Lateral Phase Heterojunction for Perovskite Microoptoelectronics

Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 50; pp. e2409201 - n/a
Main Authors Li, Lei, Yan, Haoming, Li, Shunde, Xu, Hongyu, Qu, Duo, Hu, An, Ma, Li, Ji, Yongqiang, Zhong, Qixuan, Zhao, Lichen, Xu, Fan, Tu, Yongguang, Song, Tinglu, Wu, Jiang, Li, Menglin, Lu, Changjun, Yang, Xiaoyu, Zhong, Haizheng, Gong, Qihuang, Wang, Xinqiang, Zhu, Rui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro‐devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion‐driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α‐phase formamidine‐based perovskite patterns surrounded by δ‐phase polymorphs. Spontaneous type‐I heterojunction alignment between α‐ and δ‐phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide‐bandgap δ‐phase also serves as the coplanar isolator to achieve local anti‐leakage for device integration. Based on the bright and stable LPH pattern layer, the near‐infrared microscale perovskite light‐emitting diode (micro‐PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro‐optoelectronics and photonics. A perovskite lateral phase heterojunction (LPH) polycrystalline film is first demonstrated by a developed contact‐diffusion lithography (CDL) for the fabrication of microscale perovskite light‐emitting diodes (micro‐PeLEDs). Based on the α/δ‐formamidiniumPbI3 (FAPbI3) LPH film with high‐resolution patterns and superior radiative performance, a record‐efficiency near‐infrared micro‐PeLED device is achieved to validate the versatile applications of LPHs in perovskite microoptoelectronics and photonics.
AbstractList Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro‐devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion‐driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α‐phase formamidine‐based perovskite patterns surrounded by δ‐phase polymorphs. Spontaneous type‐I heterojunction alignment between α‐ and δ‐phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide‐bandgap δ‐phase also serves as the coplanar isolator to achieve local anti‐leakage for device integration. Based on the bright and stable LPH pattern layer, the near‐infrared microscale perovskite light‐emitting diode (micro‐PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro‐optoelectronics and photonics.
Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down or bottom‐up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro‐devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion‐driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α‐phase formamidine‐based perovskite patterns surrounded by δ‐phase polymorphs. Spontaneous type‐I heterojunction alignment between α‐ and δ‐phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide‐bandgap δ‐phase also serves as the coplanar isolator to achieve local anti‐leakage for device integration. Based on the bright and stable LPH pattern layer, the near‐infrared microscale perovskite light‐emitting diode (micro‐PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro‐optoelectronics and photonics. A perovskite lateral phase heterojunction (LPH) polycrystalline film is first demonstrated by a developed contact‐diffusion lithography (CDL) for the fabrication of microscale perovskite light‐emitting diodes (micro‐PeLEDs). Based on the α/δ‐formamidiniumPbI3 (FAPbI3) LPH film with high‐resolution patterns and superior radiative performance, a record‐efficiency near‐infrared micro‐PeLED device is achieved to validate the versatile applications of LPHs in perovskite microoptoelectronics and photonics.
Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro-optoelectronic devices, where the present top-down or bottom-up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro-devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion-driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α-phase formamidine-based perovskite patterns surrounded by δ-phase polymorphs. Spontaneous type-I heterojunction alignment between α- and δ-phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide-bandgap δ-phase also serves as the coplanar isolator to achieve local anti-leakage for device integration. Based on the bright and stable LPH pattern layer, the near-infrared microscale perovskite light-emitting diode (micro-PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro-optoelectronics and photonics.Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro-optoelectronic devices, where the present top-down or bottom-up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro-devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion-driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α-phase formamidine-based perovskite patterns surrounded by δ-phase polymorphs. Spontaneous type-I heterojunction alignment between α- and δ-phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide-bandgap δ-phase also serves as the coplanar isolator to achieve local anti-leakage for device integration. Based on the bright and stable LPH pattern layer, the near-infrared microscale perovskite light-emitting diode (micro-PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro-optoelectronics and photonics.
Author Xu, Hongyu
Ji, Yongqiang
Lu, Changjun
Tu, Yongguang
Wang, Xinqiang
Zhao, Lichen
Xu, Fan
Yan, Haoming
Song, Tinglu
Li, Menglin
Li, Shunde
Hu, An
Yang, Xiaoyu
Gong, Qihuang
Ma, Li
Wu, Jiang
Zhong, Haizheng
Li, Lei
Qu, Duo
Zhong, Qixuan
Zhu, Rui
Author_xml – sequence: 1
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Peking University
– sequence: 2
  givenname: Haoming
  surname: Yan
  fullname: Yan, Haoming
  organization: Peking University
– sequence: 3
  givenname: Shunde
  surname: Li
  fullname: Li, Shunde
  organization: Peking University
– sequence: 4
  givenname: Hongyu
  surname: Xu
  fullname: Xu, Hongyu
  organization: Peking University
– sequence: 5
  givenname: Duo
  surname: Qu
  fullname: Qu, Duo
  organization: Northwestern Polytechnical University Xi'an
– sequence: 6
  givenname: An
  surname: Hu
  fullname: Hu, An
  organization: Ltd
– sequence: 7
  givenname: Li
  surname: Ma
  fullname: Ma, Li
  organization: Ltd
– sequence: 8
  givenname: Yongqiang
  surname: Ji
  fullname: Ji, Yongqiang
  organization: Peking University
– sequence: 9
  givenname: Qixuan
  surname: Zhong
  fullname: Zhong, Qixuan
  organization: Peking University
– sequence: 10
  givenname: Lichen
  surname: Zhao
  fullname: Zhao, Lichen
  organization: Peking University
– sequence: 11
  givenname: Fan
  surname: Xu
  fullname: Xu, Fan
  organization: Peking University
– sequence: 12
  givenname: Yongguang
  surname: Tu
  fullname: Tu, Yongguang
  organization: Northwestern Polytechnical University Xi'an
– sequence: 13
  givenname: Tinglu
  surname: Song
  fullname: Song, Tinglu
  organization: Beijing Institute of Technology
– sequence: 14
  givenname: Jiang
  surname: Wu
  fullname: Wu, Jiang
  organization: Peking University Yangtze Delta Institute of Optoelectronics
– sequence: 15
  givenname: Menglin
  surname: Li
  fullname: Li, Menglin
  organization: Beijing Institute of Technology
– sequence: 16
  givenname: Changjun
  surname: Lu
  fullname: Lu, Changjun
  organization: Ltd
– sequence: 17
  givenname: Xiaoyu
  surname: Yang
  fullname: Yang, Xiaoyu
  email: yangxy_seed@pku.edu.cn
  organization: Ltd
– sequence: 18
  givenname: Haizheng
  surname: Zhong
  fullname: Zhong, Haizheng
  organization: Beijing Institute of Technology
– sequence: 19
  givenname: Qihuang
  surname: Gong
  fullname: Gong, Qihuang
  organization: Shanxi University
– sequence: 20
  givenname: Xinqiang
  surname: Wang
  fullname: Wang, Xinqiang
  email: wangshi@pku.edu.cn
  organization: Peking University Yangtze Delta Institute of Optoelectronics
– sequence: 21
  givenname: Rui
  orcidid: 0000-0001-7631-3589
  surname: Zhu
  fullname: Zhu, Rui
  email: iamzhurui@pku.edu.cn
  organization: Shanxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39498664$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQhi1URD9gZUSRWFhSzo7j1htV-ShSKzrAHLnOWaSkcbETUP89Li1FYmE63el5T3dPl7QqWyEh5xT6FIBdq3yl-gwYB8mAHpEOTRmNQ5e2SAdkksZS8GGbdL1fAoAUIE5IO5FcDoXgHXIzVTU6VUbzV-UxmmDo7LKpdF3YKjLWRfMw-PBvRY3RrNDO2nVtsURdO1sV2p-SY6NKj2f72iMv93fP40k8fXp4HI-mseZse5FiOZUiGSgDSlI5GHCthRAqRwEqNWg0ouF5ylKNwBY8TY00Ug205pAP86RHrnZ7186-N-jrbFV4jWWpKrSNzxLKuBhCImlAL_-gS9u4KlwXKJ4ET-ybuthTzWKFebZ2xUq5TfbjJgD9HRCe9t6hOSAUsq38bCs_O8gPAbkLfBYlbv6hs9HtbPSb_QKJIIeC
Cites_doi 10.1126/science.aax3878
10.1002/adma.202000865
10.1016/j.xcrp.2021.100582
10.1002/adma.202103268
10.59717/j.xinn-mater.2023.100015
10.1002/adfm.202304659
10.1038/s41570-023-00492-z
10.1002/admi.201500768
10.1016/j.joule.2022.04.012
10.1021/acsnano.3c11941
10.1002/adma.202308487
10.1021/acsenergylett.1c00565
10.1021/nl5048779
10.1021/acsami.0c21824
10.1002/adma.202207301
10.1038/s41586-020-2219-7
10.1002/smtd.202301531
10.1038/s41377-023-01206-2
10.1038/s41560-022-01154-y
10.1002/solr.201800296
10.1002/adma.202006435
10.1016/j.jechem.2024.07.002
10.1038/s41560-023-01310-y
10.1021/acs.jpcc.9b10185
10.1021/acsami.9b00831
10.1021/acs.nanolett.6b04453
10.1002/adma.202002585
10.1126/sciadv.1601650
10.1038/s41586-018-0576-2
10.1016/j.nantod.2010.08.010
10.1038/s41566-020-00743-1
10.1063/5.0129624
10.1016/j.scib.2017.01.006
10.1126/science.abb8985
10.1038/s41586-022-05304-w
10.1038/s41566-019-0398-2
10.1016/j.joule.2019.06.014
10.1016/j.nanoen.2022.107181
10.1126/sciadv.abg6716
10.1002/smtd.201800110
10.1038/s41578-022-00522-0
10.1021/acs.jpcc.0c06342
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202409201
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39498664
10_1002_adma_202409201
ADMA202409201
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation of Jiangsu Province
  funderid: BK20220302
– fundername: Beijing Postdoctoral Research Foundation
– fundername: National Key R&D Program of China
  funderid: 2021YFB3800100; 2021YFB3800101
– fundername: China Postdoctoral Science Foundation
  funderid: 2023M731476; 2023M730099; 2023M730033; 2023T160286; 2022TQ0002
– fundername: R&D Fruit Fund
  funderid: 20210001
– fundername: National Natural Science Foundation of China
  funderid: 52325310; 52203208; 52303335; 52272179; 62264007; U23A20683
– fundername: open research fund of Songshan Lake Materials Laboratory
  funderid: 2022SLABFK07
– fundername: Beijing Municipal Natural Science Foundation
  funderid: JQ21005
– fundername: Yunnan Provincial Science and Technology Project at Southwest United Graduate School
  funderid: 202302AO370013
– fundername: Beijing Nova Program
  funderid: 20220484148; 20230484480
– fundername: Nantong Basic Science Research Program
  grantid: JC12022036
– fundername: National Natural Science Foundation of China
  grantid: 52203208
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M731476
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M730099
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M730033
– fundername: Beijing Nova Program
  grantid: 20230484480
– fundername: National Natural Science Foundation of China
  grantid: 52272179
– fundername: National Science Foundation of Jiangsu Province
  grantid: BK20220302
– fundername: R&D Fruit Fund
  grantid: 20210001
– fundername: National Key R&D Program of China
  grantid: 2021YFB3800101
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4221-4a2d19637af0a919774cc666ade60a5fefceef4d525ce02b455f9f9a7cc40d8d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:08:20 EDT 2025
Fri Jul 25 22:23:54 EDT 2025
Thu Apr 03 07:03:52 EDT 2025
Tue Jul 01 00:54:58 EDT 2025
Sun Jul 06 04:45:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords micro‐optoelectronics
contact diffusion lithography
perovskite light‐emitting diode
lateral phase heterojunction
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4221-4a2d19637af0a919774cc666ade60a5fefceef4d525ce02b455f9f9a7cc40d8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7631-3589
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202409201
PMID 39498664
PQID 3143201291
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_3124680391
proquest_journals_3143201291
pubmed_primary_39498664
crossref_primary_10_1002_adma_202409201
wiley_primary_10_1002_adma_202409201_ADMA202409201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2018; 562
2015; 15
2021; 7
2021; 6
2023; 36
2019; 3
2023; 33
2023; 12
2021; 2
2020; 580
2019; 11
2023; 7
2023; 8
2019; 13
2023; 122
2024; 98
2023; 1
2020; 124
2020; 32
2024; 36
2024; 18
2022; 611
2019; 365
2021; 13
2021; 15
2018; 3
2018; 2
2016; 2
2021; 33
2017; 17
2024; 8
2022; 6
2022; 7
2020; 370
2022; 97
2010; 5
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 7
  start-page: 462
  year: 2023
  publication-title: Nat. Rev. Chem.
– volume: 3
  start-page: 2179
  year: 2019
  publication-title: Joule
– volume: 370
  start-page: 6512
  year: 2020
  publication-title: Science
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 18
  start-page: 8157
  year: 2024
  publication-title: ACS Nano
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 989
  year: 2023
  publication-title: Nat. Energy
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 562
  start-page: 249
  year: 2018
  publication-title: Nature
– volume: 8
  year: 2024
  publication-title: Small Methods
– volume: 15
  start-page: 3692
  year: 2015
  publication-title: Nano Lett.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 124
  start-page: 3448
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 97
  year: 2022
  publication-title: Nano Energy
– volume: 7
  start-page: 1170
  year: 2022
  publication-title: Nat. Energy
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 122
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 1277
  year: 2022
  publication-title: Joule
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  year: 2023
  publication-title: Innovation Mater.
– volume: 62
  start-page: 369
  year: 2017
  publication-title: Sci. Bull.
– volume: 98
  start-page: 391
  year: 2024
  publication-title: J. Energy Chem.
– volume: 15
  start-page: 238
  year: 2021
  publication-title: Nat. Photonics
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1028
  year: 2017
  publication-title: Nano Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 365
  start-page: 679
  year: 2019
  publication-title: Science
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 12
  start-page: 177
  year: 2023
  publication-title: Light Sci. Appl.
– volume: 5
  start-page: 384
  year: 2010
  publication-title: Nano Today
– volume: 8
  start-page: 341
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 3
  year: 2018
  publication-title: Sol. RRL
– volume: 6
  start-page: 1821
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 580
  start-page: 614
  year: 2020
  publication-title: Nature
– volume: 611
  start-page: 688
  year: 2022
  publication-title: Nature
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 13
  start-page: 460
  year: 2019
  publication-title: Nat. Photonics
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aax3878
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.202000865
– ident: e_1_2_8_15_1
  doi: 10.1016/j.xcrp.2021.100582
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.202103268
– ident: e_1_2_8_12_1
  doi: 10.59717/j.xinn-mater.2023.100015
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202304659
– ident: e_1_2_8_19_1
  doi: 10.1038/s41570-023-00492-z
– ident: e_1_2_8_39_1
  doi: 10.1002/admi.201500768
– ident: e_1_2_8_34_1
  doi: 10.1016/j.joule.2022.04.012
– ident: e_1_2_8_9_1
  doi: 10.1021/acsnano.3c11941
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202308487
– ident: e_1_2_8_40_1
  doi: 10.1021/acsenergylett.1c00565
– ident: e_1_2_8_6_1
  doi: 10.1021/nl5048779
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.0c21824
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202207301
– ident: e_1_2_8_24_1
  doi: 10.1038/s41586-020-2219-7
– ident: e_1_2_8_32_1
  doi: 10.1002/smtd.202301531
– ident: e_1_2_8_8_1
  doi: 10.1038/s41377-023-01206-2
– ident: e_1_2_8_22_1
  doi: 10.1038/s41560-022-01154-y
– ident: e_1_2_8_31_1
  doi: 10.1002/solr.201800296
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.202006435
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jechem.2024.07.002
– ident: e_1_2_8_21_1
  doi: 10.1038/s41560-023-01310-y
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.jpcc.9b10185
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.9b00831
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.nanolett.6b04453
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202002585
– ident: e_1_2_8_28_1
  doi: 10.1126/sciadv.1601650
– ident: e_1_2_8_3_1
  doi: 10.1038/s41586-018-0576-2
– ident: e_1_2_8_42_1
  doi: 10.1016/j.nantod.2010.08.010
– ident: e_1_2_8_23_1
  doi: 10.1038/s41566-020-00743-1
– ident: e_1_2_8_41_1
  doi: 10.1063/5.0129624
– ident: e_1_2_8_7_1
  doi: 10.1016/j.scib.2017.01.006
– ident: e_1_2_8_30_1
  doi: 10.1126/science.abb8985
– ident: e_1_2_8_1_1
  doi: 10.1038/s41586-022-05304-w
– ident: e_1_2_8_29_1
  doi: 10.1038/s41566-019-0398-2
– ident: e_1_2_8_27_1
  doi: 10.1016/j.joule.2019.06.014
– ident: e_1_2_8_10_1
  doi: 10.1016/j.nanoen.2022.107181
– ident: e_1_2_8_35_1
  doi: 10.1126/sciadv.abg6716
– ident: e_1_2_8_18_1
  doi: 10.1002/smtd.201800110
– ident: e_1_2_8_17_1
  doi: 10.1038/s41578-022-00522-0
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.jpcc.0c06342
SSID ssj0009606
Score 2.4660063
Snippet Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro‐optoelectronic devices, where the present top‐down...
Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro-optoelectronic devices, where the present top-down...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2409201
SubjectTerms Bright plating
Carrier recombination
contact diffusion lithography
Epitaxial growth
Funnels
Heterojunctions
lateral phase heterojunction
Light emitting diodes
Mass production
micro‐optoelectronics
Near infrared radiation
Optoelectronic devices
perovskite light‐emitting diode
Perovskites
Phase transitions
Radiative recombination
Title Lateral Phase Heterojunction for Perovskite Microoptoelectronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202409201
https://www.ncbi.nlm.nih.gov/pubmed/39498664
https://www.proquest.com/docview/3143201291
https://www.proquest.com/docview/3124680391
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG7MTnrw9w90GkxMPLFBaYHeXNRlMc4sxiW7kUcpMWpgEebBv94-GGzTg4leCFAIpa-P72t57yshF0q4jvJFZFElmcUcGluRrTcM7AQkCCU4JjgPH7zBmN1N-GQpi7_Sh2gm3NAzyu81OjhEeXchGgpxqRukEUnQMoELA7aQFT0u9KOQnpdiey63hMeCWrXRpt3V21dR6QfVXGWuJfT0twjUla4iTl47syLqyM9veo7_eattsjnnpWav6kg7ZE2lu2RjSa1wj1zdA6Yrv5mjZw195gADabIXjYtoW1OTX3OkT3zkOB9sDjHQL5sW2WKdnXyfjPu3T9cDa74AgyUZpXpsCTRGD_UhsUE4SBWl1OMdiJVnA09UoiE2YTGnXCqbRozzRCQCfCmZHQexe0BaaZaqI2L6mNzFQUMjLrlLOehhjQsidgIFqHJvkMvaAOG00tkIK0VlGmKbhE2bGKRd2yec-1seupr2UZxT08XnTbH2FPz9AanKZngNZV6AivgGOazs2jzKFUwEnscMQkvr_FKHsHcz7DVHx3-56YSs434VGdMmreJ9pk41vymis7IPfwGCnfDM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB6FcCg9UFpoG0ipkUCcnDjrXcd7QCJqiAJJEEJB4mbW67WqtoojkrSib9VX4Yk6Y8cOaQ9IlXLoxZJ3_bPemdmZHc98A3BopNswTRnazGhu8waL7NDBA1dOrLSSRgpKcB5cet0bfnErbkvwK8-FyfAhCocbSUa6XpOAk0O6vkANVVEKHIQqSaIWm8dV9szDD9y1TU7O20jiI8Y6Z8NPXXteWMDWnDHcMykWEec1Vewo2SATSGu041VkPEeJ2MSoOmIeCSa0cVjIhYhlLFVTa-5EfuTic9dgncqIE1x_-3qBWEUbghTezxW29Lif40Q6rL483mU9-Jdxu2wrp8qu8woe82nKYly-1mbTsKZ__oEg-V_N4xZszk1vq5XJymsomdEbePkEkHEbTvuKMrK_WVefUbtbXYoVSr6g6if2tdC-t66w4fuEXN7WgGIZk_E0WZQSmuzAzUo-4S2UR8nIvAerSflrQqH2p6rCTCjcublKRg3fKALyr8BxTvFgnEGJBBloNAuIBkFBgwpUc4YI5kvKJHDRsmXkNsTug6IbFwP6w6NGJpnRNYx7PoH-V-BdxkjFq1zJpe95vAIsZYdnxhC02oNWcbb7Lzd9hBfd4aAf9M8ve3uwQe1ZIFAVytP7mfmA5tw03E8FyIK7VXPabyC0UPo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NISH2wL8N1jFGkJj2lDZ17DR-mLRqXdWytqqmVepbcGxHaKCmWlsm-FR8Fb7R7pImpfCAhNQHXiLFzh_Hd-e7c-5-B_DeSr9uGzJ2mdXc5XVm3NjDA1deorSSVgpKcO4Pgs6IfxiL8Rb8KHJhcnyIcsONJCNbr0nApyaprUBDlclwg1AjSVRiy7DKS_vtDp222Wm3hRQ-Zqx9cX3ecZd1BVzNGUOXSTFDjNdQiadknSwgrdGMV8YGnhKJTVBzJNwIJrT1WMyFSGQiVUNr7pnQ-PjcB_CQB56kYhGtqxVgFfkDGbqfL1wZ8LCAifRYbX2862rwD9t23VTOdF37KfwsZikPcflcXczjqv7-G4Dk_zSNz-DJ0vB2mrmkPIctO3kBO7_AMe7CWU9RPvYXZ_gJdbvToUih9AYVPzGvg9a9M8SGrzPa8Hb6FMmYTufpqpDQbA9GG_mEl7A9SSd2H5wGZa8JhbqfagozodBv85U09dAqgvGvwElB8GiaA4lEOWQ0i4gGUUmDChwW_BAtF5RZ5KNdy2jTELvfld24FND_HTWx6YKuYTwICfK_Aq9yPipf5UsuwyDgFWAZN_xlDFGz1W-WZwf_ctNbeDRstaNed3D5Gh5Tcx4FdAjb89uFfYO23Dw-ysTHgY-bZrR7vUdPqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lateral+Phase+Heterojunction+for+Perovskite+Microoptoelectronics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Lei&rft.au=Yan%2C+Haoming&rft.au=Li%2C+Shunde&rft.au=Xu%2C+Hongyu&rft.date=2024-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202409201&rft.externalDBID=10.1002%252Fadma.202409201&rft.externalDocID=ADMA202409201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon