Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 2
Main Authors Wang, Wen‐Peng, Zhang, Juan, Chou, Jia, Yin, Ya‐Xia, You, Ya, Xin, Sen, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability. This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries.
AbstractList Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability. This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries.
Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability.
Author Zhang, Juan
You, Ya
Yin, Ya‐Xia
Wang, Wen‐Peng
Chou, Jia
Guo, Yu‐Guo
Xin, Sen
Author_xml – sequence: 1
  givenname: Wen‐Peng
  surname: Wang
  fullname: Wang, Wen‐Peng
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 2
  givenname: Juan
  surname: Zhang
  fullname: Zhang, Juan
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 3
  givenname: Jia
  surname: Chou
  fullname: Chou, Jia
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 4
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 5
  givenname: Ya
  surname: You
  fullname: You, Ya
  organization: Wuhan University of Technology
– sequence: 6
  givenname: Sen
  orcidid: 0000-0002-0546-0626
  surname: Xin
  fullname: Xin, Sen
  email: xinsen08@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 7
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
BookMark eNqFkMFKAzEQhoNUsNZePS943ppks83mWEvVStVD9RxCMmtTtpuazSJ78x18Q5_ElEoFQTxlyHzfzPCfol7takDonOARwZheKqg3I4opxpgLcoT6ZExYOi4Y7h3qjJ6gYdOsI4OZIDjL-uhu6SprbNnZ-iWZqrByBj7fP2YV6OBd1QVI5nUAXyoNSel8srBhZdtNZJZtVbY-uVIh9i00Z-i4VFUDw-93gJ6vZ0_T23TxeDOfThapZpSSlJbExLuM0oSbjJhCi6LIhGKKCqFETpmB-ImVIkBybnhZFFznOdCcgKEmG6CL_dytd68tNEGuXevruFJSxjljjOckUmxPae-axkMptQ0qWFcHr2wlCZa74OQuOHkILmqjX9rW243y3d-C2AtvtoLuH1pOZg_3P-4XA76E0Q
CitedBy_id crossref_primary_10_1002_aenm_202104074
crossref_primary_10_1039_D1TA04376E
crossref_primary_10_1002_advs_202204192
crossref_primary_10_1002_batt_202400381
crossref_primary_10_1360_nso_20220036
crossref_primary_10_1002_advs_202203181
crossref_primary_10_1021_acsenergylett_3c02757
crossref_primary_10_1021_acsnano_1c05344
crossref_primary_10_1039_D1TC05311F
crossref_primary_10_3390_nano12203612
crossref_primary_10_1002_adma_202207155
crossref_primary_10_1002_asia_202400199
crossref_primary_10_1021_acsaem_0c01991
crossref_primary_10_1021_acsaem_4c01049
crossref_primary_10_3390_coatings12020289
crossref_primary_10_1002_aenm_202203153
crossref_primary_10_1002_aenm_202102962
crossref_primary_10_1021_acsami_4c04145
crossref_primary_10_1111_ijac_14523
crossref_primary_10_1002_batt_202200059
crossref_primary_10_1002_ece2_74
crossref_primary_10_1002_aenm_202002893
crossref_primary_10_1002_anie_202219318
crossref_primary_10_1007_s11431_021_2019_4
crossref_primary_10_1016_j_xcrp_2024_101833
crossref_primary_10_1021_acsami_1c08113
crossref_primary_10_1039_D1QM00395J
crossref_primary_10_1021_acssuschemeng_2c04600
crossref_primary_10_1021_acsaem_2c02021
crossref_primary_10_1002_smll_202103744
crossref_primary_10_3390_pr9101822
crossref_primary_10_1039_D2NR01815B
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1002_adfm_202101922
crossref_primary_10_1021_acsami_3c07249
crossref_primary_10_1021_acsami_1c10275
crossref_primary_10_1039_D4DT01133C
crossref_primary_10_33961_jecst_2022_00143
crossref_primary_10_1002_aenm_202101370
crossref_primary_10_1016_j_cej_2022_136489
crossref_primary_10_1016_j_mattod_2021_10_026
crossref_primary_10_1007_s12209_021_00294_8
crossref_primary_10_1039_D3CP04209J
crossref_primary_10_1002_ente_202200421
crossref_primary_10_1039_D1NR03390E
crossref_primary_10_1002_aenm_202302688
crossref_primary_10_1021_acsami_1c03194
crossref_primary_10_1016_j_jallcom_2025_179045
crossref_primary_10_1007_s11581_022_04718_w
crossref_primary_10_1039_D1TA04532F
crossref_primary_10_1002_batt_202400484
crossref_primary_10_1002_adfm_202420157
crossref_primary_10_1002_adfm_202105253
crossref_primary_10_1007_s12274_021_3372_5
crossref_primary_10_1016_j_jechem_2021_06_035
crossref_primary_10_1016_j_jechem_2022_06_035
crossref_primary_10_1002_batt_202400522
crossref_primary_10_1021_acsaem_1c02797
crossref_primary_10_1002_smll_202300843
crossref_primary_10_1021_acsami_1c13193
crossref_primary_10_12677_ms_2024_144060
crossref_primary_10_1002_inf2_12232
crossref_primary_10_1002_adma_202311127
crossref_primary_10_1007_s12274_024_6682_6
crossref_primary_10_1007_s12598_022_02009_x
crossref_primary_10_1039_D0NR06732F
crossref_primary_10_1002_adfm_202304619
crossref_primary_10_1021_acs_chemmater_4c01514
crossref_primary_10_1002_aenm_202404384
crossref_primary_10_1002_smll_202308550
crossref_primary_10_1002_ente_202201409
crossref_primary_10_1002_asia_202100765
crossref_primary_10_1021_acsami_2c23021
crossref_primary_10_3390_nano14080656
crossref_primary_10_1002_cssc_202202379
crossref_primary_10_1016_j_jcis_2021_12_143
crossref_primary_10_1039_D3EE04183B
crossref_primary_10_1039_D3YA00336A
crossref_primary_10_1039_D2TA03905B
crossref_primary_10_1002_adma_202312880
crossref_primary_10_1002_ange_202219318
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1016_j_cej_2022_138208
crossref_primary_10_1007_s44251_024_00060_7
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1002_aenm_202300767
crossref_primary_10_1021_acsaelm_4c00409
crossref_primary_10_1021_acsenergylett_3c01473
crossref_primary_10_1016_j_mattod_2023_03_019
crossref_primary_10_1002_eem2_12428
crossref_primary_10_1016_j_jpowsour_2022_231517
Cites_doi 10.1038/srep10921
10.1039/C8TA01115J
10.1149/2.0041801jes
10.1016/j.ensm.2018.03.015
10.1002/adfm.201800919
10.1002/adma.201804909
10.1021/ar300179v
10.1021/acs.chemmater.7b02339
10.1016/j.ssi.2013.04.024
10.1016/j.jpowsour.2012.08.041
10.1038/nenergy.2017.90
10.1021/acsenergylett.9b00430
10.1016/j.electacta.2016.08.015
10.1038/nmat2460
10.1002/aenm.201500117
10.1021/jacs.8b04612
10.1016/j.cej.2018.08.143
10.1002/anie.201303147
10.1021/acsami.7b07057
10.1021/acsaem.8b00227
10.1002/aenm.201903325
10.1002/anie.201300680
10.1016/0167-2738(95)00056-C
10.1016/0025-5408(76)90077-5
10.1002/aenm.201301473
10.1002/adma.201808100
10.1002/aenm.201602923
10.1007/s11426-017-9041-1
10.1149/2.058309jes
10.1002/adma.201606454
10.1002/adfm.201870272
10.1002/aenm.201500124
10.1002/marc.202000047
10.1002/adfm.201602264
10.1002/anie.201304762
10.1002/adma.201700449
10.1021/acs.nanolett.6b01754
10.1002/aenm.201601635
10.1038/ncomms2163
10.1039/C6TA09146F
10.1038/nenergy.2016.132
10.1039/C7EE02555F
10.1016/j.electacta.2011.04.084
10.1038/526S93a
10.1007/s12274-017-1929-0
10.1126/sciadv.aat5383
10.1016/j.electacta.2018.02.163
10.1002/ente.201200019
10.1002/adma.201504765
10.1021/jacs.8b03106
10.1002/adma.201603835
10.1002/aenm.201801462
10.1016/j.nanoen.2016.02.008
10.1016/j.isci.2018.07.021
10.1021/acsami.6b16708
10.1039/C7TA01161J
10.1021/ja308170k
10.1016/j.ssi.2013.01.002
10.1149/2.1151610jes
10.1039/C2EE23355J
10.1002/adfm.202001812
10.1038/nmat3066
10.1016/j.ssi.2012.03.012
10.1002/aenm.201800813
10.1038/ncomms3985
10.1002/adfm.201303080
10.1039/C6EE02326F
10.1039/C7TA05145J
10.1016/j.electacta.2017.09.156
10.1038/s41560-019-0349-7
10.1002/adfm.201707533
10.1016/j.mattod.2019.09.018
10.1002/adma.201506111
10.1002/aenm.201702657
10.1021/acsenergylett.7b00175
10.1038/ncomms2513
10.1002/adma.201700542
10.1002/adfm.201800508
10.1016/j.jpowsour.2012.12.102
10.1002/adma.202000302
10.1021/acs.nanolett.5b04166
10.1021/cr500062v
10.1021/acs.chemmater.5b01582
10.1039/C7TA03699J
10.1039/C6TA07384K
10.1002/advs.201700032
10.1016/j.jpowsour.2015.11.018
10.1039/C5RA24256H
10.1002/anie.201903466
10.1002/anie.200703900
10.1039/C7EE01004D
10.1021/nn400391h
10.1021/acsenergylett.7b00792
10.1016/j.jpowsour.2016.09.009
10.1002/aenm.201300655
10.1149/2.0351906jes
10.1021/jacs.7b10864
10.1021/ar300094m
10.1002/adma.201602913
10.1002/adfm.202001607
10.1073/pnas.1703937114
10.1021/ja513009v
10.1007/s10008-014-2654-1
10.3390/membranes2030553
10.1002/aenm.201803774
10.1002/aenm.201700260
10.1016/j.apenergy.2017.12.086
10.1039/c2jm16802b
10.1007/s41918-018-0011-2
10.1007/s11426-018-9370-0
10.1002/adma.201500180
10.1002/adma.201606823
10.1039/c002639e
10.1016/j.jpowsour.2016.08.058
10.1016/j.jpowsour.2016.12.008
10.1021/jacs.6b10088
10.1038/nenergy.2016.141
10.1016/j.jallcom.2017.06.135
10.1038/nmat3191
10.1038/natrevmats.2016.103
10.1021/acs.nanolett.6b00577
10.1007/s41918-019-00029-3
10.1021/ar2002705
10.1038/s41467-017-00020-w
10.1016/j.electacta.2017.01.155
10.1016/j.electacta.2013.10.069
10.1002/adma.201705702
10.1039/C7EE01898C
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202000791
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202000791
AENM202000791
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21975266; 21805062
– fundername: Chinese Academy of Sciences
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705700; 2016YFA0202500
– fundername: Beijing Natural Science Foundation
  funderid: L172023
– fundername: Beijing National Laboratory for Molecular Sciences
  funderid: BNLMS‐CXXM‐201906
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3
ISSN 1614-6832
IngestDate Fri Jul 25 12:18:23 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Tue Jul 01 01:43:35 EDT 2025
Wed Jan 22 16:30:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3
Notes Dedicated in honor of Nobel Laureate John B. Goodenough
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0322-8476
0000-0002-0546-0626
PQID 2477444751
PQPubID 886389
PageCount 17
ParticipantIDs proquest_journals_2477444751
crossref_citationtrail_10_1002_aenm_202000791
crossref_primary_10_1002_aenm_202000791
wiley_primary_10_1002_aenm_202000791_AENM202000791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 6
2017; 7
2017; 8
2018; 165
2013; 4
2017; 2
2013; 1
2017; 4
1995; 79
2019; 58
2013; 244
2009; 156
2014; 24
2011; 10
2016; 303
2011; 56
2017; 230
2020; 10
2013; 7
2012; 11
2013; 160
2017; 114
2013; 6
2017; 9
2019; 166
2018; 130
2018; 6
2018; 8
2014; 4
2018; 5
2012; 134
2019; 62
2010; 68
2018; 4
2015; 137
2018; 1
2018; 212
2013; 52
2019; 25
2019; 355
2013; 114
2013; 234
2018; 30
2013; 231
2010; 3
2012; 22
2017; 723
2018; 28
2019; 9
2019; 4
2015; 5
2018; 140
2017; 60
2015; 19
2019; 31
2020; 41
2016; 329
2013; 46
2019; 2
2018; 269
2013; 222
2015; 526
2017; 29
2020; 33
2020; 32
2012; 225
2016; 16
2014; 114
2017; 258
2016; 163
2016; 4
2016; 6
2012; 2
2012; 3
2016; 1
2015; 27
1976; 11
2020; 30
2020
2017; 10
2008; 47
2019
2009; 8
2016; 330
2016; 138
2017; 341
2016; 213
2016; 28
2018; 11
2012; 45
2016; 26
2018; 15
2016; 22
Aurbach D. (e_1_2_8_67_1) 2009; 156
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Yang Y. F. (e_1_2_8_65_1) 2018; 8
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
Qu H. (e_1_2_8_49_1) 2018; 5
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
Jiang Z. (e_1_2_8_96_1) 2019
e_1_2_8_24_1
e_1_2_8_47_1
Li Y. (e_1_2_8_84_1) 2010; 68
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
Wang M. (e_1_2_8_51_1) 2019; 25
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Liu X. (e_1_2_8_34_1) 2017; 29
Xin S. (e_1_2_8_62_1) 2017; 6
Cao R. G. (e_1_2_8_13_1) 2015; 5
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
Dhawa T. (e_1_2_8_29_1) 2018; 130
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 6
  start-page: 1385
  year: 2017
  publication-title: Nano Lett.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 244
  start-page: 48
  year: 2013
  publication-title: Solid State Ionics
– volume: 11
  start-page: 203
  year: 1976
  publication-title: Mater. Res. Bull.
– volume: 355
  start-page: 390
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 62
  start-page: 602
  year: 2019
  publication-title: Sci. China Chem.
– volume: 137
  start-page: 2215
  year: 2015
  publication-title: J Am. Chem. Soc.
– volume: 28
  start-page: 3167
  year: 2016
  publication-title: Adv. Mater.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 2
  start-page: 553
  year: 2012
  publication-title: Membranes
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 10
  start-page: 435
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1568
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 222
  start-page: 237
  year: 2013
  publication-title: J. Power Sources
– volume: 303
  start-page: 317
  year: 2016
  publication-title: J. Power Sources
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 1053
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 6155
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2544
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 130
  start-page: 109
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1385
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 3340
  year: 2018
  publication-title: Nano Res.
– volume: 28
  start-page: 1603
  year: 2016
  publication-title: Adv. Mater.
– volume: 166
  start-page: A975
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 163
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 9539
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 278
  year: 2016
  publication-title: Nano Energy
– volume: 225
  start-page: 604
  year: 2012
  publication-title: Solid State Ionics
– volume: 29
  start-page: 8037
  year: 2017
  publication-title: Chem. Mater.
– volume: 6
  start-page: 148
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 7
  start-page: 2829
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 365
  year: 2019
  publication-title: Nat. Energy
– volume: 234
  start-page: 40
  year: 2013
  publication-title: Solid State Ionics
– volume: 16
  start-page: 3545
  year: 2016
  publication-title: Nano Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 151
  year: 2018
  publication-title: iScience
– volume: 19
  start-page: 697
  year: 2015
  publication-title: J. Solid State Electrochem.
– volume: 212
  start-page: 796
  year: 2018
  publication-title: Appl. Energy
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 1125
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 2985
  year: 2013
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 140
  start-page: 6448
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5750
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 231
  start-page: 153
  year: 2013
  publication-title: J. Power Sources
– year: 2019
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1073
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 723
  start-page: 787
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 140
  start-page: 82
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 230
  start-page: 279
  year: 2017
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 2563
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 330
  start-page: 120
  year: 2016
  publication-title: J. Power Sources
– volume: 41
  year: 2020
  publication-title: Macromol. Rapid Commun.
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– volume: 341
  start-page: 165
  year: 2017
  publication-title: J. Power Sources
– volume: 1
  start-page: 2373
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 8
  start-page: 9
  year: 2017
  publication-title: Nat. Commun.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 140
  start-page: 9921
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 2500
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 519
  year: 2016
  publication-title: Nano Lett.
– volume: 1
  start-page: 186
  year: 2013
  publication-title: Energy Technol.
– volume: 16
  start-page: 4521
  year: 2016
  publication-title: Nano Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 56
  start-page: 6055
  year: 2011
  publication-title: Electrochim. Acta
– volume: 58
  start-page: 7802
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 1428
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 1402
  year: 2017
  publication-title: Sci. China Chem.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 68
  start-page: 1850
  year: 2010
  publication-title: Acta Chim. Sin.
– volume: 33
  start-page: 56
  year: 2020
  publication-title: Mater. Today
– volume: 9
  start-page: 8759
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1166
  year: 2012
  publication-title: Nat. Commun.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 8363
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 45
  start-page: 1759
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 15
  year: 2019
  publication-title: Chem. ‐ Eur. J.
– volume: 2
  start-page: 199
  year: 2019
  publication-title: Electrochem. Energy Rev.
– volume: 26
  start-page: 7164
  year: 2016
  publication-title: Adv. Funct. Mater.
– year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 25
  year: 2017
  publication-title: Adv. Mater.
– volume: 329
  start-page: 268
  year: 2016
  publication-title: J. Power Sources
– volume: 8
  start-page: 9
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 11
  start-page: 527
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 23
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 7460
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 113
  year: 2018
  publication-title: Electrochem. Energy Rev.
– volume: 6
  start-page: 6960
  year: 2016
  publication-title: RSC Adv.
– volume: 114
  start-page: 6197
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 3473
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 269
  start-page: 83
  year: 2018
  publication-title: Electrochim. Acta
– volume: 156
  start-page: A694
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 79
  start-page: 161
  year: 1995
  publication-title: Solid State Ionics
– volume: 3
  start-page: 1531
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 526
  start-page: S93
  year: 2015
  publication-title: Nature
– volume: 47
  start-page: 755
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 114
  start-page: 296
  year: 2013
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 5040
  year: 2015
  publication-title: Chem. Mater.
– volume: 15
  start-page: 37
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 258
  start-page: 110
  year: 2017
  publication-title: Electrochim. Acta
– volume: 213
  start-page: 871
  year: 2016
  publication-title: Electrochim. Acta
– ident: e_1_2_8_41_1
  doi: 10.1038/srep10921
– ident: e_1_2_8_40_1
  doi: 10.1039/C8TA01115J
– volume: 25
  start-page: 15
  year: 2019
  ident: e_1_2_8_51_1
  publication-title: Chem. ‐ Eur. J.
– ident: e_1_2_8_108_1
  doi: 10.1149/2.0041801jes
– ident: e_1_2_8_140_1
  doi: 10.1016/j.ensm.2018.03.015
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.201800919
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201804909
– ident: e_1_2_8_18_1
  doi: 10.1021/ar300179v
– ident: e_1_2_8_118_1
  doi: 10.1021/acs.chemmater.7b02339
– ident: e_1_2_8_103_1
  doi: 10.1016/j.ssi.2013.04.024
– ident: e_1_2_8_130_1
  doi: 10.1016/j.jpowsour.2012.08.041
– ident: e_1_2_8_46_1
  doi: 10.1038/nenergy.2017.90
– ident: e_1_2_8_100_1
  doi: 10.1021/acsenergylett.9b00430
– ident: e_1_2_8_79_1
  doi: 10.1016/j.electacta.2016.08.015
– ident: e_1_2_8_9_1
  doi: 10.1038/nmat2460
– ident: e_1_2_8_57_1
  doi: 10.1002/aenm.201500117
– volume: 68
  start-page: 1850
  year: 2010
  ident: e_1_2_8_84_1
  publication-title: Acta Chim. Sin.
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.8b04612
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2018.08.143
– ident: e_1_2_8_64_1
  doi: 10.1002/anie.201303147
– volume: 130
  start-page: 109
  year: 2018
  ident: e_1_2_8_29_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_48_1
  doi: 10.1021/acsami.7b07057
– ident: e_1_2_8_127_1
  doi: 10.1021/acsaem.8b00227
– ident: e_1_2_8_88_1
  doi: 10.1002/aenm.201903325
– ident: e_1_2_8_133_1
  doi: 10.1002/anie.201300680
– volume: 29
  start-page: 25
  year: 2017
  ident: e_1_2_8_34_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_105_1
  doi: 10.1016/0167-2738(95)00056-C
– ident: e_1_2_8_91_1
  doi: 10.1016/0025-5408(76)90077-5
– ident: e_1_2_8_43_1
  doi: 10.1002/aenm.201301473
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.201808100
– volume: 8
  start-page: 9
  year: 2018
  ident: e_1_2_8_65_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_112_1
  doi: 10.1002/aenm.201602923
– ident: e_1_2_8_60_1
  doi: 10.1007/s11426-017-9041-1
– ident: e_1_2_8_73_1
  doi: 10.1149/2.058309jes
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.201606454
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.201870272
– volume: 5
  start-page: 23
  year: 2015
  ident: e_1_2_8_13_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_42_1
  doi: 10.1002/aenm.201500124
– ident: e_1_2_8_90_1
  doi: 10.1002/marc.202000047
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201602264
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201700449
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.nanolett.6b01754
– ident: e_1_2_8_47_1
  doi: 10.1002/aenm.201601635
– ident: e_1_2_8_26_1
  doi: 10.1038/ncomms2163
– ident: e_1_2_8_28_1
  doi: 10.1039/C6TA09146F
– ident: e_1_2_8_27_1
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_8_115_1
  doi: 10.1039/C7EE02555F
– ident: e_1_2_8_122_1
  doi: 10.1016/j.electacta.2011.04.084
– ident: e_1_2_8_1_1
  doi: 10.1038/526S93a
– ident: e_1_2_8_80_1
  doi: 10.1007/s12274-017-1929-0
– ident: e_1_2_8_87_1
  doi: 10.1126/sciadv.aat5383
– ident: e_1_2_8_55_1
  doi: 10.1016/j.electacta.2018.02.163
– ident: e_1_2_8_125_1
  doi: 10.1002/ente.201200019
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201504765
– ident: e_1_2_8_94_1
  doi: 10.1021/jacs.8b03106
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201603835
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201801462
– volume: 6
  start-page: 1385
  year: 2017
  ident: e_1_2_8_62_1
  publication-title: Nano Lett.
– ident: e_1_2_8_72_1
  doi: 10.1016/j.nanoen.2016.02.008
– ident: e_1_2_8_131_1
  doi: 10.1016/j.isci.2018.07.021
– ident: e_1_2_8_63_1
  doi: 10.1021/acsami.6b16708
– ident: e_1_2_8_53_1
  doi: 10.1039/C7TA01161J
– ident: e_1_2_8_56_1
  doi: 10.1021/ja308170k
– ident: e_1_2_8_78_1
  doi: 10.1016/j.ssi.2013.01.002
– ident: e_1_2_8_77_1
  doi: 10.1149/2.1151610jes
– ident: e_1_2_8_99_1
  doi: 10.1039/C2EE23355J
– ident: e_1_2_8_141_1
  doi: 10.1002/adfm.202001812
– ident: e_1_2_8_128_1
  doi: 10.1021/acsami.7b07057
– ident: e_1_2_8_98_1
  doi: 10.1038/nmat3066
– ident: e_1_2_8_82_1
  doi: 10.1016/j.ssi.2012.03.012
– ident: e_1_2_8_70_1
  doi: 10.1002/aenm.201800813
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms3985
– start-page: e1906221
  year: 2019
  ident: e_1_2_8_96_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.201303080
– ident: e_1_2_8_5_1
  doi: 10.1039/C6EE02326F
– ident: e_1_2_8_85_1
  doi: 10.1039/C7TA05145J
– ident: e_1_2_8_126_1
  doi: 10.1016/j.electacta.2017.09.156
– ident: e_1_2_8_68_1
  doi: 10.1038/s41560-019-0349-7
– ident: e_1_2_8_117_1
  doi: 10.1002/adfm.201707533
– ident: e_1_2_8_135_1
  doi: 10.1016/j.mattod.2019.09.018
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.201506111
– ident: e_1_2_8_3_1
  doi: 10.1002/aenm.201702657
– ident: e_1_2_8_8_1
  doi: 10.1021/acsenergylett.7b00175
– ident: e_1_2_8_136_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201700542
– ident: e_1_2_8_124_1
  doi: 10.1002/adfm.201800508
– ident: e_1_2_8_69_1
  doi: 10.1016/j.jpowsour.2012.12.102
– ident: e_1_2_8_142_1
  doi: 10.1002/adma.202000302
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_8_38_1
  doi: 10.1021/cr500062v
– ident: e_1_2_8_95_1
  doi: 10.1021/acs.chemmater.5b01582
– ident: e_1_2_8_76_1
  doi: 10.1039/C7TA03699J
– ident: e_1_2_8_116_1
  doi: 10.1039/C6TA07384K
– ident: e_1_2_8_66_1
  doi: 10.1002/advs.201700032
– ident: e_1_2_8_104_1
  doi: 10.1016/j.jpowsour.2015.11.018
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201500117
– ident: e_1_2_8_92_1
  doi: 10.1039/C5RA24256H
– ident: e_1_2_8_138_1
  doi: 10.1002/anie.201903466
– ident: e_1_2_8_21_1
  doi: 10.1021/ar300179v
– ident: e_1_2_8_97_1
  doi: 10.1002/anie.200703900
– ident: e_1_2_8_120_1
  doi: 10.1039/C7EE01004D
– ident: e_1_2_8_134_1
  doi: 10.1021/nn400391h
– ident: e_1_2_8_74_1
  doi: 10.1021/acsenergylett.7b00792
– ident: e_1_2_8_106_1
  doi: 10.1016/j.jpowsour.2016.09.009
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201300655
– ident: e_1_2_8_107_1
  doi: 10.1149/2.0351906jes
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_8_58_1
  doi: 10.1021/ar300094m
– ident: e_1_2_8_113_1
  doi: 10.1002/adfm.201870272
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201602913
– ident: e_1_2_8_137_1
  doi: 10.1002/adfm.202001607
– volume: 156
  start-page: A694
  year: 2009
  ident: e_1_2_8_67_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_93_1
  doi: 10.1073/pnas.1703937114
– ident: e_1_2_8_61_1
  doi: 10.1021/ja513009v
– ident: e_1_2_8_109_1
  doi: 10.1007/s10008-014-2654-1
– ident: e_1_2_8_83_1
  doi: 10.3390/membranes2030553
– ident: e_1_2_8_139_1
  doi: 10.1002/aenm.201803774
– ident: e_1_2_8_39_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_8_114_1
  doi: 10.1016/j.apenergy.2017.12.086
– ident: e_1_2_8_121_1
  doi: 10.1039/c2jm16802b
– ident: e_1_2_8_71_1
  doi: 10.1007/s41918-018-0011-2
– ident: e_1_2_8_89_1
  doi: 10.1007/s11426-018-9370-0
– ident: e_1_2_8_132_1
  doi: 10.1002/adma.201500180
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_8_59_1
  doi: 10.1039/c002639e
– ident: e_1_2_8_119_1
  doi: 10.1016/j.jpowsour.2016.08.058
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jpowsour.2016.12.008
– ident: e_1_2_8_12_1
  doi: 10.1021/jacs.6b10088
– ident: e_1_2_8_102_1
  doi: 10.1038/nenergy.2016.141
– ident: e_1_2_8_123_1
  doi: 10.1016/j.jallcom.2017.06.135
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_8_101_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_8_86_1
  doi: 10.1021/acs.nanolett.6b00577
– ident: e_1_2_8_111_1
  doi: 10.1007/s41918-019-00029-3
– ident: e_1_2_8_4_1
  doi: 10.1021/ar2002705
– ident: e_1_2_8_36_1
  doi: 10.1038/s41467-017-00020-w
– ident: e_1_2_8_129_1
  doi: 10.1016/j.electacta.2017.01.155
– ident: e_1_2_8_81_1
  doi: 10.1016/j.electacta.2013.10.069
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201705702
– ident: e_1_2_8_45_1
  doi: 10.1039/C7EE01898C
– volume: 5
  start-page: 1700573
  year: 2018
  ident: e_1_2_8_49_1
  publication-title: Adv. Sci.
SSID ssj0000491033
Score 2.594627
SecondaryResourceType review_article
Snippet Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cathodes
cathode–electrolyte interfaces
Charge transfer
Commercialization
Electrochemistry
Electrolytes
Energy storage
gel polymer electrolytes
Liquid-solid interfaces
Lithium sulfur batteries
porous cathode hosts
solid‐state electrolytes
Solvents
Storage batteries
Sulfur
Title Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000791
https://www.proquest.com/docview/2477444751
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcZ2mHoOkDzaOBhgIdCrUiJZnWGCQuAiMOAjhBnUmgSQoR4NhBIg3JlLVz_2F_SU46kqbRZ7IIBnmWIN4n3gN3Hwn5EGdKarCUYaFEAgEK56HgELgmXLNYZpLJliRpdNw7PEuGk3TS6Xz3qpbqavpZ3v22r-QpWoUx0GvTJfsIzbqbwgD8Bv3CFTQM1__S8XgxK1WJnUpNK99CaVu8EA_wfJvZbWWqIwshkeD7qKwuyvrSSY7rWVFff0KmTVtTaIlpbYmAxh5B8G_xxZaJeNwsvsH2ZesmTrQxh35Celgvcbh_sajbsdIZhXPkMjgX7i4TM2lSEox6KQncRcHmh72-SVxqfwy5mdzWSz2IMc8IOxP1yw6PjLFCzxsagabPiONpX6tU2k4y_bssMv8Ojkdu_hlZYxBxsC5Z2zsYHY1dwg5CKRrFbcOGfT1LAhqxL6sPWXVylpGLH_-0DszpS7JuIo9gD2G0QTp6_oq88PgoX5OhB6jAAOrn_Q8PSoGDUgBQCgyUQAZBFDgQvSFnXwen-4ehOWwjlAkDFbKCKlCPEpJyFVPVl1kfnGeRCHBYRJayRGkYjISgmqZc8QLMk0xTDQ6yVkzFb0l3vpjrdySIs76SsLFPwRdMeiwCuTiLeAGRAi16hdgkoV2dXBom-uZAlFmOHNosb1Yzd6u5ST46-SvkYPmj5I5d7Nx8pzc5SyDEaXgtYZq1CvjHXfIVQGw95U_b5Pnyw9gh3eq61u_Be62muwZXDyzHjwQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solidifying+Cathode%E2%80%93Electrolyte+Interface+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Wen%E2%80%90Peng&rft.au=Zhang%2C+Juan&rft.au=Chou%2C+Jia&rft.au=Yin%2C+Ya%E2%80%90Xia&rft.date=2021-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000791&rft.externalDBID=10.1002%252Faenm.202000791&rft.externalDocID=AENM202000791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon