Bayesian non-parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros

Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series A, Statistics in society Vol. 181; no. 3; pp. 635 - 647
Main Authors Manrique-Vallier, Daniel, Hu, Jingchen
Format Journal Article
LanguageEnglish
Published Oxford Wiley 01.06.2018
Oxford University Press
Subjects
Online AccessGet full text
ISSN0964-1998
1467-985X
DOI10.1111/rssa.12352

Cover

Abstract Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian nonparametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk.
AbstractList Summary Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian non‐parametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk.
Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian non‐parametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk.
Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian nonparametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk.
Author Manrique-Vallier, Daniel
Hu, Jingchen
Author_xml – sequence: 1
  givenname: Daniel
  surname: Manrique-Vallier
  fullname: Manrique-Vallier, Daniel
– sequence: 2
  givenname: Jingchen
  surname: Hu
  fullname: Hu, Jingchen
BookMark eNp9kE1rGzEQhkVxIXbSS-8FQW6BTSTth1ZHx_QLDIGkgdyWsXaUyqy1jqRt2Pz6auO0hxAyB-mg55nRvAsyc71DQj5zds5TXfgQ4JyLvBQfyJwXlcxUXd7NyJypqsi4UvURWYSwZVNJOSePlzBisOBo6pTtwcMOo7ea3qNDD9H2jvaGmqHrRhpGF39jTK-7oYv2D3gLEalOx32fJOhoCxGodTRxdO8xoNM4NQjRDzoOPiFP6PtwQj4a6AJ-ermPye23r79WP7L11fefq-U604UQItvUJlegWzAApdF1iZWsGFRpk7JtSzComGE5q4VBqaFqQQpdbbg2TEDLVX5MTg99975_GDDEZtsP3qWRjWCFzJVQ-USxA6XT14JH02gbn5ePHmzXcNZM8TZTvM1zvEk5e6Xsvd2BH9-G-QF-tB2O75DN9c3N8p_z5eBsQ-z9f6eoy0KWTOZ_AWZTmy4
CitedBy_id crossref_primary_10_1093_jssam_smae047
crossref_primary_10_1111_rssa_12711
crossref_primary_10_1111_rssa_12876
crossref_primary_10_1287_ijoc_2022_0351
crossref_primary_10_1093_jssam_smab013
crossref_primary_10_1002_sam_11553
crossref_primary_10_1214_24_STS927
crossref_primary_10_2139_ssrn_4569904
crossref_primary_10_1002_wics_1636
crossref_primary_10_1186_s12874_021_01237_6
Cites_doi 10.1093/biomet/61.2.215
10.1007/978-3-319-11257-2_15
10.1007/978-1-4757-4145-2
10.1198/016214507000000932
10.1111/j.2517-6161.1995.tb02031.x
10.1002/sim.4067
10.1111/j.1467-9531.2008.00202.x
10.1198/jasa.2009.tm08439
10.3102/1076998613480394
10.1080/00949650902744438
10.1080/01621459.2016.1231612
10.1198/016214501750332758
10.1080/10629360600810434
10.1080/10618600.2013.844700
10.1016/j.csda.2011.06.006
10.1111/biom.12502
ContentType Journal Article
Copyright 2018 Royal Statistical Society
Copyright © 2018 The Royal Statistical Society and John Wiley & Sons Ltd
Copyright_xml – notice: 2018 Royal Statistical Society
– notice: Copyright © 2018 The Royal Statistical Society and John Wiley & Sons Ltd
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1111/rssa.12352
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-985X
EndPage 647
ExternalDocumentID 10_1111_rssa_12352
RSSA12352
48547507
Genre article
GroupedDBID -~X
.3N
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEML
ABFAN
ABIVO
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYWD
ACAHQ
ACCZN
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EOH
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
YQT
ZL0
ZZTAW
~IA
~WT
.Y3
07C
1OB
1OL
3-9
31~
AAHHS
AANHP
AARHZ
ABYAD
ACBWZ
ACCFJ
ACFRR
ACRPL
ACTWD
ACYXJ
ADNMO
ADQBN
ADULT
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ANFBD
ASPBG
AS~
ATGXG
AVWKF
AZFZN
COF
FEDTE
FVMVE
H13
HF~
HGD
HVGLF
H~9
IHE
JSODD
MVM
RJQFR
RNS
VUG
ZGI
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4222-b8f39acdafaa5fc85e6760a61995dd5afe90f03082fe7ca6da72c6b1cf02ad193
IEDL.DBID DR2
ISSN 0964-1998
IngestDate Wed Aug 13 09:04:02 EDT 2025
Tue Jul 01 00:50:55 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Wed Jan 22 16:20:22 EST 2025
Thu Jul 03 22:06:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4222-b8f39acdafaa5fc85e6760a61995dd5afe90f03082fe7ca6da72c6b1cf02ad193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2047392939
PQPubID 105636
PageCount 13
ParticipantIDs proquest_journals_2047392939
crossref_citationtrail_10_1111_rssa_12352
crossref_primary_10_1111_rssa_12352
wiley_primary_10_1111_rssa_12352_RSSA12352
jstor_primary_48547507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series A, Statistics in society
PublicationYear 2018
Publisher Wiley
Oxford University Press
Publisher_xml – name: Wiley
– name: Oxford University Press
References 1993; 9
2007; 102
2010; 79
2010
2006; 76
1995; 57
2008; 38
1975
2011; 30
2011; 55
2005; 21
2016; 72
2001; 27
2004
2003; 19
2017; 112
2014; 23
1999
2013; 38
1974; 61
2014
2010; 3
2014; 6
2009; 104
2001; 96
1994; 4
Robert (2023030806265000400_) 2004
Rubin (2023030806265000400_) 1993; 9
Reiter (2023030806265000400_) 2005; 21
Sethuraman (2023030806265000400_) 1994; 4
Caiola (2023030806265000400_) 2010; 3
Van Buuren (2023030806265000400_) 2006; 76
Ishwaran (2023030806265000400_) 2001; 96
Benjamini (2023030806265000400_) 1995; 57
Manrique-Vallier (2023030806265000400_) 2017; 112
Hu (2023030806265000400_) 2014
Drechsler (2023030806265000400_) 2011; 55
Manrique-Vallier (2023030806265000400_) 2014; 23
White (2023030806265000400_) 2011; 30
Reiter (2023030806265000400_) 2014; 6
Dunson (2023030806265000400_) 2009; 104
Manrique-Vallier (2023030806265000400_) 2016; 72
Bishop (2023030806265000400_) 1975
Si (2023030806265000400_) 2013; 38
Matthews (2023030806265000400_) 2010; 79
Ruggles (2023030806265000400_) 2010
Vermunt (2023030806265000400_) 2008; 38
Van Buuren (2023030806265000400_) 1999
Raghunathan (2023030806265000400_) 2001; 27
Reiter (2023030806265000400_) 2007; 102
Raghunathan (2023030806265000400_) 2003; 19
Goodman (2023030806265000400_) 1974; 61
References_xml – volume: 6
  start-page: 2
  year: 2014
  article-title: Bayesian estimation of disclosure risks for multiply imputed, synthetic data
  publication-title: J. Privcy Confident.
– volume: 9
  start-page: 461
  year: 1993
  end-page: 468
  article-title: Statistical disclosure limitation
  publication-title: J. Off. Statist.
– volume: 38
  start-page: 499
  year: 2013
  end-page: 521
  article-title: Nonparametric Bayesian multiple imputation for incomplete categorical variables in large‐scale assessment surveys
  publication-title: J. Educ. Behav. Statist.
– volume: 30
  start-page: 377
  year: 2011
  end-page: 399
  article-title: Multiple imputation using chained equations: issues and guidance for practice
  publication-title: Statist. Med.
– volume: 4
  start-page: 639
  year: 1994
  end-page: 650
  article-title: A constructive definition of Dirichlet priors
  publication-title: Statist. Sin.
– year: 1975
– volume: 61
  start-page: 215
  year: 1974
  end-page: 231
  article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models
  publication-title: Biometrika
– volume: 79
  start-page: 609
  year: 2010
  end-page: 624
  article-title: Examining the robustness of fully synthetic data techniques for data with binary variables
  publication-title: J. Statist. Computn Simuln
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Statist. Soc.
– volume: 104
  start-page: 1042
  year: 2009
  end-page: 1051
  article-title: Nonparametric Bayes modelling of multivariate categorical data
  publication-title: J. Am. Statist. Ass.
– volume: 19
  start-page: 1
  year: 2003
  end-page: 16
  article-title: Multiple imputation for statistical disclosure limitation
  publication-title: J. Off. Statist.
– volume: 23
  start-page: 1061
  year: 2014
  end-page: 1079
  article-title: Bayesian estimation of discrete multivariate latent structure models with structural zeros
  publication-title: J. Computnl Graph. Statist.
– volume: 3
  start-page: 27
  year: 2010
  end-page: 42
  article-title: Random forests for generating partially synthetic, categorical data
  publication-title: Trans. Data Privcy
– year: 2010
– volume: 102
  start-page: 1462
  year: 2007
  end-page: 1471
  article-title: The multiple adaptations of multiple imputation
  publication-title: J. Am. Statist. Ass.
– volume: 112
  start-page: 1708
  year: 2017
  end-page: 1719
  article-title: Bayesian simultaneous edit and imputation for multivariate categorical data
  publication-title: J. Am. Statist. Ass.
– volume: 76
  start-page: 1049
  year: 2006
  end-page: 1064
  article-title: Fully conditional specification in multivariate imputation
  publication-title: J. Statist. Computn Simuln
– volume: 21
  start-page: 441
  year: 2005
  end-page: 462
  article-title: Using CART to generate partially synthetic, public use microdata
  publication-title: J. Off. Statist.
– volume: 55
  start-page: 3232
  year: 2011
  end-page: 3243
  article-title: An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets
  publication-title: Computnl Statist. Data Anal.
– year: 2004
– volume: 27
  start-page: 85
  year: 2001
  end-page: 96
  article-title: A multivariate technique for multiply imputing missing values using a series of regression models
  publication-title: Surv. Methodol.
– start-page: 185
  year: 2014
  end-page: 199
– volume: 38
  start-page: 369
  year: 2008
  end-page: 397
  article-title: Multiple imputation of incomplete categorical data using latent class analysis
  publication-title: Sociol. Methodol.
– volume: 96
  start-page: 161
  year: 2001
  end-page: 173
  article-title: Gibbs sampling for stick‐breaking priors
  publication-title: J. Am. Statist. Ass.
– volume: 72
  start-page: 1246
  year: 2016
  end-page: 1254
  article-title: Bayesian population size estimation using Dirichlet process mixtures
  publication-title: Biometrics
– year: 1999
– volume: 61
  start-page: 215
  year: 1974
  ident: 2023030806265000400_
  article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models
  publication-title: Biometrika
  doi: 10.1093/biomet/61.2.215
– start-page: 185
  volume-title: Privacy in Statistical Databases
  year: 2014
  ident: 2023030806265000400_
  doi: 10.1007/978-3-319-11257-2_15
– volume-title: Monte Carlo Statistical Methods
  year: 2004
  ident: 2023030806265000400_
  doi: 10.1007/978-1-4757-4145-2
– volume: 21
  start-page: 441
  year: 2005
  ident: 2023030806265000400_
  article-title: Using CART to generate partially synthetic, public use microdata
  publication-title: J. Off. Statist.
– volume-title: Flexible multivariate imputation by MICE
  year: 1999
  ident: 2023030806265000400_
– volume: 102
  start-page: 1462
  year: 2007
  ident: 2023030806265000400_
  article-title: The multiple adaptations of multiple imputation
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214507000000932
– volume-title: Integrated public use microdata series: Version 5.0 [machine-readable database]
  year: 2010
  ident: 2023030806265000400_
– volume: 57
  start-page: 289
  year: 1995
  ident: 2023030806265000400_
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 30
  start-page: 377
  year: 2011
  ident: 2023030806265000400_
  article-title: Multiple imputation using chained equations: issues and guidance for practice
  publication-title: Statist. Med.
  doi: 10.1002/sim.4067
– volume: 27
  start-page: 85
  year: 2001
  ident: 2023030806265000400_
  article-title: A multivariate technique for multiply imputing missing values using a series of regression models
  publication-title: Surv. Methodol.
– volume: 6
  start-page: 2
  year: 2014
  ident: 2023030806265000400_
  article-title: Bayesian estimation of disclosure risks for multiply imputed, synthetic data
  publication-title: J. Privcy Confident.
– volume: 38
  start-page: 369
  year: 2008
  ident: 2023030806265000400_
  article-title: Multiple imputation of incomplete categorical data using latent class analysis
  publication-title: Sociol. Methodol.
  doi: 10.1111/j.1467-9531.2008.00202.x
– volume: 104
  start-page: 1042
  year: 2009
  ident: 2023030806265000400_
  article-title: Nonparametric Bayes modelling of multivariate categorical data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/jasa.2009.tm08439
– volume: 38
  start-page: 499
  year: 2013
  ident: 2023030806265000400_
  article-title: Nonparametric Bayesian multiple imputation for incomplete categorical variables in large-scale assessment surveys
  publication-title: J. Educ. Behav. Statist.
  doi: 10.3102/1076998613480394
– volume: 79
  start-page: 609
  year: 2010
  ident: 2023030806265000400_
  article-title: Examining the robustness of fully synthetic data techniques for data with binary variables
  publication-title: J. Statist. Computn Simuln
  doi: 10.1080/00949650902744438
– volume: 3
  start-page: 27
  year: 2010
  ident: 2023030806265000400_
  article-title: Random forests for generating partially synthetic, categorical data
  publication-title: Trans. Data Privcy
– volume: 19
  start-page: 1
  year: 2003
  ident: 2023030806265000400_
  article-title: Multiple imputation for statistical disclosure limitation
  publication-title: J. Off. Statist.
– volume: 112
  start-page: 1708
  year: 2017
  ident: 2023030806265000400_
  article-title: Bayesian simultaneous edit and imputation for multivariate categorical data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2016.1231612
– volume: 9
  start-page: 461
  year: 1993
  ident: 2023030806265000400_
  article-title: Statistical disclosure limitation
  publication-title: J. Off. Statist.
– volume: 4
  start-page: 639
  year: 1994
  ident: 2023030806265000400_
  article-title: A constructive definition of Dirichlet priors
  publication-title: Statist. Sin.
– volume: 96
  start-page: 161
  year: 2001
  ident: 2023030806265000400_
  article-title: Gibbs sampling for stick-breaking priors
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214501750332758
– volume-title: Discrete Multivariate Analysis: Theory and Practice
  year: 1975
  ident: 2023030806265000400_
– volume: 76
  start-page: 1049
  year: 2006
  ident: 2023030806265000400_
  article-title: Fully conditional specification in multivariate imputation
  publication-title: J. Statist. Computn Simuln
  doi: 10.1080/10629360600810434
– volume: 23
  start-page: 1061
  year: 2014
  ident: 2023030806265000400_
  article-title: Bayesian estimation of discrete multivariate latent structure models with structural zeros
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1080/10618600.2013.844700
– volume: 55
  start-page: 3232
  year: 2011
  ident: 2023030806265000400_
  article-title: An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets
  publication-title: Computnl Statist. Data Anal.
  doi: 10.1016/j.csda.2011.06.006
– volume: 72
  start-page: 1246
  year: 2016
  ident: 2023030806265000400_
  article-title: Bayesian population size estimation using Dirichlet process mixtures
  publication-title: Biometrics
  doi: 10.1111/biom.12502
SSID ssj0000077
Score 2.2810435
Snippet Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to...
Summary Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents....
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 635
SubjectTerms Bayesian analysis
Bayesian non‐parametrics
Bias
Censuses
Complex variables
Contingency tables
Dirichlet process
Disclosure risk
Markov chain Monte Carlo methods
Men
Multiple imputation
Multivariate analysis
Nonparametric statistics
Original Articles
Privacy
Statistical analysis
Statistical methods
Toddlers
Title Bayesian non-parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros
URI https://www.jstor.org/stable/48547507
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12352
https://www.proquest.com/docview/2047392939
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSsNAFIYPxVVdeBfrjQHdKKSkucw04MYrItSFVXAjYTIXETUtRoV25SP4jD6Jc2aS2ooIuuviZGhm5iR_Dv_5BmAbcbNMS2ryG0s3Mgq8hKrI04FmPAySzJdYh-yc09Or6Ow6vq7BXtUL4_gQo4IbZoZ9XmOC86wYS_KnouBN7PTEB3ArpAjOP7oYY0f59thFI9EjdFO0SzYp2ni-Lp14GzlD4oTUHBes9o1zMgs31X91RpP75stz1hTDbxjH_97MHMyUUpTsu70zDzWVL8B0Z8RxLRagjlrUoZwXYXDABwp7Lkneyz_e3pEa_ogHcglya-HVuMakpwmW9AekGORmJHMpsabFV_NRbnQtQQfWrQOTELSnkrucmDjSt31QQuEADmqLQBAyVGbiluDq5Pjy8NQrT27wBJaUvKytw4QLyTXnaBKLFWXU5xT7waWMuVaJry0pRysmOJWcBYJmLaH9gEujKZdhytyKWgEikWbTosxvKRUlmRkr8FUWhFozxkVIG7BTrWAqSqw5nq7xkFafNzi3qZ3bBmyNYvsO5vFj1LLdCKOQqB1HRlixBqxXOyMtM71IAz9iqDHDpAG7dol_GTq96Hb37a_VvwSvQd3otLZzqK3DlFkEtWG00HO2aff8J4XACSA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5V9FB6AEqLCARqCS4gbbTZdezskfJQeIQDD4nbyusHQi0LYgEpOfUn9Df2l3TG3oSAUCW47WHslR9jfx598w3AOsnNSmcE-jeFbgxPokxYHrnESZUmWREbikP2j0XvnB9cdC5qbg7lwgR9iHHAjTzDn9fk4BSQnvDyu6pSLUr1xBP4I0ekQW-vnZMJ9ajYF15EkM6JT9Gt1UmJyPPU9tl9FCiJz8DmJGT1d87ebCisWnmpQqKa_Gw93BctPXwh5Pju4czBTI1G2VbYPl_ggy3n4XN_LOVazcM0wdGg5vwVBj_UwFLaJStvyr-__5Bw-DXV5NLs0utX0zKzG8forwNWDUrsCZsyz1t8xHc5QltGJKzLoE3CiKHKrkqGduzWp0JpSx0EXVvSBGFDizP3Dc73ds-2e1FdvCHSFFWKiq5LM6WNckoRT6xjhRSxEpQSbkxHOZvFzovlOCu1EkbJRIuirV2cKIOwcgGmcCh2EZghQZu2kHHbWp4V2FcS2yJJnZNS6VQ0YGO0hLmulc2pwMavfPTCobnN_dw2YG1sexv0PF61WvA7YWzCux2O2Eo2oDnaGnnt7FWexFwSzEyzBmz6Nf5P1_nJ6emW_1p6i_F3-NQ76x_lR_vHh8swjbCtGwhrTZjCBbErCI3ui1XvAP8ABBwNPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IQtGH1lrFtbYN1JcWZpmdySY74Iu1XbxUES_giwyZXBapjoujwvrUn9Df2F_Sc5KZ7VqKoG_zcBImOTnJl8N3vgCskdysdEZgfFPqxvAkyoTlkUucVGmSFbGhPOTevtg64Tun3dMpWG9qYYI-xDjhRpHh92sK8KFxE0F-XVWqTZWeuAHPcIFQgiDR4YR4VOzfXUSMzolO0avFSYnH87ftg-MoMBIfYM1JxOqPnP4rOGt-NjBNfrRvb4q2vv9Hx_G5o5mHlzUWZRth8byGKVsuwNzeWMi1WoBZAqNBy_kNjL6okaWiS1Zelb9__iLZ8Et6kUuzgVevJiezK8copz9i1ajEnrAp86zFO7yVI7BlRMEaBGUSRvxUdl4ytGNDXwilLXUQVG1JEYTdW5y4RTjpfzve3IrqpxsiTTmlqOi5NFPaKKcUscS6VkgRK0EF4cZ0lbNZ7LxUjrNSK2GUTLQoOtrFiTIIKpdgGodil4EZkrPpCBl3rOVZgX0lsS2S1DkplU5FCz41Hsx1rWtOz2tc5M39huY293Pbgo9j22FQ8_iv1ZJfCGMT3utyRFayBavNysjrUK_yJOaSQGaateCzd_EjXeeHR0cb_mvlKcYf4MXB137-fXt_9y3MImbrBbbaKkyjP-w7xEU3xXu__P8A48kL7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Non-Parametric+Generation+Of+Fully+Synthetic+Multivariate+Categorical+Data+in+the+Presence+of+Structural+Zeros&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Manrique-Vallier%2C+Daniel&rft.au=Hu%2C+Jingchen&rft.date=2018-06-01&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=181&rft.issue=3&rft.spage=635&rft.epage=647&rft_id=info:doi/10.1111%2Frssa.12352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_rssa_12352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon