Bayesian non-parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros
Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In...
Saved in:
Published in | Journal of the Royal Statistical Society. Series A, Statistics in society Vol. 181; no. 3; pp. 635 - 647 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley
01.06.2018
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0964-1998 1467-985X |
DOI | 10.1111/rssa.12352 |
Cover
Abstract | Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian nonparametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk. |
---|---|
AbstractList | Summary
Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian non‐parametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk. Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian non‐parametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk. Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to the implementation of these approaches are flexible models, able to capture the nuances of the multivariate structure in the original data. In the case of multivariate categorical data, preserving this multivariate structure also often involves satisfying constraints in the form of combinations of responses that cannot logically be present in any data set—like married toddlers or pregnant men—also known as structural zeros. Ignoring structural zeros can result in both logically inconsistent synthetic data and biased estimates. Here we propose the use of a Bayesian nonparametric method for generating discrete multivariate synthetic data subject to structural zeros. This method can preserve complex multivariate relationships between variables, can be applied to high dimensional data sets with massive collections of structural zeros, requires minimal tuning from the user and is computationally efficient. We demonstrate our approach by synthesizing an extract of 17 variables from the 2000 US census. Our method produces synthetic samples with high analytic utility and low disclosure risk. |
Author | Manrique-Vallier, Daniel Hu, Jingchen |
Author_xml | – sequence: 1 givenname: Daniel surname: Manrique-Vallier fullname: Manrique-Vallier, Daniel – sequence: 2 givenname: Jingchen surname: Hu fullname: Hu, Jingchen |
BookMark | eNp9kE1rGzEQhkVxIXbSS-8FQW6BTSTth1ZHx_QLDIGkgdyWsXaUyqy1jqRt2Pz6auO0hxAyB-mg55nRvAsyc71DQj5zds5TXfgQ4JyLvBQfyJwXlcxUXd7NyJypqsi4UvURWYSwZVNJOSePlzBisOBo6pTtwcMOo7ea3qNDD9H2jvaGmqHrRhpGF39jTK-7oYv2D3gLEalOx32fJOhoCxGodTRxdO8xoNM4NQjRDzoOPiFP6PtwQj4a6AJ-ermPye23r79WP7L11fefq-U604UQItvUJlegWzAApdF1iZWsGFRpk7JtSzComGE5q4VBqaFqQQpdbbg2TEDLVX5MTg99975_GDDEZtsP3qWRjWCFzJVQ-USxA6XT14JH02gbn5ePHmzXcNZM8TZTvM1zvEk5e6Xsvd2BH9-G-QF-tB2O75DN9c3N8p_z5eBsQ-z9f6eoy0KWTOZ_AWZTmy4 |
CitedBy_id | crossref_primary_10_1093_jssam_smae047 crossref_primary_10_1111_rssa_12711 crossref_primary_10_1111_rssa_12876 crossref_primary_10_1287_ijoc_2022_0351 crossref_primary_10_1093_jssam_smab013 crossref_primary_10_1002_sam_11553 crossref_primary_10_1214_24_STS927 crossref_primary_10_2139_ssrn_4569904 crossref_primary_10_1002_wics_1636 crossref_primary_10_1186_s12874_021_01237_6 |
Cites_doi | 10.1093/biomet/61.2.215 10.1007/978-3-319-11257-2_15 10.1007/978-1-4757-4145-2 10.1198/016214507000000932 10.1111/j.2517-6161.1995.tb02031.x 10.1002/sim.4067 10.1111/j.1467-9531.2008.00202.x 10.1198/jasa.2009.tm08439 10.3102/1076998613480394 10.1080/00949650902744438 10.1080/01621459.2016.1231612 10.1198/016214501750332758 10.1080/10629360600810434 10.1080/10618600.2013.844700 10.1016/j.csda.2011.06.006 10.1111/biom.12502 |
ContentType | Journal Article |
Copyright | 2018 Royal Statistical Society Copyright © 2018 The Royal Statistical Society and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 Royal Statistical Society – notice: Copyright © 2018 The Royal Statistical Society and John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
DOI | 10.1111/rssa.12352 |
DatabaseName | CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-985X |
EndPage | 647 |
ExternalDocumentID | 10_1111_rssa_12352 RSSA12352 48547507 |
Genre | article |
GroupedDBID | -~X .3N .GA 05W 10A 1OC 29L 2AX 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 66C 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAONW AASGY AAUAY AAWIL AAXRX AAZKR ABAWQ ABBHK ABCQN ABCUV ABDFA ABEML ABFAN ABIVO ABPFR ABPQH ABPTD ABWST ABXSQ ABYWD ACAHQ ACCZN ACGFS ACHJO ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADODI ADOZA ADRDM ADVEK ADZMN AEGXH AEIMD AEMOZ AEUPB AFBPY AFEBI AFGKR AFVYC AFXHP AFZJQ AGLNM AHQJS AIHAF AIURR AJAOE AJNCP AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EJD EMK EOH F00 F5P G-S G.N GODZA H.T H.X HQ6 HZI HZ~ IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NU- O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K ROL ROX RX1 SA0 SUPJJ TH9 TN5 UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WYISQ XBAML XG1 YF5 YQT ZL0 ZZTAW ~IA ~WT .Y3 07C 1OB 1OL 3-9 31~ AAHHS AANHP AARHZ ABYAD ACBWZ ACCFJ ACFRR ACRPL ACTWD ACYXJ ADNMO ADQBN ADULT AEEZP AELPN AEQDE AEUQT AFPWT AIWBW AJBDE ANFBD ASPBG AS~ ATGXG AVWKF AZFZN COF FEDTE FVMVE H13 HF~ HGD HVGLF H~9 IHE JSODD MVM RJQFR RNS VUG ZGI AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4222-b8f39acdafaa5fc85e6760a61995dd5afe90f03082fe7ca6da72c6b1cf02ad193 |
IEDL.DBID | DR2 |
ISSN | 0964-1998 |
IngestDate | Wed Aug 13 09:04:02 EDT 2025 Tue Jul 01 00:50:55 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Wed Jan 22 16:20:22 EST 2025 Thu Jul 03 22:06:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4222-b8f39acdafaa5fc85e6760a61995dd5afe90f03082fe7ca6da72c6b1cf02ad193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2047392939 |
PQPubID | 105636 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2047392939 crossref_citationtrail_10_1111_rssa_12352 crossref_primary_10_1111_rssa_12352 wiley_primary_10_1111_rssa_12352_RSSA12352 jstor_primary_48547507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of the Royal Statistical Society. Series A, Statistics in society |
PublicationYear | 2018 |
Publisher | Wiley Oxford University Press |
Publisher_xml | – name: Wiley – name: Oxford University Press |
References | 1993; 9 2007; 102 2010; 79 2010 2006; 76 1995; 57 2008; 38 1975 2011; 30 2011; 55 2005; 21 2016; 72 2001; 27 2004 2003; 19 2017; 112 2014; 23 1999 2013; 38 1974; 61 2014 2010; 3 2014; 6 2009; 104 2001; 96 1994; 4 Robert (2023030806265000400_) 2004 Rubin (2023030806265000400_) 1993; 9 Reiter (2023030806265000400_) 2005; 21 Sethuraman (2023030806265000400_) 1994; 4 Caiola (2023030806265000400_) 2010; 3 Van Buuren (2023030806265000400_) 2006; 76 Ishwaran (2023030806265000400_) 2001; 96 Benjamini (2023030806265000400_) 1995; 57 Manrique-Vallier (2023030806265000400_) 2017; 112 Hu (2023030806265000400_) 2014 Drechsler (2023030806265000400_) 2011; 55 Manrique-Vallier (2023030806265000400_) 2014; 23 White (2023030806265000400_) 2011; 30 Reiter (2023030806265000400_) 2014; 6 Dunson (2023030806265000400_) 2009; 104 Manrique-Vallier (2023030806265000400_) 2016; 72 Bishop (2023030806265000400_) 1975 Si (2023030806265000400_) 2013; 38 Matthews (2023030806265000400_) 2010; 79 Ruggles (2023030806265000400_) 2010 Vermunt (2023030806265000400_) 2008; 38 Van Buuren (2023030806265000400_) 1999 Raghunathan (2023030806265000400_) 2001; 27 Reiter (2023030806265000400_) 2007; 102 Raghunathan (2023030806265000400_) 2003; 19 Goodman (2023030806265000400_) 1974; 61 |
References_xml | – volume: 6 start-page: 2 year: 2014 article-title: Bayesian estimation of disclosure risks for multiply imputed, synthetic data publication-title: J. Privcy Confident. – volume: 9 start-page: 461 year: 1993 end-page: 468 article-title: Statistical disclosure limitation publication-title: J. Off. Statist. – volume: 38 start-page: 499 year: 2013 end-page: 521 article-title: Nonparametric Bayesian multiple imputation for incomplete categorical variables in large‐scale assessment surveys publication-title: J. Educ. Behav. Statist. – volume: 30 start-page: 377 year: 2011 end-page: 399 article-title: Multiple imputation using chained equations: issues and guidance for practice publication-title: Statist. Med. – volume: 4 start-page: 639 year: 1994 end-page: 650 article-title: A constructive definition of Dirichlet priors publication-title: Statist. Sin. – year: 1975 – volume: 61 start-page: 215 year: 1974 end-page: 231 article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models publication-title: Biometrika – volume: 79 start-page: 609 year: 2010 end-page: 624 article-title: Examining the robustness of fully synthetic data techniques for data with binary variables publication-title: J. Statist. Computn Simuln – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Statist. Soc. – volume: 104 start-page: 1042 year: 2009 end-page: 1051 article-title: Nonparametric Bayes modelling of multivariate categorical data publication-title: J. Am. Statist. Ass. – volume: 19 start-page: 1 year: 2003 end-page: 16 article-title: Multiple imputation for statistical disclosure limitation publication-title: J. Off. Statist. – volume: 23 start-page: 1061 year: 2014 end-page: 1079 article-title: Bayesian estimation of discrete multivariate latent structure models with structural zeros publication-title: J. Computnl Graph. Statist. – volume: 3 start-page: 27 year: 2010 end-page: 42 article-title: Random forests for generating partially synthetic, categorical data publication-title: Trans. Data Privcy – year: 2010 – volume: 102 start-page: 1462 year: 2007 end-page: 1471 article-title: The multiple adaptations of multiple imputation publication-title: J. Am. Statist. Ass. – volume: 112 start-page: 1708 year: 2017 end-page: 1719 article-title: Bayesian simultaneous edit and imputation for multivariate categorical data publication-title: J. Am. Statist. Ass. – volume: 76 start-page: 1049 year: 2006 end-page: 1064 article-title: Fully conditional specification in multivariate imputation publication-title: J. Statist. Computn Simuln – volume: 21 start-page: 441 year: 2005 end-page: 462 article-title: Using CART to generate partially synthetic, public use microdata publication-title: J. Off. Statist. – volume: 55 start-page: 3232 year: 2011 end-page: 3243 article-title: An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets publication-title: Computnl Statist. Data Anal. – year: 2004 – volume: 27 start-page: 85 year: 2001 end-page: 96 article-title: A multivariate technique for multiply imputing missing values using a series of regression models publication-title: Surv. Methodol. – start-page: 185 year: 2014 end-page: 199 – volume: 38 start-page: 369 year: 2008 end-page: 397 article-title: Multiple imputation of incomplete categorical data using latent class analysis publication-title: Sociol. Methodol. – volume: 96 start-page: 161 year: 2001 end-page: 173 article-title: Gibbs sampling for stick‐breaking priors publication-title: J. Am. Statist. Ass. – volume: 72 start-page: 1246 year: 2016 end-page: 1254 article-title: Bayesian population size estimation using Dirichlet process mixtures publication-title: Biometrics – year: 1999 – volume: 61 start-page: 215 year: 1974 ident: 2023030806265000400_ article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models publication-title: Biometrika doi: 10.1093/biomet/61.2.215 – start-page: 185 volume-title: Privacy in Statistical Databases year: 2014 ident: 2023030806265000400_ doi: 10.1007/978-3-319-11257-2_15 – volume-title: Monte Carlo Statistical Methods year: 2004 ident: 2023030806265000400_ doi: 10.1007/978-1-4757-4145-2 – volume: 21 start-page: 441 year: 2005 ident: 2023030806265000400_ article-title: Using CART to generate partially synthetic, public use microdata publication-title: J. Off. Statist. – volume-title: Flexible multivariate imputation by MICE year: 1999 ident: 2023030806265000400_ – volume: 102 start-page: 1462 year: 2007 ident: 2023030806265000400_ article-title: The multiple adaptations of multiple imputation publication-title: J. Am. Statist. Ass. doi: 10.1198/016214507000000932 – volume-title: Integrated public use microdata series: Version 5.0 [machine-readable database] year: 2010 ident: 2023030806265000400_ – volume: 57 start-page: 289 year: 1995 ident: 2023030806265000400_ article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Statist. Soc. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 30 start-page: 377 year: 2011 ident: 2023030806265000400_ article-title: Multiple imputation using chained equations: issues and guidance for practice publication-title: Statist. Med. doi: 10.1002/sim.4067 – volume: 27 start-page: 85 year: 2001 ident: 2023030806265000400_ article-title: A multivariate technique for multiply imputing missing values using a series of regression models publication-title: Surv. Methodol. – volume: 6 start-page: 2 year: 2014 ident: 2023030806265000400_ article-title: Bayesian estimation of disclosure risks for multiply imputed, synthetic data publication-title: J. Privcy Confident. – volume: 38 start-page: 369 year: 2008 ident: 2023030806265000400_ article-title: Multiple imputation of incomplete categorical data using latent class analysis publication-title: Sociol. Methodol. doi: 10.1111/j.1467-9531.2008.00202.x – volume: 104 start-page: 1042 year: 2009 ident: 2023030806265000400_ article-title: Nonparametric Bayes modelling of multivariate categorical data publication-title: J. Am. Statist. Ass. doi: 10.1198/jasa.2009.tm08439 – volume: 38 start-page: 499 year: 2013 ident: 2023030806265000400_ article-title: Nonparametric Bayesian multiple imputation for incomplete categorical variables in large-scale assessment surveys publication-title: J. Educ. Behav. Statist. doi: 10.3102/1076998613480394 – volume: 79 start-page: 609 year: 2010 ident: 2023030806265000400_ article-title: Examining the robustness of fully synthetic data techniques for data with binary variables publication-title: J. Statist. Computn Simuln doi: 10.1080/00949650902744438 – volume: 3 start-page: 27 year: 2010 ident: 2023030806265000400_ article-title: Random forests for generating partially synthetic, categorical data publication-title: Trans. Data Privcy – volume: 19 start-page: 1 year: 2003 ident: 2023030806265000400_ article-title: Multiple imputation for statistical disclosure limitation publication-title: J. Off. Statist. – volume: 112 start-page: 1708 year: 2017 ident: 2023030806265000400_ article-title: Bayesian simultaneous edit and imputation for multivariate categorical data publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.2016.1231612 – volume: 9 start-page: 461 year: 1993 ident: 2023030806265000400_ article-title: Statistical disclosure limitation publication-title: J. Off. Statist. – volume: 4 start-page: 639 year: 1994 ident: 2023030806265000400_ article-title: A constructive definition of Dirichlet priors publication-title: Statist. Sin. – volume: 96 start-page: 161 year: 2001 ident: 2023030806265000400_ article-title: Gibbs sampling for stick-breaking priors publication-title: J. Am. Statist. Ass. doi: 10.1198/016214501750332758 – volume-title: Discrete Multivariate Analysis: Theory and Practice year: 1975 ident: 2023030806265000400_ – volume: 76 start-page: 1049 year: 2006 ident: 2023030806265000400_ article-title: Fully conditional specification in multivariate imputation publication-title: J. Statist. Computn Simuln doi: 10.1080/10629360600810434 – volume: 23 start-page: 1061 year: 2014 ident: 2023030806265000400_ article-title: Bayesian estimation of discrete multivariate latent structure models with structural zeros publication-title: J. Computnl Graph. Statist. doi: 10.1080/10618600.2013.844700 – volume: 55 start-page: 3232 year: 2011 ident: 2023030806265000400_ article-title: An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets publication-title: Computnl Statist. Data Anal. doi: 10.1016/j.csda.2011.06.006 – volume: 72 start-page: 1246 year: 2016 ident: 2023030806265000400_ article-title: Bayesian population size estimation using Dirichlet process mixtures publication-title: Biometrics doi: 10.1111/biom.12502 |
SSID | ssj0000077 |
Score | 2.2810435 |
Snippet | Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents. Crucial to... Summary Statistical agencies are increasingly adopting synthetic data methods for disseminating microdata without compromising the privacy of respondents.... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 635 |
SubjectTerms | Bayesian analysis Bayesian non‐parametrics Bias Censuses Complex variables Contingency tables Dirichlet process Disclosure risk Markov chain Monte Carlo methods Men Multiple imputation Multivariate analysis Nonparametric statistics Original Articles Privacy Statistical analysis Statistical methods Toddlers |
Title | Bayesian non-parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros |
URI | https://www.jstor.org/stable/48547507 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12352 https://www.proquest.com/docview/2047392939 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSsNAFIYPxVVdeBfrjQHdKKSkucw04MYrItSFVXAjYTIXETUtRoV25SP4jD6Jc2aS2ooIuuviZGhm5iR_Dv_5BmAbcbNMS2ryG0s3Mgq8hKrI04FmPAySzJdYh-yc09Or6Ow6vq7BXtUL4_gQo4IbZoZ9XmOC86wYS_KnouBN7PTEB3ArpAjOP7oYY0f59thFI9EjdFO0SzYp2ni-Lp14GzlD4oTUHBes9o1zMgs31X91RpP75stz1hTDbxjH_97MHMyUUpTsu70zDzWVL8B0Z8RxLRagjlrUoZwXYXDABwp7Lkneyz_e3pEa_ogHcglya-HVuMakpwmW9AekGORmJHMpsabFV_NRbnQtQQfWrQOTELSnkrucmDjSt31QQuEADmqLQBAyVGbiluDq5Pjy8NQrT27wBJaUvKytw4QLyTXnaBKLFWXU5xT7waWMuVaJry0pRysmOJWcBYJmLaH9gEujKZdhytyKWgEikWbTosxvKRUlmRkr8FUWhFozxkVIG7BTrWAqSqw5nq7xkFafNzi3qZ3bBmyNYvsO5vFj1LLdCKOQqB1HRlixBqxXOyMtM71IAz9iqDHDpAG7dol_GTq96Hb37a_VvwSvQd3otLZzqK3DlFkEtWG00HO2aff8J4XACSA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5V9FB6AEqLCARqCS4gbbTZdezskfJQeIQDD4nbyusHQi0LYgEpOfUn9Df2l3TG3oSAUCW47WHslR9jfx598w3AOsnNSmcE-jeFbgxPokxYHrnESZUmWREbikP2j0XvnB9cdC5qbg7lwgR9iHHAjTzDn9fk4BSQnvDyu6pSLUr1xBP4I0ekQW-vnZMJ9ajYF15EkM6JT9Gt1UmJyPPU9tl9FCiJz8DmJGT1d87ebCisWnmpQqKa_Gw93BctPXwh5Pju4czBTI1G2VbYPl_ggy3n4XN_LOVazcM0wdGg5vwVBj_UwFLaJStvyr-__5Bw-DXV5NLs0utX0zKzG8forwNWDUrsCZsyz1t8xHc5QltGJKzLoE3CiKHKrkqGduzWp0JpSx0EXVvSBGFDizP3Dc73ds-2e1FdvCHSFFWKiq5LM6WNckoRT6xjhRSxEpQSbkxHOZvFzovlOCu1EkbJRIuirV2cKIOwcgGmcCh2EZghQZu2kHHbWp4V2FcS2yJJnZNS6VQ0YGO0hLmulc2pwMavfPTCobnN_dw2YG1sexv0PF61WvA7YWzCux2O2Eo2oDnaGnnt7FWexFwSzEyzBmz6Nf5P1_nJ6emW_1p6i_F3-NQ76x_lR_vHh8swjbCtGwhrTZjCBbErCI3ui1XvAP8ABBwNPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IQtGH1lrFtbYN1JcWZpmdySY74Iu1XbxUES_giwyZXBapjoujwvrUn9Df2F_Sc5KZ7VqKoG_zcBImOTnJl8N3vgCskdysdEZgfFPqxvAkyoTlkUucVGmSFbGhPOTevtg64Tun3dMpWG9qYYI-xDjhRpHh92sK8KFxE0F-XVWqTZWeuAHPcIFQgiDR4YR4VOzfXUSMzolO0avFSYnH87ftg-MoMBIfYM1JxOqPnP4rOGt-NjBNfrRvb4q2vv9Hx_G5o5mHlzUWZRth8byGKVsuwNzeWMi1WoBZAqNBy_kNjL6okaWiS1Zelb9__iLZ8Et6kUuzgVevJiezK8copz9i1ajEnrAp86zFO7yVI7BlRMEaBGUSRvxUdl4ytGNDXwilLXUQVG1JEYTdW5y4RTjpfzve3IrqpxsiTTmlqOi5NFPaKKcUscS6VkgRK0EF4cZ0lbNZ7LxUjrNSK2GUTLQoOtrFiTIIKpdgGodil4EZkrPpCBl3rOVZgX0lsS2S1DkplU5FCz41Hsx1rWtOz2tc5M39huY293Pbgo9j22FQ8_iv1ZJfCGMT3utyRFayBavNysjrUK_yJOaSQGaateCzd_EjXeeHR0cb_mvlKcYf4MXB137-fXt_9y3MImbrBbbaKkyjP-w7xEU3xXu__P8A48kL7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Non-Parametric+Generation+Of+Fully+Synthetic+Multivariate+Categorical+Data+in+the+Presence+of+Structural+Zeros&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Manrique-Vallier%2C+Daniel&rft.au=Hu%2C+Jingchen&rft.date=2018-06-01&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=181&rft.issue=3&rft.spage=635&rft.epage=647&rft_id=info:doi/10.1111%2Frssa.12352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_rssa_12352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon |