Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries

All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lith...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 1
Main Authors Doux, Jean‐Marie, Nguyen, Han, Tan, Darren H. S., Banerjee, Abhik, Wang, Xuefeng, Wu, Erik A., Jo, Chiho, Yang, Hedi, Meng, Ying Shirley
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.201903253

Cover

Abstract All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.
AbstractList All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li 6 PS 5 Cl | LiNi 0.80 Co 0.15 Al 0.05 O 2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
Author Meng, Ying Shirley
Wang, Xuefeng
Banerjee, Abhik
Yang, Hedi
Tan, Darren H. S.
Jo, Chiho
Doux, Jean‐Marie
Nguyen, Han
Wu, Erik A.
Author_xml – sequence: 1
  givenname: Jean‐Marie
  orcidid: 0000-0002-9801-4800
  surname: Doux
  fullname: Doux, Jean‐Marie
  organization: University of California San Diego
– sequence: 2
  givenname: Han
  surname: Nguyen
  fullname: Nguyen, Han
  organization: University of California San Diego
– sequence: 3
  givenname: Darren H. S.
  surname: Tan
  fullname: Tan, Darren H. S.
  organization: University of California San Diego
– sequence: 4
  givenname: Abhik
  surname: Banerjee
  fullname: Banerjee, Abhik
  organization: University of California San Diego
– sequence: 5
  givenname: Xuefeng
  surname: Wang
  fullname: Wang, Xuefeng
  organization: University of California San Diego
– sequence: 6
  givenname: Erik A.
  surname: Wu
  fullname: Wu, Erik A.
  organization: University of California San Diego
– sequence: 7
  givenname: Chiho
  surname: Jo
  fullname: Jo, Chiho
  organization: University of California San Diego
– sequence: 8
  givenname: Hedi
  surname: Yang
  fullname: Yang, Hedi
  organization: University of California San Diego
– sequence: 9
  givenname: Ying Shirley
  orcidid: 0000-0001-8936-8845
  surname: Meng
  fullname: Meng, Ying Shirley
  email: shmeng@ucsd.edu, shirleymeng@ucsd.edu
  organization: University of California San Diego
BookMark eNqFkE1Lw0AQhhdRsNZePQc8p-5Xvo611A9oVdre1-1mgluTbN3dIL35E_yN_hITKxUEcS7zMswzL_OeoMPa1IDQGcFDgjG9kFBXQ4pJhhmN2AHqkZjwME45PtxrRo_RwLk1botnBDPWQ48LL9Vz8GDBucZCMDa10zlY6XWrgsLYYG5M9fH2voRq0827rVFZtpOFKXXedS89BFPtn3RTBTPwsgwupfdgNbhTdFTI0sHgu_fR_GqyHN-E0_vr2_FoGipOKQtTDDwGTAhIpXBOFctwgkmOqYJkpQhdJTxRMc-KJOKrQhJWRFkKaRZRQlkfne-Obqx5acB5sTaNrVs_QRljKUuy9v0-Gu62lDXOWSjExupK2q0gWHQpii5FsU-xBfgvQGn_lYy3Upd_Y9kOe9UlbP8xEaPJ3eyH_QSFyYxC
CitedBy_id crossref_primary_10_1016_j_nxnano_2023_100028
crossref_primary_10_1149_1945_7111_acaf42
crossref_primary_10_1007_s40684_023_00519_2
crossref_primary_10_3390_membranes13020216
crossref_primary_10_1016_j_cej_2024_150455
crossref_primary_10_1149_1945_7111_ad510e
crossref_primary_10_1016_j_mattod_2021_02_011
crossref_primary_10_1002_aenm_202405026
crossref_primary_10_1016_j_cej_2023_143409
crossref_primary_10_1088_1361_6463_ad1b0a
crossref_primary_10_1002_aenm_202203631
crossref_primary_10_1002_aenm_202203873
crossref_primary_10_1038_s41598_021_84799_1
crossref_primary_10_1016_j_xcrp_2022_100938
crossref_primary_10_1007_s10338_022_00348_x
crossref_primary_10_1126_science_abg7217
crossref_primary_10_1038_s41563_024_02055_z
crossref_primary_10_1002_aenm_202100748
crossref_primary_10_1016_j_mtphys_2022_100679
crossref_primary_10_1021_acsenergylett_1c01395
crossref_primary_10_1016_j_cossms_2021_100973
crossref_primary_10_1016_j_est_2023_107916
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123450
crossref_primary_10_1016_j_cossms_2021_100978
crossref_primary_10_1016_j_cossms_2021_100977
crossref_primary_10_1002_batt_202100131
crossref_primary_10_1039_D1EE00551K
crossref_primary_10_1002_aenm_202203883
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1021_acs_chemmater_2c02106
crossref_primary_10_1021_acsaem_5c00020
crossref_primary_10_1149_1945_7111_acb400
crossref_primary_10_1021_acsenergylett_4c01098
crossref_primary_10_1039_D4TA01804D
crossref_primary_10_1039_D2TA02339C
crossref_primary_10_1016_j_matdes_2023_112200
crossref_primary_10_1149_1945_7111_aca79d
crossref_primary_10_1007_s10800_024_02142_8
crossref_primary_10_1557_s43577_021_00101_8
crossref_primary_10_1149_1945_7111_ad01e3
crossref_primary_10_1038_s41467_024_46472_9
crossref_primary_10_1002_advs_202407540
crossref_primary_10_1016_j_joule_2022_07_002
crossref_primary_10_1021_acsenergylett_1c01299
crossref_primary_10_1016_j_est_2024_111254
crossref_primary_10_1002_aenm_202203861
crossref_primary_10_1149_1945_7111_ac18e5
crossref_primary_10_1016_j_jpowsour_2023_233079
crossref_primary_10_1021_acs_jpclett_4c03585
crossref_primary_10_1016_j_etran_2024_100391
crossref_primary_10_1111_ijac_14771
crossref_primary_10_1002_aenm_202003154
crossref_primary_10_1007_s00706_023_03162_4
crossref_primary_10_1002_advs_202105234
crossref_primary_10_1039_D0EE01017K
crossref_primary_10_1021_acsnano_4c07687
crossref_primary_10_1038_s41563_021_00967_8
crossref_primary_10_1002_adfm_202305373
crossref_primary_10_1149_1945_7111_abf8d7
crossref_primary_10_1021_acsnano_3c02223
crossref_primary_10_1002_aenm_202203671
crossref_primary_10_1002_adfm_202407166
crossref_primary_10_1002_admi_202202475
crossref_primary_10_1021_acsenergylett_3c02513
crossref_primary_10_1038_s41586_024_08221_2
crossref_primary_10_1016_j_jechem_2023_01_003
crossref_primary_10_1002_adma_202410948
crossref_primary_10_1016_j_mtsust_2023_100614
crossref_primary_10_1002_admi_202100206
crossref_primary_10_1016_j_esci_2022_02_002
crossref_primary_10_1002_aesr_202100197
crossref_primary_10_1002_aenm_202101807
crossref_primary_10_1002_aesr_202400234
crossref_primary_10_34133_2021_1519569
crossref_primary_10_1002_aenm_202003250
crossref_primary_10_1016_j_mattod_2025_01_002
crossref_primary_10_1038_s41563_020_00903_2
crossref_primary_10_1002_ange_202320258
crossref_primary_10_1002_adma_202209074
crossref_primary_10_1002_eom2_12338
crossref_primary_10_1021_jacs_3c05715
crossref_primary_10_1007_s12274_022_4526_9
crossref_primary_10_1021_acsami_4c11207
crossref_primary_10_1016_j_cej_2022_139923
crossref_primary_10_3390_batteries10010020
crossref_primary_10_1002_aenm_202002394
crossref_primary_10_1021_acsami_4c01652
crossref_primary_10_1021_acsenergylett_2c01637
crossref_primary_10_1016_j_actamat_2021_117076
crossref_primary_10_1149_1945_7111_adb64f
crossref_primary_10_1002_aenm_202404384
crossref_primary_10_1002_celc_202200923
crossref_primary_10_1021_acsnano_4c06345
crossref_primary_10_3390_electrochem2030030
crossref_primary_10_1016_j_est_2024_114966
crossref_primary_10_1016_j_ssi_2024_116557
crossref_primary_10_1149_1945_7111_ac91aa
crossref_primary_10_1016_j_joule_2021_04_001
crossref_primary_10_1002_advs_202301381
crossref_primary_10_1002_adma_202417796
crossref_primary_10_1002_aenm_202200398
crossref_primary_10_1002_adfm_202307998
crossref_primary_10_1002_adma_202212111
crossref_primary_10_1039_D3TA03344A
crossref_primary_10_1016_j_ensm_2023_103052
crossref_primary_10_1002_aenm_202301338
crossref_primary_10_1002_admi_202001444
crossref_primary_10_1039_D3QM01111A
crossref_primary_10_1002_batt_202400142
crossref_primary_10_1021_acsaem_0c02607
crossref_primary_10_1039_D2SE01524B
crossref_primary_10_1002_anie_202108144
crossref_primary_10_1021_acsami_3c03552
crossref_primary_10_1021_acs_chemrev_0c00431
crossref_primary_10_1021_acsaem_2c00603
crossref_primary_10_3390_batteries9020087
crossref_primary_10_1002_smtd_202000111
crossref_primary_10_3390_batteries9070347
crossref_primary_10_1021_acsami_4c01352
crossref_primary_10_1002_adfm_202314710
crossref_primary_10_1002_aenm_202301220
crossref_primary_10_1002_eom2_12383
crossref_primary_10_1149_1945_7111_ac2d43
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_1016_j_joule_2022_01_015
crossref_primary_10_1039_D1TA04084G
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1002_inf2_12627
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1021_acs_nanolett_2c04216
crossref_primary_10_1016_j_jmps_2024_105878
crossref_primary_10_1016_j_ijsolstr_2022_111790
crossref_primary_10_1002_adfm_202314822
crossref_primary_10_1002_adfm_202201465
crossref_primary_10_1002_adma_202306111
crossref_primary_10_1002_adma_202414239
crossref_primary_10_1360_TB_2023_0927
crossref_primary_10_1002_aenm_202303539
crossref_primary_10_1007_s11426_021_9985_x
crossref_primary_10_1021_acs_chemmater_0c03444
crossref_primary_10_1016_j_est_2024_110431
crossref_primary_10_1016_j_jpowsour_2024_234118
crossref_primary_10_1039_D4MA00666F
crossref_primary_10_1021_accountsmr_2c00004
crossref_primary_10_1002_adfm_202311301
crossref_primary_10_1002_adfm_202203551
crossref_primary_10_1021_acsenergylett_1c01573
crossref_primary_10_1016_j_apmate_2024_100185
crossref_primary_10_1016_j_xcrp_2021_100465
crossref_primary_10_1021_acsnano_2c01309
crossref_primary_10_1063_5_0110830
crossref_primary_10_1002_sus2_190
crossref_primary_10_1016_j_ensm_2020_07_024
crossref_primary_10_1002_batt_202200041
crossref_primary_10_1021_acsenergylett_4c02476
crossref_primary_10_1039_D1TA02657G
crossref_primary_10_1021_acsami_4c13564
crossref_primary_10_1021_acsami_0c06201
crossref_primary_10_1016_j_nanoen_2020_105098
crossref_primary_10_1039_D0TA08179E
crossref_primary_10_1016_j_ensm_2020_08_018
crossref_primary_10_1002_batt_202200328
crossref_primary_10_1039_D1TA01545A
crossref_primary_10_1021_acsenergylett_2c00003
crossref_primary_10_1016_j_ccr_2025_216432
crossref_primary_10_1016_j_ensm_2023_103138
crossref_primary_10_1002_aenm_202202854
crossref_primary_10_1021_acsami_2c23038
crossref_primary_10_1016_j_jechem_2022_12_047
crossref_primary_10_1021_acsaem_0c02525
crossref_primary_10_1039_D4EE04908J
crossref_primary_10_1002_cssc_202400281
crossref_primary_10_1002_wcms_1621
crossref_primary_10_1002_inf2_12650
crossref_primary_10_1149_1945_7111_abd493
crossref_primary_10_1002_aenm_202301142
crossref_primary_10_1002_aenm_202304530
crossref_primary_10_1002_aenm_202304412
crossref_primary_10_1016_j_carbon_2023_118225
crossref_primary_10_1021_acsenergylett_1c01352
crossref_primary_10_1002_cssc_202202158
crossref_primary_10_1002_adma_202413499
crossref_primary_10_1038_s41560_024_01569_9
crossref_primary_10_1016_j_joule_2021_07_002
crossref_primary_10_1016_j_xcrp_2020_100106
crossref_primary_10_1038_s41467_024_47352_y
crossref_primary_10_1016_j_etran_2023_100277
crossref_primary_10_7498_aps_69_20200713
crossref_primary_10_1002_sstr_202300570
crossref_primary_10_1016_j_esci_2024_100278
crossref_primary_10_1038_s41598_022_05141_x
crossref_primary_10_1007_s10008_023_05634_3
crossref_primary_10_1002_batt_202200100
crossref_primary_10_1002_smm2_1200
crossref_primary_10_1016_j_etran_2023_100272
crossref_primary_10_1021_acsami_1c07952
crossref_primary_10_1002_sstr_202100146
crossref_primary_10_1016_j_esci_2024_100247
crossref_primary_10_1002_ange_202218044
crossref_primary_10_1039_D1CC05918A
crossref_primary_10_1002_batt_202000051
crossref_primary_10_1039_D1EE00110H
crossref_primary_10_1002_adfm_202211067
crossref_primary_10_1002_adma_202206762
crossref_primary_10_1103_PRXEnergy_1_023003
crossref_primary_10_1016_j_nanoen_2021_106679
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1002_adfm_202306399
crossref_primary_10_1016_j_est_2023_109483
crossref_primary_10_1002_aenm_202200660
crossref_primary_10_1557_s43577_023_00630_4
crossref_primary_10_1002_adfm_202401361
crossref_primary_10_1002_adfm_202009925
crossref_primary_10_1002_advs_202302521
crossref_primary_10_1021_acsami_3c05886
crossref_primary_10_1016_j_jallcom_2022_166776
crossref_primary_10_1016_j_nanoen_2024_110127
crossref_primary_10_1039_D2CS01029A
crossref_primary_10_1002_aenm_202001569
crossref_primary_10_1002_batt_202400432
crossref_primary_10_1021_acsenergylett_4c01229
crossref_primary_10_1038_s41467_024_48071_0
crossref_primary_10_1021_acs_chemrev_0c00101
crossref_primary_10_1016_j_ensm_2022_03_043
crossref_primary_10_1002_adfm_202309656
crossref_primary_10_1021_acsenergylett_3c02681
crossref_primary_10_1021_acsami_2c16776
crossref_primary_10_1002_smll_202206000
crossref_primary_10_1002_adma_202413325
crossref_primary_10_1002_aenm_202303918
crossref_primary_10_1016_j_jpowsour_2022_232472
crossref_primary_10_1021_acsnano_3c09853
crossref_primary_10_1149_1945_7111_ad1e3e
crossref_primary_10_1002_cey2_355
crossref_primary_10_3390_coatings14050608
crossref_primary_10_1002_chem_202402510
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1016_j_ensm_2024_103607
crossref_primary_10_1002_aenm_202001320
crossref_primary_10_1038_s41578_024_00669_y
crossref_primary_10_1557_s43579_021_00089_x
crossref_primary_10_26599_NRE_2024_9120118
crossref_primary_10_1016_j_jpowsour_2024_234091
crossref_primary_10_3390_en16135100
crossref_primary_10_1016_j_ensm_2020_05_019
crossref_primary_10_1002_anie_202105831
crossref_primary_10_1021_acs_chemmater_0c02981
crossref_primary_10_1021_acsami_1c01246
crossref_primary_10_1002_adfm_202314306
crossref_primary_10_1007_s40242_020_0103_5
crossref_primary_10_1007_s10008_024_05889_4
crossref_primary_10_1002_adfm_202108203
crossref_primary_10_1016_j_nxmate_2024_100307
crossref_primary_10_1002_cey2_131
crossref_primary_10_1021_acsami_1c06706
crossref_primary_10_1002_adma_202310356
crossref_primary_10_1149_1945_7111_ab6c5b
crossref_primary_10_1002_advs_202307455
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1016_j_nanoen_2021_106081
crossref_primary_10_1021_acs_nanolett_3c04072
crossref_primary_10_1126_sciadv_add0510
crossref_primary_10_1002_anie_202413502
crossref_primary_10_1007_s41918_022_00176_0
crossref_primary_10_1038_s41586_023_05970_4
crossref_primary_10_1002_aenm_202102283
crossref_primary_10_1038_s43246_024_00600_6
crossref_primary_10_1007_s12598_024_02645_5
crossref_primary_10_1016_j_jpowsour_2021_230939
crossref_primary_10_1039_C9TA12889A
crossref_primary_10_1002_aenm_202003939
crossref_primary_10_1016_j_ijsolstr_2022_111852
crossref_primary_10_1002_adma_202405906
crossref_primary_10_1016_j_electacta_2022_141669
crossref_primary_10_1016_j_joule_2024_06_024
crossref_primary_10_1126_sciadv_abh1896
crossref_primary_10_1016_j_ensm_2024_103409
crossref_primary_10_1149_1945_7111_ac834c
crossref_primary_10_1002_elan_202200306
crossref_primary_10_1039_D4MA00177J
crossref_primary_10_1002_adma_202302872
crossref_primary_10_1039_D2TA02378D
crossref_primary_10_1016_j_electacta_2023_141958
crossref_primary_10_1016_j_jmps_2024_105799
crossref_primary_10_1021_acsami_4c02095
crossref_primary_10_1002_aenm_202101126
crossref_primary_10_1002_ange_202413502
crossref_primary_10_1021_acs_nanolett_3c00720
crossref_primary_10_1021_acsami_4c07428
crossref_primary_10_1039_D2CP03301A
crossref_primary_10_1557_s43577_023_00607_3
crossref_primary_10_1002_idm2_12112
crossref_primary_10_1007_s12613_021_2278_2
crossref_primary_10_1038_s41467_022_34855_9
crossref_primary_10_1016_j_jpowsour_2020_229404
crossref_primary_10_1016_j_rinma_2022_100305
crossref_primary_10_1021_acsenergylett_1c00332
crossref_primary_10_1002_anie_202320258
crossref_primary_10_1149_1945_7111_abb8b3
crossref_primary_10_1002_aenm_202204186
crossref_primary_10_1002_aenm_202403614
crossref_primary_10_1002_ange_202105831
crossref_primary_10_1002_aenm_202300816
crossref_primary_10_1021_acs_jpcc_3c02277
crossref_primary_10_1002_advs_202103826
crossref_primary_10_1038_s41467_022_32732_z
crossref_primary_10_1038_s41565_022_01081_9
crossref_primary_10_1002_aenm_202200948
crossref_primary_10_1016_j_mtphys_2023_101009
crossref_primary_10_1016_j_ensm_2024_103980
crossref_primary_10_1021_acsaem_3c01681
crossref_primary_10_1080_14686996_2021_2018919
crossref_primary_10_1039_D3CS00439B
crossref_primary_10_1016_j_joule_2023_03_001
crossref_primary_10_1002_adma_202311475
crossref_primary_10_1002_aesr_202300165
crossref_primary_10_1149_1945_7111_ad2648
crossref_primary_10_1021_acsenergylett_4c01983
crossref_primary_10_1016_j_ensm_2022_11_021
crossref_primary_10_1002_aenm_202302785
crossref_primary_10_1002_aenm_202403360
crossref_primary_10_1016_j_ensm_2023_02_036
crossref_primary_10_1016_j_joule_2022_05_020
crossref_primary_10_1007_s40684_023_00541_4
crossref_primary_10_1016_j_ensm_2023_102875
crossref_primary_10_1016_j_est_2023_109943
crossref_primary_10_1021_acsphotonics_0c00894
crossref_primary_10_1002_inf2_12292
crossref_primary_10_1039_D4EE02358G
crossref_primary_10_1149_1945_7111_ad7c82
crossref_primary_10_1002_adma_202200401
crossref_primary_10_1039_D3QM00400G
crossref_primary_10_1021_acsami_1c21113
crossref_primary_10_1016_j_nanoen_2021_105858
crossref_primary_10_1002_smll_202412723
crossref_primary_10_1016_j_cossms_2022_101003
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1016_j_cossms_2022_101002
crossref_primary_10_1016_j_joule_2020_08_013
crossref_primary_10_7498_aps_69_20201293
crossref_primary_10_1039_D0EE02525A
crossref_primary_10_1002_adfm_202418274
crossref_primary_10_1016_j_coelec_2021_100933
crossref_primary_10_1007_s41918_024_00212_1
crossref_primary_10_1002_adfm_202303484
crossref_primary_10_1021_acs_nanolett_3c02713
crossref_primary_10_1039_D0EE01569E
crossref_primary_10_1021_acs_chemmater_1c01431
crossref_primary_10_1016_j_joule_2023_06_006
crossref_primary_10_1115_1_4057039
crossref_primary_10_1002_batt_202300306
crossref_primary_10_1016_j_ensm_2025_104134
crossref_primary_10_1002_adfm_202407007
crossref_primary_10_1016_j_joule_2022_05_016
crossref_primary_10_1016_j_mser_2025_100941
crossref_primary_10_1002_elsa_202100167
crossref_primary_10_1039_D0EE01435D
crossref_primary_10_1002_aesr_202300001
crossref_primary_10_1002_aenm_202101228
crossref_primary_10_1016_j_ensm_2022_12_013
crossref_primary_10_1002_adfm_202106680
crossref_primary_10_1002_aenm_202201044
crossref_primary_10_1111_jace_19322
crossref_primary_10_1002_cssc_202400718
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1002_idm2_12174
crossref_primary_10_1002_batt_202100288
crossref_primary_10_1002_admi_202101254
crossref_primary_10_1016_j_est_2024_112110
crossref_primary_10_1039_D1EE00638J
crossref_primary_10_1002_aenm_202300679
crossref_primary_10_1016_j_ensm_2021_12_008
crossref_primary_10_1021_acsaem_3c01383
crossref_primary_10_2139_ssrn_3751761
crossref_primary_10_1002_adfm_202101168
crossref_primary_10_1002_anie_202218044
crossref_primary_10_1557_mre_2020_25
crossref_primary_10_1016_j_euromechsol_2023_105211
crossref_primary_10_1016_j_pmatsci_2023_101193
crossref_primary_10_1016_j_jallcom_2020_155942
crossref_primary_10_1016_j_ensm_2020_04_014
crossref_primary_10_1557_s43577_023_00649_7
crossref_primary_10_1039_D1TA07292G
crossref_primary_10_3390_nano13020327
crossref_primary_10_1002_slct_202202195
crossref_primary_10_1149_1945_7111_ad7e93
crossref_primary_10_1016_j_xcrp_2023_101328
crossref_primary_10_3390_nano10081606
crossref_primary_10_1016_j_ensm_2025_104164
crossref_primary_10_1002_aenm_202100325
crossref_primary_10_1016_j_ceramint_2022_09_010
crossref_primary_10_1002_adma_202008081
crossref_primary_10_1021_acsami_1c20139
crossref_primary_10_1002_cey2_610
crossref_primary_10_1021_acs_accounts_1c00333
crossref_primary_10_1021_acsami_2c10666
crossref_primary_10_1039_D0MH00050G
crossref_primary_10_1039_D3TA04074G
crossref_primary_10_1002_eem2_12670
crossref_primary_10_1021_acs_jpcc_3c05927
crossref_primary_10_1002_aesr_202100003
crossref_primary_10_1021_acsaem_2c02285
crossref_primary_10_1002_adfm_202212847
crossref_primary_10_1002_aesr_202100004
crossref_primary_10_1016_j_joule_2024_07_007
crossref_primary_10_1016_j_pmatsci_2023_101171
crossref_primary_10_1002_ange_202108144
crossref_primary_10_1021_jacs_0c06668
crossref_primary_10_1016_j_ensm_2023_102869
crossref_primary_10_1016_j_joule_2022_10_011
crossref_primary_10_1002_aenm_202203143
crossref_primary_10_1002_adma_202104009
crossref_primary_10_1039_D3EE03322H
Cites_doi 10.1039/C6TA05439K
10.1149/2.0911409jes
10.1038/s41598-018-20773-8
10.1126/sciadv.1601659
10.1002/aenm.201701003
10.1039/C9TA02614B
10.1038/s41563-019-0438-9
10.1002/ijch.201400112
10.1149/1.1606686
10.1002/batt.201800149
10.1021/acsenergylett.9b00430
10.1002/adma.201700007
10.1016/j.electacta.2014.05.120
10.1021/acsami.6b13925
10.1021/acsenergylett.6b00650
10.1016/j.ssi.2012.02.034
10.1016/j.elecom.2014.11.002
10.1021/acs.chemmater.6b04990
10.1021/acsenergylett.9b01693
10.1016/j.elecom.2015.05.001
10.1149/2.1391814jes
10.1016/j.jpowsour.2014.03.029
10.1109/PAC.2003.1288558
10.1002/aenm.201702657
10.1021/acsami.5b07517
10.1002/aenm.201901810
10.1149/2.0301816jes
10.1016/j.ssi.2016.11.029
10.1111/jace.14084
10.1149/2.0221902jes
10.1021/acs.chemmater.7b03002
10.1016/j.ssi.2017.07.005
10.1149/1.1850854
10.1007/s10853-018-2971-3
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201903253
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201903253
AENM201903253
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: ECCS‐1542148
– fundername: LG Chem company
– fundername: National Institute of General Medical Sciences
  funderid: P41GM103412
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123
ISSN 1614-6832
IngestDate Fri Jul 25 12:21:09 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 01:43:32 EDT 2025
Wed Jan 22 16:35:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9801-4800
0000-0001-8936-8845
PQID 2333837968
PQPubID 886389
PageCount 6
ParticipantIDs proquest_journals_2333837968
crossref_primary_10_1002_aenm_201903253
crossref_citationtrail_10_1002_aenm_201903253
wiley_primary_10_1002_aenm_201903253_AENM201903253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 57
2019; 7
2017; 7
2018; 165
2019; 9
2019; 4
2017; 2
2005; 152
2017; 3
2019; 2
2019; 54
2015; 50
2015; 55
2003; 150
2019; 18
2017; 29
2015; 7
2017; 9
2019; 166
2014; 136
2016; 99
2016; 4
2018; 8
2003; 3
2019
2014; 161
2014; 261
2018; 318
2012; 214
2017; 300
e_1_2_5_27_1
Cho J. H. (e_1_2_5_19_1) 2019
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Tariq S. (e_1_2_5_16_1) 2003
Banerjee A. (e_1_2_5_29_1) 2019
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 50
  start-page: 11
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 3
  start-page: 1452
  year: 2003
  end-page: 1454
– volume: 18
  start-page: 1105
  year: 2019
  publication-title: Nat. Mater.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1073
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 57
  start-page: 27
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 261
  start-page: 112
  year: 2014
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 136
  start-page: 529
  year: 2014
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 7961
  year: 2017
  publication-title: Chem. Mater.
– volume: 152
  start-page: A396
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 664
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 166
  start-page: A89
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 161
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 524
  year: 2019
  publication-title: Batteries Supercaps
– year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 2585
  year: 2019
  publication-title: J. Mater. Sci.
– volume: 29
  start-page: 3883
  year: 2017
  publication-title: Chem. Mater.
– volume: 150
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 3808
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 300
  start-page: 78
  year: 2017
  publication-title: Solid State Ionics
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2514
  year: 2018
  publication-title: Sci. Rep.
– volume: 55
  start-page: 472
  year: 2015
  publication-title: Isr. J. Chem.
– volume: 99
  start-page: 1367
  year: 2016
  publication-title: J. Am. Ceram. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 214
  start-page: 25
  year: 2012
  publication-title: Solid State Ionics
– volume: 4
  start-page: 2418
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 318
  start-page: 102
  year: 2018
  publication-title: Solid State Ionics
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– year: 2019
  publication-title: Energy Storage Mater.
– ident: e_1_2_5_14_1
  doi: 10.1039/C6TA05439K
– ident: e_1_2_5_1_1
  doi: 10.1149/2.0911409jes
– ident: e_1_2_5_17_1
  doi: 10.1038/s41598-018-20773-8
– ident: e_1_2_5_12_1
  doi: 10.1126/sciadv.1601659
– ident: e_1_2_5_6_1
  doi: 10.1002/aenm.201701003
– ident: e_1_2_5_24_1
  doi: 10.1039/C9TA02614B
– ident: e_1_2_5_26_1
  doi: 10.1038/s41563-019-0438-9
– ident: e_1_2_5_33_1
  doi: 10.1002/ijch.201400112
– ident: e_1_2_5_4_1
  doi: 10.1149/1.1606686
– ident: e_1_2_5_13_1
  doi: 10.1002/batt.201800149
– ident: e_1_2_5_36_1
  doi: 10.1021/acsenergylett.9b00430
– ident: e_1_2_5_2_1
  doi: 10.1002/adma.201700007
– ident: e_1_2_5_20_1
  doi: 10.1016/j.electacta.2014.05.120
– ident: e_1_2_5_9_1
  doi: 10.1021/acsami.6b13925
– ident: e_1_2_5_23_1
  doi: 10.1021/acsenergylett.6b00650
– year: 2019
  ident: e_1_2_5_19_1
  publication-title: Energy Storage Mater.
– ident: e_1_2_5_35_1
  doi: 10.1016/j.ssi.2012.02.034
– ident: e_1_2_5_22_1
  doi: 10.1016/j.elecom.2014.11.002
– ident: e_1_2_5_31_1
  doi: 10.1021/acs.chemmater.6b04990
– ident: e_1_2_5_32_1
  doi: 10.1021/acsenergylett.9b01693
– ident: e_1_2_5_7_1
  doi: 10.1016/j.elecom.2015.05.001
– ident: e_1_2_5_8_1
  doi: 10.1149/2.1391814jes
– ident: e_1_2_5_21_1
  doi: 10.1016/j.jpowsour.2014.03.029
– start-page: 1452
  volume-title: Proc. of the 2003 Particle Accelerator Conf.
  year: 2003
  ident: e_1_2_5_16_1
  doi: 10.1109/PAC.2003.1288558
– year: 2019
  ident: e_1_2_5_29_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_5_3_1
  doi: 10.1002/aenm.201702657
– ident: e_1_2_5_27_1
  doi: 10.1021/acsami.5b07517
– ident: e_1_2_5_28_1
  doi: 10.1002/aenm.201901810
– ident: e_1_2_5_25_1
  doi: 10.1149/2.0301816jes
– ident: e_1_2_5_30_1
  doi: 10.1016/j.ssi.2016.11.029
– ident: e_1_2_5_10_1
  doi: 10.1111/jace.14084
– ident: e_1_2_5_18_1
  doi: 10.1149/2.0221902jes
– ident: e_1_2_5_11_1
  doi: 10.1021/acs.chemmater.7b03002
– ident: e_1_2_5_34_1
  doi: 10.1016/j.ssi.2017.07.005
– ident: e_1_2_5_5_1
  doi: 10.1149/1.1850854
– ident: e_1_2_5_15_1
  doi: 10.1007/s10853-018-2971-3
SSID ssj0000491033
Score 2.6880157
Snippet All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
dendrite
Electrolytes
Failure mechanisms
Flux density
Interfacial properties
Li metal
Lithium
Lithium batteries
Mechanical properties
Molten salt electrolytes
Plating
Porosity
Room temperature
Solid electrolytes
solid‐state batteries
stack pressure
X‐ray tomography
Title Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903253
https://www.proquest.com/docview/2333837968
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKzAYWiKcoDMgLJBZViuM4r2XEDKoQmcW0SLMLsWMzw5QUDY0ErPgD-Ea-hOtH3HQYxMAmbdzEedxj-_j23mOEnnKhGCVREzBG04BFDTSpWMmgqQmF32KaG8n88jCZvWGvjuPj0ej7IGqpW_Op-HppXsn_WBXKwK46S_YfLOsrhQL4DvaFLVgYtleyMTBFceYy_M6lX3zTRbfpAMIj4MU-nmEhgSNbDeVJsVz68vlqCbfu9zT91GIaJ6fdh0kpdbakVeHs4w170do-fEDa_EHgvvahPTledZ9tBE3d-upLPTn3Luh33Rfb7802KF1Yn-y-DiJuJ7PpZD7d-FvhUu9t7FDBT07Phk4LSgZOC9vPAisIksy5NuWwzKo3-c6ZXAThb32-1ZCtZauFBYDfRNTKD2-La18Y9HwoopVtppU-v_LnX0O7NE31__67xX75eu7ddjChCklk0jb6R-ilQAl9vn0T21RnM38ZzoIMjVncQjfd_AMXFky30Ui2d9CNgSrlXfTWwAr3sMLbsMIAK6xh9fPbjwGgMAAKSgyU9KcGEXYgwgZE2IPoHjp6ebB4MQvcQhyBYEAfgcVIlkgYCWCUFqShIsphpAgbQoVMuQgph0mpSFiu0phxVYeRivNMZrlJDL-PdtpVKx8gnKQKjsgkCyVnisqckZqoRkZcQf21GKOgf2GVcBL1eqWUZXW5lcbomT_-oxVn-eORe_37r1wD_lTRyPhn8iQbI2ps8pdaquLgsPR7D6989Ufo-qYR7KGd9XknHwOXXfMnDl-_ALKzmt8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stack+Pressure+Considerations+for+Room%E2%80%90Temperature+All%E2%80%90Solid%E2%80%90State+Lithium+Metal+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Doux%2C+Jean%E2%80%90Marie&rft.au=Nguyen%2C+Han&rft.au=Tan%2C+Darren+H.+S.&rft.au=Banerjee%2C+Abhik&rft.date=2020-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1002%2Faenm.201903253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201903253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon