Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‐Skin Electronics

Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar ma...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 29
Main Authors Pan, Shaowu, Zhang, Feilong, Cai, Pingqiang, Wang, Ming, He, Ke, Luo, Yifei, Li, Zheng, Chen, Geng, Ji, Shaobo, Liu, Zhihua, Loh, Xian Jun, Chen, Xiaodong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar materials while retaining their respective properties. Herein, the mechanically interlocked hydrogel–elastomer hybrid is reported as a viable solution to this problem. Hydrogels with low moduli and high adhesiveness are employed as the substrate, while porous elastomer webs are used as matrices to load conductive films and lock the hydrogels through a mechanically interlocked structure. The bonding strength between the hydrogel and elastomer in the interlocking hybrid structure is 14.3 times of that obtained via the physical stacking method. As a proof of concept, interlocking hybrids are used as on‐skin electrodes for electrophysiological signal recording including electromyography and electrocardiography. The robust hybrid electrodes are able to detect signals after multiple cycles. The proposed strategy not only is an effective approach to achieve interlocking structures, but also provides a new perspective for soft and stretchable electronics. A novel hydrogel–elastomer hybrid is developed by mechanical interlocking. Porous elastomer webs are used as matrices to load conductive materials and lock hydrogels through an interlocking structure to achieve mechanically soft and skin‐adhesive electrodes. The interlocking hybrid is used as an on‐skin electrode for recording electrophysiological signals.
AbstractList Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar materials while retaining their respective properties. Herein, the mechanically interlocked hydrogel–elastomer hybrid is reported as a viable solution to this problem. Hydrogels with low moduli and high adhesiveness are employed as the substrate, while porous elastomer webs are used as matrices to load conductive films and lock the hydrogels through a mechanically interlocked structure. The bonding strength between the hydrogel and elastomer in the interlocking hybrid structure is 14.3 times of that obtained via the physical stacking method. As a proof of concept, interlocking hybrids are used as on‐skin electrodes for electrophysiological signal recording including electromyography and electrocardiography. The robust hybrid electrodes are able to detect signals after multiple cycles. The proposed strategy not only is an effective approach to achieve interlocking structures, but also provides a new perspective for soft and stretchable electronics.
Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical softness, skin adhesiveness, and high conductivity concurrently has always been a major challenge due to the difficulty in bonding dissimilar materials while retaining their respective properties. Herein, the mechanically interlocked hydrogel–elastomer hybrid is reported as a viable solution to this problem. Hydrogels with low moduli and high adhesiveness are employed as the substrate, while porous elastomer webs are used as matrices to load conductive films and lock the hydrogels through a mechanically interlocked structure. The bonding strength between the hydrogel and elastomer in the interlocking hybrid structure is 14.3 times of that obtained via the physical stacking method. As a proof of concept, interlocking hybrids are used as on‐skin electrodes for electrophysiological signal recording including electromyography and electrocardiography. The robust hybrid electrodes are able to detect signals after multiple cycles. The proposed strategy not only is an effective approach to achieve interlocking structures, but also provides a new perspective for soft and stretchable electronics. A novel hydrogel–elastomer hybrid is developed by mechanical interlocking. Porous elastomer webs are used as matrices to load conductive materials and lock hydrogels through an interlocking structure to achieve mechanically soft and skin‐adhesive electrodes. The interlocking hybrid is used as an on‐skin electrode for recording electrophysiological signals.
Author Liu, Zhihua
Chen, Xiaodong
Li, Zheng
Cai, Pingqiang
Zhang, Feilong
Ji, Shaobo
Loh, Xian Jun
Pan, Shaowu
Chen, Geng
He, Ke
Luo, Yifei
Wang, Ming
Author_xml – sequence: 1
  givenname: Shaowu
  surname: Pan
  fullname: Pan, Shaowu
  organization: Nanyang Technological University
– sequence: 2
  givenname: Feilong
  surname: Zhang
  fullname: Zhang, Feilong
  organization: Nanyang Technological University
– sequence: 3
  givenname: Pingqiang
  surname: Cai
  fullname: Cai, Pingqiang
  organization: Nanyang Technological University
– sequence: 4
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
  organization: Nanyang Technological University
– sequence: 5
  givenname: Ke
  surname: He
  fullname: He, Ke
  organization: Nanyang Technological University
– sequence: 6
  givenname: Yifei
  surname: Luo
  fullname: Luo, Yifei
  organization: Institute of Materials Research and Engineering Agency for Science, Technology and Research (ASTAR)
– sequence: 7
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Nanyang Technological University
– sequence: 8
  givenname: Geng
  surname: Chen
  fullname: Chen, Geng
  organization: Nanyang Technological University
– sequence: 9
  givenname: Shaobo
  surname: Ji
  fullname: Ji, Shaobo
  organization: Nanyang Technological University
– sequence: 10
  givenname: Zhihua
  surname: Liu
  fullname: Liu, Zhihua
  organization: Nanyang Technological University
– sequence: 11
  givenname: Xian Jun
  surname: Loh
  fullname: Loh, Xian Jun
  organization: Quanzhou Normal University
– sequence: 12
  givenname: Xiaodong
  orcidid: 0000-0002-3312-1664
  surname: Chen
  fullname: Chen, Xiaodong
  email: chenxd@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkM9qAjEQxkOxULW99rzQs3byx11zFKtVUDy0hd6WbJJtV2Nik5WyNx-h0Df0SbpisVAoPQwzDN_vm-FroYZ1ViN0jaGLAcitUPm6SwBz4D0GZ6iJYxx3KJB-4zTj5wvUCmEJgJOEsiZazLV8FbaQwpgqmtpSe-PkSqtoUinvXrTZ7z5HRoTSrbWvl5kvVIhy56OF3e8-HlaFjUZGy9K72iVcovNcmKCvvnsbPY1Hj8NJZ7a4nw4Hs45khECHK5okgmdYAGOq_hiSfgzAqABFs5hD1qtLxkIDppwySgjNCFBBuM6VzGkb3Rx9N969bXUo06XbelufTAkjLKY90odaxY4q6V0IXuepLEpRFs6WXhQmxZAeoksP0aWn6Gqs-wvb-GItfPU3wI_Ae2F09Y86HdyN5z_sF7j_hMU
CitedBy_id crossref_primary_10_1002_marc_202100457
crossref_primary_10_1002_adma_202106570
crossref_primary_10_1021_acsami_2c13829
crossref_primary_10_1016_j_cej_2024_149505
crossref_primary_10_1016_j_ijbiomac_2022_02_065
crossref_primary_10_1109_LED_2020_3020937
crossref_primary_10_1039_D3NR00807J
crossref_primary_10_1016_j_isci_2023_106715
crossref_primary_10_1002_advs_202201912
crossref_primary_10_1002_adfm_202313504
crossref_primary_10_1002_adma_202301290
crossref_primary_10_1007_s42765_021_00086_8
crossref_primary_10_1016_j_nanoen_2023_109006
crossref_primary_10_1021_acsami_2c17879
crossref_primary_10_1002_smll_202312037
crossref_primary_10_1002_advs_202102314
crossref_primary_10_1021_acsami_0c16985
crossref_primary_10_1002_admi_202200935
crossref_primary_10_1002_advs_202105146
crossref_primary_10_1038_s41467_024_44949_1
crossref_primary_10_3390_bios13070692
crossref_primary_10_1021_acsami_3c08053
crossref_primary_10_1039_D1TC04514H
crossref_primary_10_1002_adfm_202413464
crossref_primary_10_1021_acsami_3c08690
crossref_primary_10_1016_j_colsurfb_2024_114323
crossref_primary_10_1016_j_pmatsci_2023_101156
crossref_primary_10_1002_adfm_202302846
crossref_primary_10_1016_j_bios_2021_113231
crossref_primary_10_1002_advs_202309006
crossref_primary_10_1109_TBME_2020_3022615
crossref_primary_10_1360_SSC_2022_0019
crossref_primary_10_1021_acs_chemmater_0c02919
crossref_primary_10_1002_smtd_202101276
crossref_primary_10_1021_acsami_0c05083
crossref_primary_10_1016_j_eurpolymj_2022_111277
crossref_primary_10_1016_j_nantod_2024_102469
crossref_primary_10_1038_s41928_023_00918_y
crossref_primary_10_1016_j_cej_2021_132250
crossref_primary_10_1021_acsami_2c01667
crossref_primary_10_1016_j_cej_2025_159937
crossref_primary_10_1016_j_cej_2025_159659
crossref_primary_10_1002_advs_202301116
crossref_primary_10_1021_acsnano_2c07646
crossref_primary_10_1016_j_matt_2020_10_020
crossref_primary_10_1016_j_apmt_2023_101777
crossref_primary_10_1002_app_55727
crossref_primary_10_1016_j_nanoen_2023_108852
crossref_primary_10_1038_s41528_023_00273_0
crossref_primary_10_1002_adfm_202205697
crossref_primary_10_1007_s40843_024_2961_5
crossref_primary_10_1039_D2TB01048H
crossref_primary_10_3390_gels10050319
crossref_primary_10_1016_j_device_2024_100563
crossref_primary_10_1039_D2TC04946E
crossref_primary_10_1016_j_porgcoat_2022_106784
crossref_primary_10_3390_ijms25052675
crossref_primary_10_1109_OJNANO_2022_3218960
crossref_primary_10_1016_j_mtphys_2020_100258
crossref_primary_10_1021_acs_chemmater_2c01008
crossref_primary_10_1039_D0TA07883B
crossref_primary_10_1002_adfm_202303990
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1038_s41467_024_54879_7
crossref_primary_10_1039_D1TC03905A
crossref_primary_10_1021_acsami_4c03363
crossref_primary_10_1002_adfm_202411588
crossref_primary_10_1016_j_pmatsci_2023_101139
crossref_primary_10_1002_adem_202401432
crossref_primary_10_1007_s40820_023_01314_z
crossref_primary_10_1021_acsnano_2c07097
crossref_primary_10_1007_s40843_022_2411_9
crossref_primary_10_1016_j_cej_2024_149853
crossref_primary_10_1016_j_snb_2025_137377
crossref_primary_10_1002_adma_202007977
crossref_primary_10_1021_acs_chemrev_3c00502
crossref_primary_10_1016_j_cej_2021_130886
crossref_primary_10_1002_adma_202003014
crossref_primary_10_1002_bio_70148
crossref_primary_10_1002_smtd_202401156
crossref_primary_10_1038_s41586_023_06732_y
crossref_primary_10_1039_D0BM01373K
crossref_primary_10_1016_j_bios_2022_114825
crossref_primary_10_1021_acsaelm_3c00997
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1039_D3TA07191J
crossref_primary_10_1002_smll_202106477
crossref_primary_10_1039_D0MH01656J
crossref_primary_10_1038_s41928_024_01194_0
crossref_primary_10_1109_TNSRE_2023_3337861
crossref_primary_10_1002_sstr_202000045
crossref_primary_10_1016_j_compscitech_2022_109751
crossref_primary_10_1021_acsomega_4c05316
crossref_primary_10_1039_D1TC00151E
crossref_primary_10_3390_molecules27010165
crossref_primary_10_1002_smll_202310572
crossref_primary_10_1039_D1TA09252A
crossref_primary_10_3389_fchem_2022_855352
crossref_primary_10_1016_j_cej_2023_142226
crossref_primary_10_1016_j_cej_2024_151354
crossref_primary_10_1002_adsr_202200054
crossref_primary_10_1021_acsnano_1c07176
crossref_primary_10_1007_s42765_021_00129_0
crossref_primary_10_1016_j_trac_2020_116130
crossref_primary_10_1007_s42765_022_00186_z
crossref_primary_10_1016_j_jiec_2022_09_053
crossref_primary_10_1126_sciadv_abf9117
crossref_primary_10_1016_j_biomaterials_2024_122632
crossref_primary_10_1021_acs_analchem_1c03884
crossref_primary_10_1002_adma_202004290
crossref_primary_10_1021_acsami_1c10961
crossref_primary_10_1016_j_porgcoat_2024_108212
crossref_primary_10_1002_adma_202405046
crossref_primary_10_1016_j_cej_2022_138672
crossref_primary_10_1039_D3TC01889J
crossref_primary_10_3389_fbioe_2023_1118812
crossref_primary_10_1016_j_nanoen_2025_110805
crossref_primary_10_54097_hset_v63i_10781
crossref_primary_10_1002_adfm_202200360
crossref_primary_10_1021_acssuschemeng_2c06939
crossref_primary_10_1038_s41467_022_34844_y
crossref_primary_10_1002_adfm_202102433
crossref_primary_10_1002_advs_202001938
crossref_primary_10_1002_adhm_202102425
crossref_primary_10_1016_j_compositesa_2024_108517
crossref_primary_10_1021_acsami_1c17526
crossref_primary_10_1021_acs_chemrev_3c00498
crossref_primary_10_1007_s40820_023_01096_4
crossref_primary_10_1021_acsaelm_0c00653
crossref_primary_10_1021_acsami_2c20633
crossref_primary_10_1021_acsnano_3c02273
crossref_primary_10_1002_advs_202305226
crossref_primary_10_3390_bios12100854
crossref_primary_10_1021_acsami_3c03182
crossref_primary_10_1002_adsr_202300164
crossref_primary_10_1002_mame_202100931
crossref_primary_10_1016_j_cej_2025_160973
crossref_primary_10_1039_D0TA08664A
crossref_primary_10_1063_5_0059204
crossref_primary_10_1002_smm2_1068
crossref_primary_10_1039_D1TA05586K
Cites_doi 10.1002/pat.1134
10.1002/adfm.201801683
10.1002/adfm.201102373
10.1002/adma.201304248
10.1126/science.1182383
10.1021/acs.nanolett.9b02014
10.1002/adma.201403807
10.1039/C5NR03155A
10.1002/adfm.201600443
10.1021/acs.chemrev.7b00291
10.1146/annurev-bioeng-071910-124656
10.1039/c2jm32541a
10.1021/ja1062357
10.1039/c1jm13918e
10.1039/C8CS00814K
10.1016/j.nanoen.2018.04.014
10.1002/adma.201504276
10.1039/C8CS00595H
10.1002/adfm.201404247
10.1002/advs.201600190
10.1002/adma.201701780
10.1002/adfm.201803279
10.1038/nmat3755
10.1002/smll.201702933
10.1039/C6RA11020G
10.1002/adma.201602994
10.1002/adma.201800129
10.1038/nmat4863
10.1021/acs.analchem.9b00152
10.1002/adma.201901360
10.1002/adma.201601278
10.1021/acsnano.5b01613
10.1021/acsnano.7b04898
10.1002/adfm.201703852
10.1002/adma.201400263
10.1002/anie.200604646
10.1002/adma.201405807
10.1126/science.1206157
10.1038/s41578-018-0018-7
10.1021/acs.accounts.8b00499
10.1038/nnano.2011.184
10.1038/ncomms12028
10.1016/j.carbon.2009.06.043
10.1021/acs.chemmater.8b01172
10.1063/1.5063657
10.1002/adma.201603382
10.1038/nature21004
10.1016/j.biomaterials.2009.12.052
10.1109/TIM.2013.2289072
10.1002/adfm.201804456
10.1002/smtd.201600029
10.1002/aelm.201900347
10.1002/smtd.201900025
10.1038/nature25494
10.1126/sciadv.1602076
10.1016/j.eml.2015.03.001
10.1002/app.21481
10.1038/s41467-018-06079-3
10.1038/nnano.2017.125
10.1039/C8TC00157J
10.1016/j.actbio.2011.01.011
10.1039/b415094e
10.1021/acsnano.5b01835
10.1073/pnas.1202636109
10.1021/acs.accounts.7b00191
10.1002/adma.201800109
10.1002/adma.201702800
10.1126/science.aaf8810
10.1002/adma.201800323
10.1039/C8CS00609A
10.1002/adma.201801291
10.1002/adma.201902434
10.1038/nnano.2015.324
10.1016/j.snb.2016.06.076
10.1016/j.carbon.2019.04.019
10.1002/adma.201903130
10.1038/nature11409
10.1111/j.1600-0838.1997.tb00120.x
10.1002/adma.201500367
10.1039/C5SM00047E
10.1038/s41467-017-02685-9
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201909540
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201909540
ADFM201909540
Genre article
GrantInformation_xml – fundername: Ministry of Education - Singapore
  funderid: MOE2017‐T2‐2‐107
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4220-9d377a9b1a044d90907860043a0d3b690b590bc6ae0139343223b203a29efdcf3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:12:13 EDT 2025
Tue Jul 01 04:12:09 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Wed Jan 22 16:34:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4220-9d377a9b1a044d90907860043a0d3b690b590bc6ae0139343223b203a29efdcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3312-1664
PQID 2424635280
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2424635280
crossref_citationtrail_10_1002_adfm_201909540
crossref_primary_10_1002_adfm_201909540
wiley_primary_10_1002_adfm_201909540_ADFM201909540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 91
2009; 47
2017; 1
2017; 3
2017; 4
2019; 52
2014; 26
2016; 540
2019; 19
2014; 63
2012; 489
2018; 48
2017; 117
1997; 7
2018; 7
2018; 6
2018; 9
2018; 3
2013; 15
2013; 12
2016; 353
2011; 21
2018; 30
2016; 237
2012; 22
2018; 28
2011; 333
2010; 31
2019; 3
2019; 5
2015; 3
2019; 31
2010; 327
2017; 27
2008; 19
2015; 11
2019; 149
2017; 29
2015; 9
2011; 6
2015; 7
2011; 7
2012; 109
2016; 11
2017; 50
2016; 6
2015; 25
2016; 7
2015; 27
2017; 16
2017; 11
2018; 555
2019; 48
2017; 12
2010; 132
2005; 96
2005; 15
2016; 28
2016; 26
2007; 46
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 46
  start-page: 5670
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 91
  start-page: 6569
  year: 2019
  publication-title: Anal. Chem.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 540
  start-page: 379
  year: 2016
  publication-title: Nature
– volume: 7
  start-page: 62
  year: 1997
  publication-title: Scand. J. Med. Sci. Sports
– volume: 12
  start-page: 938
  year: 2013
  publication-title: Nat. Mater.
– volume: 27
  start-page: 3145
  year: 2015
  publication-title: Adv. Mater.
– volume: 353
  start-page: 682
  year: 2016
  publication-title: Science
– volume: 12
  start-page: 907
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 244
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 472
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 489
  start-page: 133
  year: 2012
  publication-title: Nature
– volume: 26
  start-page: 4511
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 2933
  year: 2009
  publication-title: Carbon
– volume: 48
  start-page: 1668
  year: 2019
  publication-title: Chem. Soc. Rev
– volume: 25
  start-page: 1219
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 28
  start-page: 9175
  year: 2016
  publication-title: Adv. Mater.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 201
  year: 2013
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 3
  start-page: 125
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 6252
  year: 2015
  publication-title: ACS Nano
– volume: 27
  start-page: 634
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 8801
  year: 2015
  publication-title: ACS Nano
– volume: 48
  start-page: 569
  year: 2018
  publication-title: Nano Energy
– volume: 26
  start-page: 3874
  year: 2014
  publication-title: Adv. Mater.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 28
  start-page: 9243
  year: 2016
  publication-title: Adv. Mater.
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 6
  start-page: 4183
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 52
  start-page: 82
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 19
  start-page: 6087
  year: 2019
  publication-title: Nano Lett.
– volume: 149
  start-page: 63
  year: 2019
  publication-title: Carbon
– volume: 19
  start-page: 647
  year: 2008
  publication-title: Polym. Adv. Technol.
– volume: 48
  start-page: 1642
  year: 2019
  publication-title: Chem. Soc. Rev
– volume: 96
  start-page: 557
  year: 2005
  publication-title: J. Appl. Polym. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 2866
  year: 2015
  publication-title: Adv. Mater.
– volume: 16
  start-page: 664
  year: 2017
  publication-title: Nat. Mater.
– volume: 11
  start-page: 2018
  year: 2015
  publication-title: Soft Matter
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 28
  start-page: 4250
  year: 2016
  publication-title: Adv. Mater.
– volume: 50
  start-page: 1734
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 2946
  year: 2019
  publication-title: Chem. Soc. Rev
– volume: 109
  start-page: 9287
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 9614
  year: 2017
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 30
  start-page: 3110
  year: 2018
  publication-title: Chem. Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 15
  start-page: 735
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  start-page: 59
  year: 2015
  publication-title: Extreme Mech. Lett.
– volume: 22
  start-page: 2692
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1441
  year: 2011
  publication-title: Acta Biomater.
– volume: 63
  start-page: 1412
  year: 2014
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 7
  year: 2018
  publication-title: APL Mater.
– volume: 9
  start-page: 3813
  year: 2018
  publication-title: Nat. Commun.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 237
  start-page: 49
  year: 2016
  publication-title: Sens. Actuators, B
– volume: 6
  start-page: 788
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 31
  start-page: 2701
  year: 2010
  publication-title: Biomaterials
– ident: e_1_2_7_74_1
  doi: 10.1002/pat.1134
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.201801683
– ident: e_1_2_7_53_1
  doi: 10.1002/adfm.201102373
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.201304248
– ident: e_1_2_7_40_1
  doi: 10.1126/science.1182383
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.nanolett.9b02014
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201403807
– ident: e_1_2_7_56_1
  doi: 10.1039/C5NR03155A
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201600443
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.7b00291
– ident: e_1_2_7_63_1
  doi: 10.1146/annurev-bioeng-071910-124656
– ident: e_1_2_7_46_1
  doi: 10.1039/c2jm32541a
– ident: e_1_2_7_52_1
  doi: 10.1021/ja1062357
– ident: e_1_2_7_58_1
  doi: 10.1039/c1jm13918e
– ident: e_1_2_7_29_1
  doi: 10.1039/C8CS00814K
– ident: e_1_2_7_68_1
  doi: 10.1016/j.nanoen.2018.04.014
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201504276
– ident: e_1_2_7_43_1
  doi: 10.1039/C8CS00595H
– ident: e_1_2_7_54_1
  doi: 10.1002/adfm.201404247
– ident: e_1_2_7_55_1
  doi: 10.1002/advs.201600190
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201701780
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201803279
– ident: e_1_2_7_78_1
  doi: 10.1038/nmat3755
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.201702933
– ident: e_1_2_7_67_1
  doi: 10.1039/C6RA11020G
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201602994
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201800129
– ident: e_1_2_7_60_1
  doi: 10.1038/nmat4863
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.analchem.9b00152
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201901360
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201601278
– ident: e_1_2_7_37_1
  doi: 10.1021/acsnano.5b01613
– ident: e_1_2_7_39_1
  doi: 10.1021/acsnano.7b04898
– ident: e_1_2_7_70_1
  doi: 10.1002/adfm.201703852
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201400263
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.200604646
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201405807
– ident: e_1_2_7_38_1
  doi: 10.1126/science.1206157
– ident: e_1_2_7_49_1
  doi: 10.1038/s41578-018-0018-7
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.accounts.8b00499
– ident: e_1_2_7_1_1
  doi: 10.1038/nnano.2011.184
– ident: e_1_2_7_72_1
  doi: 10.1038/ncomms12028
– ident: e_1_2_7_51_1
  doi: 10.1016/j.carbon.2009.06.043
– ident: e_1_2_7_71_1
  doi: 10.1021/acs.chemmater.8b01172
– ident: e_1_2_7_57_1
  doi: 10.1063/1.5063657
– ident: e_1_2_7_77_1
  doi: 10.1002/adma.201603382
– ident: e_1_2_7_24_1
  doi: 10.1038/nature21004
– ident: e_1_2_7_44_1
  doi: 10.1016/j.biomaterials.2009.12.052
– ident: e_1_2_7_80_1
  doi: 10.1109/TIM.2013.2289072
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.201804456
– ident: e_1_2_7_18_1
  doi: 10.1002/smtd.201600029
– ident: e_1_2_7_26_1
  doi: 10.1002/aelm.201900347
– ident: e_1_2_7_21_1
  doi: 10.1002/smtd.201900025
– ident: e_1_2_7_15_1
  doi: 10.1038/nature25494
– ident: e_1_2_7_41_1
  doi: 10.1126/sciadv.1602076
– ident: e_1_2_7_48_1
  doi: 10.1016/j.eml.2015.03.001
– ident: e_1_2_7_66_1
  doi: 10.1002/app.21481
– ident: e_1_2_7_9_1
  doi: 10.1038/s41467-018-06079-3
– ident: e_1_2_7_31_1
  doi: 10.1038/nnano.2017.125
– ident: e_1_2_7_69_1
  doi: 10.1039/C8TC00157J
– ident: e_1_2_7_61_1
  doi: 10.1016/j.actbio.2011.01.011
– ident: e_1_2_7_64_1
  doi: 10.1039/b415094e
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.5b01835
– ident: e_1_2_7_50_1
  doi: 10.1073/pnas.1202636109
– ident: e_1_2_7_59_1
  doi: 10.1021/acs.accounts.7b00191
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201800109
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201702800
– ident: e_1_2_7_47_1
  doi: 10.1126/science.aaf8810
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201800323
– ident: e_1_2_7_25_1
  doi: 10.1039/C8CS00609A
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201801291
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201902434
– ident: e_1_2_7_28_1
  doi: 10.1038/nnano.2015.324
– ident: e_1_2_7_79_1
  doi: 10.1016/j.snb.2016.06.076
– ident: e_1_2_7_14_1
  doi: 10.1016/j.carbon.2019.04.019
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201903130
– ident: e_1_2_7_73_1
  doi: 10.1038/nature11409
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1600-0838.1997.tb00120.x
– ident: e_1_2_7_75_1
  doi: 10.1002/adma.201500367
– ident: e_1_2_7_45_1
  doi: 10.1039/C5SM00047E
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-017-02685-9
SSID ssj0017734
Score 2.6421454
Snippet Soft electronics that seamlessly interface with skin are of great interest in health monitoring and human–machine interfaces. However, achieving mechanical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bonding strength
Dissimilar materials
Elastomers
Electrocardiography
Electrodes
Electromyography
Electronics
electrophysiological signals
hybrid electrodes
Hybrid structures
Hydrogels
Locking
Materials science
mechanical interlock
mechanical softness
on‐skin electronics
Softness
Substrates
Title Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‐Skin Electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909540
https://www.proquest.com/docview/2424635280
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YvOjBfyOKpAcTT4V2uyz0SARCjEiiknBr9q8eRDC0HPDEI5j4hjyJMy0UMDEmeuih7W6z3dnd-WZ35htCrpT2wlC4zA7xfJBVQtcWrta21EwyVWPKSwhMO_e83WO3_Up_LYo_5YfINtxwZiTrNU5wIaPyijRU6BAjyUGh-YA6YBFGhy1ERQ8Zf5RbrabHytxFBy-3v2RtdGh5s_qmVlpBzXXAmmic1j4Ry7amjiYvpUksS-r9G43jf37mgOwt4KhVT8fPIdkywyOyu0ZSeEy6HYPRwSjMwdRKdhBBAb4YbbWnejx6NoP57LMJIDwevZoxPMQYsMgCMGx1h_PZB6b3sppZtp3ohPRazaebtr1Iw2ArRsG49LVXrQpfusJhTEMLAVVwPEEUjvYkWNeyApfiwiCcxEBV6knqeIL6JtQq9E5JbjgamjNiKc0Z2Dd-jcNYcBQYS7ymAVD50qOAhEye2EsxBGrBUY6pMgZByq5MA-yoIOuoPLnOyr-l7Bw_liwspRosZmkUYGgMR3obeE0T8fzylaDeaHWyu_O_VLogOxRN9sTjt0By8XhiLgHXxLJItuuNzt1jMRnDX5Ik8UI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4oHtSD_0YUtQcTT4V2uxR6JApBpZAYSLg13Z96AMFAOeCJRzDxDXkSZ1pawMSY6KGHtrvN7s5u55vdmW8IuRHSCgLfZHqA54OsGJi6b0qpc8k4E2UmrIjA1G3a9Q577BYTb0KMhYn5IdINN1wZ0f8aFzhuSBeWrKG-DDCUHDSaA7Bjk2xhWu_IqnpOGaTMUik-WLZNdPEyuwlvo0EL6_XX9dISbK5C1kjn1PYJT1obu5r08pOQ58X7NyLHf3XngOwtEKlWiafQIdlQgyOyu8JTeExarsIAYZRnf6pFm4igA3tKavWpHA1fVH8--6wCDg-Hr2oEDzEMbKwBHtZag_nsAzN8adU04c74hHRq1fZdXV9kYtAFo2BfOtIqlXyHm77BmIQWArCw8RDRN6TFwcDmRbiE7StElBirSi1ODcunjgqkCKxTkhkMB-qMaELaDEwcp2zDdDAE2Et2WQKmcrhFAQypLNETOXhiQVOO2TL6XkywTD0cKC8dqCy5Tcu_xQQdP5bMJWL1Fgt17GF0jI0MN_CaRvL55Ste5b7mpnfnf6l0TbbrbbfhNR6aTxdkh6IFHzkA50gmHE3UJcCckF9FE_kLEvDzyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojyzIDEFEgc121GRFuVR1uEQOoW-RWGlrRq0wEmfgIS_7C_hLskDQUJIcGQIYkd2b5z7jvb9x0hx0p7YShcZoe4P8hKoWsLV2tbaiaZqjDlJQSmzRZvPLCrTqkzE8Wf8kPkC244M5L_NU7wgQ7PPklDhQ4xkhwMmg-oY54sMO5UUK-rdzmBlFsup_vK3MUTXm5nStvo0LOv9b-apU-sOYtYE5NTXyVi2tj0pEn3dBzLU_XyjcfxP71ZIysZHrXOUwVaJ3Mm2iDLMyyFm6TdNBgejNLsPVvJEiJYwK7RVuNZD_uPpjd5fa8BCo_7T2YIDzEIbGQBGrba0eT1DfN7WbU83c5oizzUa_cXDTvLw2ArRsG79LVXLgtfusJhTEMLAVZw3EIUjvYkuNeyBJfiwiCexEhV6knqeIL6JtQq9LZJIepHZodYSnMGDo5f4aAMjgJviVc0ICpfehSgkCkSeyqGQGUk5Zgroxek9Mo0wIEK8oEqkpO8_CCl5_ix5P5UqkE2TUcBxsZw5LeB1zQRzy9fCc6r9WZ-t_uXSkdk8bZaD24uW9d7ZImi-56c_t0nhXg4NgeAcWJ5mKjxB1XD8oE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+Interlocked+Hydrogel%E2%80%93Elastomer+Hybrids+for+On%E2%80%90Skin+Electronics&rft.jtitle=Advanced+functional+materials&rft.au=Pan%2C+Shaowu&rft.au=Zhang%2C+Feilong&rft.au=Cai%2C+Pingqiang&rft.au=Wang%2C+Ming&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.201909540&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon