Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lith...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.201903253 |
Cover
Abstract | All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature. |
---|---|
AbstractList | All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.
This work investigates the effect of applied stack pressure on lithium metal containing all‐solid‐state batteries. Using characterization techniques to probe failure mechanisms, it is found that above a critical stack pressure, the cells will eventually and predictably fail. Ultimately, determining an optimal stack pressure is crucial to allow Li metal cycling at room temperature. All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li 6 PS 5 Cl | LiNi 0.80 Co 0.15 Al 0.05 O 2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures. |
Author | Meng, Ying Shirley Wang, Xuefeng Banerjee, Abhik Yang, Hedi Tan, Darren H. S. Jo, Chiho Doux, Jean‐Marie Nguyen, Han Wu, Erik A. |
Author_xml | – sequence: 1 givenname: Jean‐Marie orcidid: 0000-0002-9801-4800 surname: Doux fullname: Doux, Jean‐Marie organization: University of California San Diego – sequence: 2 givenname: Han surname: Nguyen fullname: Nguyen, Han organization: University of California San Diego – sequence: 3 givenname: Darren H. S. surname: Tan fullname: Tan, Darren H. S. organization: University of California San Diego – sequence: 4 givenname: Abhik surname: Banerjee fullname: Banerjee, Abhik organization: University of California San Diego – sequence: 5 givenname: Xuefeng surname: Wang fullname: Wang, Xuefeng organization: University of California San Diego – sequence: 6 givenname: Erik A. surname: Wu fullname: Wu, Erik A. organization: University of California San Diego – sequence: 7 givenname: Chiho surname: Jo fullname: Jo, Chiho organization: University of California San Diego – sequence: 8 givenname: Hedi surname: Yang fullname: Yang, Hedi organization: University of California San Diego – sequence: 9 givenname: Ying Shirley orcidid: 0000-0001-8936-8845 surname: Meng fullname: Meng, Ying Shirley email: shmeng@ucsd.edu, shirleymeng@ucsd.edu organization: University of California San Diego |
BookMark | eNqFkE1Lw0AQhhdRsNZePQc8p-5Xvo611A9oVdre1-1mgluTbN3dIL35E_yN_hITKxUEcS7zMswzL_OeoMPa1IDQGcFDgjG9kFBXQ4pJhhmN2AHqkZjwME45PtxrRo_RwLk1botnBDPWQ48LL9Vz8GDBucZCMDa10zlY6XWrgsLYYG5M9fH2voRq0827rVFZtpOFKXXedS89BFPtn3RTBTPwsgwupfdgNbhTdFTI0sHgu_fR_GqyHN-E0_vr2_FoGipOKQtTDDwGTAhIpXBOFctwgkmOqYJkpQhdJTxRMc-KJOKrQhJWRFkKaRZRQlkfne-Obqx5acB5sTaNrVs_QRljKUuy9v0-Gu62lDXOWSjExupK2q0gWHQpii5FsU-xBfgvQGn_lYy3Upd_Y9kOe9UlbP8xEaPJ3eyH_QSFyYxC |
CitedBy_id | crossref_primary_10_1016_j_nxnano_2023_100028 crossref_primary_10_1149_1945_7111_acaf42 crossref_primary_10_1007_s40684_023_00519_2 crossref_primary_10_3390_membranes13020216 crossref_primary_10_1016_j_cej_2024_150455 crossref_primary_10_1149_1945_7111_ad510e crossref_primary_10_1016_j_mattod_2021_02_011 crossref_primary_10_1002_aenm_202405026 crossref_primary_10_1016_j_cej_2023_143409 crossref_primary_10_1088_1361_6463_ad1b0a crossref_primary_10_1002_aenm_202203631 crossref_primary_10_1002_aenm_202203873 crossref_primary_10_1038_s41598_021_84799_1 crossref_primary_10_1016_j_xcrp_2022_100938 crossref_primary_10_1007_s10338_022_00348_x crossref_primary_10_1126_science_abg7217 crossref_primary_10_1038_s41563_024_02055_z crossref_primary_10_1002_aenm_202100748 crossref_primary_10_1016_j_mtphys_2022_100679 crossref_primary_10_1021_acsenergylett_1c01395 crossref_primary_10_1016_j_cossms_2021_100973 crossref_primary_10_1016_j_est_2023_107916 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123450 crossref_primary_10_1016_j_cossms_2021_100978 crossref_primary_10_1016_j_cossms_2021_100977 crossref_primary_10_1002_batt_202100131 crossref_primary_10_1039_D1EE00551K crossref_primary_10_1002_aenm_202203883 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1021_acs_chemmater_2c02106 crossref_primary_10_1021_acsaem_5c00020 crossref_primary_10_1149_1945_7111_acb400 crossref_primary_10_1021_acsenergylett_4c01098 crossref_primary_10_1039_D4TA01804D crossref_primary_10_1039_D2TA02339C crossref_primary_10_1016_j_matdes_2023_112200 crossref_primary_10_1149_1945_7111_aca79d crossref_primary_10_1007_s10800_024_02142_8 crossref_primary_10_1557_s43577_021_00101_8 crossref_primary_10_1149_1945_7111_ad01e3 crossref_primary_10_1038_s41467_024_46472_9 crossref_primary_10_1002_advs_202407540 crossref_primary_10_1016_j_joule_2022_07_002 crossref_primary_10_1021_acsenergylett_1c01299 crossref_primary_10_1016_j_est_2024_111254 crossref_primary_10_1002_aenm_202203861 crossref_primary_10_1149_1945_7111_ac18e5 crossref_primary_10_1016_j_jpowsour_2023_233079 crossref_primary_10_1021_acs_jpclett_4c03585 crossref_primary_10_1016_j_etran_2024_100391 crossref_primary_10_1111_ijac_14771 crossref_primary_10_1002_aenm_202003154 crossref_primary_10_1007_s00706_023_03162_4 crossref_primary_10_1002_advs_202105234 crossref_primary_10_1039_D0EE01017K crossref_primary_10_1021_acsnano_4c07687 crossref_primary_10_1038_s41563_021_00967_8 crossref_primary_10_1002_adfm_202305373 crossref_primary_10_1149_1945_7111_abf8d7 crossref_primary_10_1021_acsnano_3c02223 crossref_primary_10_1002_aenm_202203671 crossref_primary_10_1002_adfm_202407166 crossref_primary_10_1002_admi_202202475 crossref_primary_10_1021_acsenergylett_3c02513 crossref_primary_10_1038_s41586_024_08221_2 crossref_primary_10_1016_j_jechem_2023_01_003 crossref_primary_10_1002_adma_202410948 crossref_primary_10_1016_j_mtsust_2023_100614 crossref_primary_10_1002_admi_202100206 crossref_primary_10_1016_j_esci_2022_02_002 crossref_primary_10_1002_aesr_202100197 crossref_primary_10_1002_aenm_202101807 crossref_primary_10_1002_aesr_202400234 crossref_primary_10_34133_2021_1519569 crossref_primary_10_1002_aenm_202003250 crossref_primary_10_1016_j_mattod_2025_01_002 crossref_primary_10_1038_s41563_020_00903_2 crossref_primary_10_1002_ange_202320258 crossref_primary_10_1002_adma_202209074 crossref_primary_10_1002_eom2_12338 crossref_primary_10_1021_jacs_3c05715 crossref_primary_10_1007_s12274_022_4526_9 crossref_primary_10_1021_acsami_4c11207 crossref_primary_10_1016_j_cej_2022_139923 crossref_primary_10_3390_batteries10010020 crossref_primary_10_1002_aenm_202002394 crossref_primary_10_1021_acsami_4c01652 crossref_primary_10_1021_acsenergylett_2c01637 crossref_primary_10_1016_j_actamat_2021_117076 crossref_primary_10_1149_1945_7111_adb64f crossref_primary_10_1002_aenm_202404384 crossref_primary_10_1002_celc_202200923 crossref_primary_10_1021_acsnano_4c06345 crossref_primary_10_3390_electrochem2030030 crossref_primary_10_1016_j_est_2024_114966 crossref_primary_10_1016_j_ssi_2024_116557 crossref_primary_10_1149_1945_7111_ac91aa crossref_primary_10_1016_j_joule_2021_04_001 crossref_primary_10_1002_advs_202301381 crossref_primary_10_1002_adma_202417796 crossref_primary_10_1002_aenm_202200398 crossref_primary_10_1002_adfm_202307998 crossref_primary_10_1002_adma_202212111 crossref_primary_10_1039_D3TA03344A crossref_primary_10_1016_j_ensm_2023_103052 crossref_primary_10_1002_aenm_202301338 crossref_primary_10_1002_admi_202001444 crossref_primary_10_1039_D3QM01111A crossref_primary_10_1002_batt_202400142 crossref_primary_10_1021_acsaem_0c02607 crossref_primary_10_1039_D2SE01524B crossref_primary_10_1002_anie_202108144 crossref_primary_10_1021_acsami_3c03552 crossref_primary_10_1021_acs_chemrev_0c00431 crossref_primary_10_1021_acsaem_2c00603 crossref_primary_10_3390_batteries9020087 crossref_primary_10_1002_smtd_202000111 crossref_primary_10_3390_batteries9070347 crossref_primary_10_1021_acsami_4c01352 crossref_primary_10_1002_adfm_202314710 crossref_primary_10_1002_aenm_202301220 crossref_primary_10_1002_eom2_12383 crossref_primary_10_1149_1945_7111_ac2d43 crossref_primary_10_1007_s40820_023_01234_y crossref_primary_10_1016_j_joule_2022_01_015 crossref_primary_10_1039_D1TA04084G crossref_primary_10_1021_acs_chemrev_4c00584 crossref_primary_10_1002_inf2_12627 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1021_acs_nanolett_2c04216 crossref_primary_10_1016_j_jmps_2024_105878 crossref_primary_10_1016_j_ijsolstr_2022_111790 crossref_primary_10_1002_adfm_202314822 crossref_primary_10_1002_adfm_202201465 crossref_primary_10_1002_adma_202306111 crossref_primary_10_1002_adma_202414239 crossref_primary_10_1360_TB_2023_0927 crossref_primary_10_1002_aenm_202303539 crossref_primary_10_1007_s11426_021_9985_x crossref_primary_10_1021_acs_chemmater_0c03444 crossref_primary_10_1016_j_est_2024_110431 crossref_primary_10_1016_j_jpowsour_2024_234118 crossref_primary_10_1039_D4MA00666F crossref_primary_10_1021_accountsmr_2c00004 crossref_primary_10_1002_adfm_202311301 crossref_primary_10_1002_adfm_202203551 crossref_primary_10_1021_acsenergylett_1c01573 crossref_primary_10_1016_j_apmate_2024_100185 crossref_primary_10_1016_j_xcrp_2021_100465 crossref_primary_10_1021_acsnano_2c01309 crossref_primary_10_1063_5_0110830 crossref_primary_10_1002_sus2_190 crossref_primary_10_1016_j_ensm_2020_07_024 crossref_primary_10_1002_batt_202200041 crossref_primary_10_1021_acsenergylett_4c02476 crossref_primary_10_1039_D1TA02657G crossref_primary_10_1021_acsami_4c13564 crossref_primary_10_1021_acsami_0c06201 crossref_primary_10_1016_j_nanoen_2020_105098 crossref_primary_10_1039_D0TA08179E crossref_primary_10_1016_j_ensm_2020_08_018 crossref_primary_10_1002_batt_202200328 crossref_primary_10_1039_D1TA01545A crossref_primary_10_1021_acsenergylett_2c00003 crossref_primary_10_1016_j_ccr_2025_216432 crossref_primary_10_1016_j_ensm_2023_103138 crossref_primary_10_1002_aenm_202202854 crossref_primary_10_1021_acsami_2c23038 crossref_primary_10_1016_j_jechem_2022_12_047 crossref_primary_10_1021_acsaem_0c02525 crossref_primary_10_1039_D4EE04908J crossref_primary_10_1002_cssc_202400281 crossref_primary_10_1002_wcms_1621 crossref_primary_10_1002_inf2_12650 crossref_primary_10_1149_1945_7111_abd493 crossref_primary_10_1002_aenm_202301142 crossref_primary_10_1002_aenm_202304530 crossref_primary_10_1002_aenm_202304412 crossref_primary_10_1016_j_carbon_2023_118225 crossref_primary_10_1021_acsenergylett_1c01352 crossref_primary_10_1002_cssc_202202158 crossref_primary_10_1002_adma_202413499 crossref_primary_10_1038_s41560_024_01569_9 crossref_primary_10_1016_j_joule_2021_07_002 crossref_primary_10_1016_j_xcrp_2020_100106 crossref_primary_10_1038_s41467_024_47352_y crossref_primary_10_1016_j_etran_2023_100277 crossref_primary_10_7498_aps_69_20200713 crossref_primary_10_1002_sstr_202300570 crossref_primary_10_1016_j_esci_2024_100278 crossref_primary_10_1038_s41598_022_05141_x crossref_primary_10_1007_s10008_023_05634_3 crossref_primary_10_1002_batt_202200100 crossref_primary_10_1002_smm2_1200 crossref_primary_10_1016_j_etran_2023_100272 crossref_primary_10_1021_acsami_1c07952 crossref_primary_10_1002_sstr_202100146 crossref_primary_10_1016_j_esci_2024_100247 crossref_primary_10_1002_ange_202218044 crossref_primary_10_1039_D1CC05918A crossref_primary_10_1002_batt_202000051 crossref_primary_10_1039_D1EE00110H crossref_primary_10_1002_adfm_202211067 crossref_primary_10_1002_adma_202206762 crossref_primary_10_1103_PRXEnergy_1_023003 crossref_primary_10_1016_j_nanoen_2021_106679 crossref_primary_10_1002_adma_202206402 crossref_primary_10_1002_adfm_202306399 crossref_primary_10_1016_j_est_2023_109483 crossref_primary_10_1002_aenm_202200660 crossref_primary_10_1557_s43577_023_00630_4 crossref_primary_10_1002_adfm_202401361 crossref_primary_10_1002_adfm_202009925 crossref_primary_10_1002_advs_202302521 crossref_primary_10_1021_acsami_3c05886 crossref_primary_10_1016_j_jallcom_2022_166776 crossref_primary_10_1016_j_nanoen_2024_110127 crossref_primary_10_1039_D2CS01029A crossref_primary_10_1002_aenm_202001569 crossref_primary_10_1002_batt_202400432 crossref_primary_10_1021_acsenergylett_4c01229 crossref_primary_10_1038_s41467_024_48071_0 crossref_primary_10_1021_acs_chemrev_0c00101 crossref_primary_10_1016_j_ensm_2022_03_043 crossref_primary_10_1002_adfm_202309656 crossref_primary_10_1021_acsenergylett_3c02681 crossref_primary_10_1021_acsami_2c16776 crossref_primary_10_1002_smll_202206000 crossref_primary_10_1002_adma_202413325 crossref_primary_10_1002_aenm_202303918 crossref_primary_10_1016_j_jpowsour_2022_232472 crossref_primary_10_1021_acsnano_3c09853 crossref_primary_10_1149_1945_7111_ad1e3e crossref_primary_10_1002_cey2_355 crossref_primary_10_3390_coatings14050608 crossref_primary_10_1002_chem_202402510 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1016_j_ensm_2024_103607 crossref_primary_10_1002_aenm_202001320 crossref_primary_10_1038_s41578_024_00669_y crossref_primary_10_1557_s43579_021_00089_x crossref_primary_10_26599_NRE_2024_9120118 crossref_primary_10_1016_j_jpowsour_2024_234091 crossref_primary_10_3390_en16135100 crossref_primary_10_1016_j_ensm_2020_05_019 crossref_primary_10_1002_anie_202105831 crossref_primary_10_1021_acs_chemmater_0c02981 crossref_primary_10_1021_acsami_1c01246 crossref_primary_10_1002_adfm_202314306 crossref_primary_10_1007_s40242_020_0103_5 crossref_primary_10_1007_s10008_024_05889_4 crossref_primary_10_1002_adfm_202108203 crossref_primary_10_1016_j_nxmate_2024_100307 crossref_primary_10_1002_cey2_131 crossref_primary_10_1021_acsami_1c06706 crossref_primary_10_1002_adma_202310356 crossref_primary_10_1149_1945_7111_ab6c5b crossref_primary_10_1002_advs_202307455 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1016_j_nanoen_2021_106081 crossref_primary_10_1021_acs_nanolett_3c04072 crossref_primary_10_1126_sciadv_add0510 crossref_primary_10_1002_anie_202413502 crossref_primary_10_1007_s41918_022_00176_0 crossref_primary_10_1038_s41586_023_05970_4 crossref_primary_10_1002_aenm_202102283 crossref_primary_10_1038_s43246_024_00600_6 crossref_primary_10_1007_s12598_024_02645_5 crossref_primary_10_1016_j_jpowsour_2021_230939 crossref_primary_10_1039_C9TA12889A crossref_primary_10_1002_aenm_202003939 crossref_primary_10_1016_j_ijsolstr_2022_111852 crossref_primary_10_1002_adma_202405906 crossref_primary_10_1016_j_electacta_2022_141669 crossref_primary_10_1016_j_joule_2024_06_024 crossref_primary_10_1126_sciadv_abh1896 crossref_primary_10_1016_j_ensm_2024_103409 crossref_primary_10_1149_1945_7111_ac834c crossref_primary_10_1002_elan_202200306 crossref_primary_10_1039_D4MA00177J crossref_primary_10_1002_adma_202302872 crossref_primary_10_1039_D2TA02378D crossref_primary_10_1016_j_electacta_2023_141958 crossref_primary_10_1016_j_jmps_2024_105799 crossref_primary_10_1021_acsami_4c02095 crossref_primary_10_1002_aenm_202101126 crossref_primary_10_1002_ange_202413502 crossref_primary_10_1021_acs_nanolett_3c00720 crossref_primary_10_1021_acsami_4c07428 crossref_primary_10_1039_D2CP03301A crossref_primary_10_1557_s43577_023_00607_3 crossref_primary_10_1002_idm2_12112 crossref_primary_10_1007_s12613_021_2278_2 crossref_primary_10_1038_s41467_022_34855_9 crossref_primary_10_1016_j_jpowsour_2020_229404 crossref_primary_10_1016_j_rinma_2022_100305 crossref_primary_10_1021_acsenergylett_1c00332 crossref_primary_10_1002_anie_202320258 crossref_primary_10_1149_1945_7111_abb8b3 crossref_primary_10_1002_aenm_202204186 crossref_primary_10_1002_aenm_202403614 crossref_primary_10_1002_ange_202105831 crossref_primary_10_1002_aenm_202300816 crossref_primary_10_1021_acs_jpcc_3c02277 crossref_primary_10_1002_advs_202103826 crossref_primary_10_1038_s41467_022_32732_z crossref_primary_10_1038_s41565_022_01081_9 crossref_primary_10_1002_aenm_202200948 crossref_primary_10_1016_j_mtphys_2023_101009 crossref_primary_10_1016_j_ensm_2024_103980 crossref_primary_10_1021_acsaem_3c01681 crossref_primary_10_1080_14686996_2021_2018919 crossref_primary_10_1039_D3CS00439B crossref_primary_10_1016_j_joule_2023_03_001 crossref_primary_10_1002_adma_202311475 crossref_primary_10_1002_aesr_202300165 crossref_primary_10_1149_1945_7111_ad2648 crossref_primary_10_1021_acsenergylett_4c01983 crossref_primary_10_1016_j_ensm_2022_11_021 crossref_primary_10_1002_aenm_202302785 crossref_primary_10_1002_aenm_202403360 crossref_primary_10_1016_j_ensm_2023_02_036 crossref_primary_10_1016_j_joule_2022_05_020 crossref_primary_10_1007_s40684_023_00541_4 crossref_primary_10_1016_j_ensm_2023_102875 crossref_primary_10_1016_j_est_2023_109943 crossref_primary_10_1021_acsphotonics_0c00894 crossref_primary_10_1002_inf2_12292 crossref_primary_10_1039_D4EE02358G crossref_primary_10_1149_1945_7111_ad7c82 crossref_primary_10_1002_adma_202200401 crossref_primary_10_1039_D3QM00400G crossref_primary_10_1021_acsami_1c21113 crossref_primary_10_1016_j_nanoen_2021_105858 crossref_primary_10_1002_smll_202412723 crossref_primary_10_1016_j_cossms_2022_101003 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1016_j_cossms_2022_101002 crossref_primary_10_1016_j_joule_2020_08_013 crossref_primary_10_7498_aps_69_20201293 crossref_primary_10_1039_D0EE02525A crossref_primary_10_1002_adfm_202418274 crossref_primary_10_1016_j_coelec_2021_100933 crossref_primary_10_1007_s41918_024_00212_1 crossref_primary_10_1002_adfm_202303484 crossref_primary_10_1021_acs_nanolett_3c02713 crossref_primary_10_1039_D0EE01569E crossref_primary_10_1021_acs_chemmater_1c01431 crossref_primary_10_1016_j_joule_2023_06_006 crossref_primary_10_1115_1_4057039 crossref_primary_10_1002_batt_202300306 crossref_primary_10_1016_j_ensm_2025_104134 crossref_primary_10_1002_adfm_202407007 crossref_primary_10_1016_j_joule_2022_05_016 crossref_primary_10_1016_j_mser_2025_100941 crossref_primary_10_1002_elsa_202100167 crossref_primary_10_1039_D0EE01435D crossref_primary_10_1002_aesr_202300001 crossref_primary_10_1002_aenm_202101228 crossref_primary_10_1016_j_ensm_2022_12_013 crossref_primary_10_1002_adfm_202106680 crossref_primary_10_1002_aenm_202201044 crossref_primary_10_1111_jace_19322 crossref_primary_10_1002_cssc_202400718 crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1002_idm2_12174 crossref_primary_10_1002_batt_202100288 crossref_primary_10_1002_admi_202101254 crossref_primary_10_1016_j_est_2024_112110 crossref_primary_10_1039_D1EE00638J crossref_primary_10_1002_aenm_202300679 crossref_primary_10_1016_j_ensm_2021_12_008 crossref_primary_10_1021_acsaem_3c01383 crossref_primary_10_2139_ssrn_3751761 crossref_primary_10_1002_adfm_202101168 crossref_primary_10_1002_anie_202218044 crossref_primary_10_1557_mre_2020_25 crossref_primary_10_1016_j_euromechsol_2023_105211 crossref_primary_10_1016_j_pmatsci_2023_101193 crossref_primary_10_1016_j_jallcom_2020_155942 crossref_primary_10_1016_j_ensm_2020_04_014 crossref_primary_10_1557_s43577_023_00649_7 crossref_primary_10_1039_D1TA07292G crossref_primary_10_3390_nano13020327 crossref_primary_10_1002_slct_202202195 crossref_primary_10_1149_1945_7111_ad7e93 crossref_primary_10_1016_j_xcrp_2023_101328 crossref_primary_10_3390_nano10081606 crossref_primary_10_1016_j_ensm_2025_104164 crossref_primary_10_1002_aenm_202100325 crossref_primary_10_1016_j_ceramint_2022_09_010 crossref_primary_10_1002_adma_202008081 crossref_primary_10_1021_acsami_1c20139 crossref_primary_10_1002_cey2_610 crossref_primary_10_1021_acs_accounts_1c00333 crossref_primary_10_1021_acsami_2c10666 crossref_primary_10_1039_D0MH00050G crossref_primary_10_1039_D3TA04074G crossref_primary_10_1002_eem2_12670 crossref_primary_10_1021_acs_jpcc_3c05927 crossref_primary_10_1002_aesr_202100003 crossref_primary_10_1021_acsaem_2c02285 crossref_primary_10_1002_adfm_202212847 crossref_primary_10_1002_aesr_202100004 crossref_primary_10_1016_j_joule_2024_07_007 crossref_primary_10_1016_j_pmatsci_2023_101171 crossref_primary_10_1002_ange_202108144 crossref_primary_10_1021_jacs_0c06668 crossref_primary_10_1016_j_ensm_2023_102869 crossref_primary_10_1016_j_joule_2022_10_011 crossref_primary_10_1002_aenm_202203143 crossref_primary_10_1002_adma_202104009 crossref_primary_10_1039_D3EE03322H |
Cites_doi | 10.1039/C6TA05439K 10.1149/2.0911409jes 10.1038/s41598-018-20773-8 10.1126/sciadv.1601659 10.1002/aenm.201701003 10.1039/C9TA02614B 10.1038/s41563-019-0438-9 10.1002/ijch.201400112 10.1149/1.1606686 10.1002/batt.201800149 10.1021/acsenergylett.9b00430 10.1002/adma.201700007 10.1016/j.electacta.2014.05.120 10.1021/acsami.6b13925 10.1021/acsenergylett.6b00650 10.1016/j.ssi.2012.02.034 10.1016/j.elecom.2014.11.002 10.1021/acs.chemmater.6b04990 10.1021/acsenergylett.9b01693 10.1016/j.elecom.2015.05.001 10.1149/2.1391814jes 10.1016/j.jpowsour.2014.03.029 10.1109/PAC.2003.1288558 10.1002/aenm.201702657 10.1021/acsami.5b07517 10.1002/aenm.201901810 10.1149/2.0301816jes 10.1016/j.ssi.2016.11.029 10.1111/jace.14084 10.1149/2.0221902jes 10.1021/acs.chemmater.7b03002 10.1016/j.ssi.2017.07.005 10.1149/1.1850854 10.1007/s10853-018-2971-3 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201903253 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201903253 AENM201903253 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: ECCS‐1542148 – fundername: LG Chem company – fundername: National Institute of General Medical Sciences funderid: P41GM103412 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:21:09 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 01:43:32 EDT 2025 Wed Jan 22 16:35:41 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4223-80e46e011eacc0d2c390701d02ce7bc12b747c649f754bfa13f598e8952123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9801-4800 0000-0001-8936-8845 |
PQID | 2333837968 |
PQPubID | 886389 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2333837968 crossref_primary_10_1002_aenm_201903253 crossref_citationtrail_10_1002_aenm_201903253 wiley_primary_10_1002_aenm_201903253_AENM201903253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 57 2019; 7 2017; 7 2018; 165 2019; 9 2019; 4 2017; 2 2005; 152 2017; 3 2019; 2 2019; 54 2015; 50 2015; 55 2003; 150 2019; 18 2017; 29 2015; 7 2017; 9 2019; 166 2014; 136 2016; 99 2016; 4 2018; 8 2003; 3 2019 2014; 161 2014; 261 2018; 318 2012; 214 2017; 300 e_1_2_5_27_1 Cho J. H. (e_1_2_5_19_1) 2019 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Tariq S. (e_1_2_5_16_1) 2003 Banerjee A. (e_1_2_5_29_1) 2019 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 50 start-page: 11 year: 2015 publication-title: Electrochem. Commun. – volume: 3 start-page: 1452 year: 2003 end-page: 1454 – volume: 18 start-page: 1105 year: 2019 publication-title: Nat. Mater. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1073 year: 2019 publication-title: ACS Energy Lett. – volume: 57 start-page: 27 year: 2015 publication-title: Electrochem. Commun. – volume: 261 start-page: 112 year: 2014 publication-title: J. Power Sources – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 136 start-page: 529 year: 2014 publication-title: Electrochim. Acta – volume: 29 start-page: 7961 year: 2017 publication-title: Chem. Mater. – volume: 152 start-page: A396 year: 2005 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 664 year: 2017 publication-title: ACS Energy Lett. – volume: 166 start-page: A89 year: 2019 publication-title: J. Electrochem. Soc. – volume: 161 year: 2014 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 524 year: 2019 publication-title: Batteries Supercaps – year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 2585 year: 2019 publication-title: J. Mater. Sci. – volume: 29 start-page: 3883 year: 2017 publication-title: Chem. Mater. – volume: 150 year: 2003 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 3808 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 300 start-page: 78 year: 2017 publication-title: Solid State Ionics – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 start-page: 2514 year: 2018 publication-title: Sci. Rep. – volume: 55 start-page: 472 year: 2015 publication-title: Isr. J. Chem. – volume: 99 start-page: 1367 year: 2016 publication-title: J. Am. Ceram. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 214 start-page: 25 year: 2012 publication-title: Solid State Ionics – volume: 4 start-page: 2418 year: 2019 publication-title: ACS Energy Lett. – volume: 318 start-page: 102 year: 2018 publication-title: Solid State Ionics – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – year: 2019 publication-title: Energy Storage Mater. – ident: e_1_2_5_14_1 doi: 10.1039/C6TA05439K – ident: e_1_2_5_1_1 doi: 10.1149/2.0911409jes – ident: e_1_2_5_17_1 doi: 10.1038/s41598-018-20773-8 – ident: e_1_2_5_12_1 doi: 10.1126/sciadv.1601659 – ident: e_1_2_5_6_1 doi: 10.1002/aenm.201701003 – ident: e_1_2_5_24_1 doi: 10.1039/C9TA02614B – ident: e_1_2_5_26_1 doi: 10.1038/s41563-019-0438-9 – ident: e_1_2_5_33_1 doi: 10.1002/ijch.201400112 – ident: e_1_2_5_4_1 doi: 10.1149/1.1606686 – ident: e_1_2_5_13_1 doi: 10.1002/batt.201800149 – ident: e_1_2_5_36_1 doi: 10.1021/acsenergylett.9b00430 – ident: e_1_2_5_2_1 doi: 10.1002/adma.201700007 – ident: e_1_2_5_20_1 doi: 10.1016/j.electacta.2014.05.120 – ident: e_1_2_5_9_1 doi: 10.1021/acsami.6b13925 – ident: e_1_2_5_23_1 doi: 10.1021/acsenergylett.6b00650 – year: 2019 ident: e_1_2_5_19_1 publication-title: Energy Storage Mater. – ident: e_1_2_5_35_1 doi: 10.1016/j.ssi.2012.02.034 – ident: e_1_2_5_22_1 doi: 10.1016/j.elecom.2014.11.002 – ident: e_1_2_5_31_1 doi: 10.1021/acs.chemmater.6b04990 – ident: e_1_2_5_32_1 doi: 10.1021/acsenergylett.9b01693 – ident: e_1_2_5_7_1 doi: 10.1016/j.elecom.2015.05.001 – ident: e_1_2_5_8_1 doi: 10.1149/2.1391814jes – ident: e_1_2_5_21_1 doi: 10.1016/j.jpowsour.2014.03.029 – start-page: 1452 volume-title: Proc. of the 2003 Particle Accelerator Conf. year: 2003 ident: e_1_2_5_16_1 doi: 10.1109/PAC.2003.1288558 – year: 2019 ident: e_1_2_5_29_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_5_3_1 doi: 10.1002/aenm.201702657 – ident: e_1_2_5_27_1 doi: 10.1021/acsami.5b07517 – ident: e_1_2_5_28_1 doi: 10.1002/aenm.201901810 – ident: e_1_2_5_25_1 doi: 10.1149/2.0301816jes – ident: e_1_2_5_30_1 doi: 10.1016/j.ssi.2016.11.029 – ident: e_1_2_5_10_1 doi: 10.1111/jace.14084 – ident: e_1_2_5_18_1 doi: 10.1149/2.0221902jes – ident: e_1_2_5_11_1 doi: 10.1021/acs.chemmater.7b03002 – ident: e_1_2_5_34_1 doi: 10.1016/j.ssi.2017.07.005 – ident: e_1_2_5_5_1 doi: 10.1149/1.1850854 – ident: e_1_2_5_15_1 doi: 10.1007/s10853-018-2971-3 |
SSID | ssj0000491033 |
Score | 2.6880157 |
Snippet | All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes dendrite Electrolytes Failure mechanisms Flux density Interfacial properties Li metal Lithium Lithium batteries Mechanical properties Molten salt electrolytes Plating Porosity Room temperature Solid electrolytes solid‐state batteries stack pressure X‐ray tomography |
Title | Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903253 https://www.proquest.com/docview/2333837968 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKzAYWiKcoDMgLJBZViuM4r2XEDKoQmcW0SLMLsWMzw5QUDY0ErPgD-Ea-hOtH3HQYxMAmbdzEedxj-_j23mOEnnKhGCVREzBG04BFDTSpWMmgqQmF32KaG8n88jCZvWGvjuPj0ej7IGqpW_Op-HppXsn_WBXKwK46S_YfLOsrhQL4DvaFLVgYtleyMTBFceYy_M6lX3zTRbfpAMIj4MU-nmEhgSNbDeVJsVz68vlqCbfu9zT91GIaJ6fdh0kpdbakVeHs4w170do-fEDa_EHgvvahPTledZ9tBE3d-upLPTn3Luh33Rfb7802KF1Yn-y-DiJuJ7PpZD7d-FvhUu9t7FDBT07Phk4LSgZOC9vPAisIksy5NuWwzKo3-c6ZXAThb32-1ZCtZauFBYDfRNTKD2-La18Y9HwoopVtppU-v_LnX0O7NE31__67xX75eu7ddjChCklk0jb6R-ilQAl9vn0T21RnM38ZzoIMjVncQjfd_AMXFky30Ui2d9CNgSrlXfTWwAr3sMLbsMIAK6xh9fPbjwGgMAAKSgyU9KcGEXYgwgZE2IPoHjp6ebB4MQvcQhyBYEAfgcVIlkgYCWCUFqShIsphpAgbQoVMuQgph0mpSFiu0phxVYeRivNMZrlJDL-PdtpVKx8gnKQKjsgkCyVnisqckZqoRkZcQf21GKOgf2GVcBL1eqWUZXW5lcbomT_-oxVn-eORe_37r1wD_lTRyPhn8iQbI2ps8pdaquLgsPR7D6989Ufo-qYR7KGd9XknHwOXXfMnDl-_ALKzmt8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stack+Pressure+Considerations+for+Room%E2%80%90Temperature+All%E2%80%90Solid%E2%80%90State+Lithium+Metal+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Doux%2C+Jean%E2%80%90Marie&rft.au=Nguyen%2C+Han&rft.au=Tan%2C+Darren+H.+S.&rft.au=Banerjee%2C+Abhik&rft.date=2020-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1002%2Faenm.201903253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201903253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |