Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‐Skin Electronics
Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar ma...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 29 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar materials while retaining their respective properties. Herein, the mechanically interlocked hydrogel–elastomer hybrid is reported as a viable solution to this problem. Hydrogels with low moduli and high adhesiveness are employed as the substrate, while porous elastomer webs are used as matrices to load conductive films and lock the hydrogels through a mechanically interlocked structure. The bonding strength between the hydrogel and elastomer in the interlocking hybrid structure is 14.3 times of that obtained via the physical stacking method. As a proof of concept, interlocking hybrids are used as on‐skin electrodes for electrophysiological signal recording including electromyography and electrocardiography. The robust hybrid electrodes are able to detect signals after multiple cycles. The proposed strategy not only is an effective approach to achieve interlocking structures, but also provides a new perspective for soft and stretchable electronics.
A novel hydrogel–elastomer hybrid is developed by mechanical interlocking. Porous elastomer webs are used as matrices to load conductive materials and lock hydrogels through an interlocking structure to achieve mechanically soft and skin‐adhesive electrodes. The interlocking hybrid is used as an on‐skin electrode for recording electrophysiological signals. |
---|---|
AbstractList | Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar materials while retaining their respective properties. Herein, the mechanically interlocked hydrogel–elastomer hybrid is reported as a viable solution to this problem. Hydrogels with low moduli and high adhesiveness are employed as the substrate, while porous elastomer webs are used as matrices to load conductive films and lock the hydrogels through a mechanically interlocked structure. The bonding strength between the hydrogel and elastomer in the interlocking hybrid structure is 14.3 times of that obtained via the physical stacking method. As a proof of concept, interlocking hybrids are used as on‐skin electrodes for electrophysiological signal recording including electromyography and electrocardiography. The robust hybrid electrodes are able to detect signals after multiple cycles. The proposed strategy not only is an effective approach to achieve interlocking structures, but also provides a new perspective for soft and stretchable electronics. Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar materials while retaining their respective properties. Herein, the mechanically interlocked hydrogel–elastomer hybrid is reported as a viable solution to this problem. Hydrogels with low moduli and high adhesiveness are employed as the substrate, while porous elastomer webs are used as matrices to load conductive films and lock the hydrogels through a mechanically interlocked structure. The bonding strength between the hydrogel and elastomer in the interlocking hybrid structure is 14.3 times of that obtained via the physical stacking method. As a proof of concept, interlocking hybrids are used as on‐skin electrodes for electrophysiological signal recording including electromyography and electrocardiography. The robust hybrid electrodes are able to detect signals after multiple cycles. The proposed strategy not only is an effective approach to achieve interlocking structures, but also provides a new perspective for soft and stretchable electronics. A novel hydrogel–elastomer hybrid is developed by mechanical interlocking. Porous elastomer webs are used as matrices to load conductive materials and lock hydrogels through an interlocking structure to achieve mechanically soft and skin‐adhesive electrodes. The interlocking hybrid is used as an on‐skin electrode for recording electrophysiological signals. |
Author | Liu, Zhihua Chen, Xiaodong Li, Zheng Cai, Pingqiang Zhang, Feilong Ji, Shaobo Loh, Xian Jun Pan, Shaowu Chen, Geng He, Ke Luo, Yifei Wang, Ming |
Author_xml | – sequence: 1 givenname: Shaowu surname: Pan fullname: Pan, Shaowu organization: Nanyang Technological University – sequence: 2 givenname: Feilong surname: Zhang fullname: Zhang, Feilong organization: Nanyang Technological University – sequence: 3 givenname: Pingqiang surname: Cai fullname: Cai, Pingqiang organization: Nanyang Technological University – sequence: 4 givenname: Ming surname: Wang fullname: Wang, Ming organization: Nanyang Technological University – sequence: 5 givenname: Ke surname: He fullname: He, Ke organization: Nanyang Technological University – sequence: 6 givenname: Yifei surname: Luo fullname: Luo, Yifei organization: Institute of Materials Research and Engineering Agency for Science, Technology and Research (ASTAR) – sequence: 7 givenname: Zheng surname: Li fullname: Li, Zheng organization: Nanyang Technological University – sequence: 8 givenname: Geng surname: Chen fullname: Chen, Geng organization: Nanyang Technological University – sequence: 9 givenname: Shaobo surname: Ji fullname: Ji, Shaobo organization: Nanyang Technological University – sequence: 10 givenname: Zhihua surname: Liu fullname: Liu, Zhihua organization: Nanyang Technological University – sequence: 11 givenname: Xian Jun surname: Loh fullname: Loh, Xian Jun organization: Quanzhou Normal University – sequence: 12 givenname: Xiaodong orcidid: 0000-0002-3312-1664 surname: Chen fullname: Chen, Xiaodong email: chenxd@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkM9qAjEQxkOxULW99rzQs3byx11zFKtVUDy0hd6WbJJtV2Nik5WyNx-h0Df0SbpisVAoPQwzDN_vm-FroYZ1ViN0jaGLAcitUPm6SwBz4D0GZ6iJYxx3KJB-4zTj5wvUCmEJgJOEsiZazLV8FbaQwpgqmtpSe-PkSqtoUinvXrTZ7z5HRoTSrbWvl5kvVIhy56OF3e8-HlaFjUZGy9K72iVcovNcmKCvvnsbPY1Hj8NJZ7a4nw4Hs45khECHK5okgmdYAGOq_hiSfgzAqABFs5hD1qtLxkIDppwySgjNCFBBuM6VzGkb3Rx9N969bXUo06XbelufTAkjLKY90odaxY4q6V0IXuepLEpRFs6WXhQmxZAeoksP0aWn6Gqs-wvb-GItfPU3wI_Ae2F09Y86HdyN5z_sF7j_hMU |
CitedBy_id | crossref_primary_10_1002_marc_202100457 crossref_primary_10_1002_adma_202106570 crossref_primary_10_1021_acsami_2c13829 crossref_primary_10_1016_j_cej_2024_149505 crossref_primary_10_1016_j_ijbiomac_2022_02_065 crossref_primary_10_1109_LED_2020_3020937 crossref_primary_10_1039_D3NR00807J crossref_primary_10_1016_j_isci_2023_106715 crossref_primary_10_1002_advs_202201912 crossref_primary_10_1002_adfm_202313504 crossref_primary_10_1002_adma_202301290 crossref_primary_10_1007_s42765_021_00086_8 crossref_primary_10_1016_j_nanoen_2023_109006 crossref_primary_10_1021_acsami_2c17879 crossref_primary_10_1002_smll_202312037 crossref_primary_10_1002_advs_202102314 crossref_primary_10_1021_acsami_0c16985 crossref_primary_10_1002_admi_202200935 crossref_primary_10_1002_advs_202105146 crossref_primary_10_1038_s41467_024_44949_1 crossref_primary_10_3390_bios13070692 crossref_primary_10_1021_acsami_3c08053 crossref_primary_10_1039_D1TC04514H crossref_primary_10_1002_adfm_202413464 crossref_primary_10_1021_acsami_3c08690 crossref_primary_10_1016_j_colsurfb_2024_114323 crossref_primary_10_1016_j_pmatsci_2023_101156 crossref_primary_10_1002_adfm_202302846 crossref_primary_10_1016_j_bios_2021_113231 crossref_primary_10_1002_advs_202309006 crossref_primary_10_1109_TBME_2020_3022615 crossref_primary_10_1360_SSC_2022_0019 crossref_primary_10_1021_acs_chemmater_0c02919 crossref_primary_10_1002_smtd_202101276 crossref_primary_10_1021_acsami_0c05083 crossref_primary_10_1016_j_eurpolymj_2022_111277 crossref_primary_10_1016_j_nantod_2024_102469 crossref_primary_10_1038_s41928_023_00918_y crossref_primary_10_1016_j_cej_2021_132250 crossref_primary_10_1021_acsami_2c01667 crossref_primary_10_1016_j_cej_2025_159937 crossref_primary_10_1016_j_cej_2025_159659 crossref_primary_10_1002_advs_202301116 crossref_primary_10_1021_acsnano_2c07646 crossref_primary_10_1016_j_matt_2020_10_020 crossref_primary_10_1016_j_apmt_2023_101777 crossref_primary_10_1002_app_55727 crossref_primary_10_1016_j_nanoen_2023_108852 crossref_primary_10_1038_s41528_023_00273_0 crossref_primary_10_1002_adfm_202205697 crossref_primary_10_1007_s40843_024_2961_5 crossref_primary_10_1039_D2TB01048H crossref_primary_10_3390_gels10050319 crossref_primary_10_1016_j_device_2024_100563 crossref_primary_10_1039_D2TC04946E crossref_primary_10_1016_j_porgcoat_2022_106784 crossref_primary_10_3390_ijms25052675 crossref_primary_10_1109_OJNANO_2022_3218960 crossref_primary_10_1016_j_mtphys_2020_100258 crossref_primary_10_1021_acs_chemmater_2c01008 crossref_primary_10_1039_D0TA07883B crossref_primary_10_1002_adfm_202303990 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1038_s41467_024_54879_7 crossref_primary_10_1039_D1TC03905A crossref_primary_10_1021_acsami_4c03363 crossref_primary_10_1002_adfm_202411588 crossref_primary_10_1016_j_pmatsci_2023_101139 crossref_primary_10_1002_adem_202401432 crossref_primary_10_1007_s40820_023_01314_z crossref_primary_10_1021_acsnano_2c07097 crossref_primary_10_1007_s40843_022_2411_9 crossref_primary_10_1016_j_cej_2024_149853 crossref_primary_10_1016_j_snb_2025_137377 crossref_primary_10_1002_adma_202007977 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_1016_j_cej_2021_130886 crossref_primary_10_1002_adma_202003014 crossref_primary_10_1002_bio_70148 crossref_primary_10_1002_smtd_202401156 crossref_primary_10_1038_s41586_023_06732_y crossref_primary_10_1039_D0BM01373K crossref_primary_10_1016_j_bios_2022_114825 crossref_primary_10_1021_acsaelm_3c00997 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1039_D3TA07191J crossref_primary_10_1002_smll_202106477 crossref_primary_10_1039_D0MH01656J crossref_primary_10_1038_s41928_024_01194_0 crossref_primary_10_1109_TNSRE_2023_3337861 crossref_primary_10_1002_sstr_202000045 crossref_primary_10_1016_j_compscitech_2022_109751 crossref_primary_10_1021_acsomega_4c05316 crossref_primary_10_1039_D1TC00151E crossref_primary_10_3390_molecules27010165 crossref_primary_10_1002_smll_202310572 crossref_primary_10_1039_D1TA09252A crossref_primary_10_3389_fchem_2022_855352 crossref_primary_10_1016_j_cej_2023_142226 crossref_primary_10_1016_j_cej_2024_151354 crossref_primary_10_1002_adsr_202200054 crossref_primary_10_1021_acsnano_1c07176 crossref_primary_10_1007_s42765_021_00129_0 crossref_primary_10_1016_j_trac_2020_116130 crossref_primary_10_1007_s42765_022_00186_z crossref_primary_10_1016_j_jiec_2022_09_053 crossref_primary_10_1126_sciadv_abf9117 crossref_primary_10_1016_j_biomaterials_2024_122632 crossref_primary_10_1021_acs_analchem_1c03884 crossref_primary_10_1002_adma_202004290 crossref_primary_10_1021_acsami_1c10961 crossref_primary_10_1016_j_porgcoat_2024_108212 crossref_primary_10_1002_adma_202405046 crossref_primary_10_1016_j_cej_2022_138672 crossref_primary_10_1039_D3TC01889J crossref_primary_10_3389_fbioe_2023_1118812 crossref_primary_10_1016_j_nanoen_2025_110805 crossref_primary_10_54097_hset_v63i_10781 crossref_primary_10_1002_adfm_202200360 crossref_primary_10_1021_acssuschemeng_2c06939 crossref_primary_10_1038_s41467_022_34844_y crossref_primary_10_1002_adfm_202102433 crossref_primary_10_1002_advs_202001938 crossref_primary_10_1002_adhm_202102425 crossref_primary_10_1016_j_compositesa_2024_108517 crossref_primary_10_1021_acsami_1c17526 crossref_primary_10_1021_acs_chemrev_3c00498 crossref_primary_10_1007_s40820_023_01096_4 crossref_primary_10_1021_acsaelm_0c00653 crossref_primary_10_1021_acsami_2c20633 crossref_primary_10_1021_acsnano_3c02273 crossref_primary_10_1002_advs_202305226 crossref_primary_10_3390_bios12100854 crossref_primary_10_1021_acsami_3c03182 crossref_primary_10_1002_adsr_202300164 crossref_primary_10_1002_mame_202100931 crossref_primary_10_1016_j_cej_2025_160973 crossref_primary_10_1039_D0TA08664A crossref_primary_10_1063_5_0059204 crossref_primary_10_1002_smm2_1068 crossref_primary_10_1039_D1TA05586K |
Cites_doi | 10.1002/pat.1134 10.1002/adfm.201801683 10.1002/adfm.201102373 10.1002/adma.201304248 10.1126/science.1182383 10.1021/acs.nanolett.9b02014 10.1002/adma.201403807 10.1039/C5NR03155A 10.1002/adfm.201600443 10.1021/acs.chemrev.7b00291 10.1146/annurev-bioeng-071910-124656 10.1039/c2jm32541a 10.1021/ja1062357 10.1039/c1jm13918e 10.1039/C8CS00814K 10.1016/j.nanoen.2018.04.014 10.1002/adma.201504276 10.1039/C8CS00595H 10.1002/adfm.201404247 10.1002/advs.201600190 10.1002/adma.201701780 10.1002/adfm.201803279 10.1038/nmat3755 10.1002/smll.201702933 10.1039/C6RA11020G 10.1002/adma.201602994 10.1002/adma.201800129 10.1038/nmat4863 10.1021/acs.analchem.9b00152 10.1002/adma.201901360 10.1002/adma.201601278 10.1021/acsnano.5b01613 10.1021/acsnano.7b04898 10.1002/adfm.201703852 10.1002/adma.201400263 10.1002/anie.200604646 10.1002/adma.201405807 10.1126/science.1206157 10.1038/s41578-018-0018-7 10.1021/acs.accounts.8b00499 10.1038/nnano.2011.184 10.1038/ncomms12028 10.1016/j.carbon.2009.06.043 10.1021/acs.chemmater.8b01172 10.1063/1.5063657 10.1002/adma.201603382 10.1038/nature21004 10.1016/j.biomaterials.2009.12.052 10.1109/TIM.2013.2289072 10.1002/adfm.201804456 10.1002/smtd.201600029 10.1002/aelm.201900347 10.1002/smtd.201900025 10.1038/nature25494 10.1126/sciadv.1602076 10.1016/j.eml.2015.03.001 10.1002/app.21481 10.1038/s41467-018-06079-3 10.1038/nnano.2017.125 10.1039/C8TC00157J 10.1016/j.actbio.2011.01.011 10.1039/b415094e 10.1021/acsnano.5b01835 10.1073/pnas.1202636109 10.1021/acs.accounts.7b00191 10.1002/adma.201800109 10.1002/adma.201702800 10.1126/science.aaf8810 10.1002/adma.201800323 10.1039/C8CS00609A 10.1002/adma.201801291 10.1002/adma.201902434 10.1038/nnano.2015.324 10.1016/j.snb.2016.06.076 10.1016/j.carbon.2019.04.019 10.1002/adma.201903130 10.1038/nature11409 10.1111/j.1600-0838.1997.tb00120.x 10.1002/adma.201500367 10.1039/C5SM00047E 10.1038/s41467-017-02685-9 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201909540 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201909540 ADFM201909540 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Education - Singapore funderid: MOE2017‐T2‐2‐107 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4220-9d377a9b1a044d90907860043a0d3b690b590bc6ae0139343223b203a29efdcf3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:12:13 EDT 2025 Tue Jul 01 04:12:09 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Wed Jan 22 16:34:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4220-9d377a9b1a044d90907860043a0d3b690b590bc6ae0139343223b203a29efdcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3312-1664 |
PQID | 2424635280 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2424635280 crossref_citationtrail_10_1002_adfm_201909540 crossref_primary_10_1002_adfm_201909540 wiley_primary_10_1002_adfm_201909540_ADFM201909540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 91 2009; 47 2017; 1 2017; 3 2017; 4 2019; 52 2014; 26 2016; 540 2019; 19 2014; 63 2012; 489 2018; 48 2017; 117 1997; 7 2018; 7 2018; 6 2018; 9 2018; 3 2013; 15 2013; 12 2016; 353 2011; 21 2018; 30 2016; 237 2012; 22 2018; 28 2011; 333 2010; 31 2019; 3 2019; 5 2015; 3 2019; 31 2010; 327 2017; 27 2008; 19 2015; 11 2019; 149 2017; 29 2015; 9 2011; 6 2015; 7 2011; 7 2012; 109 2016; 11 2017; 50 2016; 6 2015; 25 2016; 7 2015; 27 2017; 16 2017; 11 2018; 555 2019; 48 2017; 12 2010; 132 2005; 96 2005; 15 2016; 28 2016; 26 2007; 46 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 46 start-page: 5670 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 91 start-page: 6569 year: 2019 publication-title: Anal. Chem. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 540 start-page: 379 year: 2016 publication-title: Nature – volume: 7 start-page: 62 year: 1997 publication-title: Scand. J. Med. Sci. Sports – volume: 12 start-page: 938 year: 2013 publication-title: Nat. Mater. – volume: 27 start-page: 3145 year: 2015 publication-title: Adv. Mater. – volume: 353 start-page: 682 year: 2016 publication-title: Science – volume: 12 start-page: 907 year: 2017 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 244 year: 2018 publication-title: Nat. Commun. – volume: 14 year: 2018 publication-title: Small – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1336 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 472 year: 2016 publication-title: Nat. Nanotechnol. – volume: 489 start-page: 133 year: 2012 publication-title: Nature – volume: 26 start-page: 4511 year: 2016 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 2933 year: 2009 publication-title: Carbon – volume: 48 start-page: 1668 year: 2019 publication-title: Chem. Soc. Rev – volume: 25 start-page: 1219 year: 2015 publication-title: Adv. Funct. Mater. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 28 start-page: 9175 year: 2016 publication-title: Adv. Mater. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 15 start-page: 201 year: 2013 publication-title: Annu. Rev. Biomed. Eng. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 3 start-page: 125 year: 2018 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 6252 year: 2015 publication-title: ACS Nano – volume: 27 start-page: 634 year: 2015 publication-title: Adv. Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 8801 year: 2015 publication-title: ACS Nano – volume: 48 start-page: 569 year: 2018 publication-title: Nano Energy – volume: 26 start-page: 3874 year: 2014 publication-title: Adv. Mater. – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 28 start-page: 9243 year: 2016 publication-title: Adv. Mater. – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 6 start-page: 4183 year: 2018 publication-title: J. Mater. Chem. C – volume: 52 start-page: 82 year: 2019 publication-title: Acc. Chem. Res. – volume: 19 start-page: 6087 year: 2019 publication-title: Nano Lett. – volume: 149 start-page: 63 year: 2019 publication-title: Carbon – volume: 19 start-page: 647 year: 2008 publication-title: Polym. Adv. Technol. – volume: 48 start-page: 1642 year: 2019 publication-title: Chem. Soc. Rev – volume: 96 start-page: 557 year: 2005 publication-title: J. Appl. Polym. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 27 start-page: 2866 year: 2015 publication-title: Adv. Mater. – volume: 16 start-page: 664 year: 2017 publication-title: Nat. Mater. – volume: 11 start-page: 2018 year: 2015 publication-title: Soft Matter – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 28 start-page: 4250 year: 2016 publication-title: Adv. Mater. – volume: 50 start-page: 1734 year: 2017 publication-title: Acc. Chem. Res. – volume: 48 start-page: 2946 year: 2019 publication-title: Chem. Soc. Rev – volume: 109 start-page: 9287 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 9614 year: 2017 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 1 year: 2017 publication-title: Small Methods – volume: 30 start-page: 3110 year: 2018 publication-title: Chem. Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 15 start-page: 735 year: 2005 publication-title: J. Mater. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 start-page: 59 year: 2015 publication-title: Extreme Mech. Lett. – volume: 22 start-page: 2692 year: 2012 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1441 year: 2011 publication-title: Acta Biomater. – volume: 63 start-page: 1412 year: 2014 publication-title: IEEE Trans. Instrum. Meas. – volume: 7 year: 2018 publication-title: APL Mater. – volume: 9 start-page: 3813 year: 2018 publication-title: Nat. Commun. – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 237 start-page: 49 year: 2016 publication-title: Sens. Actuators, B – volume: 6 start-page: 788 year: 2011 publication-title: Nat. Nanotechnol. – volume: 31 start-page: 2701 year: 2010 publication-title: Biomaterials – ident: e_1_2_7_74_1 doi: 10.1002/pat.1134 – ident: e_1_2_7_13_1 doi: 10.1002/adfm.201801683 – ident: e_1_2_7_53_1 doi: 10.1002/adfm.201102373 – ident: e_1_2_7_81_1 doi: 10.1002/adma.201304248 – ident: e_1_2_7_40_1 doi: 10.1126/science.1182383 – ident: e_1_2_7_76_1 doi: 10.1021/acs.nanolett.9b02014 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201403807 – ident: e_1_2_7_56_1 doi: 10.1039/C5NR03155A – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201600443 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.7b00291 – ident: e_1_2_7_63_1 doi: 10.1146/annurev-bioeng-071910-124656 – ident: e_1_2_7_46_1 doi: 10.1039/c2jm32541a – ident: e_1_2_7_52_1 doi: 10.1021/ja1062357 – ident: e_1_2_7_58_1 doi: 10.1039/c1jm13918e – ident: e_1_2_7_29_1 doi: 10.1039/C8CS00814K – ident: e_1_2_7_68_1 doi: 10.1016/j.nanoen.2018.04.014 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201504276 – ident: e_1_2_7_43_1 doi: 10.1039/C8CS00595H – ident: e_1_2_7_54_1 doi: 10.1002/adfm.201404247 – ident: e_1_2_7_55_1 doi: 10.1002/advs.201600190 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201701780 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201803279 – ident: e_1_2_7_78_1 doi: 10.1038/nmat3755 – ident: e_1_2_7_10_1 doi: 10.1002/smll.201702933 – ident: e_1_2_7_67_1 doi: 10.1039/C6RA11020G – ident: e_1_2_7_27_1 doi: 10.1002/adma.201602994 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201800129 – ident: e_1_2_7_60_1 doi: 10.1038/nmat4863 – ident: e_1_2_7_4_1 doi: 10.1021/acs.analchem.9b00152 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201901360 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201601278 – ident: e_1_2_7_37_1 doi: 10.1021/acsnano.5b01613 – ident: e_1_2_7_39_1 doi: 10.1021/acsnano.7b04898 – ident: e_1_2_7_70_1 doi: 10.1002/adfm.201703852 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201400263 – ident: e_1_2_7_65_1 doi: 10.1002/anie.200604646 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201405807 – ident: e_1_2_7_38_1 doi: 10.1126/science.1206157 – ident: e_1_2_7_49_1 doi: 10.1038/s41578-018-0018-7 – ident: e_1_2_7_7_1 doi: 10.1021/acs.accounts.8b00499 – ident: e_1_2_7_1_1 doi: 10.1038/nnano.2011.184 – ident: e_1_2_7_72_1 doi: 10.1038/ncomms12028 – ident: e_1_2_7_51_1 doi: 10.1016/j.carbon.2009.06.043 – ident: e_1_2_7_71_1 doi: 10.1021/acs.chemmater.8b01172 – ident: e_1_2_7_57_1 doi: 10.1063/1.5063657 – ident: e_1_2_7_77_1 doi: 10.1002/adma.201603382 – ident: e_1_2_7_24_1 doi: 10.1038/nature21004 – ident: e_1_2_7_44_1 doi: 10.1016/j.biomaterials.2009.12.052 – ident: e_1_2_7_80_1 doi: 10.1109/TIM.2013.2289072 – ident: e_1_2_7_5_1 doi: 10.1002/adfm.201804456 – ident: e_1_2_7_18_1 doi: 10.1002/smtd.201600029 – ident: e_1_2_7_26_1 doi: 10.1002/aelm.201900347 – ident: e_1_2_7_21_1 doi: 10.1002/smtd.201900025 – ident: e_1_2_7_15_1 doi: 10.1038/nature25494 – ident: e_1_2_7_41_1 doi: 10.1126/sciadv.1602076 – ident: e_1_2_7_48_1 doi: 10.1016/j.eml.2015.03.001 – ident: e_1_2_7_66_1 doi: 10.1002/app.21481 – ident: e_1_2_7_9_1 doi: 10.1038/s41467-018-06079-3 – ident: e_1_2_7_31_1 doi: 10.1038/nnano.2017.125 – ident: e_1_2_7_69_1 doi: 10.1039/C8TC00157J – ident: e_1_2_7_61_1 doi: 10.1016/j.actbio.2011.01.011 – ident: e_1_2_7_64_1 doi: 10.1039/b415094e – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.5b01835 – ident: e_1_2_7_50_1 doi: 10.1073/pnas.1202636109 – ident: e_1_2_7_59_1 doi: 10.1021/acs.accounts.7b00191 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201800109 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201702800 – ident: e_1_2_7_47_1 doi: 10.1126/science.aaf8810 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201800323 – ident: e_1_2_7_25_1 doi: 10.1039/C8CS00609A – ident: e_1_2_7_17_1 doi: 10.1002/adma.201801291 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201902434 – ident: e_1_2_7_28_1 doi: 10.1038/nnano.2015.324 – ident: e_1_2_7_79_1 doi: 10.1016/j.snb.2016.06.076 – ident: e_1_2_7_14_1 doi: 10.1016/j.carbon.2019.04.019 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201903130 – ident: e_1_2_7_73_1 doi: 10.1038/nature11409 – ident: e_1_2_7_62_1 doi: 10.1111/j.1600-0838.1997.tb00120.x – ident: e_1_2_7_75_1 doi: 10.1002/adma.201500367 – ident: e_1_2_7_45_1 doi: 10.1039/C5SM00047E – ident: e_1_2_7_34_1 doi: 10.1038/s41467-017-02685-9 |
SSID | ssj0017734 |
Score | 2.6421454 |
Snippet | Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bonding strength Dissimilar materials Elastomers Electrocardiography Electrodes Electromyography Electronics electrophysiological signals hybrid electrodes Hybrid structures Hydrogels Locking Materials science mechanical interlock mechanical softness on‐skin electronics Softness Substrates |
Title | Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‐Skin Electronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909540 https://www.proquest.com/docview/2424635280 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YvOjBfyOKpAcTT4V2uyz0SARCjEiiknBr9q8eRDC0HPDEI5j4hjyJMy0UMDEmeuih7W6z3dnd-WZ35htCrpT2wlC4zA7xfJBVQtcWrta21EwyVWPKSwhMO_e83WO3_Up_LYo_5YfINtxwZiTrNU5wIaPyijRU6BAjyUGh-YA6YBFGhy1ERQ8Zf5RbrabHytxFBy-3v2RtdGh5s_qmVlpBzXXAmmic1j4Ry7amjiYvpUksS-r9G43jf37mgOwt4KhVT8fPIdkywyOyu0ZSeEy6HYPRwSjMwdRKdhBBAb4YbbWnejx6NoP57LMJIDwevZoxPMQYsMgCMGx1h_PZB6b3sppZtp3ohPRazaebtr1Iw2ArRsG49LVXrQpfusJhTEMLAVVwPEEUjvYkWNeyApfiwiCcxEBV6knqeIL6JtQq9E5JbjgamjNiKc0Z2Dd-jcNYcBQYS7ymAVD50qOAhEye2EsxBGrBUY6pMgZByq5MA-yoIOuoPLnOyr-l7Bw_liwspRosZmkUYGgMR3obeE0T8fzylaDeaHWyu_O_VLogOxRN9sTjt0By8XhiLgHXxLJItuuNzt1jMRnDX5Ik8UI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4oHtSD_0YUtQcTT4V2uxR6JApBpZAYSLg13Z96AMFAOeCJRzDxDXkSZ1pawMSY6KGHtrvN7s5u55vdmW8IuRHSCgLfZHqA54OsGJi6b0qpc8k4E2UmrIjA1G3a9Q577BYTb0KMhYn5IdINN1wZ0f8aFzhuSBeWrKG-DDCUHDSaA7Bjk2xhWu_IqnpOGaTMUik-WLZNdPEyuwlvo0EL6_XX9dISbK5C1kjn1PYJT1obu5r08pOQ58X7NyLHf3XngOwtEKlWiafQIdlQgyOyu8JTeExarsIAYZRnf6pFm4igA3tKavWpHA1fVH8--6wCDg-Hr2oEDzEMbKwBHtZag_nsAzN8adU04c74hHRq1fZdXV9kYtAFo2BfOtIqlXyHm77BmIQWArCw8RDRN6TFwcDmRbiE7StElBirSi1ODcunjgqkCKxTkhkMB-qMaELaDEwcp2zDdDAE2Et2WQKmcrhFAQypLNETOXhiQVOO2TL6XkywTD0cKC8dqCy5Tcu_xQQdP5bMJWL1Fgt17GF0jI0MN_CaRvL55Ste5b7mpnfnf6l0TbbrbbfhNR6aTxdkh6IFHzkA50gmHE3UJcCckF9FE_kLEvDzyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojyzIDEFEgc121GRFuVR1uEQOoW-RWGlrRq0wEmfgIS_7C_hLskDQUJIcGQIYkd2b5z7jvb9x0hx0p7YShcZoe4P8hKoWsLV2tbaiaZqjDlJQSmzRZvPLCrTqkzE8Wf8kPkC244M5L_NU7wgQ7PPklDhQ4xkhwMmg-oY54sMO5UUK-rdzmBlFsup_vK3MUTXm5nStvo0LOv9b-apU-sOYtYE5NTXyVi2tj0pEn3dBzLU_XyjcfxP71ZIysZHrXOUwVaJ3Mm2iDLMyyFm6TdNBgejNLsPVvJEiJYwK7RVuNZD_uPpjd5fa8BCo_7T2YIDzEIbGQBGrba0eT1DfN7WbU83c5oizzUa_cXDTvLw2ArRsG79LVXLgtfusJhTEMLAVZw3EIUjvYkuNeyBJfiwiCexEhV6knqeIL6JtQq9LZJIepHZodYSnMGDo5f4aAMjgJviVc0ICpfehSgkCkSeyqGQGUk5Zgroxek9Mo0wIEK8oEqkpO8_CCl5_ix5P5UqkE2TUcBxsZw5LeB1zQRzy9fCc6r9WZ-t_uXSkdk8bZaD24uW9d7ZImi-56c_t0nhXg4NgeAcWJ5mKjxB1XD8oE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Interlocked+Hydrogel%E2%80%93Elastomer+Hybrids+for+On%E2%80%90Skin+Electronics&rft.jtitle=Advanced+functional+materials&rft.au=Pan%2C+Shaowu&rft.au=Zhang%2C+Feilong&rft.au=Cai%2C+Pingqiang&rft.au=Wang%2C+Ming&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.201909540&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |