Conductive Copper Niobate: Superior Li+‐Storage Capability and Novel Li+‐Transport Mechanism
Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivit...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 39 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10−5 S cm−1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10−13 cm2 s−1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g−1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries.
Microsized Copper Niobate having a high electronic conductivity and an impressive average Li+ diffusion coefficient is fabricated via a conventional solid‐state reaction, which exhibits superior electrochemical performance as an anode material. Research on the Li+ transport reveals the fast Li+ transport pathways of the grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale). |
---|---|
AbstractList | Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10−5 S cm−1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10−13 cm2 s−1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g−1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries.
Microsized Copper Niobate having a high electronic conductivity and an impressive average Li+ diffusion coefficient is fabricated via a conventional solid‐state reaction, which exhibits superior electrochemical performance as an anode material. Research on the Li+ transport reveals the fast Li+ transport pathways of the grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale). Niobates with shear ReO 3 crystal structures are remarkably promising anode materials for Li + batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li + conductivities. Here, micrometer‐sized copper niobate (Cu 2 Nb 34 O 87 ) bulk as a new anode material having a high electronic conductivity of 2.1 × 10 −5 S cm −1 and an impressive average Li + diffusion coefficient of ≈3.5 × 10 −13 cm 2 s −1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g −1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li + transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu 2 Nb 34 O 87 . Therefore, these results could pave the way for practical application of Cu 2 Nb 34 O 87 in high‐performance Li + batteries. Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10−5 S cm−1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10−13 cm2 s−1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g−1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries. |
Author | Zhao, Xuebing Che, Renchao Li, Xiaohui Chen, Yongjun Li, Xiao Yang, Liting Pei, Ke Zhu, Xiangzhen You, Wenbin Lin, Chunfu |
Author_xml | – sequence: 1 givenname: Liting surname: Yang fullname: Yang, Liting organization: Fudan University – sequence: 2 givenname: Xiangzhen surname: Zhu fullname: Zhu, Xiangzhen organization: Hainan University – sequence: 3 givenname: Xiaohui surname: Li fullname: Li, Xiaohui organization: Fudan University – sequence: 4 givenname: Xuebing surname: Zhao fullname: Zhao, Xuebing organization: Fudan University – sequence: 5 givenname: Ke surname: Pei fullname: Pei, Ke organization: Fudan University – sequence: 6 givenname: Wenbin surname: You fullname: You, Wenbin organization: Fudan University – sequence: 7 givenname: Xiao surname: Li fullname: Li, Xiao organization: Fudan University – sequence: 8 givenname: Yongjun surname: Chen fullname: Chen, Yongjun organization: Hainan University – sequence: 9 givenname: Chunfu orcidid: 0000-0003-0251-7938 surname: Lin fullname: Lin, Chunfu email: linchunfu@qdu.edu.cn organization: Hainan University – sequence: 10 givenname: Renchao orcidid: 0000-0002-6583-7114 surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkE1LAzEQhoMoWGuvnhc8ytZ87na9laV-QFsPreeYzaaask3WJFvpzZ_gb_SXuKWlgiDOZWbgeWbgPQPHxhoFwAWCfQQhvhbKrPoYogxilNIj0EEJonEyoPD4MBN8CnreL2FbNEOQkA54zq0pGxn0WkW5rWvloqm2hQjqJpo17aqti8b66uvjcxasEy8tJmpR6EqHTSRMGU3tWlV7ZO6E8bV1IZoo-SqM9qtzcLIQlVe9fe-Cp9vRPL-Px493D_lwHEuKMY3RgAgMoZAlKzKZFYxISBZIYkEYgwVDWSppmjAqRUmwpESxclDShLA0SQqUki643N2tnX1rlA98aRtn2pccE5hAkmGEWqq_o6Sz3ju14LXTK-E2HEG-DZJvg-SHIFuB_hKkDiJoa4ITuvpby3bau67U5p8nfDiaTn7cbzmDiuo |
CitedBy_id | crossref_primary_10_1002_adma_202200914 crossref_primary_10_1002_aenm_202200519 crossref_primary_10_1142_S1793604720500204 crossref_primary_10_1016_j_jcis_2023_11_155 crossref_primary_10_1002_eem2_12583 crossref_primary_10_1002_adma_202107262 crossref_primary_10_1021_acsami_2c03461 crossref_primary_10_1063_5_0075430 crossref_primary_10_1002_smll_202200972 crossref_primary_10_1016_j_electacta_2022_141622 crossref_primary_10_1002_aenm_202201967 crossref_primary_10_1021_acsanm_9b02504 crossref_primary_10_1080_10667857_2021_1898712 crossref_primary_10_1002_adfm_202107060 crossref_primary_10_1002_ente_202200472 crossref_primary_10_1039_D1TA00613D crossref_primary_10_1002_adfm_202303668 crossref_primary_10_1002_adfm_202206129 crossref_primary_10_1016_j_jcis_2021_05_160 crossref_primary_10_1038_s41467_024_50455_1 crossref_primary_10_1021_acsami_1c04194 crossref_primary_10_1142_S1793604720500058 crossref_primary_10_1002_advs_202202201 crossref_primary_10_55713_jmmm_v35i2_2338 crossref_primary_10_3390_ma16051818 crossref_primary_10_1016_j_ensm_2020_05_012 crossref_primary_10_1016_j_jechem_2021_08_012 crossref_primary_10_1007_s11581_020_03516_6 crossref_primary_10_1111_jace_20201 crossref_primary_10_1016_j_apcata_2023_119234 crossref_primary_10_1039_D0QI01075H crossref_primary_10_1007_s42823_023_00553_9 crossref_primary_10_1039_D1TA06996A crossref_primary_10_1002_celc_202001122 crossref_primary_10_1002_asia_202200288 crossref_primary_10_1002_aenm_202102550 crossref_primary_10_1016_j_electacta_2019_135380 crossref_primary_10_1016_j_electacta_2023_142211 crossref_primary_10_1007_s11581_019_03375_w crossref_primary_10_1039_C9NR07895A crossref_primary_10_1016_j_cej_2024_153397 crossref_primary_10_1080_10667857_2020_1712533 crossref_primary_10_1021_acssuschemeng_1c04708 crossref_primary_10_1038_s41467_020_18268_0 crossref_primary_10_1016_j_esci_2023_100158 crossref_primary_10_1039_D0CC02016H crossref_primary_10_1016_j_jcis_2022_06_133 crossref_primary_10_1016_j_jallcom_2022_163980 crossref_primary_10_1039_C9QM00694J crossref_primary_10_1002_aenm_202202097 crossref_primary_10_1016_j_ceramint_2021_05_169 crossref_primary_10_1002_advs_202105119 crossref_primary_10_1002_adfm_202103971 crossref_primary_10_1016_j_jcis_2025_02_032 crossref_primary_10_3989_tp_2023_12321 crossref_primary_10_1002_adfm_202105354 crossref_primary_10_1021_acsami_3c08524 crossref_primary_10_1016_j_mser_2022_100713 crossref_primary_10_1016_j_ceramint_2020_08_079 crossref_primary_10_1021_acssuschemeng_3c04461 crossref_primary_10_1002_aenm_202201130 crossref_primary_10_1038_s41598_019_54115_z crossref_primary_10_1016_j_carbon_2021_02_003 crossref_primary_10_1002_adma_202000380 crossref_primary_10_1039_D0SE00312C crossref_primary_10_1002_eem2_12098 crossref_primary_10_1021_acs_energyfuels_2c02352 crossref_primary_10_1007_s10008_022_05138_6 crossref_primary_10_1016_j_jmst_2022_10_075 crossref_primary_10_1016_j_est_2023_109570 crossref_primary_10_20517_energymater_2023_68 crossref_primary_10_1021_acsami_1c01600 crossref_primary_10_1016_j_electacta_2020_136239 crossref_primary_10_1021_acssuschemeng_3c05049 crossref_primary_10_1039_D1DT01834E crossref_primary_10_1002_smll_202303763 crossref_primary_10_1016_j_electacta_2022_139862 crossref_primary_10_1016_j_nanoen_2023_108365 crossref_primary_10_1039_D2TA03741F crossref_primary_10_1039_D4CC00110A crossref_primary_10_1007_s12274_020_2828_3 crossref_primary_10_1016_j_jallcom_2023_168982 crossref_primary_10_1002_aenm_202200656 crossref_primary_10_1039_D2TA02169B crossref_primary_10_1016_j_cej_2022_135328 crossref_primary_10_1016_j_jallcom_2021_159834 crossref_primary_10_1039_D4TA07548J crossref_primary_10_1016_j_ceramint_2021_02_105 crossref_primary_10_1039_D3TA07865E crossref_primary_10_1002_adfm_202106911 crossref_primary_10_1007_s12274_023_6201_1 crossref_primary_10_1016_j_electacta_2019_135299 crossref_primary_10_1039_D1TA06877F crossref_primary_10_1021_acsnano_0c02237 crossref_primary_10_1002_chem_202302865 crossref_primary_10_1016_j_electacta_2021_139070 crossref_primary_10_1002_chem_202301774 crossref_primary_10_1016_j_cej_2022_140802 crossref_primary_10_1039_D1DT02735B crossref_primary_10_1007_s10008_023_05387_z crossref_primary_10_1021_acsami_3c18705 crossref_primary_10_1016_j_ensm_2024_103613 crossref_primary_10_1002_adfm_202302624 crossref_primary_10_1021_acsnano_1c04913 crossref_primary_10_1016_j_jallcom_2023_170480 crossref_primary_10_1002_adfm_202406085 |
Cites_doi | 10.1039/C4EE00508B 10.1021/acs.nanolett.6b01099 10.1021/ja501686w 10.1016/j.jpowsour.2017.06.026 10.1002/adma.200600733 10.1149/1.1837571 10.1039/C5TA01073J 10.1021/nn402125e 10.1126/science.1122152 10.1016/j.jpowsour.2006.06.040 10.1002/aenm.201200396 10.1021/acsnano.7b01163 10.1038/451652a 10.1038/s41560-018-0107-2 10.1016/j.nanoen.2017.01.058 10.1038/s41586-018-0347-0 10.1021/cm901452z 10.1149/1.1390899 10.1126/science.1252817 10.1021/jacs.6b13344 10.1126/science.1212741 10.1126/science.aam5852 10.1016/j.jpowsour.2010.06.114 10.1002/smll.201702903 10.1038/nmat3785 10.1039/c0ee00808g 10.1039/C8TA00895G 10.1039/C9TA00309F 10.1017/S1431927606060521 10.1016/j.mser.2015.10.001 10.1021/cm200441h 10.1126/science.1195628 10.1016/S0304-3991(98)00035-7 10.1038/ncomms3764 10.1039/c1ee01598b 10.1002/adma.201103920 10.1021/acsami.8b03997 10.1021/nl504087z 10.1016/S0378-7753(02)00596-7 10.1021/cm500442j 10.1038/ncomms3568 10.1021/jp3053949 10.1016/j.ensm.2017.09.012 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201902174 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201902174 AENM201902174 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2018YFA0209102 – fundername: National Natural Science Foundation of China funderid: 11727807; 51725101; 51672050; 61790581; 51762014 – fundername: Taishan Scholar Program of Shandong Province funderid: tsqn201812056 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4224-183a200acd5b9c9b53c03f1c2a3550b5197c47654cad32c43e5d8d4635766b173 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:11:36 EDT 2025 Tue Jul 01 01:43:31 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Jan 22 16:40:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4224-183a200acd5b9c9b53c03f1c2a3550b5197c47654cad32c43e5d8d4635766b173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6583-7114 0000-0003-0251-7938 |
PQID | 2306039211 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2306039211 crossref_primary_10_1002_aenm_201902174 crossref_citationtrail_10_1002_aenm_201902174 wiley_primary_10_1002_aenm_201902174_AENM201902174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 6 2015; 15 2013 2016 2012; 4 16 24 2018; 3 2017 2014; 139 136 2017 2011 2008 2010 2011 2006; 356 334 451 22 4 311 2013 1998; 7 74 2014 2010 2013 2010; 344 330 4 195 2001 2006; 12 1997 1999 2006; 144 2 18 2015; 98 2011 2011 2018; 23 4 559 2014; 13 2017; 360 1994 2012; 116 2018; 10 2006 2003; 161 114 2013 2014 2015 2017 2018 2014 2017 2019 2017; 3 7 3 34 11 26 13 7 11 e_1_2_7_1_6 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_1_5 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_5_6 e_1_2_7_8_3 e_1_2_7_9_2 e_1_2_7_5_5 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_5_3 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Bard A. J. (e_1_2_7_14_1) 2001 e_1_2_7_5_9 e_1_2_7_5_8 e_1_2_7_5_7 e_1_2_7_8_4 e_1_2_7_20_1 |
References_xml | – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 360 start-page: 470 year: 2017 publication-title: J. Power Sources – volume: 7 74 start-page: 6203 131 year: 2013 1998 publication-title: ACS Nano Ultramicroscopy – volume: 98 start-page: 1 year: 2015 publication-title: Mater. Sci. Eng.: R: Rep. – volume: 3 start-page: 267 year: 2018 publication-title: Nat. Energy – year: 2001 – volume: 344 330 4 195 start-page: 1515 2568 8258 year: 2014 2010 2013 2010 publication-title: Science Science Nat. Commun. J. Power Sources – volume: 144 2 18 start-page: 1188 547 2325 year: 1997 1999 2006 publication-title: J. Electrochem. Soc. Electrochem. Solid‐State Lett. Adv. Mater. – volume: 161 114 start-page: 1385 228 year: 2006 2003 publication-title: J. Power Sources J. Power Sources – volume: 3 7 3 34 11 26 13 7 11 start-page: 49 2220 8627 15 57 2203 6522 4217 year: 2013 2014 2015 2017 2018 2014 2017 2019 2017 publication-title: Adv. Energy Mater. Energy Environ. Sci. J. Mater. Chem. A Nano Energy Energy Storage Mater. Chem. Mater. Small J. Mater. Chem. A ACS Nano – volume: 6 start-page: 9799 year: 2018 publication-title: J. Mater. Chem. A – volume: 15 start-page: 610 year: 2015 publication-title: Nano Lett. – volume: 23 4 559 start-page: 2027 2638 556 year: 2011 2011 2018 publication-title: Chem. Mater. Energy Environ. Sci. Nature – volume: 356 334 451 22 4 311 start-page: 599 928 652 587 3243 977 year: 2017 2011 2008 2010 2011 2006 publication-title: Science Science Nature Chem. Mater. Energy Environ. Sci. Science – volume: 12 start-page: 416 year: 2006 publication-title: Microsc. Microanal. – volume: 13 start-page: 26 year: 2014 publication-title: Nat. Mater. – volume: 139 136 start-page: 4274 6693 year: 2017 2014 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – year: 1994 – volume: 4 16 24 start-page: 2764 3748 1328 year: 2013 2016 2012 publication-title: Nat. Commun. Nano Lett. Adv. Mater. – ident: e_1_2_7_5_2 doi: 10.1039/C4EE00508B – ident: e_1_2_7_18_2 doi: 10.1021/acs.nanolett.6b01099 – ident: e_1_2_7_20_1 – ident: e_1_2_7_9_2 doi: 10.1021/ja501686w – ident: e_1_2_7_13_1 doi: 10.1016/j.jpowsour.2017.06.026 – ident: e_1_2_7_7_3 doi: 10.1002/adma.200600733 – ident: e_1_2_7_7_1 doi: 10.1149/1.1837571 – ident: e_1_2_7_5_3 doi: 10.1039/C5TA01073J – ident: e_1_2_7_16_1 doi: 10.1021/nn402125e – ident: e_1_2_7_1_6 doi: 10.1126/science.1122152 – ident: e_1_2_7_3_1 doi: 10.1016/j.jpowsour.2006.06.040 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201200396 – ident: e_1_2_7_5_9 doi: 10.1021/acsnano.7b01163 – ident: e_1_2_7_1_3 doi: 10.1038/451652a – ident: e_1_2_7_2_1 doi: 10.1038/s41560-018-0107-2 – ident: e_1_2_7_5_4 doi: 10.1016/j.nanoen.2017.01.058 – ident: e_1_2_7_6_3 doi: 10.1038/s41586-018-0347-0 – ident: e_1_2_7_1_4 doi: 10.1021/cm901452z – ident: e_1_2_7_7_2 doi: 10.1149/1.1390899 – ident: e_1_2_7_8_1 doi: 10.1126/science.1252817 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.6b13344 – ident: e_1_2_7_1_2 doi: 10.1126/science.1212741 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2001 ident: e_1_2_7_14_1 – ident: e_1_2_7_1_1 doi: 10.1126/science.aam5852 – ident: e_1_2_7_8_4 doi: 10.1016/j.jpowsour.2010.06.114 – ident: e_1_2_7_5_7 doi: 10.1002/smll.201702903 – ident: e_1_2_7_17_1 doi: 10.1038/nmat3785 – ident: e_1_2_7_6_2 doi: 10.1039/c0ee00808g – ident: e_1_2_7_10_1 doi: 10.1039/C8TA00895G – ident: e_1_2_7_5_8 doi: 10.1039/C9TA00309F – ident: e_1_2_7_19_1 doi: 10.1017/S1431927606060521 – ident: e_1_2_7_4_1 doi: 10.1016/j.mser.2015.10.001 – ident: e_1_2_7_6_1 doi: 10.1021/cm200441h – ident: e_1_2_7_8_2 doi: 10.1126/science.1195628 – ident: e_1_2_7_16_2 doi: 10.1016/S0304-3991(98)00035-7 – ident: e_1_2_7_18_1 doi: 10.1038/ncomms3764 – ident: e_1_2_7_1_5 doi: 10.1039/c1ee01598b – ident: e_1_2_7_18_3 doi: 10.1002/adma.201103920 – ident: e_1_2_7_12_1 doi: 10.1021/acsami.8b03997 – ident: e_1_2_7_15_1 doi: 10.1021/nl504087z – ident: e_1_2_7_3_2 doi: 10.1016/S0378-7753(02)00596-7 – ident: e_1_2_7_5_6 doi: 10.1021/cm500442j – ident: e_1_2_7_8_3 doi: 10.1038/ncomms3568 – ident: e_1_2_7_11_1 doi: 10.1021/jp3053949 – ident: e_1_2_7_5_5 doi: 10.1016/j.ensm.2017.09.012 |
SSID | ssj0000491033 |
Score | 2.5834434 |
Snippet | Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high... Niobates with shear ReO 3 crystal structures are remarkably promising anode materials for Li + batteries due to their large capacities, inherent safety, and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | anode materials Anodes Conductivity Copper Crystal structure Crystallography Diffusion coefficient Electrode materials Grain boundaries in situ TEM lithium ion batteries lithium ionic transport Niobates Stability Transport |
Title | Conductive Copper Niobate: Superior Li+‐Storage Capability and Novel Li+‐Transport Mechanism |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902174 https://www.proquest.com/docview/2306039211 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHRHmI0IL2AOJQGez1K-ZW0qIKJbmklXIz3vWaWqrsqNg99NSf0DM_j1_CjPdhhze9WNFm4sg73-48PPMtIS8FA7sWI_Nx4UOA4uWBw2USwLoSAZNxLosCm5Pni-j4NPi4Clej0ddB1VLb8Dfi6pd9JbfRKoyBXrFL9j80a28KA_AZ9AtX0DBc_0nH07pCulYs_pnW6zX275awPpuu33zZIolxfQFh9yv23hY1LCHIxjqdKVjJrjBWETAt6kt5_oOoJT7fn0tsEDZsg4a01pQPSNU_CL6vemi7k-hc9KxsjIHsUtQtDq4Al5-vzvpOtFmph-uzthzks7tc7qqV3NxD5yi8xFa7mW0VnAAnmuhMphyOKbImsxcnA8gpkiNtla3N-mnLVxSymayQVwDcG4yxeuNmXuhbyfDPsooK-Ggxt9_fIdsMQhDYQ7cPDuezpc3gQWzluX7XwWEez7CCuuzt5p9sej19KDMMiDqP5uQBua9DEXqgcLVDRrJ6SO4NCCofkU89wqhCGNUIe0cNvuis3P92faNxRXtcUcAV7XClRSyeqMXTY3L64ehkeuzoMzkcWLsscMACZLAEM5GHPBEJD33h-oUnWAaOq8uxDVoEcRQGIst9JgJfhvkkD5D1MIq4F_tPyFZVV_IpoTGfFGEY4znnMJUFvqD1OY9zIaJIgJs8Jo6Zs1Rowno8N-U8VVTbLMU5Tu0cj8lrK79WVC2_ldwzKkj1cv6SYizuQrTgeWPCOrX85S7pBkye3eZHu-Ruv1z2yFZz0crn4OQ2_IVG23dRfJ3q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+Copper+Niobate%3A+Superior+Li%2B%E2%80%90Storage+Capability+and+Novel+Li%2B%E2%80%90Transport+Mechanism&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Liting&rft.au=Zhu%2C+Xiangzhen&rft.au=Li%2C+Xiaohui&rft.au=Zhao%2C+Xuebing&rft.date=2019-10-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902174&rft.externalDBID=10.1002%252Faenm.201902174&rft.externalDocID=AENM201902174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |