7_21_1 doi: 10.1016/j.nanoen.2016.06.005 – ident: e_1_2_7_58_1 doi: 10.1134/S1023193520050110 – ident: e_1_2_7_3_1 doi: 10.1021/jacs.0c00927 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202003920 – ident: e_1_2_7_53_1 doi: 10.1021/jacs.9b11774 – ident: e_1_2_7_30_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201913802 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202004039 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.0c03042 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201905879 – ident: e_1_2_7_4_1 doi: 10.1021/jacs.9b00543 – ident: e_1_2_7_55_1 doi: 10.1016/j.joule.2018.07.022 – ident: e_1_2_7_28_1 doi: 10.1016/j.nantod.2020.100991 – ident: e_1_2_7_34_1 doi: 10.1038/s41560-018-0276-z – ident: e_1_2_7_49_1 doi: 10.1002/anie.202000375 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.0c00054 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201907242 – ident: e_1_2_7_45_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201901478 – ident: e_1_2_7_54_1 doi: 10.1016/j.ensm.2019.11.002 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-020-15991-6 – ident: e_1_2_7_56_1 doi: 10.1016/j.joule.2020.02.006 – ident: e_1_2_7_26_1 doi: 10.1021/acsnano.7b01409 – ident: e_1_2_7_44_1 doi: 10.1016/j.ensm.2019.03.029 – ident: e_1_2_7_8_1 doi: 10.1021/jacs.9b01226 – ident: e_1_2_7_48_1 doi: 10.1002/smll.201801423 – ident: e_1_2_7_37_1 doi: 10.1038/ncomms4710 – ident: e_1_2_7_47_1 doi: 10.1021/acs.nanolett.8b04376 – ident: e_1_2_7_29_1 doi: 10.1039/C7TC01324H – ident: e_1_2_7_51_1 doi: 10.1038/s41467-019-09932-1 – ident: e_1_2_7_6_1 doi: 10.1021/jacs.7b02648 – ident: e_1_2_7_11_1 doi: 10.1039/C9CS00883G – ident: e_1_2_7_2_1 doi: 10.1039/D0SC01679A – ident: e_1_2_7_22_1 doi: 10.1002/anie.202003004 – ident: e_1_2_7_59_1 doi: 10.1002/eem2.12073 – ident: e_1_2_7_15_1 doi: 10.1039/D0CS00199F – ident: e_1_2_7_24_1 doi: 10.1002/adma.201504705 – ident: e_1_2_7_52_1 doi: 10.1002/adma.201804165 – ident: e_1_2_7_36_1 doi: 10.1016/j.nanoen.2020.104769 – ident: e_1_2_7_50_1 doi: 10.1002/aenm.201802350 – ident: e_1_2_7_57_1 doi: 10.1002/aenm.201802561 – ident: e_1_2_7_25_1 doi: 10.1002/adfm.201805946 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201805334 – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2019.05.011 – ident: e_1_2_7_42_1 doi: 10.3389/fchem.2019.00827 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201901820 – ident: e_1_2_7_31_1 doi: 10.1039/C9CS00636B – ident: e_1_2_7_1_1 doi: 10.1021/jacs.7b06640 – ident: e_1_2_7_41_1 doi: 10.1002/anie.201814324 – ident: e_1_2_7_43_1 doi: 10.1038/s41565-019-0427-9 – ident: e_1_2_7_38_1 doi: 10.1039/C6EE01674J – ident: e_1_2_7_35_1 doi: 10.1021/acsnano.0c06944 – ident: e_1_2_7_17_1 doi: 10.1002/anie.201710616 – ident: e_1_2_7_32_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_46_1 doi: 10.1021/acs.chemrev.9b00482 |
SSID | ssj0017734 |
Score | 2.6500235 |
Snippet | 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 2D heterostructures 3D Scaffolds Assembling Charge transfer Charge transport Charging Covalence covalent organic frameworks Dendritic structure Energy storage Heterostructures Lithium lithium metal batteries Mass transport Materials science Morphology MXenes Nanosheets Storage batteries |
Title | Covalent Assembly of Two‐Dimensional COF‐on‐MXene Heterostructures Enables Fast Charging Lithium Hosts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202101194 https://www.proquest.com/docview/2541894602 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQXOCw_K62y498QNpTIHZjJz1WLVGFKEgsSL1F48TWoi3NSmmFdk88wj7jPgkzcRsKEkJaLpET2VHisT3f2DPfMHYMSbuwTuvAJrRbFYcuAEHJzNouVhAabb2D7KUe3EbnIzVaiuL3_BDNhhvNjHq9pgkOpjp9Jg2FwlEkOZosAg1xXITJYYtQ0XXDHyXi2B8ra0EOXmK0YG0M5enL5i-10jPUXAastcZJNxksvtU7mvw8mU3NSf7nFY3jR35mi32aw1He9eNnm63YyQ7bWCIp3GXjXomjEXUTpwPiezP-zUvHbx7Kf49_-5QbwPN68N5Vik_KCV6GI1xB-YA8bUpPUDtDq56f1XFaFU-hmnI656cESfzibvrjbnbPB1i12mO36dlNbxDMczQEeYTaPzAqCYvcJA5yJQsTCQDVAcqGpY2SOWC5CDtAODHXxiqrAUGFsrEshDEub39mq5NyYr8wDgXYjooKScEFaAUmoAyFDUvX1saFosWChYyyfE5gTnk0xpmnXpYZ9WLW9GKLfWvq__LUHW_WPFiIPJtP4SpDy1kknUiHssVkLbt33pJ1--mwufv6P4322TqVvSvaAVtFCdlDBD1Tc8TWuv3hxfejeoA_AdBy_Xc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAOQIGKpT_4AOKUNvbGTvbQQ7XbKKW7RUJbaW_BTmy16naDyK6qcuIR-ip9FR6BJ8ETJ2mLhJCQeuglSizHSjwznhl75huAdzLq5toI4ekId6tC33iSYjGzrgm59JXQLkD2UCRHwccJnyzBVZML4_Ah2g03lIxqvUYBxw3p7WvUUJkbTCW3Pgu1nngdV3mgL86t11bu7A8sid8zFu-N-4lXFxbwssCqLE_xyM8zFRmZcZargErJexJLOAnFWSbtfe73JBo3mVCaayGtJuQ6ZDlVymRdO-4DeIhlxBGuf_C5RayiYegOsgXFkDI6aXAifbZ9-3tv68Fr4_amiVzpuPgZ_Gxmx4W2nG4t5mor-_4HcOS9mr7n8LS2uMmuE5EVWNKzF_DkBg7jS5j2CytwVv0SPAM_U9MLUhgyPi9-_bgcYPkDB11C-p9i21LM7GU0sUqCJBhMVDgM3sU3XZK9KhWtJLEs5wRDGbAGFBmezI9PFmcksV3LV3B0J7-7CsuzYqZfA5G51D0e5AzzJ6yjG0muMDOama5Qxqcd8BqmSLMaox1LhUxThy7NUqRa2lKtAx_a_l8dOslfe643PJbWq1SZMh7QqBcIn3WAVczyj1HS3UE8ap_e_M9Lb-FRMh4N0-H-4cEaPMZ2F3m3DsuWWnrD2nhztVlJFYEvd82HvwGwwFu0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4lN-KhQI-gDiljb2xkxw4VJtGW_oDQq20t2DHtqjYbiqyq6o98Qg8Cq_CK_AkeOIkbZEQElIPXKLEcqzEM-OZsWe-AXgpk6E2VojAJLhbFYc2kBSLmQ1tzGWohPEBsvtifBi9nfDJEnzvcmE8PkS_4YaS0azXKOAn2m5cgIZKbTGT3Lks1DnibVjljjk7dU5b_WY7cxR-xVi-dTAaB21dgaCMnMYKFE9CXarEypIzrSIqJU8lVnASirNSunsdphJtm1Iow42QThFyEzNNlbLl0I17A25GIkyxWET2oQesonHsz7EFxYgyOulgIkO2cfV7r6rBC9v2soXcqLj8LvzoJsdHtnxeX8zVenn-G27k_zR792CltbfJpheQ-7BkZg_gziUUxocwHVVO3JzyJXgCfqymZ6Sy5OC0-vn1W4bFDzxwCRm9y11LNXOXvYlTEWSMoUSVR-BdfDE12WoS0WqSy3pOMJABK0CR3aP5p6PFMRm7rvUjOLyW312F5Vk1M4-BSC1NyiPNMHvCubmJ5ArzopkdCmVDOoCg44mibBHasVDItPDY0qxAqhU91Qbwuu9_4rFJ_thzrWOxol2j6oLxiCap42I2ANbwyl9GKTazfK9_evIvL72AW--zvNjd3t95Crex2YfdrcGyI5Z55gy8uXreyBSBj9fNhr8ALgpaYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Assembly+of+Two%E2%80%90Dimensional+COF%E2%80%90on%E2%80%90MXene+Heterostructures+Enables+Fast+Charging+Lithium+Hosts&rft.jtitle=Advanced+functional+materials&rft.au=Guo%2C+Dong&rft.au=Ming%2C+FangWang&rft.au=Shinde%2C+Digambar+B.&rft.au=Cao%2C+Li&rft.date=2021-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=25&rft_id=info:doi/10.1002%2Fadfm.202101194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202101194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |