High‐Voltage Zinc‐Ion Batteries: Design Strategies and Challenges

Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density m...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 22
Main Authors Yan, Jianping, Ang, Edison Huixiang, Yang, Yang, Zhang, Yufei, Ye, Minghui, Du, Wencheng, Li, Cheng Chao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202010213

Cover

Loading…
Abstract Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn2+/Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs. This review focuses on the recent advancements of high‐voltage zinc‐ion batteries in aspects of cathode materials, Zn anodes, and electrolytes. Special attention is given to the challenges, design strategies, voltage variation trend of Prussian blue analogs, polyanionic compounds, and metal‐based oxides. Electrolytes with a wide electrochemical stability window, relevant challenges, and strategies on highly reversible Zn anodes are also reviewed.
AbstractList Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn2+/Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs. This review focuses on the recent advancements of high‐voltage zinc‐ion batteries in aspects of cathode materials, Zn anodes, and electrolytes. Special attention is given to the challenges, design strategies, voltage variation trend of Prussian blue analogs, polyanionic compounds, and metal‐based oxides. Electrolytes with a wide electrochemical stability window, relevant challenges, and strategies on highly reversible Zn anodes are also reviewed.
Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn 2+ /Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs.
Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium‐ion batteries. To acquire high‐energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn2+/Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high‐voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high‐voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal‐based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high‐performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs.
Author Yan, Jianping
Zhang, Yufei
Ye, Minghui
Du, Wencheng
Ang, Edison Huixiang
Yang, Yang
Li, Cheng Chao
Author_xml – sequence: 1
  givenname: Jianping
  surname: Yan
  fullname: Yan, Jianping
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Edison Huixiang
  surname: Ang
  fullname: Ang, Edison Huixiang
  organization: Nanyang Technological University
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Yufei
  surname: Zhang
  fullname: Zhang, Yufei
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Minghui
  surname: Ye
  fullname: Ye, Minghui
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Wencheng
  surname: Du
  fullname: Du, Wencheng
  organization: Guangdong University of Technology
– sequence: 7
  givenname: Cheng Chao
  orcidid: 0000-0003-2434-760X
  surname: Li
  fullname: Li, Cheng Chao
  email: licc@gdut.edu.cn
  organization: Guangdong University of Technology
BookMark eNqFkMtKw0AUhgepYFvdug64Tj1zSTJxV3uxhYoLL4ibMJ1M0inppM5Mke58BJ_RJzGlUkEQV-fC_52f83dQy9RGIXSOoYcByKXIi1WPAAEMBNMj1MYxjkMKhLcOPX4-QR3nlgA4SShro9FEl4vP94-nuvKiVMGLNrIZp7UJroX3ymrlroKhcro0wb23wquyWQXC5MFgIapKmVK5U3RciMqps-_aRY_j0cNgEs7ubqaD_iyUjBAaKkrYnCdM5FTIOI4US3PgPKZJKklEeCRzLnGCqQRccDkvIpYKiSUkIBmPCO2ii_3dta1fN8r5bFlvrGksMxJRglkEkDSq3l4lbe2cVUW2tnol7DbDkO2iynZRZYeoGoD9AqT2wuvaNA_r6m8s3WNvulLbf0yy_nB8-8N-Aal9gBw
CitedBy_id crossref_primary_10_1002_asia_202200067
crossref_primary_10_1016_j_ensm_2022_04_040
crossref_primary_10_1039_D5TA00860C
crossref_primary_10_1002_adfm_202406423
crossref_primary_10_1016_j_ceramint_2022_02_093
crossref_primary_10_1016_j_ccr_2025_216478
crossref_primary_10_1021_acsami_3c04004
crossref_primary_10_1002_smll_202108057
crossref_primary_10_1016_j_ensm_2023_102881
crossref_primary_10_1016_j_jpowsour_2024_236043
crossref_primary_10_1039_D2TA09979A
crossref_primary_10_1002_smll_202400221
crossref_primary_10_1002_aenm_202401737
crossref_primary_10_1016_j_jpowsour_2023_233964
crossref_primary_10_1039_D2TA04875B
crossref_primary_10_1002_adfm_202200429
crossref_primary_10_1016_j_apsusc_2023_156704
crossref_primary_10_1002_adfm_202407120
crossref_primary_10_1002_smll_202304786
crossref_primary_10_1007_s40820_023_01305_0
crossref_primary_10_1039_D3TA06641J
crossref_primary_10_1016_j_ensm_2025_104159
crossref_primary_10_1002_eem2_12573
crossref_primary_10_1016_j_jcis_2021_11_040
crossref_primary_10_1002_smtd_202300268
crossref_primary_10_1016_j_electacta_2022_141693
crossref_primary_10_1016_j_electacta_2023_143657
crossref_primary_10_1002_adfm_202213510
crossref_primary_10_1002_aenm_202405378
crossref_primary_10_1002_aenm_202102780
crossref_primary_10_1002_smll_202207517
crossref_primary_10_1016_j_cej_2022_138341
crossref_primary_10_1021_acs_jpclett_4c03514
crossref_primary_10_1021_acsaem_2c00832
crossref_primary_10_1002_adma_202204320
crossref_primary_10_1002_adma_202202382
crossref_primary_10_1016_j_cej_2024_152994
crossref_primary_10_1002_adfm_202314426
crossref_primary_10_1016_j_jcis_2024_09_216
crossref_primary_10_1016_j_jpowsour_2021_230740
crossref_primary_10_1016_j_ensm_2022_10_048
crossref_primary_10_1002_ange_202412057
crossref_primary_10_1016_j_est_2024_114064
crossref_primary_10_1039_D2TA07101K
crossref_primary_10_1002_bte2_20230063
crossref_primary_10_1016_j_jcis_2023_03_136
crossref_primary_10_1016_j_cis_2024_103373
crossref_primary_10_1016_j_jcis_2024_11_097
crossref_primary_10_34133_2022_9809626
crossref_primary_10_1016_j_ensm_2024_103799
crossref_primary_10_1021_acsami_3c03376
crossref_primary_10_1039_D4QI02769H
crossref_primary_10_1039_D3NR06120E
crossref_primary_10_1063_5_0192236
crossref_primary_10_1016_j_jcis_2023_10_044
crossref_primary_10_1039_D1EE02021H
crossref_primary_10_1016_j_jcis_2023_01_088
crossref_primary_10_1002_adma_202312934
crossref_primary_10_1002_sus2_118
crossref_primary_10_1039_D2SC04945G
crossref_primary_10_1002_aenm_202300733
crossref_primary_10_1002_smll_202305217
crossref_primary_10_1039_D2TA01501C
crossref_primary_10_1016_j_apsusc_2023_157737
crossref_primary_10_1016_j_ensm_2024_103707
crossref_primary_10_1002_eem2_12870
crossref_primary_10_1016_j_nanoen_2024_109691
crossref_primary_10_1016_j_surfin_2022_102266
crossref_primary_10_1016_j_mtsust_2025_101088
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1002_aenm_202402721
crossref_primary_10_5796_electrochemistry_24_00118
crossref_primary_10_1016_j_jcis_2023_06_152
crossref_primary_10_1016_j_pmatsci_2024_101393
crossref_primary_10_1021_acsami_2c04888
crossref_primary_10_1021_acsami_3c11035
crossref_primary_10_1021_acssuschemeng_1c01609
crossref_primary_10_1016_j_cej_2025_160415
crossref_primary_10_1007_s12598_023_02303_2
crossref_primary_10_1002_smll_202104965
crossref_primary_10_1016_j_ensm_2024_103934
crossref_primary_10_1016_j_jechem_2023_03_052
crossref_primary_10_1016_j_jpowsour_2025_236309
crossref_primary_10_1021_acsaem_3c02184
crossref_primary_10_1002_batt_202200560
crossref_primary_10_1002_smtd_202300617
crossref_primary_10_1016_j_cej_2023_146676
crossref_primary_10_1021_acsami_4c02912
crossref_primary_10_1002_smll_202205544
crossref_primary_10_1016_j_jiec_2024_03_039
crossref_primary_10_1016_j_cej_2023_147763
crossref_primary_10_1007_s11837_023_06280_w
crossref_primary_10_1002_smll_202304462
crossref_primary_10_1016_j_esci_2022_04_003
crossref_primary_10_1002_aenm_202200157
crossref_primary_10_1021_acsenergylett_1c01249
crossref_primary_10_1002_smll_202404227
crossref_primary_10_1002_smll_202406249
crossref_primary_10_1016_j_est_2025_115995
crossref_primary_10_1016_j_ensm_2025_104064
crossref_primary_10_1016_j_est_2024_114018
crossref_primary_10_1021_acsami_3c05651
crossref_primary_10_1039_D2TA04912K
crossref_primary_10_1002_aenm_202403958
crossref_primary_10_1016_j_cej_2024_153255
crossref_primary_10_1002_adfm_202301291
crossref_primary_10_1002_adfm_202304798
crossref_primary_10_1021_acsaem_3c00855
crossref_primary_10_1051_e3sconf_202132001014
crossref_primary_10_1016_j_ensm_2022_04_008
crossref_primary_10_1002_jccs_202300357
crossref_primary_10_1002_smtd_202200560
crossref_primary_10_1016_j_cej_2024_149780
crossref_primary_10_1039_D3TA05814J
crossref_primary_10_3390_membranes12101014
crossref_primary_10_1002_ece2_69
crossref_primary_10_1111_ijac_14509
crossref_primary_10_1002_batt_202100172
crossref_primary_10_1016_j_ensm_2024_103248
crossref_primary_10_1088_2515_7655_ad34fc
crossref_primary_10_1016_j_esci_2025_100379
crossref_primary_10_1021_acsami_3c11649
crossref_primary_10_26599_EMD_2024_9370040
crossref_primary_10_1002_anie_202200598
crossref_primary_10_1016_j_ensm_2022_07_046
crossref_primary_10_1016_j_est_2024_110984
crossref_primary_10_1016_j_pmatsci_2022_101055
crossref_primary_10_1016_j_jpowsour_2022_232542
crossref_primary_10_1016_j_cej_2025_161447
crossref_primary_10_1007_s12274_024_6440_9
crossref_primary_10_1007_s40843_024_2972_7
crossref_primary_10_1016_j_cej_2022_134507
crossref_primary_10_1002_adfm_202308508
crossref_primary_10_1002_anie_202215324
crossref_primary_10_1039_D3CS00295K
crossref_primary_10_1016_j_cej_2023_144992
crossref_primary_10_1039_D2TA04198G
crossref_primary_10_1039_D2CC06342E
crossref_primary_10_1002_batt_202400046
crossref_primary_10_1002_adfm_202424954
crossref_primary_10_1002_aenm_202202039
crossref_primary_10_1002_ange_202200598
crossref_primary_10_1016_j_jallcom_2022_165151
crossref_primary_10_1002_smtd_202400249
crossref_primary_10_1002_smll_202107102
crossref_primary_10_1021_acsami_1c20893
crossref_primary_10_1016_j_jpowsour_2022_231122
crossref_primary_10_1002_ange_202215324
crossref_primary_10_1063_5_0152214
crossref_primary_10_1016_j_jcis_2022_07_119
crossref_primary_10_1002_adfm_202102827
crossref_primary_10_1016_j_jpowsour_2024_234311
crossref_primary_10_1016_j_jpowsour_2022_231883
crossref_primary_10_1002_batt_202200237
crossref_primary_10_1007_s40820_024_01551_w
crossref_primary_10_1016_j_cej_2024_153239
crossref_primary_10_1021_acs_nanolett_4c03390
crossref_primary_10_1039_D2CE01467J
crossref_primary_10_1002_advs_202303211
crossref_primary_10_1002_anie_202401629
crossref_primary_10_1039_D5EE00001G
crossref_primary_10_1002_ange_202401629
crossref_primary_10_1007_s11244_024_02007_6
crossref_primary_10_1002_anie_202412057
crossref_primary_10_1007_s11426_022_1397_2
crossref_primary_10_1021_acsami_2c00001
crossref_primary_10_1016_j_colsurfa_2022_130255
crossref_primary_10_1002_aenm_202201599
crossref_primary_10_1021_acs_energyfuels_1c02586
crossref_primary_10_1016_j_ces_2024_120961
crossref_primary_10_1088_2515_7639_ad9ad3
crossref_primary_10_59717_j_xinn_mater_2023_100029
crossref_primary_10_1039_D1TA05982C
crossref_primary_10_1016_j_est_2024_114442
crossref_primary_10_1016_j_est_2023_109355
crossref_primary_10_1002_adfm_202405551
crossref_primary_10_1002_ece2_83
crossref_primary_10_1016_j_jcis_2024_09_150
crossref_primary_10_1002_adfm_202316182
crossref_primary_10_1016_j_carbon_2024_119241
crossref_primary_10_1039_D2TA05803K
crossref_primary_10_1002_cssc_202201118
crossref_primary_10_1007_s12274_022_4726_3
crossref_primary_10_1002_adfm_202206695
crossref_primary_10_1002_smtd_202201683
crossref_primary_10_1021_acsami_1c20087
Cites_doi 10.1002/aenm.201400930
10.1016/j.nanoen.2019.01.068
10.1016/j.nanoen.2019.05.059
10.1021/ja906529g
10.1021/acsami.6b01592
10.1039/C9TA00716D
10.1016/j.nanoen.2018.12.086
10.1039/C8CC07730D
10.1021/acs.chemmater.0c00004
10.1039/C6TA08736A
10.1016/j.joule.2018.02.011
10.1126/science.1212741
10.1021/cm401949n
10.1002/adma.201802396
10.1021/acs.chemmater.7b03340
10.1021/acs.chemrev.9b00628
10.1038/nenergy.2016.39
10.1039/C7TA07834J
10.1021/jp4078689
10.1002/adma.201901521
10.1016/j.ensm.2020.04.030
10.1016/j.matlet.2015.05.174
10.1038/35104644
10.1021/ja512383b
10.1007/s40820-019-0247-3
10.1016/j.elecom.2016.05.014
10.1016/j.gee.2017.09.003
10.1016/j.jpowsour.2019.02.097
10.1021/cr300162p
10.1016/j.jpowsour.2016.10.083
10.1021/acsenergylett.9b01643
10.1039/D0SE00122H
10.1002/adfm.201908528
10.1021/acsaem.9b01469
10.1038/s41467-019-13436-3
10.1021/cm504717p
10.1039/C9CC08604H
10.1002/aenm.201903589
10.1016/j.electacta.2014.11.168
10.1002/aenm.201701785
10.1039/C9TA13497B
10.1002/anie.202012017
10.1021/cr020730k
10.1021/acsami.5b10024
10.1039/c3cc00064h
10.1016/j.electacta.2018.05.107
10.1021/acsami.9b20531
10.1039/C8EE00378E
10.1039/D0EE02620D
10.1039/C8TA01198B
10.1016/j.electacta.2016.10.155
10.1002/adma.201505370
10.1038/s41563-018-0063-z
10.1021/acsenergylett.8b00565
10.1002/anie.201908853
10.1016/j.jpowsour.2016.01.058
10.1002/cssc.201403143
10.1002/celc.201402177
10.1002/adfm.201808375
10.1002/adfm.202003511
10.1039/D0EE02079F
10.1038/s41467-018-04060-8
10.1002/adfm.202002711
10.1002/adma.201601925
10.1021/acsenergylett.0c01767
10.1039/C9TA08625K
10.1002/adfm.201400561
10.1016/j.joule.2018.07.017
10.1126/science.1122152
10.1021/acs.nanolett.9b01403
10.1002/aenm.201800079
10.1016/j.nanoen.2016.04.051
10.1002/adma.201900668
10.1039/C8EE01415A
10.1002/aenm.201902473
10.1021/jacs.6b05958
10.1126/science.aam6284
10.1021/ja3091438
10.1016/j.jpowsour.2016.05.003
10.1002/adfm.201906142
10.1038/s41560-020-0584-y
10.1002/anie.201106307
10.1016/j.electacta.2020.136535
10.1002/aenm.201900237
10.1021/acsaem.0c00505
10.1038/srep25809
10.1016/j.jpowsour.2019.227594
10.1039/C9EE02526J
10.1002/anie.201806748
10.1002/aenm.202000892
10.1002/aenm.201800589
10.3390/batteries5010003
10.1016/j.electacta.2017.10.166
10.1016/j.electacta.2020.136445
10.1002/anie.201509364
10.1016/j.joule.2020.03.002
10.1002/aenm.201401869
10.1021/acsenergylett.8b01105
10.1002/aenm.202001050
10.1002/anie.201904174
10.1002/adma.202001894
10.1021/jacs.7b04471
10.1039/C6CC00873A
10.1039/C8EE01883A
10.1016/j.ensm.2020.03.011
10.1016/j.ensm.2018.03.003
10.1002/aenm.201902446
10.1002/anie.201902679
10.1016/j.jpowsour.2015.11.065
10.1039/C9CS00131J
10.1002/anie.199526851
10.1016/j.ensm.2020.10.019
10.1021/acsenergylett.8b01426
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202010213
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202010213
ADFM202010213
Genre reviewArticle
GrantInformation_xml – fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
– fundername: Pearl River S and T Nova Program of Guangzhou
  funderid: 2017GC010030
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2020A1515010886
– fundername: National Natural Science Foundation of China
  funderid: 51771058; 2017GC010030
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4223-e324b874ad3ac665e49d0886379c25285cd8c1713c01f8cbf549ac1c070c48523
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:52:23 EDT 2025
Tue Jul 01 04:12:26 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 16:30:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4223-e324b874ad3ac665e49d0886379c25285cd8c1713c01f8cbf549ac1c070c48523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2434-760X
PQID 2532145007
PQPubID 2045204
PageCount 30
ParticipantIDs proquest_journals_2532145007
crossref_primary_10_1002_adfm_202010213
crossref_citationtrail_10_1002_adfm_202010213
wiley_primary_10_1002_adfm_202010213_ADFM202010213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2013; 25
2018; 280
2006 2018 2019; 311 8 11
2020; 120
2016; 305
2019; 10
2019; 57
2019; 12
2019; 58
2016; 222
2019; 19
2020; 59
2014; 24
2020; 13
2020; 56
2020; 12
2019 2020 2016; 2 8 321
2020; 10
2020; 449
1996; 34
2012; 51
2014; 1
2018; 6
2018; 8
2020; 5
2018; 3
2020; 4
2020; 3
2018; 2
2019; 62
2021; 34
2018; 259
2013; 117
2020; 49
2019; 29
2018; 30
2001; 414
2019; 7
2011; 334
2019; 9
2019; 4
2004; 104
2015; 5
2013; 49
2019; 5
2019; 31
2019; 421
2016; 52
2018 2020 2017; 9 5 139
2017; 29
2020; 32
2009; 131
2015; 8
2017; 335
2014; 114
2017; 337
2016; 55
2015; 152
2016; 6
2018; 17
2015; 27
2016; 1
2020; 30
2015; 158
2020; 351
2020
2018 2015; 2 137
2020; 28
2016 2019; 308 58
2013; 135
2020; 353
2016; 138
2018; 11
2016; 28
2018; 54
2016; 8
2016; 25
2016; 69
2018; 15
2020; 29
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_14_2
e_1_2_9_14_1
e_1_2_9_14_3
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_30_2
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_30_3
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
Yang M. (e_1_2_9_102_1) 2020
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_20_2
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_43_2
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_3_3
e_1_2_9_82_1
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 12
  start-page: 3288
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 259
  start-page: 170
  year: 2018
  publication-title: Electrochim. Acta
– volume: 32
  start-page: 3028
  year: 2020
  publication-title: Chem. Mater.
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 2 137
  start-page: 1950 2658
  year: 2018 2015
  publication-title: Joule J. Am. Chem. Soc.
– volume: 280
  start-page: 108
  year: 2018
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 3609
  year: 2015
  publication-title: Chem. Mater.
– volume: 29
  start-page: 9351
  year: 2017
  publication-title: Chem. Mater.
– volume: 49
  start-page: 2204
  year: 2013
  publication-title: Chem. Commun.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 481
  year: 2015
  publication-title: ChemSusChem
– volume: 55
  start-page: 2889
  year: 2016
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 69
  start-page: 6
  year: 2016
  publication-title: Electrochem. Commun.
– volume: 13
  start-page: 4625
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 449
  year: 2020
  publication-title: J. Power Sources
– volume: 58
  start-page: 7062
  year: 2019
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 28
  start-page: 205
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 4904
  year: 2016
  publication-title: Adv. Mater.
– volume: 58
  start-page: 7823
  year: 2019
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 2 8 321
  start-page: 6984 6631 257
  year: 2019 2020 2016
  publication-title: ACS Appl. Energy Mater. J. Mater. Chem. A J. Power Sources
– volume: 11
  start-page: 3168
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 62
  start-page: 550
  year: 2019
  publication-title: Nano Energy
– volume: 4
  start-page: 2448
  year: 2020
  publication-title: Sustainable Energy Fuels
– volume: 6
  start-page: 9677
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 337
  start-page: 204
  year: 2017
  publication-title: J. Power Sources
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 7159
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 222
  start-page: 74
  year: 2016
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 2521
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 927
  year: 2018
  publication-title: Joule
– volume: 11
  start-page: 881
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 158
  start-page: 248
  year: 2015
  publication-title: Mater. Lett.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 15
  start-page: 14
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 49
  start-page: 180
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 771
  year: 2020
  publication-title: Joule
– volume: 3
  start-page: 5015
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 9 5 139
  start-page: 1656 2979 9775
  year: 2018 2020 2017
  publication-title: Nat. Commun. ACS Energy Lett. J. Am. Chem. Soc.
– volume: 5
  start-page: 730
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 34
  start-page: 545
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 305
  start-page: 22
  year: 2016
  publication-title: J. Power Sources
– volume: 34
  start-page: 2685
  year: 1996
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 3
  start-page: 1998
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 246
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 308 58
  start-page: 52
  year: 2016 2019
  publication-title: J. Power Sources Angew. Chem., Int. Ed. Engl.
– volume: 152
  start-page: 505
  year: 2015
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 211
  year: 2016
  publication-title: Nano Energy
– volume: 57
  start-page: 625
  year: 2019
  publication-title: Nano Energy
– volume: 8
  start-page: 3021
  year: 2016
  publication-title: ACS Appl. Mater Interfaces
– volume: 120
  start-page: 7795
  year: 2020
  publication-title: Chem. Rev.
– start-page: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 56
  year: 2018
  publication-title: Green Energy Environ.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 4979
  year: 2016
  publication-title: Chem. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 104
  start-page: 4245
  year: 2004
  publication-title: Chem. Rev.
– volume: 24
  start-page: 4603
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 25
  start-page: 4010
  year: 2013
  publication-title: Chem. Mater.
– volume: 421
  start-page: 6
  year: 2019
  publication-title: J. Power Sources
– volume: 3
  start-page: 1366
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 311 8 11
  start-page: 977 15
  year: 2006 2018 2019
  publication-title: Science Adv. Energy Mater. Nano‐Micro Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 335
  start-page: 126
  year: 2017
  publication-title: Science
– volume: 353
  year: 2020
  publication-title: Electrochim. Acta
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 19
  start-page: 4035
  year: 2019
  publication-title: Nano Lett.
– volume: 58
  start-page: 492
  year: 2019
  publication-title: Nano Energy
– volume: 56
  start-page: 2039
  year: 2020
  publication-title: Chem. Commun.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3
  year: 2019
  publication-title: Batteries
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 5
  start-page: 440
  year: 2020
  publication-title: Nat. Energy
– volume: 1
  start-page: 1688
  year: 2014
  publication-title: ChemElectroChem
– volume: 351
  year: 2020
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 3330
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 4
  start-page: 2144
  year: 2019
  publication-title: ACS Energy Lett.
– ident: e_1_2_9_26_1
  doi: 10.1002/aenm.201400930
– ident: e_1_2_9_51_1
  doi: 10.1016/j.nanoen.2019.01.068
– ident: e_1_2_9_8_1
  doi: 10.1016/j.nanoen.2019.05.059
– ident: e_1_2_9_92_1
  doi: 10.1021/ja906529g
– ident: e_1_2_9_36_1
  doi: 10.1021/acsami.6b01592
– ident: e_1_2_9_103_1
  doi: 10.1039/C9TA00716D
– ident: e_1_2_9_99_1
  doi: 10.1016/j.nanoen.2018.12.086
– ident: e_1_2_9_96_1
  doi: 10.1039/C8CC07730D
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.chemmater.0c00004
– ident: e_1_2_9_33_1
  doi: 10.1039/C6TA08736A
– ident: e_1_2_9_94_1
  doi: 10.1016/j.joule.2018.02.011
– ident: e_1_2_9_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_9_39_1
  doi: 10.1021/cm401949n
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.201802396
– ident: e_1_2_9_61_1
  doi: 10.1021/acs.chemmater.7b03340
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_9_15_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_9_23_1
  doi: 10.1039/C7TA07834J
– ident: e_1_2_9_32_1
  doi: 10.1021/jp4078689
– ident: e_1_2_9_34_1
  doi: 10.1002/adma.201901521
– ident: e_1_2_9_35_1
  doi: 10.1016/j.ensm.2020.04.030
– ident: e_1_2_9_53_1
  doi: 10.1016/j.matlet.2015.05.174
– ident: e_1_2_9_4_1
  doi: 10.1038/35104644
– ident: e_1_2_9_20_2
  doi: 10.1021/ja512383b
– ident: e_1_2_9_3_3
  doi: 10.1007/s40820-019-0247-3
– ident: e_1_2_9_52_1
  doi: 10.1016/j.elecom.2016.05.014
– ident: e_1_2_9_63_1
  doi: 10.1016/j.gee.2017.09.003
– ident: e_1_2_9_64_1
  doi: 10.1016/j.jpowsour.2019.02.097
– ident: e_1_2_9_18_1
  doi: 10.1021/cr300162p
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jpowsour.2016.10.083
– ident: e_1_2_9_68_1
  doi: 10.1021/acsenergylett.9b01643
– ident: e_1_2_9_55_1
  doi: 10.1039/D0SE00122H
– ident: e_1_2_9_80_1
  doi: 10.1002/adfm.201908528
– ident: e_1_2_9_30_1
  doi: 10.1021/acsaem.9b01469
– ident: e_1_2_9_100_1
  doi: 10.1038/s41467-019-13436-3
– ident: e_1_2_9_13_1
  doi: 10.1021/cm504717p
– ident: e_1_2_9_69_1
  doi: 10.1039/C9CC08604H
– ident: e_1_2_9_70_1
  doi: 10.1002/aenm.201903589
– ident: e_1_2_9_54_1
  doi: 10.1016/j.electacta.2014.11.168
– ident: e_1_2_9_37_1
  doi: 10.1002/aenm.201701785
– ident: e_1_2_9_30_2
  doi: 10.1039/C9TA13497B
– ident: e_1_2_9_90_1
  doi: 10.1002/anie.202012017
– ident: e_1_2_9_11_1
  doi: 10.1021/cr020730k
– ident: e_1_2_9_101_1
  doi: 10.1021/acsami.5b10024
– ident: e_1_2_9_89_1
  doi: 10.1039/c3cc00064h
– ident: e_1_2_9_97_1
  doi: 10.1016/j.electacta.2018.05.107
– ident: e_1_2_9_73_1
  doi: 10.1021/acsami.9b20531
– ident: e_1_2_9_29_1
  doi: 10.1039/C8EE00378E
– ident: e_1_2_9_82_1
  doi: 10.1039/D0EE02620D
– ident: e_1_2_9_77_1
  doi: 10.1039/C8TA01198B
– ident: e_1_2_9_86_1
  doi: 10.1016/j.electacta.2016.10.155
– ident: e_1_2_9_57_1
  doi: 10.1002/adma.201505370
– ident: e_1_2_9_17_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_9_106_1
  doi: 10.1021/acsenergylett.8b00565
– ident: e_1_2_9_43_2
  doi: 10.1002/anie.201908853
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jpowsour.2016.01.058
– ident: e_1_2_9_27_1
  doi: 10.1002/cssc.201403143
– ident: e_1_2_9_98_1
  doi: 10.1002/celc.201402177
– ident: e_1_2_9_83_1
  doi: 10.1002/adfm.201808375
– ident: e_1_2_9_46_1
  doi: 10.1002/adfm.202003511
– ident: e_1_2_9_81_1
  doi: 10.1039/D0EE02079F
– ident: e_1_2_9_14_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_9_87_1
  doi: 10.1002/adfm.202002711
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.201601925
– ident: e_1_2_9_14_2
  doi: 10.1021/acsenergylett.0c01767
– ident: e_1_2_9_59_1
  doi: 10.1039/C9TA08625K
– ident: e_1_2_9_40_1
  doi: 10.1002/adfm.201400561
– ident: e_1_2_9_20_1
  doi: 10.1016/j.joule.2018.07.017
– ident: e_1_2_9_3_1
  doi: 10.1126/science.1122152
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.nanolett.9b01403
– ident: e_1_2_9_3_2
  doi: 10.1002/aenm.201800079
– ident: e_1_2_9_41_1
  doi: 10.1016/j.nanoen.2016.04.051
– ident: e_1_2_9_84_1
  doi: 10.1002/adma.201900668
– ident: e_1_2_9_58_1
  doi: 10.1039/C8EE01415A
– ident: e_1_2_9_19_1
  doi: 10.1002/aenm.201902473
– ident: e_1_2_9_85_1
  doi: 10.1021/jacs.6b05958
– ident: e_1_2_9_1_1
  doi: 10.1126/science.aam6284
– ident: e_1_2_9_10_1
  doi: 10.1021/ja3091438
– ident: e_1_2_9_30_3
  doi: 10.1016/j.jpowsour.2016.05.003
– ident: e_1_2_9_79_1
  doi: 10.1002/adfm.201906142
– ident: e_1_2_9_88_1
  doi: 10.1038/s41560-020-0584-y
– ident: e_1_2_9_12_1
  doi: 10.1002/anie.201106307
– ident: e_1_2_9_60_1
  doi: 10.1016/j.electacta.2020.136535
– ident: e_1_2_9_16_1
  doi: 10.1002/aenm.201900237
– ident: e_1_2_9_42_1
  doi: 10.1021/acsaem.0c00505
– ident: e_1_2_9_47_1
  doi: 10.1038/srep25809
– ident: e_1_2_9_95_1
  doi: 10.1016/j.jpowsour.2019.227594
– ident: e_1_2_9_9_1
  doi: 10.1039/C9EE02526J
– ident: e_1_2_9_50_1
  doi: 10.1002/anie.201806748
– ident: e_1_2_9_56_1
  doi: 10.1002/aenm.202000892
– ident: e_1_2_9_62_1
  doi: 10.1002/aenm.201800589
– ident: e_1_2_9_105_1
  doi: 10.3390/batteries5010003
– ident: e_1_2_9_76_1
  doi: 10.1016/j.electacta.2017.10.166
– ident: e_1_2_9_75_1
  doi: 10.1016/j.electacta.2020.136445
– ident: e_1_2_9_91_1
  doi: 10.1002/anie.201509364
– ident: e_1_2_9_6_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_9_24_1
  doi: 10.1002/aenm.201401869
– ident: e_1_2_9_74_1
  doi: 10.1021/acsenergylett.8b01105
– ident: e_1_2_9_78_1
  doi: 10.1002/aenm.202001050
– ident: e_1_2_9_67_1
  doi: 10.1002/anie.201904174
– ident: e_1_2_9_71_1
  doi: 10.1002/adma.202001894
– ident: e_1_2_9_14_3
  doi: 10.1021/jacs.7b04471
– ident: e_1_2_9_93_1
  doi: 10.1039/C6CC00873A
– ident: e_1_2_9_48_1
  doi: 10.1039/C8EE01883A
– ident: e_1_2_9_72_1
  doi: 10.1016/j.ensm.2020.03.011
– ident: e_1_2_9_45_1
  doi: 10.1016/j.ensm.2018.03.003
– ident: e_1_2_9_21_1
  doi: 10.1002/aenm.201902446
– ident: e_1_2_9_49_1
  doi: 10.1002/anie.201902679
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jpowsour.2015.11.065
– ident: e_1_2_9_66_1
  doi: 10.1039/C9CS00131J
– ident: e_1_2_9_25_1
  doi: 10.1002/anie.199526851
– ident: e_1_2_9_104_1
  doi: 10.1016/j.ensm.2020.10.019
– ident: e_1_2_9_5_1
  doi: 10.1021/acsenergylett.8b01426
– start-page: 167
  year: 2020
  ident: e_1_2_9_102_1
  publication-title: J. Electrochem. Soc.
SSID ssj0017734
Score 2.6710868
SecondaryResourceType review_article
Snippet Rechargeable zinc‐ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
cathode materials
Cathodes
Electrochemistry
Electrode materials
Electrolytes
Energy storage
Flux density
Gravimetry
high voltage
Lithium
Lithium-ion batteries
Materials science
Pigments
Rechargeable batteries
Redox reactions
Storage batteries
Storage systems
Zinc
zinc‐ion batteries
Title High‐Voltage Zinc‐Ion Batteries: Design Strategies and Challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202010213
https://www.proquest.com/docview/2532145007
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSgMxFIaDdKUL72K1ShaCq7STTDIXd6UXqlAXYqW4GZJMBsQyFWe6ceUj-Iw-iUnm0lYQQZeBZJjJ5eQ_mZPvAHChHElj7fmgkDsMUYFdJFymkCcElnEcYJqY847xrTea0Jspm67c4i_4EPWBm1kZ1l6bBc5F1llCQ3mcmJvkxCanNrhPE7BlVNFdzY_Cvl_8VvawCfDC04ra6JDOevP1XWkpNVcFq91xhjuAV-9aBJo8txe5aMu3bxjH_3zMLtgu5SjsFvNnD2yodB9srUAKD8DAhIJ8vn88zGe5Nj7w8SmVung9T2EB59S-9hXs20gQWMFuVQZ5GsNelaolOwST4eC-N0Jl8gUkqZYMSGmlJQKf8tjl0vOYomGsLZLn-qEkjAQWKoC1iysdnARSJNrR5BJLbUIkDbR7ewQa6TxVxwASTyiliCHbWYBaKLhUsXbdqMsdjlkToKrzI1mSyU2CjFlUMJVJZLonqrunCS7r-i8Fk-PHmq1qLKNybWYRYSY5E9PiqAmIHZRfnhJ1-8NxXTr5S6NTsElMMIyNlGyBRv66UGdazeTi3M7YL_se6rU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CMgADb0ShQAYkprSx46QpW9WHWmg7oBZVLJHtOBKiShFNFyY-gW_kS7CdR1skhASjJTtK_Lg-1zk-B-BKWJwEMvMxa9RyTMKQbTLbEabLGOJB4CESqvOO_sDtjMjt2MnYhOouTKIPkR-4qZWh47Va4OpAurJQDaVBqK6SY-1Oba_DhrL1ViYGzftcQQpVq8mPZRcpihcaZ7qNFq6stl_dlxZgcxmy6j2nvQsse9uEavJcnseszN--CTn-63P2YCdFpEY9mUL7sCaiA9he0ik8hJZig3y-fzxMJ7GMP8bjU8RlsTuNjESfU6bbN0ZTk0GMTO9WzAwaBUYjc2uZHcGo3Ro2Ombqv2ByIlGDKSTYYl6V0MCm3HUdQWqBDEquXa1x7GBP6wogmeVyC4UeZ6HMNSlHXEYRTjyZ4R5DIZpG4gQM7DIhBFbidlpDrcYoF4HM3ohNLYqcIphZ7_s8FSdXHhkTP5FVxr7qHj_vniJc5_VfElmOH2uWssH00-U587Gj_JkciY-KgPWo_PIUv95s9_PS6V8aXcJmZ9jv-b3u4O4MtrDixmjiZAkK8etcnEtwE7MLPX2_ALV27s8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4ndoHwaduTZp2nW9jFzZ1Q8TJ8KXkVhBHN9z24pMfwc_oJzFJ124TRNDHQFLaJCf5n_TkdwAupMOJUJ6PXaGOZxOGXJu5nrR9xhAXIkAk0ucdna7f6pHrvtdfuMWf8CGyAzdtGWa91gY-ElFpDg2lItI3ybFJTu2uwhrxlcVoWXSfAaRQuZz8V_aRjvBC_RTb6ODScvvlbWmuNRcVq9lymttA05dNIk1eitMJK_K3bxzH_3zNDmzN9KhVTSbQLqzIeA82FyiF-9DQsSCf7x-Pw8FErT7W03PMVbE9jK2Ezqmc7SurbkJBrJR2K8cWjYVVS3O1jA-g12w81Fr2LPuCzYnSDLZUUosFZUKFS7nve5JUhOpg3y1XOPZwYKgCSPm43EFRwFmkPE3KEVdrCCeB8m8PIRcPY3kEFvaZlBJrtJ0hqFUY5VIo34241KHIy4Oddn7IZ2hynSFjECZQZRzq7gmz7snDZVZ_lEA5fqxZSMcynBnnOMSezs7kKXWUB2wG5ZenhNV6s5OVjv_S6BzW7-rN8LbdvTmBDawDY0zUZAFyk9epPFXKZsLOzOT9Agd27Yc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Voltage+Zinc%E2%80%90Ion+Batteries%3A+Design+Strategies+and+Challenges&rft.jtitle=Advanced+functional+materials&rft.au=Yan%2C+Jianping&rft.au=Ang%2C+Edison+Huixiang&rft.au=Yang%2C+Yang&rft.au=Zhang%2C+Yufei&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202010213&rft.externalDBID=10.1002%252Fadfm.202010213&rft.externalDocID=ADFM202010213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon