Lateral Phase Heterojunction for Perovskite Microoptoelectronics
Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 50; pp. e2409201 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro‐devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion‐driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α‐phase formamidine‐based perovskite patterns surrounded by δ‐phase polymorphs. Spontaneous type‐I heterojunction alignment between α‐ and δ‐phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide‐bandgap δ‐phase also serves as the coplanar isolator to achieve local anti‐leakage for device integration. Based on the bright and stable LPH pattern layer, the near‐infrared microscale perovskite light‐emitting diode (micro‐PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro‐optoelectronics and photonics.
A perovskite lateral phase heterojunction (LPH) polycrystalline film is first demonstrated by a developed contact‐diffusion lithography (CDL) for the fabrication of microscale perovskite light‐emitting diodes (micro‐PeLEDs). Based on the α/δ‐formamidiniumPbI3 (FAPbI3) LPH film with high‐resolution patterns and superior radiative performance, a record‐efficiency near‐infrared micro‐PeLED device is achieved to validate the versatile applications of LPHs in perovskite microoptoelectronics and photonics. |
---|---|
AbstractList | Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro‐devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion‐driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α‐phase formamidine‐based perovskite patterns surrounded by δ‐phase polymorphs. Spontaneous type‐I heterojunction alignment between α‐ and δ‐phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide‐bandgap δ‐phase also serves as the coplanar isolator to achieve local anti‐leakage for device integration. Based on the bright and stable LPH pattern layer, the near‐infrared microscale perovskite light‐emitting diode (micro‐PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro‐optoelectronics and photonics. Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro‐devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion‐driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α‐phase formamidine‐based perovskite patterns surrounded by δ‐phase polymorphs. Spontaneous type‐I heterojunction alignment between α‐ and δ‐phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide‐bandgap δ‐phase also serves as the coplanar isolator to achieve local anti‐leakage for device integration. Based on the bright and stable LPH pattern layer, the near‐infrared microscale perovskite light‐emitting diode (micro‐PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro‐optoelectronics and photonics. A perovskite lateral phase heterojunction (LPH) polycrystalline film is first demonstrated by a developed contact‐diffusion lithography (CDL) for the fabrication of microscale perovskite light‐emitting diodes (micro‐PeLEDs). Based on the α/δ‐formamidiniumPbI3 (FAPbI3) LPH film with high‐resolution patterns and superior radiative performance, a record‐efficiency near‐infrared micro‐PeLED device is achieved to validate the versatile applications of LPHs in perovskite microoptoelectronics and photonics. Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro-optoelectronic devices, where the present top-down or bottom-up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro-devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion-driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α-phase formamidine-based perovskite patterns surrounded by δ-phase polymorphs. Spontaneous type-I heterojunction alignment between α- and δ-phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide-bandgap δ-phase also serves as the coplanar isolator to achieve local anti-leakage for device integration. Based on the bright and stable LPH pattern layer, the near-infrared microscale perovskite light-emitting diode (micro-PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro-optoelectronics and photonics.Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro-optoelectronic devices, where the present top-down or bottom-up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro-devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion-driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α-phase formamidine-based perovskite patterns surrounded by δ-phase polymorphs. Spontaneous type-I heterojunction alignment between α- and δ-phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide-bandgap δ-phase also serves as the coplanar isolator to achieve local anti-leakage for device integration. Based on the bright and stable LPH pattern layer, the near-infrared microscale perovskite light-emitting diode (micro-PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro-optoelectronics and photonics. |
Author | Xu, Hongyu Ji, Yongqiang Lu, Changjun Tu, Yongguang Wang, Xinqiang Zhao, Lichen Xu, Fan Yan, Haoming Song, Tinglu Li, Menglin Li, Shunde Hu, An Yang, Xiaoyu Gong, Qihuang Ma, Li Wu, Jiang Zhong, Haizheng Li, Lei Qu, Duo Zhong, Qixuan Zhu, Rui |
Author_xml | – sequence: 1 givenname: Lei surname: Li fullname: Li, Lei organization: Peking University – sequence: 2 givenname: Haoming surname: Yan fullname: Yan, Haoming organization: Peking University – sequence: 3 givenname: Shunde surname: Li fullname: Li, Shunde organization: Peking University – sequence: 4 givenname: Hongyu surname: Xu fullname: Xu, Hongyu organization: Peking University – sequence: 5 givenname: Duo surname: Qu fullname: Qu, Duo organization: Northwestern Polytechnical University Xi'an – sequence: 6 givenname: An surname: Hu fullname: Hu, An organization: Ltd – sequence: 7 givenname: Li surname: Ma fullname: Ma, Li organization: Ltd – sequence: 8 givenname: Yongqiang surname: Ji fullname: Ji, Yongqiang organization: Peking University – sequence: 9 givenname: Qixuan surname: Zhong fullname: Zhong, Qixuan organization: Peking University – sequence: 10 givenname: Lichen surname: Zhao fullname: Zhao, Lichen organization: Peking University – sequence: 11 givenname: Fan surname: Xu fullname: Xu, Fan organization: Peking University – sequence: 12 givenname: Yongguang surname: Tu fullname: Tu, Yongguang organization: Northwestern Polytechnical University Xi'an – sequence: 13 givenname: Tinglu surname: Song fullname: Song, Tinglu organization: Beijing Institute of Technology – sequence: 14 givenname: Jiang surname: Wu fullname: Wu, Jiang organization: Peking University Yangtze Delta Institute of Optoelectronics – sequence: 15 givenname: Menglin surname: Li fullname: Li, Menglin organization: Beijing Institute of Technology – sequence: 16 givenname: Changjun surname: Lu fullname: Lu, Changjun organization: Ltd – sequence: 17 givenname: Xiaoyu surname: Yang fullname: Yang, Xiaoyu email: yangxy_seed@pku.edu.cn organization: Ltd – sequence: 18 givenname: Haizheng surname: Zhong fullname: Zhong, Haizheng organization: Beijing Institute of Technology – sequence: 19 givenname: Qihuang surname: Gong fullname: Gong, Qihuang organization: Shanxi University – sequence: 20 givenname: Xinqiang surname: Wang fullname: Wang, Xinqiang email: wangshi@pku.edu.cn organization: Peking University Yangtze Delta Institute of Optoelectronics – sequence: 21 givenname: Rui orcidid: 0000-0001-7631-3589 surname: Zhu fullname: Zhu, Rui email: iamzhurui@pku.edu.cn organization: Shanxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39498664$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAQhi1URD9gZUSRWFhSzo7j1htV-ShSKzrAHLnOWaSkcbETUP89Li1FYmE63el5T3dPl7QqWyEh5xT6FIBdq3yl-gwYB8mAHpEOTRmNQ5e2SAdkksZS8GGbdL1fAoAUIE5IO5FcDoXgHXIzVTU6VUbzV-UxmmDo7LKpdF3YKjLWRfMw-PBvRY3RrNDO2nVtsURdO1sV2p-SY6NKj2f72iMv93fP40k8fXp4HI-mseZse5FiOZUiGSgDSlI5GHCthRAqRwEqNWg0ouF5ylKNwBY8TY00Ug205pAP86RHrnZ7186-N-jrbFV4jWWpKrSNzxLKuBhCImlAL_-gS9u4KlwXKJ4ET-ybuthTzWKFebZ2xUq5TfbjJgD9HRCe9t6hOSAUsq38bCs_O8gPAbkLfBYlbv6hs9HtbPSb_QKJIIeC |
Cites_doi | 10.1126/science.aax3878 10.1002/adma.202000865 10.1016/j.xcrp.2021.100582 10.1002/adma.202103268 10.59717/j.xinn-mater.2023.100015 10.1002/adfm.202304659 10.1038/s41570-023-00492-z 10.1002/admi.201500768 10.1016/j.joule.2022.04.012 10.1021/acsnano.3c11941 10.1002/adma.202308487 10.1021/acsenergylett.1c00565 10.1021/nl5048779 10.1021/acsami.0c21824 10.1002/adma.202207301 10.1038/s41586-020-2219-7 10.1002/smtd.202301531 10.1038/s41377-023-01206-2 10.1038/s41560-022-01154-y 10.1002/solr.201800296 10.1002/adma.202006435 10.1016/j.jechem.2024.07.002 10.1038/s41560-023-01310-y 10.1021/acs.jpcc.9b10185 10.1021/acsami.9b00831 10.1021/acs.nanolett.6b04453 10.1002/adma.202002585 10.1126/sciadv.1601650 10.1038/s41586-018-0576-2 10.1016/j.nantod.2010.08.010 10.1038/s41566-020-00743-1 10.1063/5.0129624 10.1016/j.scib.2017.01.006 10.1126/science.abb8985 10.1038/s41586-022-05304-w 10.1038/s41566-019-0398-2 10.1016/j.joule.2019.06.014 10.1016/j.nanoen.2022.107181 10.1126/sciadv.abg6716 10.1002/smtd.201800110 10.1038/s41578-022-00522-0 10.1021/acs.jpcc.0c06342 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202409201 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39498664 10_1002_adma_202409201 ADMA202409201 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of Jiangsu Province funderid: BK20220302 – fundername: Beijing Postdoctoral Research Foundation – fundername: National Key R&D Program of China funderid: 2021YFB3800100; 2021YFB3800101 – fundername: China Postdoctoral Science Foundation funderid: 2023M731476; 2023M730099; 2023M730033; 2023T160286; 2022TQ0002 – fundername: R&D Fruit Fund funderid: 20210001 – fundername: National Natural Science Foundation of China funderid: 52325310; 52203208; 52303335; 52272179; 62264007; U23A20683 – fundername: open research fund of Songshan Lake Materials Laboratory funderid: 2022SLABFK07 – fundername: Beijing Municipal Natural Science Foundation funderid: JQ21005 – fundername: Yunnan Provincial Science and Technology Project at Southwest United Graduate School funderid: 202302AO370013 – fundername: Beijing Nova Program funderid: 20220484148; 20230484480 – fundername: Nantong Basic Science Research Program grantid: JC12022036 – fundername: National Natural Science Foundation of China grantid: 52203208 – fundername: China Postdoctoral Science Foundation grantid: 2023M731476 – fundername: China Postdoctoral Science Foundation grantid: 2023M730099 – fundername: China Postdoctoral Science Foundation grantid: 2023M730033 – fundername: Beijing Nova Program grantid: 20230484480 – fundername: National Natural Science Foundation of China grantid: 52272179 – fundername: National Science Foundation of Jiangsu Province grantid: BK20220302 – fundername: R&D Fruit Fund grantid: 20210001 – fundername: National Key R&D Program of China grantid: 2021YFB3800101 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADMLS ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4221-4a2d19637af0a919774cc666ade60a5fefceef4d525ce02b455f9f9a7cc40d8d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:08:20 EDT 2025 Fri Jul 25 22:23:54 EDT 2025 Thu Apr 03 07:03:52 EDT 2025 Tue Jul 01 00:54:58 EDT 2025 Sun Jul 06 04:45:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | micro‐optoelectronics contact diffusion lithography perovskite light‐emitting diode lateral phase heterojunction |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4221-4a2d19637af0a919774cc666ade60a5fefceef4d525ce02b455f9f9a7cc40d8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7631-3589 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202409201 |
PMID | 39498664 |
PQID | 3143201291 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3124680391 proquest_journals_3143201291 pubmed_primary_39498664 crossref_primary_10_1002_adma_202409201 wiley_primary_10_1002_adma_202409201_ADMA202409201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 62 2018; 562 2015; 15 2021; 7 2021; 6 2023; 36 2019; 3 2023; 33 2023; 12 2021; 2 2020; 580 2019; 11 2023; 7 2023; 8 2019; 13 2023; 122 2024; 98 2023; 1 2020; 124 2020; 32 2024; 36 2024; 18 2022; 611 2019; 365 2021; 13 2021; 15 2018; 3 2018; 2 2016; 2 2021; 33 2017; 17 2024; 8 2022; 6 2022; 7 2020; 370 2022; 97 2010; 5 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 7 start-page: 462 year: 2023 publication-title: Nat. Rev. Chem. – volume: 3 start-page: 2179 year: 2019 publication-title: Joule – volume: 370 start-page: 6512 year: 2020 publication-title: Science – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 18 start-page: 8157 year: 2024 publication-title: ACS Nano – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 8 start-page: 989 year: 2023 publication-title: Nat. Energy – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 562 start-page: 249 year: 2018 publication-title: Nature – volume: 8 year: 2024 publication-title: Small Methods – volume: 15 start-page: 3692 year: 2015 publication-title: Nano Lett. – volume: 2 year: 2018 publication-title: Small Methods – volume: 124 start-page: 3448 year: 2020 publication-title: J. Phys. Chem. C – volume: 97 year: 2022 publication-title: Nano Energy – volume: 7 start-page: 1170 year: 2022 publication-title: Nat. Energy – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 122 year: 2023 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 1277 year: 2022 publication-title: Joule – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 1 year: 2023 publication-title: Innovation Mater. – volume: 62 start-page: 369 year: 2017 publication-title: Sci. Bull. – volume: 98 start-page: 391 year: 2024 publication-title: J. Energy Chem. – volume: 15 start-page: 238 year: 2021 publication-title: Nat. Photonics – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 17 start-page: 1028 year: 2017 publication-title: Nano Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 365 start-page: 679 year: 2019 publication-title: Science – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 12 start-page: 177 year: 2023 publication-title: Light Sci. Appl. – volume: 5 start-page: 384 year: 2010 publication-title: Nano Today – volume: 8 start-page: 341 year: 2023 publication-title: Nat. Rev. Mater. – volume: 3 year: 2018 publication-title: Sol. RRL – volume: 6 start-page: 1821 year: 2021 publication-title: ACS Energy Lett. – volume: 580 start-page: 614 year: 2020 publication-title: Nature – volume: 611 start-page: 688 year: 2022 publication-title: Nature – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 13 start-page: 460 year: 2019 publication-title: Nat. Photonics – ident: e_1_2_8_20_1 doi: 10.1126/science.aax3878 – ident: e_1_2_8_33_1 doi: 10.1002/adma.202000865 – ident: e_1_2_8_15_1 doi: 10.1016/j.xcrp.2021.100582 – ident: e_1_2_8_4_1 doi: 10.1002/adma.202103268 – ident: e_1_2_8_12_1 doi: 10.59717/j.xinn-mater.2023.100015 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202304659 – ident: e_1_2_8_19_1 doi: 10.1038/s41570-023-00492-z – ident: e_1_2_8_39_1 doi: 10.1002/admi.201500768 – ident: e_1_2_8_34_1 doi: 10.1016/j.joule.2022.04.012 – ident: e_1_2_8_9_1 doi: 10.1021/acsnano.3c11941 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202308487 – ident: e_1_2_8_40_1 doi: 10.1021/acsenergylett.1c00565 – ident: e_1_2_8_6_1 doi: 10.1021/nl5048779 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.0c21824 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202207301 – ident: e_1_2_8_24_1 doi: 10.1038/s41586-020-2219-7 – ident: e_1_2_8_32_1 doi: 10.1002/smtd.202301531 – ident: e_1_2_8_8_1 doi: 10.1038/s41377-023-01206-2 – ident: e_1_2_8_22_1 doi: 10.1038/s41560-022-01154-y – ident: e_1_2_8_31_1 doi: 10.1002/solr.201800296 – ident: e_1_2_8_5_1 doi: 10.1002/adma.202006435 – ident: e_1_2_8_36_1 doi: 10.1016/j.jechem.2024.07.002 – ident: e_1_2_8_21_1 doi: 10.1038/s41560-023-01310-y – ident: e_1_2_8_25_1 doi: 10.1021/acs.jpcc.9b10185 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.9b00831 – ident: e_1_2_8_26_1 doi: 10.1021/acs.nanolett.6b04453 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202002585 – ident: e_1_2_8_28_1 doi: 10.1126/sciadv.1601650 – ident: e_1_2_8_3_1 doi: 10.1038/s41586-018-0576-2 – ident: e_1_2_8_42_1 doi: 10.1016/j.nantod.2010.08.010 – ident: e_1_2_8_23_1 doi: 10.1038/s41566-020-00743-1 – ident: e_1_2_8_41_1 doi: 10.1063/5.0129624 – ident: e_1_2_8_7_1 doi: 10.1016/j.scib.2017.01.006 – ident: e_1_2_8_30_1 doi: 10.1126/science.abb8985 – ident: e_1_2_8_1_1 doi: 10.1038/s41586-022-05304-w – ident: e_1_2_8_29_1 doi: 10.1038/s41566-019-0398-2 – ident: e_1_2_8_27_1 doi: 10.1016/j.joule.2019.06.014 – ident: e_1_2_8_10_1 doi: 10.1016/j.nanoen.2022.107181 – ident: e_1_2_8_35_1 doi: 10.1126/sciadv.abg6716 – ident: e_1_2_8_18_1 doi: 10.1002/smtd.201800110 – ident: e_1_2_8_17_1 doi: 10.1038/s41578-022-00522-0 – ident: e_1_2_8_37_1 doi: 10.1021/acs.jpcc.0c06342 |
SSID | ssj0009606 |
Score | 2.4660063 |
Snippet | Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down... Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro-optoelectronic devices, where the present top-down... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2409201 |
SubjectTerms | Bright plating Carrier recombination contact diffusion lithography Epitaxial growth Funnels Heterojunctions lateral phase heterojunction Light emitting diodes Mass production micro‐optoelectronics Near infrared radiation Optoelectronic devices perovskite light‐emitting diode Perovskites Phase transitions Radiative recombination |
Title | Lateral Phase Heterojunction for Perovskite Microoptoelectronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202409201 https://www.ncbi.nlm.nih.gov/pubmed/39498664 https://www.proquest.com/docview/3143201291 https://www.proquest.com/docview/3124680391 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG7MTnrw9w90GkxMPLFBaYHeXNRlMc4sxiW7kUcpMWpgEebBv94-GGzTg4leCFAIpa-P72t57yshF0q4jvJFZFElmcUcGluRrTcM7AQkCCU4JjgPH7zBmN1N-GQpi7_Sh2gm3NAzyu81OjhEeXchGgpxqRukEUnQMoELA7aQFT0u9KOQnpdiey63hMeCWrXRpt3V21dR6QfVXGWuJfT0twjUla4iTl47syLqyM9veo7_eattsjnnpWav6kg7ZE2lu2RjSa1wj1zdA6Yrv5mjZw195gADabIXjYtoW1OTX3OkT3zkOB9sDjHQL5sW2WKdnXyfjPu3T9cDa74AgyUZpXpsCTRGD_UhsUE4SBWl1OMdiJVnA09UoiE2YTGnXCqbRozzRCQCfCmZHQexe0BaaZaqI2L6mNzFQUMjLrlLOehhjQsidgIFqHJvkMvaAOG00tkIK0VlGmKbhE2bGKRd2yec-1seupr2UZxT08XnTbH2FPz9AanKZngNZV6AivgGOazs2jzKFUwEnscMQkvr_FKHsHcz7DVHx3-56YSs434VGdMmreJ9pk41vymis7IPfwGCnfDM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB6FcCg9UFpoG0ipkUCcnDjrXcd7QCJqiAJJEEJB4mbW67WqtoojkrSib9VX4Yk6Y8cOaQ9IlXLoxZJ3_bPemdmZHc98A3BopNswTRnazGhu8waL7NDBA1dOrLSSRgpKcB5cet0bfnErbkvwK8-FyfAhCocbSUa6XpOAk0O6vkANVVEKHIQqSaIWm8dV9szDD9y1TU7O20jiI8Y6Z8NPXXteWMDWnDHcMykWEec1Vewo2SATSGu041VkPEeJ2MSoOmIeCSa0cVjIhYhlLFVTa-5EfuTic9dgncqIE1x_-3qBWEUbghTezxW29Lif40Q6rL483mU9-Jdxu2wrp8qu8woe82nKYly-1mbTsKZ__oEg-V_N4xZszk1vq5XJymsomdEbePkEkHEbTvuKMrK_WVefUbtbXYoVSr6g6if2tdC-t66w4fuEXN7WgGIZk_E0WZQSmuzAzUo-4S2UR8nIvAerSflrQqH2p6rCTCjcublKRg3fKALyr8BxTvFgnEGJBBloNAuIBkFBgwpUc4YI5kvKJHDRsmXkNsTug6IbFwP6w6NGJpnRNYx7PoH-V-BdxkjFq1zJpe95vAIsZYdnxhC02oNWcbb7Lzd9hBfd4aAf9M8ve3uwQe1ZIFAVytP7mfmA5tw03E8FyIK7VXPabyC0UPo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NISH2wL8N1jFGkJj2lDZ17DR-mLRqXdWytqqmVepbcGxHaKCmWlsm-FR8Fb7R7pImpfCAhNQHXiLFzh_Hd-e7c-5-B_DeSr9uGzJ2mdXc5XVm3NjDA1deorSSVgpKcO4Pgs6IfxiL8Rb8KHJhcnyIcsONJCNbr0nApyaprUBDlclwg1AjSVRiy7DKS_vtDp222Wm3hRQ-Zqx9cX3ecZd1BVzNGUOXSTFDjNdQiadknSwgrdGMV8YGnhKJTVBzJNwIJrT1WMyFSGQiVUNr7pnQ-PjcB_CQB56kYhGtqxVgFfkDGbqfL1wZ8LCAifRYbX2862rwD9t23VTOdF37KfwsZikPcflcXczjqv7-G4Dk_zSNz-DJ0vB2mrmkPIctO3kBO7_AMe7CWU9RPvYXZ_gJdbvToUih9AYVPzGvg9a9M8SGrzPa8Hb6FMmYTufpqpDQbA9GG_mEl7A9SSd2H5wGZa8JhbqfagozodBv85U09dAqgvGvwElB8GiaA4lEOWQ0i4gGUUmDChwW_BAtF5RZ5KNdy2jTELvfld24FND_HTWx6YKuYTwICfK_Aq9yPipf5UsuwyDgFWAZN_xlDFGz1W-WZwf_ctNbeDRstaNed3D5Gh5Tcx4FdAjb89uFfYO23Dw-ysTHgY-bZrR7vUdPqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lateral+Phase+Heterojunction+for+Perovskite+Microoptoelectronics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Lei&rft.au=Yan%2C+Haoming&rft.au=Li%2C+Shunde&rft.au=Xu%2C+Hongyu&rft.date=2024-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202409201&rft.externalDBID=10.1002%252Fadma.202409201&rft.externalDocID=ADMA202409201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |