Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All‐Solid‐State Zinc–Air Battery
Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitro...
Saved in:
Published in | Advanced energy materials Vol. 7; no. 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm−2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic.
Bamboo‐like FeCo alloy encapsulated in nitrogen‐doped carbon nanotubes exhibits superior catalytic oxygen reduction and oxygen evolution performance than that of noble metal benchmarks, which benefits from the nitrogen‐rich and defect‐rich catalyst surface. The all‐solid‐state zinc–air batteries equipped by the synthesized materials show low charging/discharging overpotentials, long lifetime, and high flexibility, suitable for practical application. |
---|---|
AbstractList | Rational design and exploration of robust and low-cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal-air batteries. Herein, a novel high-performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen-doped graphitic carbon nanotubes with bamboo-like structure. The obtained catalyst exhibits a positive half-wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm-2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N-doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N-rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc-air batteries using liquid electrolytes and the all-solid-state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging-discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new-generation powerful rechargeable batteries with portable or even wearable characteristic. Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm−2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic. Bamboo‐like FeCo alloy encapsulated in nitrogen‐doped carbon nanotubes exhibits superior catalytic oxygen reduction and oxygen evolution performance than that of noble metal benchmarks, which benefits from the nitrogen‐rich and defect‐rich catalyst surface. The all‐solid‐state zinc–air batteries equipped by the synthesized materials show low charging/discharging overpotentials, long lifetime, and high flexibility, suitable for practical application. Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm −2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic. |
Author | Liu, Zhao‐Qing Su, Chang‐Yuan Cheng, Hui Li, Wei Li, Nan Ma, Tian‐Yi Bai, Fu‐Quan Hou, Zhufeng Zhang, Hong‐Xing |
Author_xml | – sequence: 1 givenname: Chang‐Yuan surname: Su fullname: Su, Chang‐Yuan organization: Guangzhou Higher Education Mega Center – sequence: 2 givenname: Hui surname: Cheng fullname: Cheng, Hui organization: Guangzhou Higher Education Mega Center – sequence: 3 givenname: Wei surname: Li fullname: Li, Wei organization: Jilin University – sequence: 4 givenname: Zhao‐Qing surname: Liu fullname: Liu, Zhao‐Qing email: lzqgzu@gzhu.edu.cn organization: Guangzhou Higher Education Mega Center – sequence: 5 givenname: Nan surname: Li fullname: Li, Nan organization: Guangzhou Higher Education Mega Center – sequence: 6 givenname: Zhufeng surname: Hou fullname: Hou, Zhufeng organization: National Institute for Materials Science (NIMS) – sequence: 7 givenname: Fu‐Quan surname: Bai fullname: Bai, Fu‐Quan organization: Jilin University – sequence: 8 givenname: Hong‐Xing surname: Zhang fullname: Zhang, Hong‐Xing organization: Jilin University – sequence: 9 givenname: Tian‐Yi surname: Ma fullname: Ma, Tian‐Yi email: tian-yi.ma@adelaide.edu.au organization: University of Adelaide |
BookMark | eNqFkE1LAzEQhoMo-Hn1HPDcmmTT7e5xLa0KfoAfFy9LdjKrkXSj2RTtzZ-g-A_7S8xaURDEucwM8z4zzLtJVhvXICG7nPU5Y2JfYTPtC8ZTJqRgK2SDp1z20kyy1e86Eetkp23vWQyZc5YkG-StCG5qgJ46PbMqGNdQV9MJjtzi5f3MBO9usYnlSPkqzg5MPWugkylLz5_ncUjHFiHqNLa0dp5eINwpf4uqskhVo-nE4rPpmsLaxcvrpbNGdzmogPTGNBDXF8bTAxUC-vk2WauVbXHnK2-R68n4anTUOzk_PB4VJz2QQrAeQJoN8hqHyRAyGLAkrTQkWZIDSoE8A5HFr0EzyaXMQSNXw0pUWqDOKl1XyRbZW-598O5xhm0o793Mx7_akud8MExzwfKo6i9V4F3beqzLB2-mys9LzsrO-bJzvvx2PgLyFwAmfBobvDL2byxfYk_G4vyfI2UxPjv9YT8A-zOhaA |
CitedBy_id | crossref_primary_10_1002_cctc_201901601 crossref_primary_10_1016_j_apsusc_2023_158975 crossref_primary_10_1007_s12274_020_2702_3 crossref_primary_10_1002_adma_201803339 crossref_primary_10_1016_j_jallcom_2020_157070 crossref_primary_10_1002_aenm_201900911 crossref_primary_10_1016_j_carbon_2020_09_024 crossref_primary_10_1021_acsenergylett_8b00303 crossref_primary_10_1039_C9TA05239A crossref_primary_10_1016_j_ccr_2022_214854 crossref_primary_10_1016_j_ijhydene_2019_03_093 crossref_primary_10_1002_ange_201814605 crossref_primary_10_1002_smll_202402762 crossref_primary_10_1016_j_carbon_2020_11_089 crossref_primary_10_1039_D2TA06351D crossref_primary_10_1039_C9DT03923F crossref_primary_10_1021_acsami_1c17374 crossref_primary_10_1039_D0TA00962H crossref_primary_10_1016_j_jcis_2024_02_079 crossref_primary_10_1016_j_jallcom_2021_159417 crossref_primary_10_1016_j_scitotenv_2022_157147 crossref_primary_10_1002_celc_202001475 crossref_primary_10_1016_j_ijhydene_2024_12_116 crossref_primary_10_34133_2021_7386210 crossref_primary_10_1016_j_mtchem_2024_102213 crossref_primary_10_1016_j_cej_2020_126214 crossref_primary_10_1021_acsami_1c10510 crossref_primary_10_1016_j_est_2022_106202 crossref_primary_10_1016_j_cplett_2023_140996 crossref_primary_10_1002_admt_202100673 crossref_primary_10_1007_s12274_022_5197_2 crossref_primary_10_1016_j_ijhydene_2022_10_190 crossref_primary_10_1039_C9NJ04422A crossref_primary_10_1016_j_jece_2024_113417 crossref_primary_10_1021_acssuschemeng_8b06624 crossref_primary_10_1002_aenm_202100514 crossref_primary_10_1016_j_jece_2022_108986 crossref_primary_10_1021_acssuschemeng_8b03232 crossref_primary_10_1016_j_jelechem_2024_118075 crossref_primary_10_1002_aenm_201801396 crossref_primary_10_1016_j_jpowsour_2020_229188 crossref_primary_10_1016_j_jpowsour_2021_230225 crossref_primary_10_1002_adma_201804653 crossref_primary_10_1016_j_cej_2020_125158 crossref_primary_10_1002_sstr_202100103 crossref_primary_10_1016_j_cej_2023_142411 crossref_primary_10_3390_nano9091284 crossref_primary_10_1016_j_ijhydene_2021_07_185 crossref_primary_10_1016_j_jcis_2024_11_093 crossref_primary_10_1021_acsami_1c00837 crossref_primary_10_1007_s12598_022_02121_y crossref_primary_10_1002_adma_201704609 crossref_primary_10_1016_j_jhazmat_2023_132626 crossref_primary_10_1002_celc_201800329 crossref_primary_10_1016_j_jpowsour_2021_229570 crossref_primary_10_1039_D0NR08781E crossref_primary_10_1021_acs_jpcc_1c09309 crossref_primary_10_1016_j_seppur_2022_122974 crossref_primary_10_1016_j_jiec_2022_11_002 crossref_primary_10_1016_j_electacta_2018_11_024 crossref_primary_10_1016_j_asems_2022_100037 crossref_primary_10_1002_smll_202206445 crossref_primary_10_1002_adfm_201906081 crossref_primary_10_1016_j_apcatb_2018_09_024 crossref_primary_10_26599_CF_2024_9200024 crossref_primary_10_1016_j_cej_2021_134261 crossref_primary_10_1007_s12598_020_01470_w crossref_primary_10_1016_j_carbon_2020_09_010 crossref_primary_10_1021_acsnano_0c08135 crossref_primary_10_1002_advs_202004572 crossref_primary_10_1002_aenm_201802263 crossref_primary_10_1016_j_jallcom_2023_172189 crossref_primary_10_1007_s40843_021_1732_1 crossref_primary_10_1007_s11581_023_04988_y crossref_primary_10_1016_j_cej_2024_153820 crossref_primary_10_3390_nano8090643 crossref_primary_10_1002_adma_202002292 crossref_primary_10_1016_j_gee_2022_02_005 crossref_primary_10_1016_j_ensm_2018_04_010 crossref_primary_10_1039_D0TA02825H crossref_primary_10_1007_s11426_023_1863_8 crossref_primary_10_1039_C9SC04221K crossref_primary_10_1016_j_carbon_2018_12_008 crossref_primary_10_1002_anie_202418640 crossref_primary_10_1002_advs_201700691 crossref_primary_10_1016_j_jcis_2020_01_064 crossref_primary_10_1016_j_cej_2023_141301 crossref_primary_10_1002_smll_202102300 crossref_primary_10_1016_j_ensm_2018_03_022 crossref_primary_10_1016_j_jpowsour_2018_11_038 crossref_primary_10_1016_j_jcis_2019_04_026 crossref_primary_10_1002_smll_202100121 crossref_primary_10_1039_D1RE00480H crossref_primary_10_1016_j_jssc_2020_121679 crossref_primary_10_1016_j_ijhydene_2019_03_055 crossref_primary_10_1016_j_apcatb_2022_122067 crossref_primary_10_1002_asia_202300547 crossref_primary_10_1002_cssc_201900383 crossref_primary_10_26599_NRE_2023_9120092 crossref_primary_10_1039_C9CC08250F crossref_primary_10_1039_D1NJ01110C crossref_primary_10_1002_ange_202418640 crossref_primary_10_1039_C8CC02646G crossref_primary_10_1002_slct_202104452 crossref_primary_10_1021_acsami_9b00758 crossref_primary_10_1002_smll_202310694 crossref_primary_10_1039_C8TA02897D crossref_primary_10_1002_anie_201814605 crossref_primary_10_1021_acsaem_0c02234 crossref_primary_10_1002_adfm_201808872 crossref_primary_10_1039_D2TA00750A crossref_primary_10_1016_j_cej_2022_138823 crossref_primary_10_1016_j_chemosphere_2019_125244 crossref_primary_10_1016_j_apcatb_2023_123327 crossref_primary_10_1021_acsami_1c16251 crossref_primary_10_1039_D0TA05510G crossref_primary_10_1016_j_jcat_2023_03_013 crossref_primary_10_1016_j_cej_2020_125160 crossref_primary_10_1039_C9QI01394F crossref_primary_10_1007_s11431_021_1942_6 crossref_primary_10_1021_acs_chemmater_8b04572 crossref_primary_10_1007_s41918_019_00035_5 crossref_primary_10_1039_D0EE00039F crossref_primary_10_1016_j_apsusc_2020_147818 crossref_primary_10_1016_j_jpowsour_2020_227900 crossref_primary_10_1039_C9TA08064C crossref_primary_10_1016_j_apsusc_2019_144212 crossref_primary_10_1039_C8TA10083G crossref_primary_10_1002_ente_202000999 crossref_primary_10_1002_smll_201900307 crossref_primary_10_1002_smll_201901518 crossref_primary_10_1016_j_carbon_2021_09_004 crossref_primary_10_1002_smll_202002518 crossref_primary_10_1016_j_apsusc_2024_161127 crossref_primary_10_1016_j_est_2024_111565 crossref_primary_10_1016_j_cej_2024_158001 crossref_primary_10_1021_acsami_8b19971 crossref_primary_10_1016_j_jallcom_2022_166122 crossref_primary_10_1002_ange_201710852 crossref_primary_10_1016_j_cej_2022_134597 crossref_primary_10_1016_j_carbon_2021_11_017 crossref_primary_10_1021_acs_nanolett_1c00077 crossref_primary_10_1039_D2QM01352E crossref_primary_10_1007_s40820_020_00522_1 crossref_primary_10_1016_j_carbon_2018_12_055 crossref_primary_10_1016_j_jcis_2024_06_236 crossref_primary_10_1021_acsami_2c10387 crossref_primary_10_1021_acsami_8b05215 crossref_primary_10_1039_D2MA00450J crossref_primary_10_1039_C9TA09395H crossref_primary_10_1002_smll_201702074 crossref_primary_10_1002_celc_201800373 crossref_primary_10_1039_D1CC02591K crossref_primary_10_1002_celc_201800013 crossref_primary_10_1039_C9TA04569D crossref_primary_10_1149_2_0631904jes crossref_primary_10_1002_smll_202310318 crossref_primary_10_1039_C9SE00657E crossref_primary_10_1039_D0NJ01164A crossref_primary_10_1016_j_jallcom_2019_01_088 crossref_primary_10_1021_acssuschemeng_0c08727 crossref_primary_10_3389_fchem_2018_00569 crossref_primary_10_1039_C8TA05705B crossref_primary_10_1002_celc_201901433 crossref_primary_10_1007_s40843_022_2054_5 crossref_primary_10_1016_j_micromeso_2020_110627 crossref_primary_10_1039_C8NR01381K crossref_primary_10_1039_C8TA06057F crossref_primary_10_1039_D0TA10370E crossref_primary_10_1016_j_electacta_2019_135566 crossref_primary_10_1002_adfm_201704638 crossref_primary_10_1002_anie_201710852 crossref_primary_10_1002_slct_202201823 crossref_primary_10_1039_C8TA05295F crossref_primary_10_1007_s42452_024_06118_3 crossref_primary_10_1021_acsami_8b07863 crossref_primary_10_1016_j_carbon_2018_06_052 crossref_primary_10_1039_C8EE00522B crossref_primary_10_1002_adfm_202408141 crossref_primary_10_1016_j_cej_2020_125064 crossref_primary_10_1039_C7NR09538D crossref_primary_10_1021_acsnano_2c00547 crossref_primary_10_1016_j_jallcom_2022_164565 crossref_primary_10_1039_D0TA04491A crossref_primary_10_1002_ange_202114696 crossref_primary_10_1016_j_apsusc_2024_160939 crossref_primary_10_1039_D0CC00229A crossref_primary_10_1002_cssc_201903053 crossref_primary_10_1016_j_ijhydene_2022_02_103 crossref_primary_10_1016_j_energy_2018_05_096 crossref_primary_10_1016_j_catcom_2022_106442 crossref_primary_10_1016_j_jcis_2020_07_055 crossref_primary_10_1016_j_nanoen_2018_08_003 crossref_primary_10_1002_cssc_201802909 crossref_primary_10_1016_j_apsusc_2020_148017 crossref_primary_10_1002_smll_202002902 crossref_primary_10_1016_j_apcatb_2018_05_073 crossref_primary_10_1039_D0NR02376K crossref_primary_10_1039_D2NR04741A crossref_primary_10_1007_s12274_022_4563_4 crossref_primary_10_1021_acs_langmuir_1c01532 crossref_primary_10_1016_j_cej_2022_141101 crossref_primary_10_1002_smll_202007239 crossref_primary_10_1002_aenm_202001287 crossref_primary_10_1002_er_8567 crossref_primary_10_1002_cctc_201901337 crossref_primary_10_1002_sstr_202400398 crossref_primary_10_1016_j_fuel_2024_133992 crossref_primary_10_1002_anie_202201007 crossref_primary_10_1021_acs_energyfuels_1c04141 crossref_primary_10_1039_D2NJ06178C crossref_primary_10_1002_adfm_202214206 crossref_primary_10_1016_j_jelechem_2019_01_010 crossref_primary_10_1016_j_apcatb_2019_118431 crossref_primary_10_1021_acs_energyfuels_0c03069 crossref_primary_10_1039_D2NJ03091H crossref_primary_10_1007_s11837_021_04988_1 crossref_primary_10_1016_j_jcis_2023_02_061 crossref_primary_10_1016_j_apcatb_2019_118437 crossref_primary_10_1016_j_ijhydene_2019_01_094 crossref_primary_10_1016_j_jallcom_2024_173710 crossref_primary_10_1016_j_mtener_2022_101151 crossref_primary_10_1039_D1EE01244D crossref_primary_10_1016_j_jcis_2024_06_022 crossref_primary_10_1007_s11051_019_4678_z crossref_primary_10_1016_j_ijhydene_2021_02_079 crossref_primary_10_1021_acssuschemeng_9b05238 crossref_primary_10_1039_C8TA01247D crossref_primary_10_1039_D2DT02132C crossref_primary_10_1016_j_nanoen_2021_106020 crossref_primary_10_1002_batt_202000115 crossref_primary_10_1016_j_apcatb_2023_122674 crossref_primary_10_1002_cctc_201901667 crossref_primary_10_1002_adma_201905622 crossref_primary_10_1021_acsami_9b18651 crossref_primary_10_1002_cctc_201901785 crossref_primary_10_1039_C8CC09553A crossref_primary_10_1039_D2MA00390B crossref_primary_10_1016_j_jallcom_2019_04_325 crossref_primary_10_1016_j_jcis_2021_08_117 crossref_primary_10_1016_j_carbon_2021_09_044 crossref_primary_10_1002_adma_202000721 crossref_primary_10_3390_catal8070269 crossref_primary_10_1016_j_est_2023_108073 crossref_primary_10_1002_cssc_201800509 crossref_primary_10_1016_j_colsurfa_2024_135497 crossref_primary_10_1016_j_ensm_2018_11_034 crossref_primary_10_1016_j_electacta_2021_138980 crossref_primary_10_1016_j_ijhydene_2022_04_175 crossref_primary_10_1002_smll_201800225 crossref_primary_10_1016_j_jcis_2019_12_075 crossref_primary_10_1016_j_electacta_2020_136249 crossref_primary_10_1016_j_nanoen_2021_106111 crossref_primary_10_1016_j_jpowsour_2019_227177 crossref_primary_10_1007_s10853_019_03520_w crossref_primary_10_1016_j_ensm_2018_06_001 crossref_primary_10_1002_ange_202114441 crossref_primary_10_1002_ente_202001117 crossref_primary_10_1016_j_cej_2020_126513 crossref_primary_10_1021_acscatal_7b03949 crossref_primary_10_1007_s12274_021_3369_0 crossref_primary_10_1007_s40820_020_00435_z crossref_primary_10_1021_acssuschemeng_9b04164 crossref_primary_10_3389_fchem_2020_575288 crossref_primary_10_1002_celc_201901754 crossref_primary_10_1002_admt_202201762 crossref_primary_10_1016_j_diamond_2023_110529 crossref_primary_10_1039_C8NR08104B crossref_primary_10_1002_slct_201801085 crossref_primary_10_1016_j_jcis_2021_01_053 crossref_primary_10_1016_j_jpowsour_2020_228594 crossref_primary_10_1002_smsc_202300066 crossref_primary_10_1016_j_apcatb_2021_121006 crossref_primary_10_1016_j_carbon_2023_01_034 crossref_primary_10_1021_acsaem_1c00623 crossref_primary_10_1002_smll_202300551 crossref_primary_10_1016_j_jcis_2022_01_192 crossref_primary_10_1016_j_jelechem_2022_117007 crossref_primary_10_1142_S179329201950108X crossref_primary_10_1002_smll_202006183 crossref_primary_10_1016_j_jmst_2022_03_033 crossref_primary_10_1007_s10853_018_3121_7 crossref_primary_10_1039_C8QI00333E crossref_primary_10_1002_ente_202001106 crossref_primary_10_1002_adfm_201805075 crossref_primary_10_1016_j_carbon_2018_10_064 crossref_primary_10_1016_j_scib_2018_07_008 crossref_primary_10_1016_j_jcis_2023_02_032 crossref_primary_10_1021_acssuschemeng_4c01329 crossref_primary_10_1039_C8CY00226F crossref_primary_10_1039_C8NR03162B crossref_primary_10_1016_j_talanta_2023_124926 crossref_primary_10_1039_C9TC04191E crossref_primary_10_1039_D2TA03047K crossref_primary_10_1002_adfm_202006798 crossref_primary_10_1149_1945_7111_acdd9f crossref_primary_10_1039_D0RA08768H crossref_primary_10_1002_adma_201808267 crossref_primary_10_1016_j_ensm_2018_11_010 crossref_primary_10_1002_smll_201800128 crossref_primary_10_1016_j_jallcom_2025_179475 crossref_primary_10_1039_D2NJ01762H crossref_primary_10_1002_adma_202110585 crossref_primary_10_1002_eom2_12067 crossref_primary_10_1021_acsaem_8b00067 crossref_primary_10_1039_D0SE00893A crossref_primary_10_1039_D1TA06100C crossref_primary_10_1016_j_mtnano_2019_100032 crossref_primary_10_1007_s40843_023_2527_7 crossref_primary_10_1016_j_electacta_2022_140284 crossref_primary_10_1002_adom_202001671 crossref_primary_10_5796_electrochemistry_20_00107 crossref_primary_10_1002_aenm_201903833 crossref_primary_10_1021_acsami_1c12053 crossref_primary_10_1002_adma_201704117 crossref_primary_10_1039_D1CE00761K crossref_primary_10_3390_catal9110954 crossref_primary_10_1002_cey2_284 crossref_primary_10_1016_j_apsusc_2025_162592 crossref_primary_10_1016_j_jcis_2021_07_125 crossref_primary_10_1021_acs_analchem_2c01370 crossref_primary_10_1016_j_apcatb_2019_117871 crossref_primary_10_1149_1945_7111_ac4842 crossref_primary_10_1016_j_fuel_2024_131654 crossref_primary_10_1039_C9TA08016C crossref_primary_10_1002_cnma_201900139 crossref_primary_10_1002_smll_201803409 crossref_primary_10_1021_acsami_1c03220 crossref_primary_10_1039_C9CC04283K crossref_primary_10_1002_slct_202202613 crossref_primary_10_1007_s11581_018_2596_1 crossref_primary_10_1039_C9NR05670J crossref_primary_10_1016_j_cej_2020_127895 crossref_primary_10_1007_s12274_020_3168_z crossref_primary_10_1002_anie_201916507 crossref_primary_10_1016_j_jallcom_2019_05_205 crossref_primary_10_1016_j_carbon_2019_11_046 crossref_primary_10_1039_C8TA09034C crossref_primary_10_1002_chem_201703712 crossref_primary_10_1007_s12274_017_1808_8 crossref_primary_10_1039_C8RA02529K crossref_primary_10_1002_adfm_202006533 crossref_primary_10_1039_D3SE01067H crossref_primary_10_1002_smll_202205283 crossref_primary_10_1039_C9TA06949F crossref_primary_10_1002_ente_202200537 crossref_primary_10_1016_j_surfin_2021_101361 crossref_primary_10_1039_C9NR02914A crossref_primary_10_1002_smll_201801239 crossref_primary_10_1016_j_apcatb_2022_122323 crossref_primary_10_1002_anie_202009913 crossref_primary_10_1016_j_compositesb_2021_109228 crossref_primary_10_1016_j_cej_2020_124257 crossref_primary_10_1149_1945_7111_ad258f crossref_primary_10_1039_C9NR07632H crossref_primary_10_1039_D0TA00793E crossref_primary_10_1016_j_cej_2024_151452 crossref_primary_10_1002_celc_201900996 crossref_primary_10_1016_j_jallcom_2018_12_191 crossref_primary_10_1002_ange_201907017 crossref_primary_10_1002_cctc_201901239 crossref_primary_10_1016_j_ensm_2019_07_028 crossref_primary_10_1039_D2TA02957J crossref_primary_10_1016_j_nanoen_2019_01_028 crossref_primary_10_1016_j_jcis_2021_01_097 crossref_primary_10_1016_j_carbon_2018_10_057 crossref_primary_10_1016_j_coelec_2017_09_006 crossref_primary_10_1002_adma_202212078 crossref_primary_10_1016_j_carbon_2018_04_061 crossref_primary_10_1016_j_electacta_2020_137301 crossref_primary_10_1016_j_jallcom_2022_164964 crossref_primary_10_1016_j_jcis_2022_01_029 crossref_primary_10_1007_s12274_021_3292_4 crossref_primary_10_1039_D3TA03534D crossref_primary_10_1002_aenm_201801836 crossref_primary_10_1016_j_apmate_2021_11_009 crossref_primary_10_1016_j_jcis_2023_11_034 crossref_primary_10_3390_nano13040715 crossref_primary_10_1016_j_matdes_2022_110406 crossref_primary_10_1007_s40820_020_00572_5 crossref_primary_10_1007_s40843_021_1902_2 crossref_primary_10_1016_j_nanoen_2019_104293 crossref_primary_10_1039_D1TA09964G crossref_primary_10_1016_j_apsusc_2020_146588 crossref_primary_10_1016_j_apcatb_2020_118953 crossref_primary_10_1016_j_electacta_2018_01_069 crossref_primary_10_3389_fchem_2019_00678 crossref_primary_10_1016_j_jiec_2023_09_026 crossref_primary_10_1016_j_nanoms_2022_04_002 crossref_primary_10_1039_D0TA08114K crossref_primary_10_1039_D3TA06935D crossref_primary_10_1002_smtd_202000751 crossref_primary_10_1021_acsami_9b09086 crossref_primary_10_1016_j_electacta_2017_07_091 crossref_primary_10_1016_j_jpowsour_2023_232758 crossref_primary_10_1016_j_pmatsci_2020_100717 crossref_primary_10_1021_acsami_0c01940 crossref_primary_10_1016_j_jcis_2019_02_044 crossref_primary_10_1007_s12274_020_2751_7 crossref_primary_10_1021_acsami_8b17283 crossref_primary_10_1002_smll_201702987 crossref_primary_10_1002_asia_202100347 crossref_primary_10_1016_j_apcatb_2020_118729 crossref_primary_10_1016_j_scib_2018_04_003 crossref_primary_10_1016_j_energy_2018_10_161 crossref_primary_10_1039_C7CC07501D crossref_primary_10_1016_j_jcis_2021_06_133 crossref_primary_10_1021_acsami_1c10192 crossref_primary_10_1021_acs_energyfuels_0c01167 crossref_primary_10_1021_acssuschemeng_0c01729 crossref_primary_10_1016_j_apsusc_2021_148934 crossref_primary_10_1039_C9TA09448B crossref_primary_10_1002_cctc_201700985 crossref_primary_10_1016_j_cej_2018_02_039 crossref_primary_10_1021_acsaem_0c03092 crossref_primary_10_1038_s41427_022_00446_9 crossref_primary_10_1002_adfm_201904481 crossref_primary_10_1021_acs_energyfuels_1c00859 crossref_primary_10_1186_s11671_021_03548_5 crossref_primary_10_1021_acssuschemeng_3c01688 crossref_primary_10_1002_anie_202114441 crossref_primary_10_1016_j_ijhydene_2022_05_253 crossref_primary_10_1002_cnl2_145 crossref_primary_10_1007_s12274_020_3127_8 crossref_primary_10_1039_D0NR02618B crossref_primary_10_1016_j_carbon_2019_02_046 crossref_primary_10_1021_acscatal_2c01861 crossref_primary_10_1002_smtd_202100460 crossref_primary_10_1039_D2NH00362G crossref_primary_10_1016_j_apcatb_2022_121429 crossref_primary_10_1016_j_electacta_2021_137817 crossref_primary_10_1021_acssuschemeng_1c00063 crossref_primary_10_1002_cjoc_201700752 crossref_primary_10_1016_j_jece_2022_108052 crossref_primary_10_1016_j_seppur_2020_117237 crossref_primary_10_1016_j_mtphys_2020_100303 crossref_primary_10_1021_acsanm_3c03751 crossref_primary_10_1039_D0CP00109K crossref_primary_10_1002_ange_202201007 crossref_primary_10_1016_j_cej_2020_125718 crossref_primary_10_1021_acsaem_1c00210 crossref_primary_10_1016_j_ensm_2023_103106 crossref_primary_10_1142_S1793292019500036 crossref_primary_10_1039_D0TA06022D crossref_primary_10_1002_cctc_202001131 crossref_primary_10_1016_j_carbon_2022_01_007 crossref_primary_10_1016_j_carbon_2022_10_022 crossref_primary_10_1039_D0NR02196B crossref_primary_10_1002_aenm_201903854 crossref_primary_10_1016_j_apcatb_2020_118869 crossref_primary_10_1039_D2EE02421G crossref_primary_10_1016_j_apcatb_2020_118746 crossref_primary_10_1021_acsanm_4c02087 crossref_primary_10_1039_D0TA00014K crossref_primary_10_1021_jacs_0c01349 crossref_primary_10_1039_D0SE01023E crossref_primary_10_3390_catal14030205 crossref_primary_10_1002_adfm_201802596 crossref_primary_10_1016_j_jcis_2020_06_052 crossref_primary_10_1002_inf2_12000 crossref_primary_10_1007_s40820_023_01022_8 crossref_primary_10_1007_s40843_020_1276_8 crossref_primary_10_1021_acsenergylett_1c00768 crossref_primary_10_1088_2632_959X_abe455 crossref_primary_10_1002_cey2_88 crossref_primary_10_1016_j_cej_2017_07_014 crossref_primary_10_1007_s11244_018_0935_0 crossref_primary_10_1016_j_mtchem_2023_101764 crossref_primary_10_1002_advs_201900628 crossref_primary_10_1016_j_jallcom_2019_152886 crossref_primary_10_1039_D0TA04633G crossref_primary_10_1002_admt_202000476 crossref_primary_10_1002_anie_201915836 crossref_primary_10_1016_j_jcis_2020_04_037 crossref_primary_10_1039_C9TA11654K crossref_primary_10_1016_j_apcatb_2019_118344 crossref_primary_10_1016_j_carbon_2023_04_006 crossref_primary_10_1002_aenm_202101242 crossref_primary_10_1016_j_cej_2020_124408 crossref_primary_10_1002_chem_202100112 crossref_primary_10_1016_j_ijhydene_2022_12_273 crossref_primary_10_1016_j_carbon_2021_02_085 crossref_primary_10_1039_C8CS00324F crossref_primary_10_1002_aic_17785 crossref_primary_10_1016_j_fuel_2023_130674 crossref_primary_10_1016_j_jechem_2022_09_031 crossref_primary_10_1016_j_jelechem_2024_118721 crossref_primary_10_1002_smtd_201900571 crossref_primary_10_3390_pr11020361 crossref_primary_10_1002_aenm_201800955 crossref_primary_10_1002_adma_202413658 crossref_primary_10_1021_acs_inorgchem_4c02915 crossref_primary_10_1039_C8NR07268J crossref_primary_10_1016_j_jechem_2021_07_009 crossref_primary_10_1021_acsnano_7b09064 crossref_primary_10_1039_D3SE00011G crossref_primary_10_1016_j_ces_2024_120186 crossref_primary_10_1016_j_jcis_2019_10_025 crossref_primary_10_1039_C9TA08532G crossref_primary_10_1016_j_ensm_2022_11_046 crossref_primary_10_1016_j_coelec_2023_101436 crossref_primary_10_1016_j_jpowsour_2023_232692 crossref_primary_10_1016_j_jallcom_2019_03_010 crossref_primary_10_1039_C7EE01913K crossref_primary_10_1002_cnma_202000365 crossref_primary_10_1021_acssuschemeng_9b00026 crossref_primary_10_1002_aenm_202100157 crossref_primary_10_1016_j_ijhydene_2018_03_222 crossref_primary_10_1016_j_ceramint_2019_10_168 crossref_primary_10_1021_acssuschemeng_9b05833 crossref_primary_10_1016_j_micromeso_2022_111850 crossref_primary_10_1039_D0TA02334E crossref_primary_10_1002_batt_201900052 crossref_primary_10_1002_chem_201904722 crossref_primary_10_1021_acs_jpclett_2c01687 crossref_primary_10_26599_NR_2025_94907139 crossref_primary_10_1002_adfm_201705048 crossref_primary_10_1021_acscatal_2c01541 crossref_primary_10_1002_smll_201703843 crossref_primary_10_1039_C9MH00502A crossref_primary_10_1016_j_jallcom_2022_164625 crossref_primary_10_1039_D3QI00019B crossref_primary_10_1016_j_nanoen_2018_06_023 crossref_primary_10_1007_s12274_020_2828_3 crossref_primary_10_1016_j_apcatb_2020_118771 crossref_primary_10_1016_j_ccr_2020_213468 crossref_primary_10_1016_j_cej_2020_127814 crossref_primary_10_1016_j_jpowsour_2019_226717 crossref_primary_10_1021_acsaem_0c01931 crossref_primary_10_1039_D0TA01145B crossref_primary_10_1002_aenm_201901227 crossref_primary_10_1016_j_cej_2019_04_067 crossref_primary_10_1016_j_est_2025_115775 crossref_primary_10_1021_acs_nanolett_7b04502 crossref_primary_10_1021_acsami_8b14840 crossref_primary_10_1039_C7DT04063F crossref_primary_10_1142_S1793604718300062 crossref_primary_10_1002_aenm_201902798 crossref_primary_10_1016_j_apcatb_2019_118209 crossref_primary_10_1016_j_jcis_2018_06_014 crossref_primary_10_1016_j_cej_2021_132331 crossref_primary_10_1039_D3NJ00431G crossref_primary_10_3390_polym11040645 crossref_primary_10_1039_C8NR05812A crossref_primary_10_1016_j_jallcom_2020_155791 crossref_primary_10_1039_D0NR00511H crossref_primary_10_1002_smll_202306504 crossref_primary_10_1039_D2NR04933C crossref_primary_10_1039_C8CS00237A crossref_primary_10_1002_adma_201704091 crossref_primary_10_1016_j_jpowsour_2021_230926 crossref_primary_10_1016_j_jpowsour_2019_04_074 crossref_primary_10_1016_j_jallcom_2022_164638 crossref_primary_10_1021_acsami_0c12801 crossref_primary_10_1039_C8NR04627A crossref_primary_10_3390_catal10101164 crossref_primary_10_1016_j_apcatb_2020_119514 crossref_primary_10_1016_j_cej_2022_139253 crossref_primary_10_1002_adfm_201804846 crossref_primary_10_1021_acs_jpcc_9b03788 crossref_primary_10_1016_j_est_2024_114047 crossref_primary_10_1016_j_jpowsour_2024_235239 crossref_primary_10_1039_C8TA10574J crossref_primary_10_3390_batteries6010019 crossref_primary_10_1002_celc_201800819 crossref_primary_10_1149_1945_7111_acd352 crossref_primary_10_26599_NRE_2022_9120027 crossref_primary_10_1016_j_ijhydene_2018_04_002 crossref_primary_10_1142_S1793292018500418 crossref_primary_10_1021_acsaem_9b00675 crossref_primary_10_26599_NR_2025_94907118 crossref_primary_10_3390_catal12070800 crossref_primary_10_1016_j_apcatb_2020_119407 crossref_primary_10_1016_j_jpowsour_2018_09_021 crossref_primary_10_1039_D0TA04798H crossref_primary_10_1016_j_susmat_2020_e00204 crossref_primary_10_1021_acssuschemeng_0c05006 crossref_primary_10_1002_advs_202200394 crossref_primary_10_1002_smsc_202100044 crossref_primary_10_1021_acsami_8b16920 crossref_primary_10_1002_smll_202409325 crossref_primary_10_1016_j_cej_2022_136433 crossref_primary_10_1016_j_cej_2022_136439 crossref_primary_10_1021_acsnano_7b07473 crossref_primary_10_1039_D0QI01155J crossref_primary_10_3390_en15082908 crossref_primary_10_1016_j_synthmet_2020_116575 crossref_primary_10_1021_acsami_1c01875 crossref_primary_10_1002_adma_202109605 crossref_primary_10_1002_gch2_201900027 crossref_primary_10_1016_j_mtener_2021_100693 crossref_primary_10_1007_s11581_019_03022_4 crossref_primary_10_1021_acsami_8b04940 crossref_primary_10_1039_C8NR04733B crossref_primary_10_1002_aenm_201803628 crossref_primary_10_1039_D2CY00720G crossref_primary_10_1016_j_ensm_2018_02_011 crossref_primary_10_1016_j_mtener_2020_100610 crossref_primary_10_1016_j_cej_2020_127395 crossref_primary_10_1021_acsaem_2c00169 crossref_primary_10_1016_j_elecom_2019_01_021 crossref_primary_10_1016_j_ensm_2019_04_018 crossref_primary_10_1016_j_jallcom_2023_169728 crossref_primary_10_1002_ange_201915836 crossref_primary_10_1021_acsaem_8b00663 crossref_primary_10_1016_j_apsusc_2024_160024 crossref_primary_10_1039_C8TA06676K crossref_primary_10_1002_slct_202201291 crossref_primary_10_1039_D0TA09092A crossref_primary_10_1039_C9CC08439H crossref_primary_10_1021_acssuschemeng_1c04259 crossref_primary_10_1016_j_ijhydene_2020_02_212 crossref_primary_10_1002_smll_202408227 crossref_primary_10_1016_j_jallcom_2020_154896 crossref_primary_10_1021_acsami_8b09024 crossref_primary_10_1002_ange_202009913 crossref_primary_10_1016_j_electacta_2019_01_170 crossref_primary_10_1016_j_fuel_2023_130504 crossref_primary_10_1002_eem2_12208 crossref_primary_10_1007_s40820_021_00656_w crossref_primary_10_1016_j_apcatb_2019_118082 crossref_primary_10_1016_j_ijhydene_2020_11_041 crossref_primary_10_1021_acsaem_4c02432 crossref_primary_10_1016_j_cej_2021_129997 crossref_primary_10_1002_smll_201805232 crossref_primary_10_1016_j_cej_2021_129636 crossref_primary_10_1021_acssuschemeng_8b00259 crossref_primary_10_3390_catal9090762 crossref_primary_10_1021_acsami_0c16937 crossref_primary_10_1021_acs_energyfuels_4c01235 crossref_primary_10_1021_acsaem_0c02146 crossref_primary_10_1039_C7CC04099G crossref_primary_10_1002_cnma_202000404 crossref_primary_10_1016_j_jallcom_2020_154421 crossref_primary_10_1002_smll_202107667 crossref_primary_10_1039_C9MH01701A crossref_primary_10_1039_C7NJ02334K crossref_primary_10_1016_j_electacta_2019_134720 crossref_primary_10_1016_j_cej_2018_07_020 crossref_primary_10_1016_j_est_2023_107303 crossref_primary_10_1021_acsami_9b11337 crossref_primary_10_1039_D1TA01912K crossref_primary_10_1016_j_cej_2021_129409 crossref_primary_10_1016_j_cej_2024_150725 crossref_primary_10_1016_j_diamond_2023_110095 crossref_primary_10_1039_C7TA08423D crossref_primary_10_1016_j_cej_2019_123208 crossref_primary_10_1016_j_renene_2022_05_124 crossref_primary_10_1016_j_ijhydene_2020_07_051 crossref_primary_10_1016_j_jallcom_2020_154435 crossref_primary_10_1002_adma_202401858 crossref_primary_10_1039_C7SE00346C crossref_primary_10_3389_fenrg_2022_1082239 crossref_primary_10_1021_acsaem_8b01613 crossref_primary_10_1016_j_jallcom_2021_162508 crossref_primary_10_1016_j_jallcom_2019_152573 crossref_primary_10_1016_j_ensm_2019_04_036 crossref_primary_10_1039_C9SE01058K crossref_primary_10_1021_acs_iecr_2c01350 crossref_primary_10_1021_acsami_1c08104 crossref_primary_10_1039_C8TA05015E crossref_primary_10_1016_j_jcat_2020_10_030 crossref_primary_10_1016_j_apcatb_2022_121923 crossref_primary_10_1016_j_jpowsour_2018_09_064 crossref_primary_10_1002_celc_202101310 crossref_primary_10_1002_smll_201903760 crossref_primary_10_1016_j_apcatb_2020_118594 crossref_primary_10_1002_anie_201907017 crossref_primary_10_1007_s12598_020_01440_2 crossref_primary_10_1002_advs_202105192 crossref_primary_10_1002_adma_201801072 crossref_primary_10_1039_D1CC00460C crossref_primary_10_1021_acsami_8b09197 crossref_primary_10_1002_adfm_201803329 crossref_primary_10_1007_s10853_021_05935_w crossref_primary_10_1039_D0CC05569G crossref_primary_10_1016_j_jelechem_2022_116820 crossref_primary_10_1016_j_apcatb_2021_120849 crossref_primary_10_1016_j_colsurfa_2024_133629 crossref_primary_10_1016_j_nanoen_2018_10_032 crossref_primary_10_1016_j_jelechem_2021_115797 crossref_primary_10_1016_j_apcatb_2019_118198 crossref_primary_10_1016_j_jiec_2022_01_019 crossref_primary_10_1002_anie_202114696 crossref_primary_10_1002_adfm_201805641 crossref_primary_10_1002_aenm_201700927 crossref_primary_10_1016_j_cej_2022_137690 crossref_primary_10_1016_j_jcis_2022_06_035 crossref_primary_10_1021_acs_energyfuels_1c00388 crossref_primary_10_1016_j_fuel_2021_121562 crossref_primary_10_1016_j_ijhydene_2023_03_191 crossref_primary_10_1021_acsenergylett_8b01423 crossref_primary_10_1021_acsami_8b14889 crossref_primary_10_1039_D0CC00823K crossref_primary_10_1016_j_jallcom_2024_177438 crossref_primary_10_1021_acsami_8b15612 crossref_primary_10_1039_C7CC09653D crossref_primary_10_1002_admi_202001922 crossref_primary_10_1021_acssuschemeng_9b00307 crossref_primary_10_1016_j_jcis_2021_05_060 crossref_primary_10_1021_acsaem_8b00970 crossref_primary_10_1002_aenm_201903003 crossref_primary_10_1016_j_apcatb_2021_120977 crossref_primary_10_1002_advs_201901458 crossref_primary_10_1007_s42452_020_2651_1 crossref_primary_10_1557_jmr_2018_238 crossref_primary_10_1007_s12274_022_4424_1 crossref_primary_10_1016_j_jcis_2021_12_099 crossref_primary_10_1016_S1872_2067_18_63053_0 crossref_primary_10_1039_C9TA02264C crossref_primary_10_1002_asia_201901571 crossref_primary_10_1016_j_esci_2022_08_004 crossref_primary_10_1016_j_cej_2020_124702 crossref_primary_10_1039_C7TA07488C crossref_primary_10_1039_D0QI01037E crossref_primary_10_1021_acsami_0c03823 crossref_primary_10_3390_catal12111470 crossref_primary_10_1039_C9EE00315K crossref_primary_10_1021_acsaem_1c03245 crossref_primary_10_1111_jace_19632 crossref_primary_10_1021_acsanm_2c02453 crossref_primary_10_1021_acsanm_4c02428 crossref_primary_10_1016_j_carbon_2021_03_015 crossref_primary_10_1002_cey2_52 crossref_primary_10_1016_j_jpowsour_2019_227653 crossref_primary_10_1039_C8CC05672B crossref_primary_10_1016_j_ijhydene_2018_04_074 crossref_primary_10_1002_cey2_50 crossref_primary_10_1016_j_jpowsour_2019_02_098 crossref_primary_10_1002_chem_201900197 crossref_primary_10_1002_ange_201916507 crossref_primary_10_1002_ente_201901165 crossref_primary_10_1016_j_cattod_2024_115108 crossref_primary_10_1088_1361_6528_ab6cd9 crossref_primary_10_1002_admt_202101105 crossref_primary_10_1002_smll_202407196 crossref_primary_10_1016_j_nanoen_2018_11_057 crossref_primary_10_1039_D1TA06611K crossref_primary_10_1016_j_ijhydene_2023_03_091 crossref_primary_10_1039_C9NR08001E crossref_primary_10_1149_1945_7111_ab861d crossref_primary_10_1007_s42114_023_00824_z crossref_primary_10_1021_acssuschemeng_0c00852 crossref_primary_10_1002_smll_201801929 crossref_primary_10_1039_C7TA09301B crossref_primary_10_1016_j_jallcom_2023_170886 crossref_primary_10_1149_1945_7111_ac6e91 crossref_primary_10_1016_j_apsusc_2022_153446 crossref_primary_10_1016_j_cej_2024_157309 crossref_primary_10_1039_D0NR00138D crossref_primary_10_1016_j_electacta_2019_02_069 |
Cites_doi | 10.1021/ja5129132 10.1016/j.nanoen.2016.06.033 10.1002/anie.201509024 10.1016/j.nanoen.2015.02.025 10.1002/cctc.201000397 10.1021/acscatal.5b01481 10.1016/j.nanoen.2016.04.042 10.1002/anie.201204958 10.1002/adfm.201600636 10.1002/adma.201304867 10.1039/C5CS00414D 10.1021/ja502646c 10.1021/jacs.5b02027 10.1038/nchem.2085 10.1021/jp047349j 10.1002/adma.201506112 10.1021/acsami.5b04368 10.1021/acs.jpcc.5b10931 10.1002/anie.201502173 10.1021/jacs.6b00036 10.1021/jacs.5b11015 10.1002/adma.201506197 10.1038/nenergy.2016.70 10.1002/adfm.201601492 10.1021/acs.nanolett.6b01556 10.1002/adma.201602490 10.1021/acsami.5b06708 10.1021/acs.jpcc.5b10334 10.1002/anie.201605096 10.1126/science.aad0832 10.1021/jacs.5b00281 10.1002/anie.201411125 10.1021/ja511559d 10.1021/ja500432h 10.1002/anie.201509382 10.1039/C6TA00591H 10.1039/C5CY01480H 10.1038/nmat4170 10.1021/acsami.5b11561 10.1039/C4CS00492B 10.1002/aenm.201500753 10.1021/jacs.6b00757 10.1002/adma.201404639 10.1039/C5CC02593A 10.1002/anie.201207277 10.1021/acsami.5b11786 10.1002/anie.201410050 10.1002/anie.201510990 10.1002/adma.201601781 10.1039/C4EE00370E 10.1002/adma.201601406 10.1002/adma.201502853 10.1021/acscatal.6b01242 10.1002/anie.201503612 10.1021/acscatal.6b00531 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201602420 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201602420 AENM201602420 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundations of China funderid: 21576056; 21576057 – fundername: Science and Technology Research Project of Guangdong Province funderid: 2016A010103043 – fundername: Science and Technology Research Project of Guangzhou funderid: 201607010232; 201607010198; 201607010263 – fundername: Australian Research Council funderid: DE150101306 – fundername: High Level University Construction Project – fundername: Guangdong Natural Science Foundation funderid: 2014A030313520; 2015A030313503 – fundername: Linkage Project funderid: LP160100927 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4220-cc6859fe737c8c5036bdc3839ce42e18c28614cd041449cde1a7b2bd2ed8bdfb3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:48 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Tue Jul 01 01:43:19 EDT 2025 Wed Jan 22 16:41:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4220-cc6859fe737c8c5036bdc3839ce42e18c28614cd041449cde1a7b2bd2ed8bdfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1915769209 |
PQPubID | 886389 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1915769209 crossref_primary_10_1002_aenm_201602420 crossref_citationtrail_10_1002_aenm_201602420 wiley_primary_10_1002_aenm_201602420_AENM201602420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 5, 2017 |
PublicationDateYYYYMMDD | 2017-07-05 |
PublicationDate_xml | – month: 07 year: 2017 text: July 5, 2017 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 13 2015; 14 2015; 5 2015; 51 2015; 54 2014; 26 2004; 108 2011; 3 2016; 16 2015; 7 2016; 120 2014; 136 2016; 55 2012; 51 2016; 4 2016; 6 2016; 1 2015; 27 2015; 137 2015; 44 2013; 52 2016; 138 2016; 28 2016; 27 2014; 7 2016; 26 2016; 25 2016; 8 2016; 351 2016; 45 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 6 start-page: 155 year: 2016 publication-title: ACS Catal. – volume: 26 start-page: 2047 year: 2014 publication-title: Adv. Mater. – volume: 27 start-page: 8 year: 2016 publication-title: Nano Energy – volume: 26 start-page: 4397 year: 2016 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 3570 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1305 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 12124 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 1 year: 2016 publication-title: Nat. Energy – volume: 54 start-page: 8179 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 110 year: 2016 publication-title: Nano Energy – volume: 28 start-page: 3777 year: 2016 publication-title: Adv. Mater. – volume: 44 start-page: 3295 year: 2015 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 28 start-page: 7680 year: 2016 publication-title: Adv. Mater. – volume: 14 start-page: 271 year: 2015 publication-title: Nat. Mater. – volume: 55 start-page: 10326 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 1919 year: 2014 publication-title: Energy Environ. Sci. – volume: 27 start-page: 5617 year: 2015 publication-title: Adv. Mater. – volume: 54 start-page: 9654 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 120 start-page: 1586 year: 2016 publication-title: J. Phys. Chem. C – volume: 137 start-page: 5555 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 3541 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 4394 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3468 year: 2016 publication-title: Catal. Sci. Technol. – volume: 28 start-page: 3000 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 1500753 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 start-page: 6992 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 3638 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 12859 year: 2015 publication-title: Chem. Commun. – volume: 108 start-page: 17886 year: 2004 publication-title: J. Phys. Chem. B – volume: 54 start-page: 2131 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 4087 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 1396 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 52 start-page: 371 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 17884 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 7948 year: 2016 publication-title: Adv. Mater. – volume: 13 start-page: 387 year: 2015 publication-title: Nano Energy – volume: 6 start-page: 3558 year: 2016 publication-title: ACS Catal. – volume: 138 start-page: 635 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 6376 year: 2016 publication-title: J. Mater. Chem. A – volume: 55 start-page: 1355 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 21511 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 4932 year: 2016 publication-title: Nano Lett. – volume: 8 start-page: 4118 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 4646 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 6804 year: 2016 publication-title: ACS Catal. – volume: 55 start-page: 1 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 136 start-page: 13629 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 2247 year: 2016 publication-title: J. Phys. Chem. C – volume: 137 start-page: 1436 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 1273 year: 2016 publication-title: Chem. Soc. Rev. – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 28 start-page: 6845 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 5708 year: 2016 publication-title: Adv. Funct. Mater. – ident: e_1_2_5_31_1 doi: 10.1021/ja5129132 – ident: e_1_2_5_11_1 doi: 10.1016/j.nanoen.2016.06.033 – ident: e_1_2_5_23_1 doi: 10.1002/anie.201509024 – ident: e_1_2_5_15_1 doi: 10.1016/j.nanoen.2015.02.025 – ident: e_1_2_5_55_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_5_28_1 doi: 10.1021/acscatal.5b01481 – ident: e_1_2_5_20_1 doi: 10.1016/j.nanoen.2016.04.042 – ident: e_1_2_5_18_1 doi: 10.1002/anie.201204958 – ident: e_1_2_5_29_1 doi: 10.1002/adfm.201600636 – ident: e_1_2_5_46_1 doi: 10.1002/adma.201304867 – ident: e_1_2_5_50_1 doi: 10.1039/C5CS00414D – ident: e_1_2_5_52_1 doi: 10.1021/ja502646c – ident: e_1_2_5_34_1 doi: 10.1021/jacs.5b02027 – ident: e_1_2_5_2_1 doi: 10.1038/nchem.2085 – ident: e_1_2_5_54_1 doi: 10.1021/jp047349j – ident: e_1_2_5_6_1 doi: 10.1002/adma.201506112 – ident: e_1_2_5_38_1 doi: 10.1021/acsami.5b04368 – ident: e_1_2_5_44_1 doi: 10.1021/acs.jpcc.5b10931 – ident: e_1_2_5_22_1 doi: 10.1002/anie.201502173 – ident: e_1_2_5_4_1 doi: 10.1021/jacs.6b00036 – ident: e_1_2_5_21_1 doi: 10.1021/jacs.5b11015 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201506197 – ident: e_1_2_5_3_1 doi: 10.1038/nenergy.2016.70 – ident: e_1_2_5_48_1 doi: 10.1002/adfm.201601492 – ident: e_1_2_5_9_1 doi: 10.1021/acs.nanolett.6b01556 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201602490 – ident: e_1_2_5_43_1 doi: 10.1021/acsami.5b06708 – ident: e_1_2_5_35_1 doi: 10.1021/acs.jpcc.5b10334 – ident: e_1_2_5_16_1 doi: 10.1002/anie.201605096 – ident: e_1_2_5_49_1 doi: 10.1126/science.aad0832 – ident: e_1_2_5_26_1 doi: 10.1021/jacs.5b00281 – ident: e_1_2_5_37_1 doi: 10.1002/anie.201411125 – ident: e_1_2_5_27_1 doi: 10.1021/ja511559d – ident: e_1_2_5_56_1 doi: 10.1021/ja500432h – ident: e_1_2_5_45_1 doi: 10.1002/anie.201509382 – ident: e_1_2_5_17_1 doi: 10.1039/C6TA00591H – ident: e_1_2_5_39_1 doi: 10.1039/C5CY01480H – ident: e_1_2_5_1_1 doi: 10.1038/nmat4170 – ident: e_1_2_5_42_1 doi: 10.1021/acsami.5b11561 – ident: e_1_2_5_32_1 doi: 10.1039/C4CS00492B – ident: e_1_2_5_7_1 doi: 10.1002/aenm.201500753 – ident: e_1_2_5_24_1 doi: 10.1021/jacs.6b00757 – ident: e_1_2_5_13_1 doi: 10.1002/adma.201404639 – ident: e_1_2_5_30_1 doi: 10.1039/C5CC02593A – ident: e_1_2_5_40_1 doi: 10.1002/anie.201207277 – ident: e_1_2_5_36_1 doi: 10.1021/acsami.5b11786 – ident: e_1_2_5_51_1 doi: 10.1002/anie.201204958 – ident: e_1_2_5_41_1 doi: 10.1002/anie.201410050 – ident: e_1_2_5_10_1 doi: 10.1002/anie.201510990 – ident: e_1_2_5_5_1 doi: 10.1002/adma.201601781 – ident: e_1_2_5_25_1 doi: 10.1039/C4EE00370E – ident: e_1_2_5_47_1 doi: 10.1002/adma.201601406 – ident: e_1_2_5_12_1 doi: 10.1002/adma.201502853 – ident: e_1_2_5_53_1 doi: 10.1021/acscatal.6b01242 – ident: e_1_2_5_14_1 doi: 10.1002/anie.201503612 – ident: e_1_2_5_33_1 doi: 10.1021/acscatal.6b00531 |
SSID | ssj0000491033 |
Score | 2.6684875 |
Snippet | Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries.... Rational design and exploration of robust and low-cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal-air batteries.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic structure Bamboo Batteries bifunctional catalysts Bimetals Carbon Carbon nanotubes Catalysts Charging Chemical synthesis Current density Discharge Electrocatalysts Electrodes Electrolytes Electronic structure Encapsulation flexible devices Hydrogen storage Metal air batteries Modulation Nitrogen oxygen evolution reaction oxygen reduction reaction Oxygen reduction reactions Zinc zinc–air batteries |
Title | Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All‐Solid‐State Zinc–Air Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201602420 https://www.proquest.com/docview/1915769209 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZK5wIHxCoKA_IBiUMVSOysx1BaVYgWoZkRw1yieImmUtWMSisBp_kJIP5hfwnP8ZJU7HNJG9dxFL-vfkve-4zQUyJKKlhVeUHEqRdmZeJlqWQeKKOIVqRKIqJqh2fzeHoSvj6NTnu9XSdrabthz_mXX9aVXEWq0AZyVVWy_yFZNyg0wHeQLxxBwnD8JxnnG1VTrPYzM5twKdNvIke1TWGg88VmXcP1rmFUrhn0e7lQCs3EAd9--gxdhmO9I46QDUWDMigVi5JsaqtUeH2iuDPVSb5cuhyJo3oJj-3OlOk6PFvAHNkb5ov1UJN47r1Azm3ugdTFh2A46xlr31KZbABYjOzwH7YtlkfnUi9T0-3CZRU1qQnvZaehGeXsvHRT4r-zytrEOoImiOpHneUZjAkvTk1EVHbbNOmTXdOTLnRpR7s73feT6tBUtKVcKX6CIFa2i98qSZsY4HpGf-6rKYXH85n7_Ro6IODKkD46yF_N3hy5SCD4aIFPm0oQ-3iWXdQnL_Zvsm89tS5R17FqLKPjW-imcWlwrvF5G_Xk6g660SG6vIu-aaTiFqm4rrBC6u7yu8UofNXoxF10Yo1O3KITAzpxF50Y0IktOjGgc3f5tcGl-lSIxAqRMDxgERss3kMnk_HxaOqZzUA8HhLie5zHaZRVMqEJT3kEhhcTnIJ5z2VIZJByksLsceGHQRhmXMigTBhhgkiRMlExeh_1V_VKPkA4pUEkYipCloAKY0lWRlkYphRcG-4nnAyQZye54IYpX23Ysiw0xzcplFAKJ5QBeub6X2iOmN_2PLQyK8w68rEIsgCc_oz42QCRRo5_GaXYw9XDq1z0CF1v_1-HqL9Zb-VjsK437ImB5w-15cev |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+Modulation+of+FeCo%E2%80%93Nitrogen%E2%80%93Carbon+Bifunctional+Oxygen+Electrodes+for+Rechargeable+and+Flexible+All%E2%80%90Solid%E2%80%90State+Zinc%E2%80%93Air+Battery&rft.jtitle=Advanced+energy+materials&rft.au=Su%2C+Chang%E2%80%90Yuan&rft.au=Cheng%2C+Hui&rft.au=Li%2C+Wei&rft.au=Liu%2C+Zhao%E2%80%90Qing&rft.date=2017-07-05&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201602420&rft.externalDBID=10.1002%252Faenm.201602420&rft.externalDocID=AENM201602420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |