Covalent Assembly of Two‐Dimensional COF‐on‐MXene Heterostructures Enables Fast Charging Lithium Hosts

2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical sp...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 25
Main Authors Guo, Dong, Ming, FangWang, Shinde, Digambar B., Cao, Li, Huang, Gang, Li, Chunyang, Li, Zhen, Yuan, Youyou, Hedhili, Mohamed N., Alshareef, Husam N., Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti3C2Tx nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li+ transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components. Nanoporous 2D MXene@COF heterostructures are synthesized through the covalent assembly of COF‐LZU1 with an interface‐initiated imine bonding. MXene@COF exhibits high crystallinity, stability, and hierarchical porosity. The ordered 2D channels and uniform nucleation sites boost the Li deposition kinetics, resulting in dendrite‐free and fast‐charging lithium metal batteries.
AbstractList 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti3C2Tx nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li+ transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components.
2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti3C2Tx nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li+ transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components. Nanoporous 2D MXene@COF heterostructures are synthesized through the covalent assembly of COF‐LZU1 with an interface‐initiated imine bonding. MXene@COF exhibits high crystallinity, stability, and hierarchical porosity. The ordered 2D channels and uniform nucleation sites boost the Li deposition kinetics, resulting in dendrite‐free and fast‐charging lithium metal batteries.
2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing attention for fast mass transport and charge transfer, which are highly desirable features for efficient energy storage. Here, the chemical space of 2D–2D heterostructures is extended by covalently assembling covalent organic frameworks (COFs) on MXene nanosheets. Unlike most COFs, which are generally produced as solid powders, ultrathin 2D COF‐LZU1 grows in situ on aminated Ti 3 C 2 T x nanosheets with covalent bonding, producing a robust MXene@COF heterostructure with high crystallinity, hierarchical porosity, and conductive frameworks. When used as lithium hosts in Li metal batteries, lithium storage and charge transport are significantly improved. Both spectroelectrochemical and theoretical analyses demonstrate that lithiated COF channels are important as fast Li + transport layers, by which Li ions can be precisely nucleated. This affords dendrite‐free and fast‐charging anodes, which would be difficult to achieve using individual components.
Author Ming, FangWang
Hedhili, Mohamed N.
Li, Zhen
Lai, Zhiping
Guo, Dong
Shinde, Digambar B.
Alshareef, Husam N.
Cao, Li
Huang, Gang
Li, Chunyang
Yuan, Youyou
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0002-1055-482X
  surname: Guo
  fullname: Guo, Dong
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: FangWang
  surname: Ming
  fullname: Ming, FangWang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Digambar B.
  surname: Shinde
  fullname: Shinde, Digambar B.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Chunyang
  surname: Li
  fullname: Li, Chunyang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Youyou
  surname: Yuan
  fullname: Yuan, Youyou
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 9
  givenname: Mohamed N.
  surname: Hedhili
  fullname: Hedhili, Mohamed N.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 10
  givenname: Husam N.
  surname: Alshareef
  fullname: Alshareef, Husam N.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 11
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BookMark eNqFkM1KAzEUhYMoWKtb1wHXrUnmpzPLMrVWaOmmQnfDTSZTIzNJTTJKdz6Cz-iTmFKpIIibey6X81045wKdaqMlQteUDCkh7Baquh0ywiihNI9PUI-mNB1EhGWnx52uz9GFc8-E0NEoinuoKcwrNFJ7PHZOtrzZYVPj1Zv5fP-YqFZqp4yGBhfLabgYHcZiLbXEM-mlNc7bTvjOSofvNPAm6BScx8UT2I3SGzxX_kl1LZ4Fq7tEZzU0Tl59ax89Tu9WxWwwX94_FOP5QMSMxQOeZKQSPKtBJKziMQVIcohomqU8YQLCXpEcEppHIuUykSkwmiVyxCrKeS2iPro5_N1a89JJ58tn09kQw5UsiWmWxylhwRUfXCLkcFbWpVAefMjrLaimpKTc91ruey2PvQZs-AvbWtWC3f0N5AfgTTVy94-7HE-mix_2C5o3kYE
CitedBy_id crossref_primary_10_1021_jacs_4c01620
crossref_primary_10_1002_advs_202206933
crossref_primary_10_1016_j_jcis_2022_08_098
crossref_primary_10_1039_D4QM00359D
crossref_primary_10_1002_ange_202216874
crossref_primary_10_1007_s12274_023_5532_2
crossref_primary_10_1002_chem_202402876
crossref_primary_10_1039_D3GC03778A
crossref_primary_10_1016_j_cej_2021_132510
crossref_primary_10_1002_anie_202307195
crossref_primary_10_1021_acsnano_3c08240
crossref_primary_10_1021_acsnano_4c17836
crossref_primary_10_1039_D3TA05714C
crossref_primary_10_1039_D2TA02237K
crossref_primary_10_1021_acssuschemeng_4c10134
crossref_primary_10_1039_D3QI02243A
crossref_primary_10_3390_molecules28165953
crossref_primary_10_1002_ange_202319355
crossref_primary_10_1002_smll_202410544
crossref_primary_10_1016_j_jcis_2022_05_157
crossref_primary_10_1002_advs_202304874
crossref_primary_10_1002_aenm_202201181
crossref_primary_10_1016_j_jpowsour_2021_230901
crossref_primary_10_1021_acsnano_4c05040
crossref_primary_10_1016_j_cej_2023_146975
crossref_primary_10_1007_s43979_024_00110_x
crossref_primary_10_1002_smll_202401457
crossref_primary_10_1002_adfm_202400348
crossref_primary_10_1016_j_carbon_2023_118616
crossref_primary_10_1002_anie_202319355
crossref_primary_10_1002_smll_202305730
crossref_primary_10_1002_admi_202202058
crossref_primary_10_1016_j_jpowsour_2024_234759
crossref_primary_10_1039_D4TA08466G
crossref_primary_10_1039_D1NR07209A
crossref_primary_10_1002_anie_202218343
crossref_primary_10_1002_cnl2_135
crossref_primary_10_1021_acsanm_4c06960
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1039_D3QM00288H
crossref_primary_10_1002_adfm_202210184
crossref_primary_10_1515_nanoph_2022_0228
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1002_smll_202312019
crossref_primary_10_1016_j_nanoen_2024_110042
crossref_primary_10_1016_j_cej_2024_154351
crossref_primary_10_1021_acs_chemrev_4c00565
crossref_primary_10_1002_adfm_202303111
crossref_primary_10_1002_aenm_202200072
crossref_primary_10_1021_acsanm_2c03634
crossref_primary_10_6023_A22070303
crossref_primary_10_1021_acsaem_2c00734
crossref_primary_10_1016_j_jallcom_2024_174786
crossref_primary_10_1016_S1872_5805_23_60767_X
crossref_primary_10_1002_ange_202218343
crossref_primary_10_1002_adfm_202304568
crossref_primary_10_1016_j_cej_2024_154997
crossref_primary_10_1016_j_est_2023_109555
crossref_primary_10_1002_aenm_202300725
crossref_primary_10_1002_adma_202307186
crossref_primary_10_1039_D3CS00572K
crossref_primary_10_1021_acsmaterialslett_2c00810
crossref_primary_10_1002_advs_202404328
crossref_primary_10_1002_adma_202300841
crossref_primary_10_1021_acsami_2c15092
crossref_primary_10_1021_acsnano_4c17087
crossref_primary_10_1002_aesr_202300103
crossref_primary_10_1002_pol_20240114
crossref_primary_10_1002_cey2_272
crossref_primary_10_1039_D3CC01951A
crossref_primary_10_1039_D3NR01306E
crossref_primary_10_1021_acsami_3c12755
crossref_primary_10_1093_nsr_nwae045
crossref_primary_10_1002_advs_202409290
crossref_primary_10_1002_aenm_202202860
crossref_primary_10_1002_advs_202308087
crossref_primary_10_1002_chem_202302201
crossref_primary_10_1002_inf2_70011
crossref_primary_10_1002_celc_202200340
crossref_primary_10_1002_smll_202309580
crossref_primary_10_1002_adma_202201410
crossref_primary_10_1021_acsanm_2c03218
crossref_primary_10_1021_acssuschemeng_3c07466
crossref_primary_10_1021_acsnano_1c09194
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1039_D2NR04526E
crossref_primary_10_1002_EXP_20220144
crossref_primary_10_1002_ange_202307195
crossref_primary_10_1021_acs_cgd_3c00206
crossref_primary_10_1007_s12613_023_2696_4
crossref_primary_10_1039_D1MH01882E
crossref_primary_10_1002_anie_202406511
crossref_primary_10_1039_D3TA00696D
crossref_primary_10_1016_j_envres_2022_114699
crossref_primary_10_1021_acsami_1c25264
crossref_primary_10_1021_acscatal_4c03630
crossref_primary_10_1016_j_apcatb_2024_124143
crossref_primary_10_1002_aenm_202200308
crossref_primary_10_1002_smll_202308598
crossref_primary_10_1016_j_ceramint_2023_11_284
crossref_primary_10_1016_j_cej_2022_135293
crossref_primary_10_1002_jssc_70077
crossref_primary_10_1021_jacs_3c10691
crossref_primary_10_1021_acsami_1c22787
crossref_primary_10_1002_ange_202406511
crossref_primary_10_1002_aenm_202203540
crossref_primary_10_1007_s11581_023_05294_3
crossref_primary_10_1002_batt_202200402
crossref_primary_10_1002_sstr_202300279
crossref_primary_10_1039_D3CS00782K
crossref_primary_10_1002_anie_202216874
crossref_primary_10_1021_acsnano_2c02841
Cites_doi 10.1038/s41467-018-02889-7
10.1002/ange.202007063
10.1002/aenm.201900219
10.1038/nenergy.2017.119
10.1016/j.nanoen.2016.06.005
10.1134/S1023193520050110
10.1021/jacs.0c00927
10.1002/adma.202003920
10.1021/jacs.9b11774
10.1038/nnano.2017.16
10.1002/anie.201913802
10.1002/adma.202004039
10.1021/acsnano.0c03042
10.1002/adma.201905879
10.1021/jacs.9b00543
10.1016/j.joule.2018.07.022
10.1016/j.nantod.2020.100991
10.1038/s41560-018-0276-z
10.1002/anie.202000375
10.1021/jacs.0c00054
10.1002/adma.201907242
10.1038/nenergy.2016.10
10.1002/adma.201901478
10.1016/j.ensm.2019.11.002
10.1038/s41467-020-15991-6
10.1016/j.joule.2020.02.006
10.1021/acsnano.7b01409
10.1016/j.ensm.2019.03.029
10.1021/jacs.9b01226
10.1002/smll.201801423
10.1038/ncomms4710
10.1021/acs.nanolett.8b04376
10.1039/C7TC01324H
10.1038/s41467-019-09932-1
10.1021/jacs.7b02648
10.1039/C9CS00883G
10.1039/D0SC01679A
10.1002/anie.202003004
10.1002/eem2.12073
10.1039/D0CS00199F
10.1002/adma.201504705
10.1002/adma.201804165
10.1016/j.nanoen.2020.104769
10.1002/aenm.201802350
10.1002/aenm.201802561
10.1002/adfm.201805946
10.1002/adma.201805334
10.1016/j.nanoen.2019.05.011
10.3389/fchem.2019.00827
10.1002/adma.201901820
10.1039/C9CS00636B
10.1021/jacs.7b06640
10.1002/anie.201814324
10.1038/s41565-019-0427-9
10.1039/C6EE01674J
10.1021/acsnano.0c06944
10.1002/anie.201710616
10.1038/s41560-019-0338-x
10.1021/acs.chemrev.9b00482
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202101194
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202101194
ADFM202101194
Genre article
GrantInformation_xml – fundername: KAUST Baseline
  funderid: BAS/1/1375‐01
– fundername: KAUST competitive research
  funderid: URF/1/3769‐01
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4224-b580dcb8fac52db41aa59a31686b52ca9a3d09a5193c6be5e6a2185e72d1bbfc3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:29:17 EDT 2025
Tue Jul 01 04:12:29 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Wed Jan 22 16:29:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4224-b580dcb8fac52db41aa59a31686b52ca9a3d09a5193c6be5e6a2185e72d1bbfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9555-6009
0000-0002-1055-482X
PQID 2541894602
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2541894602
crossref_citationtrail_10_1002_adfm_202101194
crossref_primary_10_1002_adfm_202101194
wiley_primary_10_1002_adfm_202101194_ADFM202101194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2019; 4
2017; 2
2019; 31
2020; 142
2020; 120
2019; 10
2019; 58
2019; 14
2020; 59
2019; 19
2020; 14
2020; 35
2020; 56
2020; 11
2020; 33
2020; 32
2019; 141
2017; 139
2018; 9
2018; 8
2018; 3
2014; 5
2020; 4
2016; 1
2018; 2
2020; 3
2019; 61
2020; 73
2020; 132
2017; 11
2019; 23
2017; 12
2019; 25
2020; 49
2019; 29
2018; 30
2016; 28
2016; 26
2016; 9
2018; 14
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 14
  start-page: 594
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 59
  start-page: 2
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  start-page: 6872
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5090
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 139
  start-page: 4258
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 59
  start-page: 7743
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 142
  start-page: 2012
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 6490
  year: 2020
  publication-title: Chem. Rev.
– volume: 141
  start-page: 5880
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 19
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 61
  start-page: 478
  year: 2019
  publication-title: Nano Energy
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1076
  year: 2018
  publication-title: Nat. Energy
– volume: 58
  start-page: 2437
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 2852
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 2077
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 827
  year: 2019
  publication-title: Front. Chem.
– volume: 10
  start-page: 1896
  year: 2019
  publication-title: Nat. Commun.
– volume: 49
  start-page: 2701
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 513
  year: 2016
  publication-title: Nano Energy
– volume: 2
  start-page: 2091
  year: 2018
  publication-title: Joule
– volume: 11
  start-page: 5434
  year: 2020
  publication-title: Chem. Sci.
– volume: 19
  start-page: 494
  year: 2019
  publication-title: Nano Lett.
– volume: 14
  start-page: 8678
  year: 2020
  publication-title: ACS Nano
– volume: 5
  start-page: 3710
  year: 2014
  publication-title: Nat. Commun.
– volume: 57
  start-page: 1846
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 160
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 142
  start-page: 4862
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1517
  year: 2016
  publication-title: Adv. Mater.
– volume: 59
  start-page: 3678
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  year: 2020
  publication-title: Adv. Mater.
– volume: 23
  start-page: 556
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 25
  start-page: 33
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 132
  year: 2020
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 4
  start-page: 539
  year: 2020
  publication-title: Joule
– volume: 11
  start-page: 5800
  year: 2017
  publication-title: ACS Nano
– volume: 141
  start-page: 6623
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 9
  start-page: 576
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3221
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 56
  start-page: 365
  year: 2020
  publication-title: Russ. J. Electrochem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 49
  start-page: 5407
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 35
  year: 2020
  publication-title: Nano Today
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-018-02889-7
– ident: e_1_2_7_19_1
  doi: 10.1002/ange.202007063
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.201900219
– ident: e_1_2_7_33_1
  doi: 10.1038/nenergy.2017.119
– ident: e_1_2_7_21_1
  doi: 10.1016/j.nanoen.2016.06.005
– ident: e_1_2_7_58_1
  doi: 10.1134/S1023193520050110
– ident: e_1_2_7_3_1
  doi: 10.1021/jacs.0c00927
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202003920
– ident: e_1_2_7_53_1
  doi: 10.1021/jacs.9b11774
– ident: e_1_2_7_30_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201913802
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.202004039
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.0c03042
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201905879
– ident: e_1_2_7_4_1
  doi: 10.1021/jacs.9b00543
– ident: e_1_2_7_55_1
  doi: 10.1016/j.joule.2018.07.022
– ident: e_1_2_7_28_1
  doi: 10.1016/j.nantod.2020.100991
– ident: e_1_2_7_34_1
  doi: 10.1038/s41560-018-0276-z
– ident: e_1_2_7_49_1
  doi: 10.1002/anie.202000375
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.0c00054
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201907242
– ident: e_1_2_7_45_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201901478
– ident: e_1_2_7_54_1
  doi: 10.1016/j.ensm.2019.11.002
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-020-15991-6
– ident: e_1_2_7_56_1
  doi: 10.1016/j.joule.2020.02.006
– ident: e_1_2_7_26_1
  doi: 10.1021/acsnano.7b01409
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ensm.2019.03.029
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.9b01226
– ident: e_1_2_7_48_1
  doi: 10.1002/smll.201801423
– ident: e_1_2_7_37_1
  doi: 10.1038/ncomms4710
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.nanolett.8b04376
– ident: e_1_2_7_29_1
  doi: 10.1039/C7TC01324H
– ident: e_1_2_7_51_1
  doi: 10.1038/s41467-019-09932-1
– ident: e_1_2_7_6_1
  doi: 10.1021/jacs.7b02648
– ident: e_1_2_7_11_1
  doi: 10.1039/C9CS00883G
– ident: e_1_2_7_2_1
  doi: 10.1039/D0SC01679A
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202003004
– ident: e_1_2_7_59_1
  doi: 10.1002/eem2.12073
– ident: e_1_2_7_15_1
  doi: 10.1039/D0CS00199F
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201504705
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201804165
– ident: e_1_2_7_36_1
  doi: 10.1016/j.nanoen.2020.104769
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.201802350
– ident: e_1_2_7_57_1
  doi: 10.1002/aenm.201802561
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.201805946
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201805334
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2019.05.011
– ident: e_1_2_7_42_1
  doi: 10.3389/fchem.2019.00827
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201901820
– ident: e_1_2_7_31_1
  doi: 10.1039/C9CS00636B
– ident: e_1_2_7_1_1
  doi: 10.1021/jacs.7b06640
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.201814324
– ident: e_1_2_7_43_1
  doi: 10.1038/s41565-019-0427-9
– ident: e_1_2_7_38_1
  doi: 10.1039/C6EE01674J
– ident: e_1_2_7_35_1
  doi: 10.1021/acsnano.0c06944
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.201710616
– ident: e_1_2_7_32_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.chemrev.9b00482
SSID ssj0017734
Score 2.6500235
Snippet 2D heterostructured materials combining ultrathin nanosheet morphology, defined pore configuration, and stable hybrid compositions, have attracted increasing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D heterostructures
3D Scaffolds
Assembling
Charge transfer
Charge transport
Charging
Covalence
covalent organic frameworks
Dendritic structure
Energy storage
Heterostructures
Lithium
lithium metal batteries
Mass transport
Materials science
Morphology
MXenes
Nanosheets
Storage batteries
Title Covalent Assembly of Two‐Dimensional COF‐on‐MXene Heterostructures Enables Fast Charging Lithium Hosts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202101194
https://www.proquest.com/docview/2541894602
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQXOCw_K62y498QNpTIHZjJz1WLVGFKEgsSL1F48TWoi3NSmmFdk88wj7jPgkzcRsKEkJaLpET2VHisT3f2DPfMHYMSbuwTuvAJrRbFYcuAEHJzNouVhAabb2D7KUe3EbnIzVaiuL3_BDNhhvNjHq9pgkOpjp9Jg2FwlEkOZosAg1xXITJYYtQ0XXDHyXi2B8ra0EOXmK0YG0M5enL5i-10jPUXAastcZJNxksvtU7mvw8mU3NSf7nFY3jR35mi32aw1He9eNnm63YyQ7bWCIp3GXjXomjEXUTpwPiezP-zUvHbx7Kf49_-5QbwPN68N5Vik_KCV6GI1xB-YA8bUpPUDtDq56f1XFaFU-hmnI656cESfzibvrjbnbPB1i12mO36dlNbxDMczQEeYTaPzAqCYvcJA5yJQsTCQDVAcqGpY2SOWC5CDtAODHXxiqrAUGFsrEshDEub39mq5NyYr8wDgXYjooKScEFaAUmoAyFDUvX1saFosWChYyyfE5gTnk0xpmnXpYZ9WLW9GKLfWvq__LUHW_WPFiIPJtP4SpDy1kknUiHssVkLbt33pJ1--mwufv6P4322TqVvSvaAVtFCdlDBD1Tc8TWuv3hxfejeoA_AdBy_Xc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAOQIGKpT_4AOKUNvbGTvbQQ7XbKKW7RUJbaW_BTmy16naDyK6qcuIR-ip9FR6BJ8ETJ2mLhJCQeuglSizHSjwznhl75huAdzLq5toI4ekId6tC33iSYjGzrgm59JXQLkD2UCRHwccJnyzBVZML4_Ah2g03lIxqvUYBxw3p7WvUUJkbTCW3Pgu1nngdV3mgL86t11bu7A8sid8zFu-N-4lXFxbwssCqLE_xyM8zFRmZcZargErJexJLOAnFWSbtfe73JBo3mVCaayGtJuQ6ZDlVymRdO-4DeIhlxBGuf_C5RayiYegOsgXFkDI6aXAifbZ9-3tv68Fr4_amiVzpuPgZ_Gxmx4W2nG4t5mor-_4HcOS9mr7n8LS2uMmuE5EVWNKzF_DkBg7jS5j2CytwVv0SPAM_U9MLUhgyPi9-_bgcYPkDB11C-p9i21LM7GU0sUqCJBhMVDgM3sU3XZK9KhWtJLEs5wRDGbAGFBmezI9PFmcksV3LV3B0J7-7CsuzYqZfA5G51D0e5AzzJ6yjG0muMDOama5Qxqcd8BqmSLMaox1LhUxThy7NUqRa2lKtAx_a_l8dOslfe643PJbWq1SZMh7QqBcIn3WAVczyj1HS3UE8ap_e_M9Lb-FRMh4N0-H-4cEaPMZ2F3m3DsuWWnrD2nhztVlJFYEvd82HvwGwwFu0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4lN-KhQI-gDiljb2xkxw4VJtGW_oDQq20t2DHtqjYbiqyq6o98Qg8Cq_CK_AkeOIkbZEQElIPXKLEcqzEM-OZsWe-AXgpk6E2VojAJLhbFYc2kBSLmQ1tzGWohPEBsvtifBi9nfDJEnzvcmE8PkS_4YaS0azXKOAn2m5cgIZKbTGT3Lks1DnibVjljjk7dU5b_WY7cxR-xVi-dTAaB21dgaCMnMYKFE9CXarEypIzrSIqJU8lVnASirNSunsdphJtm1Iow42QThFyEzNNlbLl0I17A25GIkyxWET2oQesonHsz7EFxYgyOulgIkO2cfV7r6rBC9v2soXcqLj8LvzoJsdHtnxeX8zVenn-G27k_zR792CltbfJpheQ-7BkZg_gziUUxocwHVVO3JzyJXgCfqymZ6Sy5OC0-vn1W4bFDzxwCRm9y11LNXOXvYlTEWSMoUSVR-BdfDE12WoS0WqSy3pOMJABK0CR3aP5p6PFMRm7rvUjOLyW312F5Vk1M4-BSC1NyiPNMHvCubmJ5ArzopkdCmVDOoCg44mibBHasVDItPDY0qxAqhU91Qbwuu9_4rFJ_thzrWOxol2j6oLxiCap42I2ANbwyl9GKTazfK9_evIvL72AW--zvNjd3t95Crex2YfdrcGyI5Z55gy8uXreyBSBj9fNhr8ALgpaYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Assembly+of+Two%E2%80%90Dimensional+COF%E2%80%90on%E2%80%90MXene+Heterostructures+Enables+Fast+Charging+Lithium+Hosts&rft.jtitle=Advanced+functional+materials&rft.au=Guo%2C+Dong&rft.au=Ming%2C+FangWang&rft.au=Shinde%2C+Digambar+B.&rft.au=Cao%2C+Li&rft.date=2021-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=25&rft_id=info:doi/10.1002%2Fadfm.202101194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202101194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon