Lycopene‐Based Bionic Membrane for Stable Perovskite Photovoltaics
Perovskite (PVSK) photovoltaics have been a promising field in the exploitation of renewable energy due to the fascinating performances of PVSK materials and devices. Although the efficiency is gradually approaching that of traditional solar cells, the stability is still a challenge. Hence, tomato l...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 25 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite (PVSK) photovoltaics have been a promising field in the exploitation of renewable energy due to the fascinating performances of PVSK materials and devices. Although the efficiency is gradually approaching that of traditional solar cells, the stability is still a challenge. Hence, tomato lycopene, a botanic antioxidant, is introduced as a modification layer on the PVSK absorber layer to prevent moisture and oxygen erosion, for enhanced both intrinsic and environmental stabilities. This inserted protection layer can also interact with the PVSK material through carbon‐halogen bonds and influence its crystallinity. Therefore, PVSK films are obtained with less defects and better intrinsic stability. The device achieved a champion outdoor efficiency at AM 1.5G more than 21% and its indoor efficiency at 1000 lux can reach 40.24%. In addition, the efficiency can keep almost 90% of the original value after exposure to wet oxygen ambience for 1000 h. The antioxidant gives a unique perspective towards enhancing the stability of solar cells
Lycopene, a botanic antioxidant, is introduced to modify the perovskite film for adjusting crystallization through carbon‐halogen bonds, and preventing moisture and oxygen erosion. Therefore, the optimized device yields efficiencies of 21.04% under 100 mW cm−2 and 40.24% at 1000 lux. It also retains almost 90% of the original efficiency value after exposure to wet oxygen ambience for 1000 h. |
---|---|
AbstractList | Perovskite (PVSK) photovoltaics have been a promising field in the exploitation of renewable energy due to the fascinating performances of PVSK materials and devices. Although the efficiency is gradually approaching that of traditional solar cells, the stability is still a challenge. Hence, tomato lycopene, a botanic antioxidant, is introduced as a modification layer on the PVSK absorber layer to prevent moisture and oxygen erosion, for enhanced both intrinsic and environmental stabilities. This inserted protection layer can also interact with the PVSK material through carbon‐halogen bonds and influence its crystallinity. Therefore, PVSK films are obtained with less defects and better intrinsic stability. The device achieved a champion outdoor efficiency at AM 1.5G more than 21% and its indoor efficiency at 1000 lux can reach 40.24%. In addition, the efficiency can keep almost 90% of the original value after exposure to wet oxygen ambience for 1000 h. The antioxidant gives a unique perspective towards enhancing the stability of solar cells Perovskite (PVSK) photovoltaics have been a promising field in the exploitation of renewable energy due to the fascinating performances of PVSK materials and devices. Although the efficiency is gradually approaching that of traditional solar cells, the stability is still a challenge. Hence, tomato lycopene, a botanic antioxidant, is introduced as a modification layer on the PVSK absorber layer to prevent moisture and oxygen erosion, for enhanced both intrinsic and environmental stabilities. This inserted protection layer can also interact with the PVSK material through carbon‐halogen bonds and influence its crystallinity. Therefore, PVSK films are obtained with less defects and better intrinsic stability. The device achieved a champion outdoor efficiency at AM 1.5G more than 21% and its indoor efficiency at 1000 lux can reach 40.24%. In addition, the efficiency can keep almost 90% of the original value after exposure to wet oxygen ambience for 1000 h. The antioxidant gives a unique perspective towards enhancing the stability of solar cells Lycopene, a botanic antioxidant, is introduced to modify the perovskite film for adjusting crystallization through carbon‐halogen bonds, and preventing moisture and oxygen erosion. Therefore, the optimized device yields efficiencies of 21.04% under 100 mW cm−2 and 40.24% at 1000 lux. It also retains almost 90% of the original efficiency value after exposure to wet oxygen ambience for 1000 h. |
Author | Wang, Zhao‐Kui Li, Xiao‐Mei Liao, Liang‐Sheng Igbari, Femi Ma, Chang Cao, Jun‐Jie Dong, Chong Yang, Wen‐Fan |
Author_xml | – sequence: 1 givenname: Chong surname: Dong fullname: Dong, Chong organization: Soochow University – sequence: 2 givenname: Xiao‐Mei surname: Li fullname: Li, Xiao‐Mei organization: Soochow University – sequence: 3 givenname: Chang surname: Ma fullname: Ma, Chang organization: Soochow University – sequence: 4 givenname: Wen‐Fan surname: Yang fullname: Yang, Wen‐Fan organization: Soochow University – sequence: 5 givenname: Jun‐Jie surname: Cao fullname: Cao, Jun‐Jie organization: Soochow University – sequence: 6 givenname: Femi surname: Igbari fullname: Igbari, Femi organization: Soochow University – sequence: 7 givenname: Zhao‐Kui orcidid: 0000-0003-1707-499X surname: Wang fullname: Wang, Zhao‐Kui email: zkwang@suda.edu.cn organization: Soochow University – sequence: 8 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng email: lsliao@suda.edu.cn organization: Soochow University |
BookMark | eNqFkMtKAzEUhoMo2Fa3rgdct-Y6nVn2YlVoUVDBXcgkZzB1OqlJWunOR_AZfRKnVCoI4ur8HP7vHPja6LB2NSB0RnCPYEwvlCkXPYopJoRyeoBaJCVpl2GaHe4zeTpG7RDmGJN-n_EWGk832i2hhs_3j6EKYJKhdbXVyQwWhVc1JKXzyX1URQXJHXi3Di82NvHZRbd2VVRWhxN0VKoqwOn37KDHyeXD6Lo7vb26GQ2mXc0ppV2RCsEyQY3hLDPcCGygpKXmRWEwY5A3S55nmaG4EJoLWuYatNJ9oYhiGWEddL67u_TudQUhyrlb-bp5KangJMsJSWnT6u1a2rsQPJRy6e1C-Y0kWG5Nya0puTfVAPwXoG1UsfEQvbLV31i-w95sBZt_nsjBeDL7Yb8ASK2AUA |
CitedBy_id | crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1002_anie_202416703 crossref_primary_10_1021_acs_iecr_3c02450 crossref_primary_10_1021_acsenergylett_2c02268 crossref_primary_10_1002_adma_202304809 crossref_primary_10_1039_D3CC01881D crossref_primary_10_1016_j_solener_2024_113049 crossref_primary_10_1002_adfm_202312819 crossref_primary_10_1002_advs_202205967 crossref_primary_10_1002_solr_202300803 crossref_primary_10_1021_acsaem_4c02977 crossref_primary_10_1002_smll_202203768 crossref_primary_10_1021_acsami_1c25207 crossref_primary_10_1002_adma_202306140 crossref_primary_10_1021_acs_nanolett_3c01769 crossref_primary_10_1039_D2TC01412B crossref_primary_10_1039_D2SE00995A crossref_primary_10_1002_adma_202205338 crossref_primary_10_1002_aenm_202203352 crossref_primary_10_1002_solr_202200953 crossref_primary_10_1177_09506608231213065 crossref_primary_10_1039_D1QM00616A crossref_primary_10_1126_sciadv_adc9923 crossref_primary_10_1002_adfm_202202364 crossref_primary_10_1002_adfm_202314398 crossref_primary_10_1002_aenm_202203190 crossref_primary_10_3390_org5040034 crossref_primary_10_1016_j_cej_2023_147356 crossref_primary_10_1007_s11771_024_5814_1 crossref_primary_10_1021_acs_energyfuels_4c04215 crossref_primary_10_1021_acs_jpclett_4c02982 crossref_primary_10_1002_smll_202202028 crossref_primary_10_1002_adma_202302839 crossref_primary_10_1002_solr_202200097 crossref_primary_10_1016_j_solener_2024_112660 crossref_primary_10_1016_j_solener_2024_112705 crossref_primary_10_1109_JPHOTOV_2023_3300366 crossref_primary_10_1016_j_cej_2022_138028 crossref_primary_10_1016_j_cej_2021_133832 crossref_primary_10_1007_s40243_024_00257_8 crossref_primary_10_1021_acsmaterialslett_5c00057 crossref_primary_10_1002_adma_202306870 crossref_primary_10_1016_j_compscitech_2022_109542 crossref_primary_10_1016_j_jallcom_2024_177354 crossref_primary_10_1021_acs_chemrev_2c00773 crossref_primary_10_1039_D3TA03314G crossref_primary_10_1063_5_0147747 crossref_primary_10_1016_j_mtener_2021_100907 crossref_primary_10_1002_ente_202401829 crossref_primary_10_1002_aenm_202200614 crossref_primary_10_1016_j_solener_2023_112057 crossref_primary_10_1039_D3TC03966H crossref_primary_10_1039_D1SC03251H crossref_primary_10_26599_EMD_2024_9370030 crossref_primary_10_1002_aenm_202201274 crossref_primary_10_1007_s11082_023_05857_8 crossref_primary_10_1039_D2NR07022G crossref_primary_10_1002_ange_202416703 crossref_primary_10_1039_D2EE02227C crossref_primary_10_1016_j_mtcomm_2022_104030 crossref_primary_10_1016_j_cej_2022_139808 crossref_primary_10_1002_solr_202400028 crossref_primary_10_1063_5_0161023 crossref_primary_10_1021_acsenergylett_2c01602 crossref_primary_10_1016_j_solener_2023_112061 crossref_primary_10_1002_adma_202410327 crossref_primary_10_1002_adfm_202307441 crossref_primary_10_1021_acsphotonics_4c02096 crossref_primary_10_1039_D2YA00075J crossref_primary_10_1016_j_cej_2025_161624 crossref_primary_10_1002_inf2_12322 crossref_primary_10_3390_nano13020259 crossref_primary_10_1016_j_nanoen_2024_109932 crossref_primary_10_3390_solar3010011 crossref_primary_10_1016_j_cej_2022_140284 |
Cites_doi | 10.1016/j.joule.2018.09.012 10.1016/j.foodres.2004.12.003 10.1186/1477-3155-9-3 10.1007/s00253-015-6998-y 10.1016/j.ultsonch.2011.07.010 10.1039/C8CS00853A 10.1126/science.aax3294 10.1002/anie.201503153 10.1002/aenm.201900198 10.1002/adfm.201808843 10.1016/S0271-5317(98)00193-6 10.1016/0003-9861(89)90467-0 10.1002/aenm.201600014 10.1038/s41467-018-05531-8 10.1038/s41586-019-1357-2 10.1021/ja809598r 10.1016/S0040-6031(02)00523-3 10.1039/C5EE02733K 10.1002/smll.201900854 10.1158/1055-9965.EPI-04-0683 10.1002/aenm.201801509 10.1002/adma.201902222 10.1016/S0141-3910(01)00026-X 10.1006/abbi.1996.0525 10.1002/aenm.201600330 10.1021/jz501510v 10.1021/acsenergylett.8b00121 10.1002/adom.201800276 10.1002/smtd.201700380 10.1002/advs.201801169 10.1021/j100347a010 10.1021/acsenergylett.7b00547 10.1038/nenergy.2017.135 10.3181/00379727-218-44274 10.1126/sciadv.aav8925 10.1021/acsami.9b18230 10.1038/ncomms15218 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202011242 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202011242 ADFM202011242 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20201413 – fundername: National Natural Science Foundation of China funderid: 62075148; 52073197 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4222-56553852dd438d4d50def2fc4bbd033e98d44988d20b5c452f9cecac75a1a3813 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:19:30 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Tue Jul 01 04:12:28 EDT 2025 Wed Jan 22 16:29:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4222-56553852dd438d4d50def2fc4bbd033e98d44988d20b5c452f9cecac75a1a3813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1707-499X |
PQID | 2541891162 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2541891162 crossref_primary_10_1002_adfm_202011242 crossref_citationtrail_10_1002_adfm_202011242 wiley_primary_10_1002_adfm_202011242_ADFM202011242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2017; 8 2001; 72 2017; 2 2019; 6 2019; 5 2019; 31 1989; 274 2019; 15 2015; 54 1998; 218 2016; 100 2012; 19 2020; 12 2009; 131 2019; 365 2003; 396 2011; 9 2018; 6 2018; 9 2016; 6 1989; 93 2018; 8 2014; 5 2018; 3 2018; 2 1999; 19 2019; 48 2019 2019; 29 2005; 38 2016; 9 2019; 571 2005; 14 1996; 336 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 2 start-page: 2732 year: 2018 publication-title: Joule – volume: 336 start-page: 1 year: 1996 publication-title: Arch. Biochem. Biophys. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 274 start-page: 532 year: 1989 publication-title: Arch. Biochem. Biophys. – volume: 9 start-page: 3100 year: 2018 publication-title: Nat. Commun. – volume: 218 start-page: 101 year: 1998 publication-title: Proc. Soc. Exp. Biol. Med. – volume: 9 start-page: 323 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 year: 2018 publication-title: Small Methods – volume: 5 start-page: 2903 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 48 start-page: 3842 year: 2019 publication-title: Chem. Soc. Rev. – volume: 15 year: 2019 publication-title: Small – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 54 start-page: 8208 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 38 start-page: 925 year: 2005 publication-title: Food Res. Int. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 19 start-page: 305 year: 1999 publication-title: Nutr. Res. – volume: 12 start-page: 836 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 72 start-page: 313 year: 2001 publication-title: Polym. Degrad. Stab. – volume: 365 start-page: 473 year: 2019 publication-title: Science – volume: 571 start-page: 245 year: 2019 publication-title: Nature – volume: 2 start-page: 2071 year: 2017 publication-title: ACS Energy Lett. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3 year: 2011 publication-title: J. Nanobiotechnol. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 100 start-page: 1275 year: 2016 publication-title: Appl. Microbiol. Biotechnol. – volume: 3 start-page: 647 year: 2018 publication-title: ACS Energy Lett. – volume: 14 start-page: 1074 year: 2005 publication-title: Cancer Epidemiol., Biomarkers Prev. – volume: 93 start-page: 3908 year: 1989 publication-title: J. Phys. Chem. – volume: 396 start-page: 153 year: 2003 publication-title: Thermochim. Acta – year: 2019 – volume: 19 start-page: 292 year: 2012 publication-title: Ultrason. Sonochem. – ident: e_1_2_8_20_1 doi: 10.1016/j.joule.2018.09.012 – ident: e_1_2_8_28_1 doi: 10.1016/j.foodres.2004.12.003 – ident: e_1_2_8_29_1 doi: 10.1186/1477-3155-9-3 – ident: e_1_2_8_35_1 doi: 10.1007/s00253-015-6998-y – ident: e_1_2_8_30_1 doi: 10.1016/j.ultsonch.2011.07.010 – ident: e_1_2_8_9_1 doi: 10.1039/C8CS00853A – ident: e_1_2_8_21_1 doi: 10.1126/science.aax3294 – ident: e_1_2_8_24_1 doi: 10.1002/anie.201503153 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.201900198 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.201808843 – ident: e_1_2_8_31_1 doi: 10.1016/S0271-5317(98)00193-6 – ident: e_1_2_8_32_1 doi: 10.1016/0003-9861(89)90467-0 – ident: e_1_2_8_25_1 doi: 10.1002/aenm.201600014 – ident: e_1_2_8_6_1 doi: 10.1038/s41467-018-05531-8 – ident: e_1_2_8_22_1 doi: 10.1038/s41586-019-1357-2 – ident: e_1_2_8_1_1 doi: 10.1021/ja809598r – ident: e_1_2_8_2_1 – ident: e_1_2_8_37_1 doi: 10.1016/S0040-6031(02)00523-3 – ident: e_1_2_8_11_1 doi: 10.1039/C5EE02733K – ident: e_1_2_8_14_1 doi: 10.1002/smll.201900854 – ident: e_1_2_8_33_1 doi: 10.1158/1055-9965.EPI-04-0683 – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201801509 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201902222 – ident: e_1_2_8_36_1 doi: 10.1016/S0141-3910(01)00026-X – ident: e_1_2_8_34_1 doi: 10.1006/abbi.1996.0525 – ident: e_1_2_8_12_1 doi: 10.1002/aenm.201600330 – ident: e_1_2_8_5_1 doi: 10.1021/jz501510v – ident: e_1_2_8_19_1 doi: 10.1021/acsenergylett.8b00121 – ident: e_1_2_8_3_1 doi: 10.1002/adom.201800276 – ident: e_1_2_8_10_1 doi: 10.1002/smtd.201700380 – ident: e_1_2_8_17_1 doi: 10.1002/advs.201801169 – ident: e_1_2_8_38_1 doi: 10.1021/j100347a010 – ident: e_1_2_8_7_1 doi: 10.1021/acsenergylett.7b00547 – ident: e_1_2_8_18_1 doi: 10.1038/nenergy.2017.135 – ident: e_1_2_8_27_1 doi: 10.3181/00379727-218-44274 – ident: e_1_2_8_16_1 doi: 10.1126/sciadv.aav8925 – ident: e_1_2_8_4_1 doi: 10.1021/acsami.9b18230 – ident: e_1_2_8_26_1 doi: 10.1038/ncomms15218 |
SSID | ssj0017734 |
Score | 2.5989964 |
Snippet | Perovskite (PVSK) photovoltaics have been a promising field in the exploitation of renewable energy due to the fascinating performances of PVSK materials and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ambience Antioxidants Bionics Crystal defects Efficiency lycopene Materials science perovskite solar cell Perovskites Photovoltaic cells Solar cells Stability surface modification |
Title | Lycopene‐Based Bionic Membrane for Stable Perovskite Photovoltaics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202011242 https://www.proquest.com/docview/2541891162 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWkoPgKTbZ7CbZY2stRayID-gt7BPFmkqbCnryJ_gb_SXOJm2sggh6TLKbx-zOzLeTmW8ROgikx3gstWtkLFxiCHUFo8bFgmBtTBCH3FYj987D7g057dP-XBV_wQ9RBtysZuT22io4F-PGJ2koV8ZWklsHBm4GjLBN2LKo6LLkj_KjqPitHPo2wcvvz1gbPdz42v2rV_qEmvOANfc4nVXEZ-9aJJrcH00ycSRfvtE4_udj1tDKFI46zWL-rKMFnW6g5TmSwk3UPnu2lSupfn99a4HPU07LxnCl09MP8MhUO4B7HQCtYqCdCz0aPo1tRNi5uB1mQzB-Gb-T4y100zm5Pu66070XXGmDQi7gPDCFFCtFglgRRT2lDTaSCKG8INAMThIWxwp7gkpCsWFSSy4jyn0OKCDYRpV0mOod5LDIp1yGESBJWIxqzTg3JuY-Ez5nWHlV5M5kn8gpMbndH2OQFJTKOLHSSUrpVNFh2f6xoOT4sWVtNpTJVDXHCayI_RhMfAiXcT4mv9wlabY7vfJo9y-d9tAStrkwefSmhirZaKL3Acxkoo4Wm-3e2VU9n7gfG2ztcQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQ90F9UWig-tOopkDh2Eh96gC6rpewiVIG0t9S_ApVmKzZQwYlH6Kv0VXgEnqTj_AGVqkqVOPSYxLFij8fzzWTmM8CbWIdCZtoGTmcqYI7xQAnuAqoYtc7FWSJ9NfJoJxnss49jPp6Bn20tTM0P0QXcvGZU-7VXcB-QXrtmDZXG-VJyb8HQzjR5ldv27Dt6bdP3Wz0U8VtK-5t7HwZBc7BAoH3EI0AQg3rOqTEszgwzPDTWUaeZUiaMYyvwJhNZZmiouGacOqGtljrlMpJo4mLs9x7M-WPEPV1_71PHWBWlaf0jO4l8Slk0bnkiQ7p2-3tv28FrcHsTIlc2rv8ILtvZqVNbvqyelGpVn_9GHPlfTd9jmG8QN1mvVeQJzNjiKTy8wcP4DHrDM1-cU9irix8baNYN2fBhak1G9iuOsbAEoT1BXK6OLNm1x5PTqQ96k92DSTnB_b2Uh3r6HPbvZBgLMFtMCvsCiEgjLnWSIlhGf9taIaVzmYyEiqSgJlyEoBV2rhvudX8EyFFes0bT3Esj76SxCO-69t9q1pE_tlxq107e7D7THJ3-KEMrluBjWi2Cv_SSr_f6o-7q5b-8tAL3B3ujYT7c2tl-BQ-oT_2pglVLMFsen9hlxG6lel1pC4HPd72-fgGQnEm2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtVAFD5BSIwuFFQiijgLjKtCO51pOwsXYLkB4ZIbI8nd1fmNRuwl3KLBlY_go_gqvgJPwpn-ASbGhIQFy7bTSWfOnDnfOT3nG4DVWIdCZtoGTmcqYI7xQAnuAqoYtc7FWSJ9NfJwP9k-YO_GfDwDv7tamIYfog-4ec2o92uv4EfGrV-QhkrjfCW5N2BoZtq0yl17-h2dtumbnRwl_IrSwdaHt9tBe65AoH3AI0AMg2rOqTEszgwzPDTWUaeZUiaMYyvwJhNZZmiouGacOqGtljrlMpJo4WLs9w7MsSQU_rCI_H1PWBWlafMfO4l8Rlk07mgiQ7p-9XuvmsELbHsZIdcmbvAQ_nST02S2fFk7qdSa_vEXb-Rtmr15eNDibbLRKMgCzNjyEdy_xML4GPK9U1-aU9qzn7820agbsumD1JoM7VccYmkJAnuCqFwdWjKyx5NvUx_yJqNPk2qCu3slP-vpEzi4kWEswmw5Ke1TICKNuNRJilAZvW1rhZTOZTISKpKCmnAJgk7WhW6Z1_0BIIdFwxlNCy-NopfGErzu2x81nCP_bLncLZ2i3XumBbr8UYY2LMHHtF4D_-ml2MgHw_7q2XVeegl3R_mg2NvZ330O96jP-6kjVcswWx2f2BcI3Cq1UusKgY83vbzOAURqSGU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lycopene%E2%80%90Based+Bionic+Membrane+for+Stable+Perovskite+Photovoltaics&rft.jtitle=Advanced+functional+materials&rft.au=Dong%2C+Chong&rft.au=Li%2C+Xiao%E2%80%90Mei&rft.au=Ma%2C+Chang&rft.au=Yang%2C+Wen%E2%80%90Fan&rft.date=2021-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=25&rft_id=info:doi/10.1002%2Fadfm.202011242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202011242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |