Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability.
This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries. |
---|---|
AbstractList | Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability.
This progress report surveys the frontier research on solidifying the cathode–electrolyte interface, a promising strategy for addressing the polysulfide crossover issues of Li–S batteries. In addition to the summary of recent advancements, the fundamental knowledge, challenges, and prospects of various types of solidified interfaces are discussed to shed light on the rational design of authentic Li–S batteries. Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most promising candidates for near‐future energy storage markets. However, the energy storage technology based on Li–S systems, even at the single cell level, is far from commercialization. The implementation of the technology is hindered by unstable electrochemistry at the electrode–electrolyte interface, especially the cathode–electrolyte interface. In cases where the cathode builds a solid–liquid interface with the electrolyte, strong interactions between discharge intermediates of S and solvent molecules of the liquid electrolyte lead to continuous loss of active S species from the cathode to the anode through an electrochemical shuttle process, and hampers the cycling performance of the battery. By solidifying the cathode–liquid interface, the polysulfide–solvent interaction is expected to be alleviated and the Li–S electrochemistry improved. In this Progress Report, the strategies to build a solidified cathode–electrolyte interface in liquid, quasi‐solid‐state and all‐solid‐state Li–S systems are summarized, and the fundamentals of charge transfer and chemical evolutions at the interface are discussed. With these discussions, the rational interfacial design of Li–S batteries is elucidated, toward optimal storage performance and operational durability. |
Author | Zhang, Juan You, Ya Yin, Ya‐Xia Wang, Wen‐Peng Chou, Jia Guo, Yu‐Guo Xin, Sen |
Author_xml | – sequence: 1 givenname: Wen‐Peng surname: Wang fullname: Wang, Wen‐Peng organization: University of Chinese Academy of Sciences (UCAS) – sequence: 2 givenname: Juan surname: Zhang fullname: Zhang, Juan organization: University of Chinese Academy of Sciences (UCAS) – sequence: 3 givenname: Jia surname: Chou fullname: Chou, Jia organization: University of Chinese Academy of Sciences (UCAS) – sequence: 4 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia organization: University of Chinese Academy of Sciences (UCAS) – sequence: 5 givenname: Ya surname: You fullname: You, Ya organization: Wuhan University of Technology – sequence: 6 givenname: Sen orcidid: 0000-0002-0546-0626 surname: Xin fullname: Xin, Sen email: xinsen08@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) – sequence: 7 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) |
BookMark | eNqFkMFKAzEQhoNUsNZePS943ppks83mWEvVStVD9RxCMmtTtpuazSJ78x18Q5_ElEoFQTxlyHzfzPCfol7takDonOARwZheKqg3I4opxpgLcoT6ZExYOi4Y7h3qjJ6gYdOsI4OZIDjL-uhu6SprbNnZ-iWZqrByBj7fP2YV6OBd1QVI5nUAXyoNSel8srBhZdtNZJZtVbY-uVIh9i00Z-i4VFUDw-93gJ6vZ0_T23TxeDOfThapZpSSlJbExLuM0oSbjJhCi6LIhGKKCqFETpmB-ImVIkBybnhZFFznOdCcgKEmG6CL_dytd68tNEGuXevruFJSxjljjOckUmxPae-axkMptQ0qWFcHr2wlCZa74OQuOHkILmqjX9rW243y3d-C2AtvtoLuH1pOZg_3P-4XA76E0Q |
CitedBy_id | crossref_primary_10_1002_aenm_202104074 crossref_primary_10_1039_D1TA04376E crossref_primary_10_1002_advs_202204192 crossref_primary_10_1002_batt_202400381 crossref_primary_10_1360_nso_20220036 crossref_primary_10_1002_advs_202203181 crossref_primary_10_1021_acsenergylett_3c02757 crossref_primary_10_1021_acsnano_1c05344 crossref_primary_10_1039_D1TC05311F crossref_primary_10_3390_nano12203612 crossref_primary_10_1002_adma_202207155 crossref_primary_10_1002_asia_202400199 crossref_primary_10_1021_acsaem_0c01991 crossref_primary_10_1021_acsaem_4c01049 crossref_primary_10_3390_coatings12020289 crossref_primary_10_1002_aenm_202203153 crossref_primary_10_1002_aenm_202102962 crossref_primary_10_1021_acsami_4c04145 crossref_primary_10_1111_ijac_14523 crossref_primary_10_1002_batt_202200059 crossref_primary_10_1002_ece2_74 crossref_primary_10_1002_aenm_202002893 crossref_primary_10_1002_anie_202219318 crossref_primary_10_1007_s11431_021_2019_4 crossref_primary_10_1016_j_xcrp_2024_101833 crossref_primary_10_1021_acsami_1c08113 crossref_primary_10_1039_D1QM00395J crossref_primary_10_1021_acssuschemeng_2c04600 crossref_primary_10_1021_acsaem_2c02021 crossref_primary_10_1002_smll_202103744 crossref_primary_10_3390_pr9101822 crossref_primary_10_1039_D2NR01815B crossref_primary_10_1021_acs_chemrev_4c00584 crossref_primary_10_1002_adfm_202101922 crossref_primary_10_1021_acsami_3c07249 crossref_primary_10_1021_acsami_1c10275 crossref_primary_10_1039_D4DT01133C crossref_primary_10_33961_jecst_2022_00143 crossref_primary_10_1002_aenm_202101370 crossref_primary_10_1016_j_cej_2022_136489 crossref_primary_10_1016_j_mattod_2021_10_026 crossref_primary_10_1007_s12209_021_00294_8 crossref_primary_10_1039_D3CP04209J crossref_primary_10_1002_ente_202200421 crossref_primary_10_1039_D1NR03390E crossref_primary_10_1002_aenm_202302688 crossref_primary_10_1021_acsami_1c03194 crossref_primary_10_1016_j_jallcom_2025_179045 crossref_primary_10_1007_s11581_022_04718_w crossref_primary_10_1039_D1TA04532F crossref_primary_10_1002_batt_202400484 crossref_primary_10_1002_adfm_202420157 crossref_primary_10_1002_adfm_202105253 crossref_primary_10_1007_s12274_021_3372_5 crossref_primary_10_1016_j_jechem_2021_06_035 crossref_primary_10_1016_j_jechem_2022_06_035 crossref_primary_10_1002_batt_202400522 crossref_primary_10_1021_acsaem_1c02797 crossref_primary_10_1002_smll_202300843 crossref_primary_10_1021_acsami_1c13193 crossref_primary_10_12677_ms_2024_144060 crossref_primary_10_1002_inf2_12232 crossref_primary_10_1002_adma_202311127 crossref_primary_10_1007_s12274_024_6682_6 crossref_primary_10_1007_s12598_022_02009_x crossref_primary_10_1039_D0NR06732F crossref_primary_10_1002_adfm_202304619 crossref_primary_10_1021_acs_chemmater_4c01514 crossref_primary_10_1002_aenm_202404384 crossref_primary_10_1002_smll_202308550 crossref_primary_10_1002_ente_202201409 crossref_primary_10_1002_asia_202100765 crossref_primary_10_1021_acsami_2c23021 crossref_primary_10_3390_nano14080656 crossref_primary_10_1002_cssc_202202379 crossref_primary_10_1016_j_jcis_2021_12_143 crossref_primary_10_1039_D3EE04183B crossref_primary_10_1039_D3YA00336A crossref_primary_10_1039_D2TA03905B crossref_primary_10_1002_adma_202312880 crossref_primary_10_1002_ange_202219318 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1016_j_cej_2022_138208 crossref_primary_10_1007_s44251_024_00060_7 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1002_aenm_202300767 crossref_primary_10_1021_acsaelm_4c00409 crossref_primary_10_1021_acsenergylett_3c01473 crossref_primary_10_1016_j_mattod_2023_03_019 crossref_primary_10_1002_eem2_12428 crossref_primary_10_1016_j_jpowsour_2022_231517 |
Cites_doi | 10.1038/srep10921 10.1039/C8TA01115J 10.1149/2.0041801jes 10.1016/j.ensm.2018.03.015 10.1002/adfm.201800919 10.1002/adma.201804909 10.1021/ar300179v 10.1021/acs.chemmater.7b02339 10.1016/j.ssi.2013.04.024 10.1016/j.jpowsour.2012.08.041 10.1038/nenergy.2017.90 10.1021/acsenergylett.9b00430 10.1016/j.electacta.2016.08.015 10.1038/nmat2460 10.1002/aenm.201500117 10.1021/jacs.8b04612 10.1016/j.cej.2018.08.143 10.1002/anie.201303147 10.1021/acsami.7b07057 10.1021/acsaem.8b00227 10.1002/aenm.201903325 10.1002/anie.201300680 10.1016/0167-2738(95)00056-C 10.1016/0025-5408(76)90077-5 10.1002/aenm.201301473 10.1002/adma.201808100 10.1002/aenm.201602923 10.1007/s11426-017-9041-1 10.1149/2.058309jes 10.1002/adma.201606454 10.1002/adfm.201870272 10.1002/aenm.201500124 10.1002/marc.202000047 10.1002/adfm.201602264 10.1002/anie.201304762 10.1002/adma.201700449 10.1021/acs.nanolett.6b01754 10.1002/aenm.201601635 10.1038/ncomms2163 10.1039/C6TA09146F 10.1038/nenergy.2016.132 10.1039/C7EE02555F 10.1016/j.electacta.2011.04.084 10.1038/526S93a 10.1007/s12274-017-1929-0 10.1126/sciadv.aat5383 10.1016/j.electacta.2018.02.163 10.1002/ente.201200019 10.1002/adma.201504765 10.1021/jacs.8b03106 10.1002/adma.201603835 10.1002/aenm.201801462 10.1016/j.nanoen.2016.02.008 10.1016/j.isci.2018.07.021 10.1021/acsami.6b16708 10.1039/C7TA01161J 10.1021/ja308170k 10.1016/j.ssi.2013.01.002 10.1149/2.1151610jes 10.1039/C2EE23355J 10.1002/adfm.202001812 10.1038/nmat3066 10.1016/j.ssi.2012.03.012 10.1002/aenm.201800813 10.1038/ncomms3985 10.1002/adfm.201303080 10.1039/C6EE02326F 10.1039/C7TA05145J 10.1016/j.electacta.2017.09.156 10.1038/s41560-019-0349-7 10.1002/adfm.201707533 10.1016/j.mattod.2019.09.018 10.1002/adma.201506111 10.1002/aenm.201702657 10.1021/acsenergylett.7b00175 10.1038/ncomms2513 10.1002/adma.201700542 10.1002/adfm.201800508 10.1016/j.jpowsour.2012.12.102 10.1002/adma.202000302 10.1021/acs.nanolett.5b04166 10.1021/cr500062v 10.1021/acs.chemmater.5b01582 10.1039/C7TA03699J 10.1039/C6TA07384K 10.1002/advs.201700032 10.1016/j.jpowsour.2015.11.018 10.1039/C5RA24256H 10.1002/anie.201903466 10.1002/anie.200703900 10.1039/C7EE01004D 10.1021/nn400391h 10.1021/acsenergylett.7b00792 10.1016/j.jpowsour.2016.09.009 10.1002/aenm.201300655 10.1149/2.0351906jes 10.1021/jacs.7b10864 10.1021/ar300094m 10.1002/adma.201602913 10.1002/adfm.202001607 10.1073/pnas.1703937114 10.1021/ja513009v 10.1007/s10008-014-2654-1 10.3390/membranes2030553 10.1002/aenm.201803774 10.1002/aenm.201700260 10.1016/j.apenergy.2017.12.086 10.1039/c2jm16802b 10.1007/s41918-018-0011-2 10.1007/s11426-018-9370-0 10.1002/adma.201500180 10.1002/adma.201606823 10.1039/c002639e 10.1016/j.jpowsour.2016.08.058 10.1016/j.jpowsour.2016.12.008 10.1021/jacs.6b10088 10.1038/nenergy.2016.141 10.1016/j.jallcom.2017.06.135 10.1038/nmat3191 10.1038/natrevmats.2016.103 10.1021/acs.nanolett.6b00577 10.1007/s41918-019-00029-3 10.1021/ar2002705 10.1038/s41467-017-00020-w 10.1016/j.electacta.2017.01.155 10.1016/j.electacta.2013.10.069 10.1002/adma.201705702 10.1039/C7EE01898C |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202000791 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202000791 AENM202000791 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21975266; 21805062 – fundername: Chinese Academy of Sciences – fundername: National Key Research and Development Program of China funderid: 2019YFA0705700; 2016YFA0202500 – fundername: Beijing Natural Science Foundation funderid: L172023 – fundername: Beijing National Laboratory for Molecular Sciences funderid: BNLMS‐CXXM‐201906 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:23 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Tue Jul 01 01:43:35 EDT 2025 Wed Jan 22 16:30:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4221-2f1d684dac17d31d8c98839a4a299a9524ded8c0aa1e157d7f887c55e251ed2d3 |
Notes | Dedicated in honor of Nobel Laureate John B. Goodenough ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0322-8476 0000-0002-0546-0626 |
PQID | 2477444751 |
PQPubID | 886389 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2477444751 crossref_citationtrail_10_1002_aenm_202000791 crossref_primary_10_1002_aenm_202000791 wiley_primary_10_1002_aenm_202000791_AENM202000791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 6 2017; 7 2017; 8 2018; 165 2013; 4 2017; 2 2013; 1 2017; 4 1995; 79 2019; 58 2013; 244 2009; 156 2014; 24 2011; 10 2016; 303 2011; 56 2017; 230 2020; 10 2013; 7 2012; 11 2013; 160 2017; 114 2013; 6 2017; 9 2019; 166 2018; 130 2018; 6 2018; 8 2014; 4 2018; 5 2012; 134 2019; 62 2010; 68 2018; 4 2015; 137 2018; 1 2018; 212 2013; 52 2019; 25 2019; 355 2013; 114 2013; 234 2018; 30 2013; 231 2010; 3 2012; 22 2017; 723 2018; 28 2019; 9 2019; 4 2015; 5 2018; 140 2017; 60 2015; 19 2019; 31 2020; 41 2016; 329 2013; 46 2019; 2 2018; 269 2013; 222 2015; 526 2017; 29 2020; 33 2020; 32 2012; 225 2016; 16 2014; 114 2017; 258 2016; 163 2016; 4 2016; 6 2012; 2 2012; 3 2016; 1 2015; 27 1976; 11 2020; 30 2020 2017; 10 2008; 47 2019 2009; 8 2016; 330 2016; 138 2017; 341 2016; 213 2016; 28 2018; 11 2012; 45 2016; 26 2018; 15 2016; 22 Aurbach D. (e_1_2_8_67_1) 2009; 156 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Yang Y. F. (e_1_2_8_65_1) 2018; 8 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 Qu H. (e_1_2_8_49_1) 2018; 5 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 Jiang Z. (e_1_2_8_96_1) 2019 e_1_2_8_24_1 e_1_2_8_47_1 Li Y. (e_1_2_8_84_1) 2010; 68 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 Wang M. (e_1_2_8_51_1) 2019; 25 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Liu X. (e_1_2_8_34_1) 2017; 29 Xin S. (e_1_2_8_62_1) 2017; 6 Cao R. G. (e_1_2_8_13_1) 2015; 5 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 Dhawa T. (e_1_2_8_29_1) 2018; 130 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 6 start-page: 1385 year: 2017 publication-title: Nano Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 244 start-page: 48 year: 2013 publication-title: Solid State Ionics – volume: 11 start-page: 203 year: 1976 publication-title: Mater. Res. Bull. – volume: 355 start-page: 390 year: 2019 publication-title: Chem. Eng. J. – volume: 160 year: 2013 publication-title: J. Electrochem. Soc. – volume: 62 start-page: 602 year: 2019 publication-title: Sci. China Chem. – volume: 137 start-page: 2215 year: 2015 publication-title: J Am. Chem. Soc. – volume: 28 start-page: 3167 year: 2016 publication-title: Adv. Mater. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 2 start-page: 553 year: 2012 publication-title: Membranes – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 10 start-page: 435 year: 2017 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1568 year: 2017 publication-title: Energy Environ. Sci. – volume: 222 start-page: 237 year: 2013 publication-title: J. Power Sources – volume: 303 start-page: 317 year: 2016 publication-title: J. Power Sources – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 1053 year: 2013 publication-title: Acc. Chem. Res. – volume: 6 start-page: 6155 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 start-page: 2544 year: 2017 publication-title: Energy Environ. Sci. – volume: 130 start-page: 109 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1385 year: 2017 publication-title: ACS Energy Lett. – volume: 11 start-page: 3340 year: 2018 publication-title: Nano Res. – volume: 28 start-page: 1603 year: 2016 publication-title: Adv. Mater. – volume: 166 start-page: A975 year: 2019 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 682 year: 2011 publication-title: Nat. Mater. – volume: 163 year: 2016 publication-title: J. Electrochem. Soc. – volume: 28 start-page: 9539 year: 2016 publication-title: Adv. Mater. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 22 start-page: 278 year: 2016 publication-title: Nano Energy – volume: 225 start-page: 604 year: 2012 publication-title: Solid State Ionics – volume: 29 start-page: 8037 year: 2017 publication-title: Chem. Mater. – volume: 6 start-page: 148 year: 2013 publication-title: Energy Environ. Sci. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 7 start-page: 2829 year: 2013 publication-title: ACS Nano – volume: 4 start-page: 365 year: 2019 publication-title: Nat. Energy – volume: 234 start-page: 40 year: 2013 publication-title: Solid State Ionics – volume: 16 start-page: 3545 year: 2016 publication-title: Nano Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 151 year: 2018 publication-title: iScience – volume: 19 start-page: 697 year: 2015 publication-title: J. Solid State Electrochem. – volume: 212 start-page: 796 year: 2018 publication-title: Appl. Energy – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 46 start-page: 1125 year: 2013 publication-title: Acc. Chem. Res. – volume: 4 start-page: 2985 year: 2013 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 140 start-page: 6448 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5750 year: 2017 publication-title: J. Mater. Chem. A – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 231 start-page: 153 year: 2013 publication-title: J. Power Sources – year: 2019 publication-title: Adv. Mater. – volume: 4 start-page: 1073 year: 2019 publication-title: ACS Energy Lett. – volume: 723 start-page: 787 year: 2017 publication-title: J. Alloys Compd. – volume: 140 start-page: 82 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 230 start-page: 279 year: 2017 publication-title: Electrochim. Acta – volume: 2 start-page: 2563 year: 2017 publication-title: ACS Energy Lett. – volume: 330 start-page: 120 year: 2016 publication-title: J. Power Sources – volume: 41 year: 2020 publication-title: Macromol. Rapid Commun. – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – volume: 341 start-page: 165 year: 2017 publication-title: J. Power Sources – volume: 1 start-page: 2373 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 8 start-page: 9 year: 2017 publication-title: Nat. Commun. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 140 start-page: 9921 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 2500 year: 2014 publication-title: Adv. Funct. Mater. – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 16 start-page: 519 year: 2016 publication-title: Nano Lett. – volume: 1 start-page: 186 year: 2013 publication-title: Energy Technol. – volume: 16 start-page: 4521 year: 2016 publication-title: Nano Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 56 start-page: 6055 year: 2011 publication-title: Electrochim. Acta – volume: 58 start-page: 7802 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 5 start-page: 1428 year: 2017 publication-title: J. Mater. Chem. A – volume: 60 start-page: 1402 year: 2017 publication-title: Sci. China Chem. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 68 start-page: 1850 year: 2010 publication-title: Acta Chim. Sin. – volume: 33 start-page: 56 year: 2020 publication-title: Mater. Today – volume: 9 start-page: 8759 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1166 year: 2012 publication-title: Nat. Commun. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 52 start-page: 8363 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 45 start-page: 1759 year: 2012 publication-title: Acc. Chem. Res. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 15 year: 2019 publication-title: Chem. ‐ Eur. J. – volume: 2 start-page: 199 year: 2019 publication-title: Electrochem. Energy Rev. – volume: 26 start-page: 7164 year: 2016 publication-title: Adv. Funct. Mater. – year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 25 year: 2017 publication-title: Adv. Mater. – volume: 329 start-page: 268 year: 2016 publication-title: J. Power Sources – volume: 8 start-page: 9 year: 2018 publication-title: Adv. Energy Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 11 start-page: 527 year: 2018 publication-title: Energy Environ. Sci. – volume: 5 start-page: 23 year: 2015 publication-title: Adv. Energy Mater. – volume: 52 start-page: 7460 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 113 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 6 start-page: 6960 year: 2016 publication-title: RSC Adv. – volume: 114 start-page: 6197 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 3473 year: 2015 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 269 start-page: 83 year: 2018 publication-title: Electrochim. Acta – volume: 156 start-page: A694 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 79 start-page: 161 year: 1995 publication-title: Solid State Ionics – volume: 3 start-page: 1531 year: 2010 publication-title: Energy Environ. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 526 start-page: S93 year: 2015 publication-title: Nature – volume: 47 start-page: 755 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 114 start-page: 296 year: 2013 publication-title: Electrochim. Acta – volume: 27 start-page: 5040 year: 2015 publication-title: Chem. Mater. – volume: 15 start-page: 37 year: 2018 publication-title: Energy Storage Mater. – volume: 258 start-page: 110 year: 2017 publication-title: Electrochim. Acta – volume: 213 start-page: 871 year: 2016 publication-title: Electrochim. Acta – ident: e_1_2_8_41_1 doi: 10.1038/srep10921 – ident: e_1_2_8_40_1 doi: 10.1039/C8TA01115J – volume: 25 start-page: 15 year: 2019 ident: e_1_2_8_51_1 publication-title: Chem. ‐ Eur. J. – ident: e_1_2_8_108_1 doi: 10.1149/2.0041801jes – ident: e_1_2_8_140_1 doi: 10.1016/j.ensm.2018.03.015 – ident: e_1_2_8_44_1 doi: 10.1002/adfm.201800919 – ident: e_1_2_8_75_1 doi: 10.1002/adma.201804909 – ident: e_1_2_8_18_1 doi: 10.1021/ar300179v – ident: e_1_2_8_118_1 doi: 10.1021/acs.chemmater.7b02339 – ident: e_1_2_8_103_1 doi: 10.1016/j.ssi.2013.04.024 – ident: e_1_2_8_130_1 doi: 10.1016/j.jpowsour.2012.08.041 – ident: e_1_2_8_46_1 doi: 10.1038/nenergy.2017.90 – ident: e_1_2_8_100_1 doi: 10.1021/acsenergylett.9b00430 – ident: e_1_2_8_79_1 doi: 10.1016/j.electacta.2016.08.015 – ident: e_1_2_8_9_1 doi: 10.1038/nmat2460 – ident: e_1_2_8_57_1 doi: 10.1002/aenm.201500117 – volume: 68 start-page: 1850 year: 2010 ident: e_1_2_8_84_1 publication-title: Acta Chim. Sin. – ident: e_1_2_8_25_1 doi: 10.1021/jacs.8b04612 – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2018.08.143 – ident: e_1_2_8_64_1 doi: 10.1002/anie.201303147 – volume: 130 start-page: 109 year: 2018 ident: e_1_2_8_29_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_48_1 doi: 10.1021/acsami.7b07057 – ident: e_1_2_8_127_1 doi: 10.1021/acsaem.8b00227 – ident: e_1_2_8_88_1 doi: 10.1002/aenm.201903325 – ident: e_1_2_8_133_1 doi: 10.1002/anie.201300680 – volume: 29 start-page: 25 year: 2017 ident: e_1_2_8_34_1 publication-title: Adv. Mater. – ident: e_1_2_8_105_1 doi: 10.1016/0167-2738(95)00056-C – ident: e_1_2_8_91_1 doi: 10.1016/0025-5408(76)90077-5 – ident: e_1_2_8_43_1 doi: 10.1002/aenm.201301473 – ident: e_1_2_8_110_1 doi: 10.1002/adma.201808100 – volume: 8 start-page: 9 year: 2018 ident: e_1_2_8_65_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_112_1 doi: 10.1002/aenm.201602923 – ident: e_1_2_8_60_1 doi: 10.1007/s11426-017-9041-1 – ident: e_1_2_8_73_1 doi: 10.1149/2.058309jes – ident: e_1_2_8_52_1 doi: 10.1002/adma.201606454 – ident: e_1_2_8_15_1 doi: 10.1002/adfm.201870272 – volume: 5 start-page: 23 year: 2015 ident: e_1_2_8_13_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_42_1 doi: 10.1002/aenm.201500124 – ident: e_1_2_8_90_1 doi: 10.1002/marc.202000047 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201602264 – ident: e_1_2_8_10_1 doi: 10.1002/anie.201304762 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201700449 – ident: e_1_2_8_37_1 doi: 10.1021/acs.nanolett.6b01754 – ident: e_1_2_8_47_1 doi: 10.1002/aenm.201601635 – ident: e_1_2_8_26_1 doi: 10.1038/ncomms2163 – ident: e_1_2_8_28_1 doi: 10.1039/C6TA09146F – ident: e_1_2_8_27_1 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_8_115_1 doi: 10.1039/C7EE02555F – ident: e_1_2_8_122_1 doi: 10.1016/j.electacta.2011.04.084 – ident: e_1_2_8_1_1 doi: 10.1038/526S93a – ident: e_1_2_8_80_1 doi: 10.1007/s12274-017-1929-0 – ident: e_1_2_8_87_1 doi: 10.1126/sciadv.aat5383 – ident: e_1_2_8_55_1 doi: 10.1016/j.electacta.2018.02.163 – ident: e_1_2_8_125_1 doi: 10.1002/ente.201200019 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201504765 – ident: e_1_2_8_94_1 doi: 10.1021/jacs.8b03106 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201603835 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201801462 – volume: 6 start-page: 1385 year: 2017 ident: e_1_2_8_62_1 publication-title: Nano Lett. – ident: e_1_2_8_72_1 doi: 10.1016/j.nanoen.2016.02.008 – ident: e_1_2_8_131_1 doi: 10.1016/j.isci.2018.07.021 – ident: e_1_2_8_63_1 doi: 10.1021/acsami.6b16708 – ident: e_1_2_8_53_1 doi: 10.1039/C7TA01161J – ident: e_1_2_8_56_1 doi: 10.1021/ja308170k – ident: e_1_2_8_78_1 doi: 10.1016/j.ssi.2013.01.002 – ident: e_1_2_8_77_1 doi: 10.1149/2.1151610jes – ident: e_1_2_8_99_1 doi: 10.1039/C2EE23355J – ident: e_1_2_8_141_1 doi: 10.1002/adfm.202001812 – ident: e_1_2_8_128_1 doi: 10.1021/acsami.7b07057 – ident: e_1_2_8_98_1 doi: 10.1038/nmat3066 – ident: e_1_2_8_82_1 doi: 10.1016/j.ssi.2012.03.012 – ident: e_1_2_8_70_1 doi: 10.1002/aenm.201800813 – ident: e_1_2_8_6_1 doi: 10.1038/ncomms3985 – start-page: e1906221 year: 2019 ident: e_1_2_8_96_1 publication-title: Adv. Mater. – ident: e_1_2_8_50_1 doi: 10.1002/adfm.201303080 – ident: e_1_2_8_5_1 doi: 10.1039/C6EE02326F – ident: e_1_2_8_85_1 doi: 10.1039/C7TA05145J – ident: e_1_2_8_126_1 doi: 10.1016/j.electacta.2017.09.156 – ident: e_1_2_8_68_1 doi: 10.1038/s41560-019-0349-7 – ident: e_1_2_8_117_1 doi: 10.1002/adfm.201707533 – ident: e_1_2_8_135_1 doi: 10.1016/j.mattod.2019.09.018 – ident: e_1_2_8_32_1 doi: 10.1002/adma.201506111 – ident: e_1_2_8_3_1 doi: 10.1002/aenm.201702657 – ident: e_1_2_8_8_1 doi: 10.1021/acsenergylett.7b00175 – ident: e_1_2_8_136_1 doi: 10.1038/ncomms2513 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201700542 – ident: e_1_2_8_124_1 doi: 10.1002/adfm.201800508 – ident: e_1_2_8_69_1 doi: 10.1016/j.jpowsour.2012.12.102 – ident: e_1_2_8_142_1 doi: 10.1002/adma.202000302 – ident: e_1_2_8_24_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_8_38_1 doi: 10.1021/cr500062v – ident: e_1_2_8_95_1 doi: 10.1021/acs.chemmater.5b01582 – ident: e_1_2_8_76_1 doi: 10.1039/C7TA03699J – ident: e_1_2_8_116_1 doi: 10.1039/C6TA07384K – ident: e_1_2_8_66_1 doi: 10.1002/advs.201700032 – ident: e_1_2_8_104_1 doi: 10.1016/j.jpowsour.2015.11.018 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201500117 – ident: e_1_2_8_92_1 doi: 10.1039/C5RA24256H – ident: e_1_2_8_138_1 doi: 10.1002/anie.201903466 – ident: e_1_2_8_21_1 doi: 10.1021/ar300179v – ident: e_1_2_8_97_1 doi: 10.1002/anie.200703900 – ident: e_1_2_8_120_1 doi: 10.1039/C7EE01004D – ident: e_1_2_8_134_1 doi: 10.1021/nn400391h – ident: e_1_2_8_74_1 doi: 10.1021/acsenergylett.7b00792 – ident: e_1_2_8_106_1 doi: 10.1016/j.jpowsour.2016.09.009 – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201300655 – ident: e_1_2_8_107_1 doi: 10.1149/2.0351906jes – ident: e_1_2_8_14_1 doi: 10.1021/jacs.7b10864 – ident: e_1_2_8_58_1 doi: 10.1021/ar300094m – ident: e_1_2_8_113_1 doi: 10.1002/adfm.201870272 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201602913 – ident: e_1_2_8_137_1 doi: 10.1002/adfm.202001607 – volume: 156 start-page: A694 year: 2009 ident: e_1_2_8_67_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_93_1 doi: 10.1073/pnas.1703937114 – ident: e_1_2_8_61_1 doi: 10.1021/ja513009v – ident: e_1_2_8_109_1 doi: 10.1007/s10008-014-2654-1 – ident: e_1_2_8_83_1 doi: 10.3390/membranes2030553 – ident: e_1_2_8_139_1 doi: 10.1002/aenm.201803774 – ident: e_1_2_8_39_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_8_114_1 doi: 10.1016/j.apenergy.2017.12.086 – ident: e_1_2_8_121_1 doi: 10.1039/c2jm16802b – ident: e_1_2_8_71_1 doi: 10.1007/s41918-018-0011-2 – ident: e_1_2_8_89_1 doi: 10.1007/s11426-018-9370-0 – ident: e_1_2_8_132_1 doi: 10.1002/adma.201500180 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201606823 – ident: e_1_2_8_59_1 doi: 10.1039/c002639e – ident: e_1_2_8_119_1 doi: 10.1016/j.jpowsour.2016.08.058 – ident: e_1_2_8_54_1 doi: 10.1016/j.jpowsour.2016.12.008 – ident: e_1_2_8_12_1 doi: 10.1021/jacs.6b10088 – ident: e_1_2_8_102_1 doi: 10.1038/nenergy.2016.141 – ident: e_1_2_8_123_1 doi: 10.1016/j.jallcom.2017.06.135 – ident: e_1_2_8_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_8_101_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_8_86_1 doi: 10.1021/acs.nanolett.6b00577 – ident: e_1_2_8_111_1 doi: 10.1007/s41918-019-00029-3 – ident: e_1_2_8_4_1 doi: 10.1021/ar2002705 – ident: e_1_2_8_36_1 doi: 10.1038/s41467-017-00020-w – ident: e_1_2_8_129_1 doi: 10.1016/j.electacta.2017.01.155 – ident: e_1_2_8_81_1 doi: 10.1016/j.electacta.2013.10.069 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201705702 – ident: e_1_2_8_45_1 doi: 10.1039/C7EE01898C – volume: 5 start-page: 1700573 year: 2018 ident: e_1_2_8_49_1 publication-title: Adv. Sci. |
SSID | ssj0000491033 |
Score | 2.594627 |
SecondaryResourceType | review_article |
Snippet | Lithium–sulfur (Li–S) batteries, with their distinct advantages in energy output, cost, and environmental benignancy, have been recognized as one of the most... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cathodes cathode–electrolyte interfaces Charge transfer Commercialization Electrochemistry Electrolytes Energy storage gel polymer electrolytes Liquid-solid interfaces Lithium sulfur batteries porous cathode hosts solid‐state electrolytes Solvents Storage batteries Sulfur |
Title | Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000791 https://www.proquest.com/docview/2477444751 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcZ2mHoOkDzaOBhgIdCrUiJZnWGCQuAiMOAjhBnUmgSQoR4NhBIg3JlLVz_2F_SU46kqbRZ7IIBnmWIN4n3gN3Hwn5EGdKarCUYaFEAgEK56HgELgmXLNYZpLJliRpdNw7PEuGk3TS6Xz3qpbqavpZ3v22r-QpWoUx0GvTJfsIzbqbwgD8Bv3CFTQM1__S8XgxK1WJnUpNK99CaVu8EA_wfJvZbWWqIwshkeD7qKwuyvrSSY7rWVFff0KmTVtTaIlpbYmAxh5B8G_xxZaJeNwsvsH2ZesmTrQxh35Celgvcbh_sajbsdIZhXPkMjgX7i4TM2lSEox6KQncRcHmh72-SVxqfwy5mdzWSz2IMc8IOxP1yw6PjLFCzxsagabPiONpX6tU2k4y_bssMv8Ojkdu_hlZYxBxsC5Z2zsYHY1dwg5CKRrFbcOGfT1LAhqxL6sPWXVylpGLH_-0DszpS7JuIo9gD2G0QTp6_oq88PgoX5OhB6jAAOrn_Q8PSoGDUgBQCgyUQAZBFDgQvSFnXwen-4ehOWwjlAkDFbKCKlCPEpJyFVPVl1kfnGeRCHBYRJayRGkYjISgmqZc8QLMk0xTDQ6yVkzFb0l3vpjrdySIs76SsLFPwRdMeiwCuTiLeAGRAi16hdgkoV2dXBom-uZAlFmOHNosb1Yzd6u5ST46-SvkYPmj5I5d7Nx8pzc5SyDEaXgtYZq1CvjHXfIVQGw95U_b5Pnyw9gh3eq61u_Be62muwZXDyzHjwQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solidifying+Cathode%E2%80%93Electrolyte+Interface+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Wen%E2%80%90Peng&rft.au=Zhang%2C+Juan&rft.au=Chou%2C+Jia&rft.au=Yin%2C+Ya%E2%80%90Xia&rft.date=2021-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000791&rft.externalDBID=10.1002%252Faenm.202000791&rft.externalDocID=AENM202000791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |