High‐Voltage Zinc‐Ion Batteries: Design Strategies and Challenges
Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density m...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 22 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202010213 |
Cover
Loading…
Abstract | Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn2+/Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs.
This review focuses on the recent advancements of high‐voltage zinc‐ion batteries in aspects of cathode materials, Zn anodes, and electrolytes. Special attention is given to the challenges, design strategies, voltage variation trend of Prussian blue analogs, polyanionic compounds, and metal‐based oxides. Electrolytes with a wide electrochemical stability window, relevant challenges, and strategies on highly reversible Zn anodes are also reviewed. |
---|---|
AbstractList | Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn2+/Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs.
This review focuses on the recent advancements of high‐voltage zinc‐ion batteries in aspects of cathode materials, Zn anodes, and electrolytes. Special attention is given to the challenges, design strategies, voltage variation trend of Prussian blue analogs, polyanionic compounds, and metal‐based oxides. Electrolytes with a wide electrochemical stability window, relevant challenges, and strategies on highly reversible Zn anodes are also reviewed. Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn 2+ /Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs. Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn2+/Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs. |
Author | Yan, Jianping Zhang, Yufei Ye, Minghui Du, Wencheng Ang, Edison Huixiang Yang, Yang Li, Cheng Chao |
Author_xml | – sequence: 1 givenname: Jianping surname: Yan fullname: Yan, Jianping organization: Guangdong University of Technology – sequence: 2 givenname: Edison Huixiang surname: Ang fullname: Ang, Edison Huixiang organization: Nanyang Technological University – sequence: 3 givenname: Yang surname: Yang fullname: Yang, Yang organization: Guangdong University of Technology – sequence: 4 givenname: Yufei surname: Zhang fullname: Zhang, Yufei organization: Guangdong University of Technology – sequence: 5 givenname: Minghui surname: Ye fullname: Ye, Minghui organization: Guangdong University of Technology – sequence: 6 givenname: Wencheng surname: Du fullname: Du, Wencheng organization: Guangdong University of Technology – sequence: 7 givenname: Cheng Chao orcidid: 0000-0003-2434-760X surname: Li fullname: Li, Cheng Chao email: licc@gdut.edu.cn organization: Guangdong University of Technology |
BookMark | eNqFkMtKw0AUhgepYFvdug64Tj1zSTJxV3uxhYoLL4ibMJ1M0inppM5Mke58BJ_RJzGlUkEQV-fC_52f83dQy9RGIXSOoYcByKXIi1WPAAEMBNMj1MYxjkMKhLcOPX4-QR3nlgA4SShro9FEl4vP94-nuvKiVMGLNrIZp7UJroX3ymrlroKhcro0wb23wquyWQXC5MFgIapKmVK5U3RciMqps-_aRY_j0cNgEs7ubqaD_iyUjBAaKkrYnCdM5FTIOI4US3PgPKZJKklEeCRzLnGCqQRccDkvIpYKiSUkIBmPCO2ii_3dta1fN8r5bFlvrGksMxJRglkEkDSq3l4lbe2cVUW2tnol7DbDkO2iynZRZYeoGoD9AqT2wuvaNA_r6m8s3WNvulLbf0yy_nB8-8N-Aal9gBw |
CitedBy_id | crossref_primary_10_1002_asia_202200067 crossref_primary_10_1016_j_ensm_2022_04_040 crossref_primary_10_1039_D5TA00860C crossref_primary_10_1002_adfm_202406423 crossref_primary_10_1016_j_ceramint_2022_02_093 crossref_primary_10_1016_j_ccr_2025_216478 crossref_primary_10_1021_acsami_3c04004 crossref_primary_10_1002_smll_202108057 crossref_primary_10_1016_j_ensm_2023_102881 crossref_primary_10_1016_j_jpowsour_2024_236043 crossref_primary_10_1039_D2TA09979A crossref_primary_10_1002_smll_202400221 crossref_primary_10_1002_aenm_202401737 crossref_primary_10_1016_j_jpowsour_2023_233964 crossref_primary_10_1039_D2TA04875B crossref_primary_10_1002_adfm_202200429 crossref_primary_10_1016_j_apsusc_2023_156704 crossref_primary_10_1002_adfm_202407120 crossref_primary_10_1002_smll_202304786 crossref_primary_10_1007_s40820_023_01305_0 crossref_primary_10_1039_D3TA06641J crossref_primary_10_1016_j_ensm_2025_104159 crossref_primary_10_1002_eem2_12573 crossref_primary_10_1016_j_jcis_2021_11_040 crossref_primary_10_1002_smtd_202300268 crossref_primary_10_1016_j_electacta_2022_141693 crossref_primary_10_1016_j_electacta_2023_143657 crossref_primary_10_1002_adfm_202213510 crossref_primary_10_1002_aenm_202405378 crossref_primary_10_1002_aenm_202102780 crossref_primary_10_1002_smll_202207517 crossref_primary_10_1016_j_cej_2022_138341 crossref_primary_10_1021_acs_jpclett_4c03514 crossref_primary_10_1021_acsaem_2c00832 crossref_primary_10_1002_adma_202204320 crossref_primary_10_1002_adma_202202382 crossref_primary_10_1016_j_cej_2024_152994 crossref_primary_10_1002_adfm_202314426 crossref_primary_10_1016_j_jcis_2024_09_216 crossref_primary_10_1016_j_jpowsour_2021_230740 crossref_primary_10_1016_j_ensm_2022_10_048 crossref_primary_10_1002_ange_202412057 crossref_primary_10_1016_j_est_2024_114064 crossref_primary_10_1039_D2TA07101K crossref_primary_10_1002_bte2_20230063 crossref_primary_10_1016_j_jcis_2023_03_136 crossref_primary_10_1016_j_cis_2024_103373 crossref_primary_10_1016_j_jcis_2024_11_097 crossref_primary_10_34133_2022_9809626 crossref_primary_10_1016_j_ensm_2024_103799 crossref_primary_10_1021_acsami_3c03376 crossref_primary_10_1039_D4QI02769H crossref_primary_10_1039_D3NR06120E crossref_primary_10_1063_5_0192236 crossref_primary_10_1016_j_jcis_2023_10_044 crossref_primary_10_1039_D1EE02021H crossref_primary_10_1016_j_jcis_2023_01_088 crossref_primary_10_1002_adma_202312934 crossref_primary_10_1002_sus2_118 crossref_primary_10_1039_D2SC04945G crossref_primary_10_1002_aenm_202300733 crossref_primary_10_1002_smll_202305217 crossref_primary_10_1039_D2TA01501C crossref_primary_10_1016_j_apsusc_2023_157737 crossref_primary_10_1016_j_ensm_2024_103707 crossref_primary_10_1002_eem2_12870 crossref_primary_10_1016_j_nanoen_2024_109691 crossref_primary_10_1016_j_surfin_2022_102266 crossref_primary_10_1016_j_mtsust_2025_101088 crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1002_aenm_202402721 crossref_primary_10_5796_electrochemistry_24_00118 crossref_primary_10_1016_j_jcis_2023_06_152 crossref_primary_10_1016_j_pmatsci_2024_101393 crossref_primary_10_1021_acsami_2c04888 crossref_primary_10_1021_acsami_3c11035 crossref_primary_10_1021_acssuschemeng_1c01609 crossref_primary_10_1016_j_cej_2025_160415 crossref_primary_10_1007_s12598_023_02303_2 crossref_primary_10_1002_smll_202104965 crossref_primary_10_1016_j_ensm_2024_103934 crossref_primary_10_1016_j_jechem_2023_03_052 crossref_primary_10_1016_j_jpowsour_2025_236309 crossref_primary_10_1021_acsaem_3c02184 crossref_primary_10_1002_batt_202200560 crossref_primary_10_1002_smtd_202300617 crossref_primary_10_1016_j_cej_2023_146676 crossref_primary_10_1021_acsami_4c02912 crossref_primary_10_1002_smll_202205544 crossref_primary_10_1016_j_jiec_2024_03_039 crossref_primary_10_1016_j_cej_2023_147763 crossref_primary_10_1007_s11837_023_06280_w crossref_primary_10_1002_smll_202304462 crossref_primary_10_1016_j_esci_2022_04_003 crossref_primary_10_1002_aenm_202200157 crossref_primary_10_1021_acsenergylett_1c01249 crossref_primary_10_1002_smll_202404227 crossref_primary_10_1002_smll_202406249 crossref_primary_10_1016_j_est_2025_115995 crossref_primary_10_1016_j_ensm_2025_104064 crossref_primary_10_1016_j_est_2024_114018 crossref_primary_10_1021_acsami_3c05651 crossref_primary_10_1039_D2TA04912K crossref_primary_10_1002_aenm_202403958 crossref_primary_10_1016_j_cej_2024_153255 crossref_primary_10_1002_adfm_202301291 crossref_primary_10_1002_adfm_202304798 crossref_primary_10_1021_acsaem_3c00855 crossref_primary_10_1051_e3sconf_202132001014 crossref_primary_10_1016_j_ensm_2022_04_008 crossref_primary_10_1002_jccs_202300357 crossref_primary_10_1002_smtd_202200560 crossref_primary_10_1016_j_cej_2024_149780 crossref_primary_10_1039_D3TA05814J crossref_primary_10_3390_membranes12101014 crossref_primary_10_1002_ece2_69 crossref_primary_10_1111_ijac_14509 crossref_primary_10_1002_batt_202100172 crossref_primary_10_1016_j_ensm_2024_103248 crossref_primary_10_1088_2515_7655_ad34fc crossref_primary_10_1016_j_esci_2025_100379 crossref_primary_10_1021_acsami_3c11649 crossref_primary_10_26599_EMD_2024_9370040 crossref_primary_10_1002_anie_202200598 crossref_primary_10_1016_j_ensm_2022_07_046 crossref_primary_10_1016_j_est_2024_110984 crossref_primary_10_1016_j_pmatsci_2022_101055 crossref_primary_10_1016_j_jpowsour_2022_232542 crossref_primary_10_1016_j_cej_2025_161447 crossref_primary_10_1007_s12274_024_6440_9 crossref_primary_10_1007_s40843_024_2972_7 crossref_primary_10_1016_j_cej_2022_134507 crossref_primary_10_1002_adfm_202308508 crossref_primary_10_1002_anie_202215324 crossref_primary_10_1039_D3CS00295K crossref_primary_10_1016_j_cej_2023_144992 crossref_primary_10_1039_D2TA04198G crossref_primary_10_1039_D2CC06342E crossref_primary_10_1002_batt_202400046 crossref_primary_10_1002_adfm_202424954 crossref_primary_10_1002_aenm_202202039 crossref_primary_10_1002_ange_202200598 crossref_primary_10_1016_j_jallcom_2022_165151 crossref_primary_10_1002_smtd_202400249 crossref_primary_10_1002_smll_202107102 crossref_primary_10_1021_acsami_1c20893 crossref_primary_10_1016_j_jpowsour_2022_231122 crossref_primary_10_1002_ange_202215324 crossref_primary_10_1063_5_0152214 crossref_primary_10_1016_j_jcis_2022_07_119 crossref_primary_10_1002_adfm_202102827 crossref_primary_10_1016_j_jpowsour_2024_234311 crossref_primary_10_1016_j_jpowsour_2022_231883 crossref_primary_10_1002_batt_202200237 crossref_primary_10_1007_s40820_024_01551_w crossref_primary_10_1016_j_cej_2024_153239 crossref_primary_10_1021_acs_nanolett_4c03390 crossref_primary_10_1039_D2CE01467J crossref_primary_10_1002_advs_202303211 crossref_primary_10_1002_anie_202401629 crossref_primary_10_1039_D5EE00001G crossref_primary_10_1002_ange_202401629 crossref_primary_10_1007_s11244_024_02007_6 crossref_primary_10_1002_anie_202412057 crossref_primary_10_1007_s11426_022_1397_2 crossref_primary_10_1021_acsami_2c00001 crossref_primary_10_1016_j_colsurfa_2022_130255 crossref_primary_10_1002_aenm_202201599 crossref_primary_10_1021_acs_energyfuels_1c02586 crossref_primary_10_1016_j_ces_2024_120961 crossref_primary_10_1088_2515_7639_ad9ad3 crossref_primary_10_59717_j_xinn_mater_2023_100029 crossref_primary_10_1039_D1TA05982C crossref_primary_10_1016_j_est_2024_114442 crossref_primary_10_1016_j_est_2023_109355 crossref_primary_10_1002_adfm_202405551 crossref_primary_10_1002_ece2_83 crossref_primary_10_1016_j_jcis_2024_09_150 crossref_primary_10_1002_adfm_202316182 crossref_primary_10_1016_j_carbon_2024_119241 crossref_primary_10_1039_D2TA05803K crossref_primary_10_1002_cssc_202201118 crossref_primary_10_1007_s12274_022_4726_3 crossref_primary_10_1002_adfm_202206695 crossref_primary_10_1002_smtd_202201683 crossref_primary_10_1021_acsami_1c20087 |
Cites_doi | 10.1002/aenm.201400930 10.1016/j.nanoen.2019.01.068 10.1016/j.nanoen.2019.05.059 10.1021/ja906529g 10.1021/acsami.6b01592 10.1039/C9TA00716D 10.1016/j.nanoen.2018.12.086 10.1039/C8CC07730D 10.1021/acs.chemmater.0c00004 10.1039/C6TA08736A 10.1016/j.joule.2018.02.011 10.1126/science.1212741 10.1021/cm401949n 10.1002/adma.201802396 10.1021/acs.chemmater.7b03340 10.1021/acs.chemrev.9b00628 10.1038/nenergy.2016.39 10.1039/C7TA07834J 10.1021/jp4078689 10.1002/adma.201901521 10.1016/j.ensm.2020.04.030 10.1016/j.matlet.2015.05.174 10.1038/35104644 10.1021/ja512383b 10.1007/s40820-019-0247-3 10.1016/j.elecom.2016.05.014 10.1016/j.gee.2017.09.003 10.1016/j.jpowsour.2019.02.097 10.1021/cr300162p 10.1016/j.jpowsour.2016.10.083 10.1021/acsenergylett.9b01643 10.1039/D0SE00122H 10.1002/adfm.201908528 10.1021/acsaem.9b01469 10.1038/s41467-019-13436-3 10.1021/cm504717p 10.1039/C9CC08604H 10.1002/aenm.201903589 10.1016/j.electacta.2014.11.168 10.1002/aenm.201701785 10.1039/C9TA13497B 10.1002/anie.202012017 10.1021/cr020730k 10.1021/acsami.5b10024 10.1039/c3cc00064h 10.1016/j.electacta.2018.05.107 10.1021/acsami.9b20531 10.1039/C8EE00378E 10.1039/D0EE02620D 10.1039/C8TA01198B 10.1016/j.electacta.2016.10.155 10.1002/adma.201505370 10.1038/s41563-018-0063-z 10.1021/acsenergylett.8b00565 10.1002/anie.201908853 10.1016/j.jpowsour.2016.01.058 10.1002/cssc.201403143 10.1002/celc.201402177 10.1002/adfm.201808375 10.1002/adfm.202003511 10.1039/D0EE02079F 10.1038/s41467-018-04060-8 10.1002/adfm.202002711 10.1002/adma.201601925 10.1021/acsenergylett.0c01767 10.1039/C9TA08625K 10.1002/adfm.201400561 10.1016/j.joule.2018.07.017 10.1126/science.1122152 10.1021/acs.nanolett.9b01403 10.1002/aenm.201800079 10.1016/j.nanoen.2016.04.051 10.1002/adma.201900668 10.1039/C8EE01415A 10.1002/aenm.201902473 10.1021/jacs.6b05958 10.1126/science.aam6284 10.1021/ja3091438 10.1016/j.jpowsour.2016.05.003 10.1002/adfm.201906142 10.1038/s41560-020-0584-y 10.1002/anie.201106307 10.1016/j.electacta.2020.136535 10.1002/aenm.201900237 10.1021/acsaem.0c00505 10.1038/srep25809 10.1016/j.jpowsour.2019.227594 10.1039/C9EE02526J 10.1002/anie.201806748 10.1002/aenm.202000892 10.1002/aenm.201800589 10.3390/batteries5010003 10.1016/j.electacta.2017.10.166 10.1016/j.electacta.2020.136445 10.1002/anie.201509364 10.1016/j.joule.2020.03.002 10.1002/aenm.201401869 10.1021/acsenergylett.8b01105 10.1002/aenm.202001050 10.1002/anie.201904174 10.1002/adma.202001894 10.1021/jacs.7b04471 10.1039/C6CC00873A 10.1039/C8EE01883A 10.1016/j.ensm.2020.03.011 10.1016/j.ensm.2018.03.003 10.1002/aenm.201902446 10.1002/anie.201902679 10.1016/j.jpowsour.2015.11.065 10.1039/C9CS00131J 10.1002/anie.199526851 10.1016/j.ensm.2020.10.019 10.1021/acsenergylett.8b01426 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202010213 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202010213 ADFM202010213 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme – fundername: Pearl River S and T Nova Program of Guangzhou funderid: 2017GC010030 – fundername: Natural Science Foundation of Guangdong Province funderid: 2020A1515010886 – fundername: National Natural Science Foundation of China funderid: 51771058; 2017GC010030 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4223-e324b874ad3ac665e49d0886379c25285cd8c1713c01f8cbf549ac1c070c48523 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:52:23 EDT 2025 Tue Jul 01 04:12:26 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 16:30:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4223-e324b874ad3ac665e49d0886379c25285cd8c1713c01f8cbf549ac1c070c48523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2434-760X |
PQID | 2532145007 |
PQPubID | 2045204 |
PageCount | 30 |
ParticipantIDs | proquest_journals_2532145007 crossref_primary_10_1002_adfm_202010213 crossref_citationtrail_10_1002_adfm_202010213 wiley_primary_10_1002_adfm_202010213_ADFM202010213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2013; 25 2018; 280 2006 2018 2019; 311 8 11 2020; 120 2016; 305 2019; 10 2019; 57 2019; 12 2019; 58 2016; 222 2019; 19 2020; 59 2014; 24 2020; 13 2020; 56 2020; 12 2019 2020 2016; 2 8 321 2020; 10 2020; 449 1996; 34 2012; 51 2014; 1 2018; 6 2018; 8 2020; 5 2018; 3 2020; 4 2020; 3 2018; 2 2019; 62 2021; 34 2018; 259 2013; 117 2020; 49 2019; 29 2018; 30 2001; 414 2019; 7 2011; 334 2019; 9 2019; 4 2004; 104 2015; 5 2013; 49 2019; 5 2019; 31 2019; 421 2016; 52 2018 2020 2017; 9 5 139 2017; 29 2020; 32 2009; 131 2015; 8 2017; 335 2014; 114 2017; 337 2016; 55 2015; 152 2016; 6 2018; 17 2015; 27 2016; 1 2020; 30 2015; 158 2020; 351 2020 2018 2015; 2 137 2020; 28 2016 2019; 308 58 2013; 135 2020; 353 2016; 138 2018; 11 2016; 28 2018; 54 2016; 8 2016; 25 2016; 69 2018; 15 2020; 29 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_14_2 e_1_2_9_14_1 e_1_2_9_14_3 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_30_2 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_30_3 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 Yang M. (e_1_2_9_102_1) 2020 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_20_2 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_43_2 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_3_3 e_1_2_9_82_1 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 12 start-page: 3288 year: 2019 publication-title: Energy Environ. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 259 start-page: 170 year: 2018 publication-title: Electrochim. Acta – volume: 32 start-page: 3028 year: 2020 publication-title: Chem. Mater. – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 2 137 start-page: 1950 2658 year: 2018 2015 publication-title: Joule J. Am. Chem. Soc. – volume: 280 start-page: 108 year: 2018 publication-title: Electrochim. Acta – volume: 27 start-page: 3609 year: 2015 publication-title: Chem. Mater. – volume: 29 start-page: 9351 year: 2017 publication-title: Chem. Mater. – volume: 49 start-page: 2204 year: 2013 publication-title: Chem. Commun. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 481 year: 2015 publication-title: ChemSusChem – volume: 55 start-page: 2889 year: 2016 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 69 start-page: 6 year: 2016 publication-title: Electrochem. Commun. – volume: 13 start-page: 4625 year: 2020 publication-title: Energy Environ. Sci. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 449 year: 2020 publication-title: J. Power Sources – volume: 58 start-page: 7062 year: 2019 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 28 start-page: 205 year: 2020 publication-title: Energy Storage Mater. – volume: 28 start-page: 4904 year: 2016 publication-title: Adv. Mater. – volume: 58 start-page: 7823 year: 2019 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 2 8 321 start-page: 6984 6631 257 year: 2019 2020 2016 publication-title: ACS Appl. Energy Mater. J. Mater. Chem. A J. Power Sources – volume: 11 start-page: 3168 year: 2018 publication-title: Energy Environ. Sci. – volume: 62 start-page: 550 year: 2019 publication-title: Nano Energy – volume: 4 start-page: 2448 year: 2020 publication-title: Sustainable Energy Fuels – volume: 6 start-page: 9677 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 start-page: 5374 year: 2019 publication-title: Nat. Commun. – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 337 start-page: 204 year: 2017 publication-title: J. Power Sources – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 7159 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 222 start-page: 74 year: 2016 publication-title: Electrochim. Acta – volume: 11 start-page: 2521 year: 2018 publication-title: Energy Environ. Sci. – volume: 2 start-page: 927 year: 2018 publication-title: Joule – volume: 11 start-page: 881 year: 2018 publication-title: Energy Environ. Sci. – volume: 158 start-page: 248 year: 2015 publication-title: Mater. Lett. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 15 start-page: 14 year: 2018 publication-title: Energy Storage Mater. – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 49 start-page: 180 year: 2020 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 771 year: 2020 publication-title: Joule – volume: 3 start-page: 5015 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 9 5 139 start-page: 1656 2979 9775 year: 2018 2020 2017 publication-title: Nat. Commun. ACS Energy Lett. J. Am. Chem. Soc. – volume: 5 start-page: 730 year: 2017 publication-title: J. Mater. Chem. A – volume: 34 start-page: 545 year: 2021 publication-title: Energy Storage Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 305 start-page: 22 year: 2016 publication-title: J. Power Sources – volume: 34 start-page: 2685 year: 1996 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 3 start-page: 1998 year: 2018 publication-title: ACS Energy Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 246 year: 2020 publication-title: Energy Storage Mater. – volume: 308 58 start-page: 52 year: 2016 2019 publication-title: J. Power Sources Angew. Chem., Int. Ed. Engl. – volume: 152 start-page: 505 year: 2015 publication-title: Electrochim. Acta – volume: 25 start-page: 211 year: 2016 publication-title: Nano Energy – volume: 57 start-page: 625 year: 2019 publication-title: Nano Energy – volume: 8 start-page: 3021 year: 2016 publication-title: ACS Appl. Mater Interfaces – volume: 120 start-page: 7795 year: 2020 publication-title: Chem. Rev. – start-page: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 56 year: 2018 publication-title: Green Energy Environ. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 4979 year: 2016 publication-title: Chem. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 104 start-page: 4245 year: 2004 publication-title: Chem. Rev. – volume: 24 start-page: 4603 year: 2014 publication-title: Adv. Funct. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 25 start-page: 4010 year: 2013 publication-title: Chem. Mater. – volume: 421 start-page: 6 year: 2019 publication-title: J. Power Sources – volume: 3 start-page: 1366 year: 2018 publication-title: ACS Energy Lett. – volume: 311 8 11 start-page: 977 15 year: 2006 2018 2019 publication-title: Science Adv. Energy Mater. Nano‐Micro Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 335 start-page: 126 year: 2017 publication-title: Science – volume: 353 year: 2020 publication-title: Electrochim. Acta – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 19 start-page: 4035 year: 2019 publication-title: Nano Lett. – volume: 58 start-page: 492 year: 2019 publication-title: Nano Energy – volume: 56 start-page: 2039 year: 2020 publication-title: Chem. Commun. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3 year: 2019 publication-title: Batteries – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 5 start-page: 440 year: 2020 publication-title: Nat. Energy – volume: 1 start-page: 1688 year: 2014 publication-title: ChemElectroChem – volume: 351 year: 2020 publication-title: Electrochim. Acta – volume: 13 start-page: 3330 year: 2020 publication-title: Energy Environ. Sci. – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 4 start-page: 2144 year: 2019 publication-title: ACS Energy Lett. – ident: e_1_2_9_26_1 doi: 10.1002/aenm.201400930 – ident: e_1_2_9_51_1 doi: 10.1016/j.nanoen.2019.01.068 – ident: e_1_2_9_8_1 doi: 10.1016/j.nanoen.2019.05.059 – ident: e_1_2_9_92_1 doi: 10.1021/ja906529g – ident: e_1_2_9_36_1 doi: 10.1021/acsami.6b01592 – ident: e_1_2_9_103_1 doi: 10.1039/C9TA00716D – ident: e_1_2_9_99_1 doi: 10.1016/j.nanoen.2018.12.086 – ident: e_1_2_9_96_1 doi: 10.1039/C8CC07730D – ident: e_1_2_9_44_1 doi: 10.1021/acs.chemmater.0c00004 – ident: e_1_2_9_33_1 doi: 10.1039/C6TA08736A – ident: e_1_2_9_94_1 doi: 10.1016/j.joule.2018.02.011 – ident: e_1_2_9_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_9_39_1 doi: 10.1021/cm401949n – ident: e_1_2_9_65_1 doi: 10.1002/adma.201802396 – ident: e_1_2_9_61_1 doi: 10.1021/acs.chemmater.7b03340 – ident: e_1_2_9_7_1 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_9_15_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_9_23_1 doi: 10.1039/C7TA07834J – ident: e_1_2_9_32_1 doi: 10.1021/jp4078689 – ident: e_1_2_9_34_1 doi: 10.1002/adma.201901521 – ident: e_1_2_9_35_1 doi: 10.1016/j.ensm.2020.04.030 – ident: e_1_2_9_53_1 doi: 10.1016/j.matlet.2015.05.174 – ident: e_1_2_9_4_1 doi: 10.1038/35104644 – ident: e_1_2_9_20_2 doi: 10.1021/ja512383b – ident: e_1_2_9_3_3 doi: 10.1007/s40820-019-0247-3 – ident: e_1_2_9_52_1 doi: 10.1016/j.elecom.2016.05.014 – ident: e_1_2_9_63_1 doi: 10.1016/j.gee.2017.09.003 – ident: e_1_2_9_64_1 doi: 10.1016/j.jpowsour.2019.02.097 – ident: e_1_2_9_18_1 doi: 10.1021/cr300162p – ident: e_1_2_9_28_1 doi: 10.1016/j.jpowsour.2016.10.083 – ident: e_1_2_9_68_1 doi: 10.1021/acsenergylett.9b01643 – ident: e_1_2_9_55_1 doi: 10.1039/D0SE00122H – ident: e_1_2_9_80_1 doi: 10.1002/adfm.201908528 – ident: e_1_2_9_30_1 doi: 10.1021/acsaem.9b01469 – ident: e_1_2_9_100_1 doi: 10.1038/s41467-019-13436-3 – ident: e_1_2_9_13_1 doi: 10.1021/cm504717p – ident: e_1_2_9_69_1 doi: 10.1039/C9CC08604H – ident: e_1_2_9_70_1 doi: 10.1002/aenm.201903589 – ident: e_1_2_9_54_1 doi: 10.1016/j.electacta.2014.11.168 – ident: e_1_2_9_37_1 doi: 10.1002/aenm.201701785 – ident: e_1_2_9_30_2 doi: 10.1039/C9TA13497B – ident: e_1_2_9_90_1 doi: 10.1002/anie.202012017 – ident: e_1_2_9_11_1 doi: 10.1021/cr020730k – ident: e_1_2_9_101_1 doi: 10.1021/acsami.5b10024 – ident: e_1_2_9_89_1 doi: 10.1039/c3cc00064h – ident: e_1_2_9_97_1 doi: 10.1016/j.electacta.2018.05.107 – ident: e_1_2_9_73_1 doi: 10.1021/acsami.9b20531 – ident: e_1_2_9_29_1 doi: 10.1039/C8EE00378E – ident: e_1_2_9_82_1 doi: 10.1039/D0EE02620D – ident: e_1_2_9_77_1 doi: 10.1039/C8TA01198B – ident: e_1_2_9_86_1 doi: 10.1016/j.electacta.2016.10.155 – ident: e_1_2_9_57_1 doi: 10.1002/adma.201505370 – ident: e_1_2_9_17_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_9_106_1 doi: 10.1021/acsenergylett.8b00565 – ident: e_1_2_9_43_2 doi: 10.1002/anie.201908853 – ident: e_1_2_9_43_1 doi: 10.1016/j.jpowsour.2016.01.058 – ident: e_1_2_9_27_1 doi: 10.1002/cssc.201403143 – ident: e_1_2_9_98_1 doi: 10.1002/celc.201402177 – ident: e_1_2_9_83_1 doi: 10.1002/adfm.201808375 – ident: e_1_2_9_46_1 doi: 10.1002/adfm.202003511 – ident: e_1_2_9_81_1 doi: 10.1039/D0EE02079F – ident: e_1_2_9_14_1 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_9_87_1 doi: 10.1002/adfm.202002711 – ident: e_1_2_9_38_1 doi: 10.1002/adma.201601925 – ident: e_1_2_9_14_2 doi: 10.1021/acsenergylett.0c01767 – ident: e_1_2_9_59_1 doi: 10.1039/C9TA08625K – ident: e_1_2_9_40_1 doi: 10.1002/adfm.201400561 – ident: e_1_2_9_20_1 doi: 10.1016/j.joule.2018.07.017 – ident: e_1_2_9_3_1 doi: 10.1126/science.1122152 – ident: e_1_2_9_31_1 doi: 10.1021/acs.nanolett.9b01403 – ident: e_1_2_9_3_2 doi: 10.1002/aenm.201800079 – ident: e_1_2_9_41_1 doi: 10.1016/j.nanoen.2016.04.051 – ident: e_1_2_9_84_1 doi: 10.1002/adma.201900668 – ident: e_1_2_9_58_1 doi: 10.1039/C8EE01415A – ident: e_1_2_9_19_1 doi: 10.1002/aenm.201902473 – ident: e_1_2_9_85_1 doi: 10.1021/jacs.6b05958 – ident: e_1_2_9_1_1 doi: 10.1126/science.aam6284 – ident: e_1_2_9_10_1 doi: 10.1021/ja3091438 – ident: e_1_2_9_30_3 doi: 10.1016/j.jpowsour.2016.05.003 – ident: e_1_2_9_79_1 doi: 10.1002/adfm.201906142 – ident: e_1_2_9_88_1 doi: 10.1038/s41560-020-0584-y – ident: e_1_2_9_12_1 doi: 10.1002/anie.201106307 – ident: e_1_2_9_60_1 doi: 10.1016/j.electacta.2020.136535 – ident: e_1_2_9_16_1 doi: 10.1002/aenm.201900237 – ident: e_1_2_9_42_1 doi: 10.1021/acsaem.0c00505 – ident: e_1_2_9_47_1 doi: 10.1038/srep25809 – ident: e_1_2_9_95_1 doi: 10.1016/j.jpowsour.2019.227594 – ident: e_1_2_9_9_1 doi: 10.1039/C9EE02526J – ident: e_1_2_9_50_1 doi: 10.1002/anie.201806748 – ident: e_1_2_9_56_1 doi: 10.1002/aenm.202000892 – ident: e_1_2_9_62_1 doi: 10.1002/aenm.201800589 – ident: e_1_2_9_105_1 doi: 10.3390/batteries5010003 – ident: e_1_2_9_76_1 doi: 10.1016/j.electacta.2017.10.166 – ident: e_1_2_9_75_1 doi: 10.1016/j.electacta.2020.136445 – ident: e_1_2_9_91_1 doi: 10.1002/anie.201509364 – ident: e_1_2_9_6_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_9_24_1 doi: 10.1002/aenm.201401869 – ident: e_1_2_9_74_1 doi: 10.1021/acsenergylett.8b01105 – ident: e_1_2_9_78_1 doi: 10.1002/aenm.202001050 – ident: e_1_2_9_67_1 doi: 10.1002/anie.201904174 – ident: e_1_2_9_71_1 doi: 10.1002/adma.202001894 – ident: e_1_2_9_14_3 doi: 10.1021/jacs.7b04471 – ident: e_1_2_9_93_1 doi: 10.1039/C6CC00873A – ident: e_1_2_9_48_1 doi: 10.1039/C8EE01883A – ident: e_1_2_9_72_1 doi: 10.1016/j.ensm.2020.03.011 – ident: e_1_2_9_45_1 doi: 10.1016/j.ensm.2018.03.003 – ident: e_1_2_9_21_1 doi: 10.1002/aenm.201902446 – ident: e_1_2_9_49_1 doi: 10.1002/anie.201902679 – ident: e_1_2_9_22_1 doi: 10.1016/j.jpowsour.2015.11.065 – ident: e_1_2_9_66_1 doi: 10.1039/C9CS00131J – ident: e_1_2_9_25_1 doi: 10.1002/anie.199526851 – ident: e_1_2_9_104_1 doi: 10.1016/j.ensm.2020.10.019 – ident: e_1_2_9_5_1 doi: 10.1021/acsenergylett.8b01426 – start-page: 167 year: 2020 ident: e_1_2_9_102_1 publication-title: J. Electrochem. Soc. |
SSID | ssj0017734 |
Score | 2.6710868 |
SecondaryResourceType | review_article |
Snippet | Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes cathode materials Cathodes Electrochemistry Electrode materials Electrolytes Energy storage Flux density Gravimetry high voltage Lithium Lithium-ion batteries Materials science Pigments Rechargeable batteries Redox reactions Storage batteries Storage systems Zinc zinc‐ion batteries |
Title | High‐Voltage Zinc‐Ion Batteries: Design Strategies and Challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202010213 https://www.proquest.com/docview/2532145007 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSgMxFIaDdKUL72K1ShaCq7STTDIXd6UXqlAXYqW4GZJMBsQyFWe6ceUj-Iw-iUnm0lYQQZeBZJjJ5eQ_mZPvAHChHElj7fmgkDsMUYFdJFymkCcElnEcYJqY847xrTea0Jspm67c4i_4EPWBm1kZ1l6bBc5F1llCQ3mcmJvkxCanNrhPE7BlVNFdzY_Cvl_8VvawCfDC04ra6JDOevP1XWkpNVcFq91xhjuAV-9aBJo8txe5aMu3bxjH_3zMLtgu5SjsFvNnD2yodB9srUAKD8DAhIJ8vn88zGe5Nj7w8SmVung9T2EB59S-9hXs20gQWMFuVQZ5GsNelaolOwST4eC-N0Jl8gUkqZYMSGmlJQKf8tjl0vOYomGsLZLn-qEkjAQWKoC1iysdnARSJNrR5BJLbUIkDbR7ewQa6TxVxwASTyiliCHbWYBaKLhUsXbdqMsdjlkToKrzI1mSyU2CjFlUMJVJZLonqrunCS7r-i8Fk-PHmq1qLKNybWYRYSY5E9PiqAmIHZRfnhJ1-8NxXTr5S6NTsElMMIyNlGyBRv66UGdazeTi3M7YL_se6rU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CMgADb0ShQAYkprSx46QpW9WHWmg7oBZVLJHtOBKiShFNFyY-gW_kS7CdR1skhASjJTtK_Lg-1zk-B-BKWJwEMvMxa9RyTMKQbTLbEabLGOJB4CESqvOO_sDtjMjt2MnYhOouTKIPkR-4qZWh47Va4OpAurJQDaVBqK6SY-1Oba_DhrL1ViYGzftcQQpVq8mPZRcpihcaZ7qNFq6stl_dlxZgcxmy6j2nvQsse9uEavJcnseszN--CTn-63P2YCdFpEY9mUL7sCaiA9he0ik8hJZig3y-fzxMJ7GMP8bjU8RlsTuNjESfU6bbN0ZTk0GMTO9WzAwaBUYjc2uZHcGo3Ro2Ombqv2ByIlGDKSTYYl6V0MCm3HUdQWqBDEquXa1x7GBP6wogmeVyC4UeZ6HMNSlHXEYRTjyZ4R5DIZpG4gQM7DIhBFbidlpDrcYoF4HM3ohNLYqcIphZ7_s8FSdXHhkTP5FVxr7qHj_vniJc5_VfElmOH2uWssH00-U587Gj_JkciY-KgPWo_PIUv95s9_PS6V8aXcJmZ9jv-b3u4O4MtrDixmjiZAkK8etcnEtwE7MLPX2_ALV27s8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4ndoHwaduTZp2nW9jFzZ1Q8TJ8KXkVhBHN9z24pMfwc_oJzFJ124TRNDHQFLaJCf5n_TkdwAupMOJUJ6PXaGOZxOGXJu5nrR9xhAXIkAk0ucdna7f6pHrvtdfuMWf8CGyAzdtGWa91gY-ElFpDg2lItI3ybFJTu2uwhrxlcVoWXSfAaRQuZz8V_aRjvBC_RTb6ODScvvlbWmuNRcVq9lymttA05dNIk1eitMJK_K3bxzH_3zNDmzN9KhVTSbQLqzIeA82FyiF-9DQsSCf7x-Pw8FErT7W03PMVbE9jK2Ezqmc7SurbkJBrJR2K8cWjYVVS3O1jA-g12w81Fr2LPuCzYnSDLZUUosFZUKFS7nve5JUhOpg3y1XOPZwYKgCSPm43EFRwFmkPE3KEVdrCCeB8m8PIRcPY3kEFvaZlBJrtJ0hqFUY5VIo34241KHIy4Oddn7IZ2hynSFjECZQZRzq7gmz7snDZVZ_lEA5fqxZSMcynBnnOMSezs7kKXWUB2wG5ZenhNV6s5OVjv_S6BzW7-rN8LbdvTmBDawDY0zUZAFyk9epPFXKZsLOzOT9Agd27Yc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Voltage+Zinc%E2%80%90Ion+Batteries%3A+Design+Strategies+and+Challenges&rft.jtitle=Advanced+functional+materials&rft.au=Yan%2C+Jianping&rft.au=Ang%2C+Edison+Huixiang&rft.au=Yang%2C+Yang&rft.au=Zhang%2C+Yufei&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202010213&rft.externalDBID=10.1002%252Fadfm.202010213&rft.externalDocID=ADFM202010213 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |