Conductive Copper Niobate: Superior Li+‐Storage Capability and Novel Li+‐Transport Mechanism

Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivit...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 39
Main Authors Yang, Liting, Zhu, Xiangzhen, Li, Xiaohui, Zhao, Xuebing, Pei, Ke, You, Wenbin, Li, Xiao, Chen, Yongjun, Lin, Chunfu, Che, Renchao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10−5 S cm−1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10−13 cm2 s−1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g−1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries. Microsized Copper Niobate having a high electronic conductivity and an impressive average Li+ diffusion coefficient is fabricated via a conventional solid‐state reaction, which exhibits superior electrochemical performance as an anode material. Research on the Li+ transport reveals the fast Li+ transport pathways of the grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale).
AbstractList Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10−5 S cm−1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10−13 cm2 s−1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g−1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries. Microsized Copper Niobate having a high electronic conductivity and an impressive average Li+ diffusion coefficient is fabricated via a conventional solid‐state reaction, which exhibits superior electrochemical performance as an anode material. Research on the Li+ transport reveals the fast Li+ transport pathways of the grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale).
Niobates with shear ReO 3 crystal structures are remarkably promising anode materials for Li + batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li + conductivities. Here, micrometer‐sized copper niobate (Cu 2 Nb 34 O 87 ) bulk as a new anode material having a high electronic conductivity of 2.1 × 10 −5 S cm −1 and an impressive average Li + diffusion coefficient of ≈3.5 × 10 −13 cm 2 s −1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g −1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li + transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu 2 Nb 34 O 87 . Therefore, these results could pave the way for practical application of Cu 2 Nb 34 O 87 in high‐performance Li + batteries.
Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10−5 S cm−1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10−13 cm2 s−1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g−1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries.
Author Zhao, Xuebing
Che, Renchao
Li, Xiaohui
Chen, Yongjun
Li, Xiao
Yang, Liting
Pei, Ke
Zhu, Xiangzhen
You, Wenbin
Lin, Chunfu
Author_xml – sequence: 1
  givenname: Liting
  surname: Yang
  fullname: Yang, Liting
  organization: Fudan University
– sequence: 2
  givenname: Xiangzhen
  surname: Zhu
  fullname: Zhu, Xiangzhen
  organization: Hainan University
– sequence: 3
  givenname: Xiaohui
  surname: Li
  fullname: Li, Xiaohui
  organization: Fudan University
– sequence: 4
  givenname: Xuebing
  surname: Zhao
  fullname: Zhao, Xuebing
  organization: Fudan University
– sequence: 5
  givenname: Ke
  surname: Pei
  fullname: Pei, Ke
  organization: Fudan University
– sequence: 6
  givenname: Wenbin
  surname: You
  fullname: You, Wenbin
  organization: Fudan University
– sequence: 7
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Fudan University
– sequence: 8
  givenname: Yongjun
  surname: Chen
  fullname: Chen, Yongjun
  organization: Hainan University
– sequence: 9
  givenname: Chunfu
  orcidid: 0000-0003-0251-7938
  surname: Lin
  fullname: Lin, Chunfu
  email: linchunfu@qdu.edu.cn
  organization: Hainan University
– sequence: 10
  givenname: Renchao
  orcidid: 0000-0002-6583-7114
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkE1LAzEQhoMoWGuvnhc8ytZ87na9laV-QFsPreeYzaaask3WJFvpzZ_gb_SXuKWlgiDOZWbgeWbgPQPHxhoFwAWCfQQhvhbKrPoYogxilNIj0EEJonEyoPD4MBN8CnreL2FbNEOQkA54zq0pGxn0WkW5rWvloqm2hQjqJpo17aqti8b66uvjcxasEy8tJmpR6EqHTSRMGU3tWlV7ZO6E8bV1IZoo-SqM9qtzcLIQlVe9fe-Cp9vRPL-Px493D_lwHEuKMY3RgAgMoZAlKzKZFYxISBZIYkEYgwVDWSppmjAqRUmwpESxclDShLA0SQqUki643N2tnX1rlA98aRtn2pccE5hAkmGEWqq_o6Sz3ju14LXTK-E2HEG-DZJvg-SHIFuB_hKkDiJoa4ITuvpby3bau67U5p8nfDiaTn7cbzmDiuo
CitedBy_id crossref_primary_10_1002_adma_202200914
crossref_primary_10_1002_aenm_202200519
crossref_primary_10_1142_S1793604720500204
crossref_primary_10_1016_j_jcis_2023_11_155
crossref_primary_10_1002_eem2_12583
crossref_primary_10_1002_adma_202107262
crossref_primary_10_1021_acsami_2c03461
crossref_primary_10_1063_5_0075430
crossref_primary_10_1002_smll_202200972
crossref_primary_10_1016_j_electacta_2022_141622
crossref_primary_10_1002_aenm_202201967
crossref_primary_10_1021_acsanm_9b02504
crossref_primary_10_1080_10667857_2021_1898712
crossref_primary_10_1002_adfm_202107060
crossref_primary_10_1002_ente_202200472
crossref_primary_10_1039_D1TA00613D
crossref_primary_10_1002_adfm_202303668
crossref_primary_10_1002_adfm_202206129
crossref_primary_10_1016_j_jcis_2021_05_160
crossref_primary_10_1038_s41467_024_50455_1
crossref_primary_10_1021_acsami_1c04194
crossref_primary_10_1142_S1793604720500058
crossref_primary_10_1002_advs_202202201
crossref_primary_10_55713_jmmm_v35i2_2338
crossref_primary_10_3390_ma16051818
crossref_primary_10_1016_j_ensm_2020_05_012
crossref_primary_10_1016_j_jechem_2021_08_012
crossref_primary_10_1007_s11581_020_03516_6
crossref_primary_10_1111_jace_20201
crossref_primary_10_1016_j_apcata_2023_119234
crossref_primary_10_1039_D0QI01075H
crossref_primary_10_1007_s42823_023_00553_9
crossref_primary_10_1039_D1TA06996A
crossref_primary_10_1002_celc_202001122
crossref_primary_10_1002_asia_202200288
crossref_primary_10_1002_aenm_202102550
crossref_primary_10_1016_j_electacta_2019_135380
crossref_primary_10_1016_j_electacta_2023_142211
crossref_primary_10_1007_s11581_019_03375_w
crossref_primary_10_1039_C9NR07895A
crossref_primary_10_1016_j_cej_2024_153397
crossref_primary_10_1080_10667857_2020_1712533
crossref_primary_10_1021_acssuschemeng_1c04708
crossref_primary_10_1038_s41467_020_18268_0
crossref_primary_10_1016_j_esci_2023_100158
crossref_primary_10_1039_D0CC02016H
crossref_primary_10_1016_j_jcis_2022_06_133
crossref_primary_10_1016_j_jallcom_2022_163980
crossref_primary_10_1039_C9QM00694J
crossref_primary_10_1002_aenm_202202097
crossref_primary_10_1016_j_ceramint_2021_05_169
crossref_primary_10_1002_advs_202105119
crossref_primary_10_1002_adfm_202103971
crossref_primary_10_1016_j_jcis_2025_02_032
crossref_primary_10_3989_tp_2023_12321
crossref_primary_10_1002_adfm_202105354
crossref_primary_10_1021_acsami_3c08524
crossref_primary_10_1016_j_mser_2022_100713
crossref_primary_10_1016_j_ceramint_2020_08_079
crossref_primary_10_1021_acssuschemeng_3c04461
crossref_primary_10_1002_aenm_202201130
crossref_primary_10_1038_s41598_019_54115_z
crossref_primary_10_1016_j_carbon_2021_02_003
crossref_primary_10_1002_adma_202000380
crossref_primary_10_1039_D0SE00312C
crossref_primary_10_1002_eem2_12098
crossref_primary_10_1021_acs_energyfuels_2c02352
crossref_primary_10_1007_s10008_022_05138_6
crossref_primary_10_1016_j_jmst_2022_10_075
crossref_primary_10_1016_j_est_2023_109570
crossref_primary_10_20517_energymater_2023_68
crossref_primary_10_1021_acsami_1c01600
crossref_primary_10_1016_j_electacta_2020_136239
crossref_primary_10_1021_acssuschemeng_3c05049
crossref_primary_10_1039_D1DT01834E
crossref_primary_10_1002_smll_202303763
crossref_primary_10_1016_j_electacta_2022_139862
crossref_primary_10_1016_j_nanoen_2023_108365
crossref_primary_10_1039_D2TA03741F
crossref_primary_10_1039_D4CC00110A
crossref_primary_10_1007_s12274_020_2828_3
crossref_primary_10_1016_j_jallcom_2023_168982
crossref_primary_10_1002_aenm_202200656
crossref_primary_10_1039_D2TA02169B
crossref_primary_10_1016_j_cej_2022_135328
crossref_primary_10_1016_j_jallcom_2021_159834
crossref_primary_10_1039_D4TA07548J
crossref_primary_10_1016_j_ceramint_2021_02_105
crossref_primary_10_1039_D3TA07865E
crossref_primary_10_1002_adfm_202106911
crossref_primary_10_1007_s12274_023_6201_1
crossref_primary_10_1016_j_electacta_2019_135299
crossref_primary_10_1039_D1TA06877F
crossref_primary_10_1021_acsnano_0c02237
crossref_primary_10_1002_chem_202302865
crossref_primary_10_1016_j_electacta_2021_139070
crossref_primary_10_1002_chem_202301774
crossref_primary_10_1016_j_cej_2022_140802
crossref_primary_10_1039_D1DT02735B
crossref_primary_10_1007_s10008_023_05387_z
crossref_primary_10_1021_acsami_3c18705
crossref_primary_10_1016_j_ensm_2024_103613
crossref_primary_10_1002_adfm_202302624
crossref_primary_10_1021_acsnano_1c04913
crossref_primary_10_1016_j_jallcom_2023_170480
crossref_primary_10_1002_adfm_202406085
Cites_doi 10.1039/C4EE00508B
10.1021/acs.nanolett.6b01099
10.1021/ja501686w
10.1016/j.jpowsour.2017.06.026
10.1002/adma.200600733
10.1149/1.1837571
10.1039/C5TA01073J
10.1021/nn402125e
10.1126/science.1122152
10.1016/j.jpowsour.2006.06.040
10.1002/aenm.201200396
10.1021/acsnano.7b01163
10.1038/451652a
10.1038/s41560-018-0107-2
10.1016/j.nanoen.2017.01.058
10.1038/s41586-018-0347-0
10.1021/cm901452z
10.1149/1.1390899
10.1126/science.1252817
10.1021/jacs.6b13344
10.1126/science.1212741
10.1126/science.aam5852
10.1016/j.jpowsour.2010.06.114
10.1002/smll.201702903
10.1038/nmat3785
10.1039/c0ee00808g
10.1039/C8TA00895G
10.1039/C9TA00309F
10.1017/S1431927606060521
10.1016/j.mser.2015.10.001
10.1021/cm200441h
10.1126/science.1195628
10.1016/S0304-3991(98)00035-7
10.1038/ncomms3764
10.1039/c1ee01598b
10.1002/adma.201103920
10.1021/acsami.8b03997
10.1021/nl504087z
10.1016/S0378-7753(02)00596-7
10.1021/cm500442j
10.1038/ncomms3568
10.1021/jp3053949
10.1016/j.ensm.2017.09.012
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902174
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201902174
AENM201902174
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2018YFA0209102
– fundername: National Natural Science Foundation of China
  funderid: 11727807; 51725101; 51672050; 61790581; 51762014
– fundername: Taishan Scholar Program of Shandong Province
  funderid: tsqn201812056
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4224-183a200acd5b9c9b53c03f1c2a3550b5197c47654cad32c43e5d8d4635766b173
ISSN 1614-6832
IngestDate Fri Jul 25 12:11:36 EDT 2025
Tue Jul 01 01:43:31 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Jan 22 16:40:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4224-183a200acd5b9c9b53c03f1c2a3550b5197c47654cad32c43e5d8d4635766b173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6583-7114
0000-0003-0251-7938
PQID 2306039211
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2306039211
crossref_primary_10_1002_aenm_201902174
crossref_citationtrail_10_1002_aenm_201902174
wiley_primary_10_1002_aenm_201902174_AENM201902174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 6
2015; 15
2013 2016 2012; 4 16 24
2018; 3
2017 2014; 139 136
2017 2011 2008 2010 2011 2006; 356 334 451 22 4 311
2013 1998; 7 74
2014 2010 2013 2010; 344 330 4 195
2001
2006; 12
1997 1999 2006; 144 2 18
2015; 98
2011 2011 2018; 23 4 559
2014; 13
2017; 360
1994
2012; 116
2018; 10
2006 2003; 161 114
2013 2014 2015 2017 2018 2014 2017 2019 2017; 3 7 3 34 11 26 13 7 11
e_1_2_7_1_6
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_1_5
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_5_6
e_1_2_7_8_3
e_1_2_7_9_2
e_1_2_7_5_5
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_5_3
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Bard A. J. (e_1_2_7_14_1) 2001
e_1_2_7_5_9
e_1_2_7_5_8
e_1_2_7_5_7
e_1_2_7_8_4
e_1_2_7_20_1
References_xml – volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 360
  start-page: 470
  year: 2017
  publication-title: J. Power Sources
– volume: 7 74
  start-page: 6203 131
  year: 2013 1998
  publication-title: ACS Nano Ultramicroscopy
– volume: 98
  start-page: 1
  year: 2015
  publication-title: Mater. Sci. Eng.: R: Rep.
– volume: 3
  start-page: 267
  year: 2018
  publication-title: Nat. Energy
– year: 2001
– volume: 344 330 4 195
  start-page: 1515 2568 8258
  year: 2014 2010 2013 2010
  publication-title: Science Science Nat. Commun. J. Power Sources
– volume: 144 2 18
  start-page: 1188 547 2325
  year: 1997 1999 2006
  publication-title: J. Electrochem. Soc. Electrochem. Solid‐State Lett. Adv. Mater.
– volume: 161 114
  start-page: 1385 228
  year: 2006 2003
  publication-title: J. Power Sources J. Power Sources
– volume: 3 7 3 34 11 26 13 7 11
  start-page: 49 2220 8627 15 57 2203 6522 4217
  year: 2013 2014 2015 2017 2018 2014 2017 2019 2017
  publication-title: Adv. Energy Mater. Energy Environ. Sci. J. Mater. Chem. A Nano Energy Energy Storage Mater. Chem. Mater. Small J. Mater. Chem. A ACS Nano
– volume: 6
  start-page: 9799
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 610
  year: 2015
  publication-title: Nano Lett.
– volume: 23 4 559
  start-page: 2027 2638 556
  year: 2011 2011 2018
  publication-title: Chem. Mater. Energy Environ. Sci. Nature
– volume: 356 334 451 22 4 311
  start-page: 599 928 652 587 3243 977
  year: 2017 2011 2008 2010 2011 2006
  publication-title: Science Science Nature Chem. Mater. Energy Environ. Sci. Science
– volume: 12
  start-page: 416
  year: 2006
  publication-title: Microsc. Microanal.
– volume: 13
  start-page: 26
  year: 2014
  publication-title: Nat. Mater.
– volume: 139 136
  start-page: 4274 6693
  year: 2017 2014
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– year: 1994
– volume: 4 16 24
  start-page: 2764 3748 1328
  year: 2013 2016 2012
  publication-title: Nat. Commun. Nano Lett. Adv. Mater.
– ident: e_1_2_7_5_2
  doi: 10.1039/C4EE00508B
– ident: e_1_2_7_18_2
  doi: 10.1021/acs.nanolett.6b01099
– ident: e_1_2_7_20_1
– ident: e_1_2_7_9_2
  doi: 10.1021/ja501686w
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jpowsour.2017.06.026
– ident: e_1_2_7_7_3
  doi: 10.1002/adma.200600733
– ident: e_1_2_7_7_1
  doi: 10.1149/1.1837571
– ident: e_1_2_7_5_3
  doi: 10.1039/C5TA01073J
– ident: e_1_2_7_16_1
  doi: 10.1021/nn402125e
– ident: e_1_2_7_1_6
  doi: 10.1126/science.1122152
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jpowsour.2006.06.040
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201200396
– ident: e_1_2_7_5_9
  doi: 10.1021/acsnano.7b01163
– ident: e_1_2_7_1_3
  doi: 10.1038/451652a
– ident: e_1_2_7_2_1
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_7_5_4
  doi: 10.1016/j.nanoen.2017.01.058
– ident: e_1_2_7_6_3
  doi: 10.1038/s41586-018-0347-0
– ident: e_1_2_7_1_4
  doi: 10.1021/cm901452z
– ident: e_1_2_7_7_2
  doi: 10.1149/1.1390899
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1252817
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.6b13344
– ident: e_1_2_7_1_2
  doi: 10.1126/science.1212741
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2001
  ident: e_1_2_7_14_1
– ident: e_1_2_7_1_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_7_8_4
  doi: 10.1016/j.jpowsour.2010.06.114
– ident: e_1_2_7_5_7
  doi: 10.1002/smll.201702903
– ident: e_1_2_7_17_1
  doi: 10.1038/nmat3785
– ident: e_1_2_7_6_2
  doi: 10.1039/c0ee00808g
– ident: e_1_2_7_10_1
  doi: 10.1039/C8TA00895G
– ident: e_1_2_7_5_8
  doi: 10.1039/C9TA00309F
– ident: e_1_2_7_19_1
  doi: 10.1017/S1431927606060521
– ident: e_1_2_7_4_1
  doi: 10.1016/j.mser.2015.10.001
– ident: e_1_2_7_6_1
  doi: 10.1021/cm200441h
– ident: e_1_2_7_8_2
  doi: 10.1126/science.1195628
– ident: e_1_2_7_16_2
  doi: 10.1016/S0304-3991(98)00035-7
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms3764
– ident: e_1_2_7_1_5
  doi: 10.1039/c1ee01598b
– ident: e_1_2_7_18_3
  doi: 10.1002/adma.201103920
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.8b03997
– ident: e_1_2_7_15_1
  doi: 10.1021/nl504087z
– ident: e_1_2_7_3_2
  doi: 10.1016/S0378-7753(02)00596-7
– ident: e_1_2_7_5_6
  doi: 10.1021/cm500442j
– ident: e_1_2_7_8_3
  doi: 10.1038/ncomms3568
– ident: e_1_2_7_11_1
  doi: 10.1021/jp3053949
– ident: e_1_2_7_5_5
  doi: 10.1016/j.ensm.2017.09.012
SSID ssj0000491033
Score 2.5834434
Snippet Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high...
Niobates with shear ReO 3 crystal structures are remarkably promising anode materials for Li + batteries due to their large capacities, inherent safety, and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms anode materials
Anodes
Conductivity
Copper
Crystal structure
Crystallography
Diffusion coefficient
Electrode materials
Grain boundaries
in situ TEM
lithium ion batteries
lithium ionic transport
Niobates
Stability
Transport
Title Conductive Copper Niobate: Superior Li+‐Storage Capability and Novel Li+‐Transport Mechanism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902174
https://www.proquest.com/docview/2306039211
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHRHmI0IL2AOJQGez1K-ZW0qIKJbmklXIz3vWaWqrsqNg99NSf0DM_j1_CjPdhhze9WNFm4sg73-48PPMtIS8FA7sWI_Nx4UOA4uWBw2USwLoSAZNxLosCm5Pni-j4NPi4Clej0ddB1VLb8Dfi6pd9JbfRKoyBXrFL9j80a28KA_AZ9AtX0DBc_0nH07pCulYs_pnW6zX275awPpuu33zZIolxfQFh9yv23hY1LCHIxjqdKVjJrjBWETAt6kt5_oOoJT7fn0tsEDZsg4a01pQPSNU_CL6vemi7k-hc9KxsjIHsUtQtDq4Al5-vzvpOtFmph-uzthzks7tc7qqV3NxD5yi8xFa7mW0VnAAnmuhMphyOKbImsxcnA8gpkiNtla3N-mnLVxSymayQVwDcG4yxeuNmXuhbyfDPsooK-Ggxt9_fIdsMQhDYQ7cPDuezpc3gQWzluX7XwWEez7CCuuzt5p9sej19KDMMiDqP5uQBua9DEXqgcLVDRrJ6SO4NCCofkU89wqhCGNUIe0cNvuis3P92faNxRXtcUcAV7XClRSyeqMXTY3L64ehkeuzoMzkcWLsscMACZLAEM5GHPBEJD33h-oUnWAaOq8uxDVoEcRQGIst9JgJfhvkkD5D1MIq4F_tPyFZVV_IpoTGfFGEY4znnMJUFvqD1OY9zIaJIgJs8Jo6Zs1Rowno8N-U8VVTbLMU5Tu0cj8lrK79WVC2_ldwzKkj1cv6SYizuQrTgeWPCOrX85S7pBkye3eZHu-Ruv1z2yFZz0crn4OQ2_IVG23dRfJ3q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+Copper+Niobate%3A+Superior+Li%2B%E2%80%90Storage+Capability+and+Novel+Li%2B%E2%80%90Transport+Mechanism&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Liting&rft.au=Zhu%2C+Xiangzhen&rft.au=Li%2C+Xiaohui&rft.au=Zhao%2C+Xuebing&rft.date=2019-10-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902174&rft.externalDBID=10.1002%252Faenm.201902174&rft.externalDocID=AENM201902174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon